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Abstract For a fixed number n of individuals, and a given weak ordering of m alter-
natives, we ask: is there a profile of n preferences that maps to that ordering under
Borda’s rule? Evidence is presented for a conjectured answer, which is settled except
for the case of odd n and even m.

1 Introduction

In an important early paper in modern social choice theory, McGarvey (1953), showed
the following: given a set X of m alternatives, and an arbitrary complete and reflexive
relation R on X , there exists a number n, and a profile of strong preferences for
n individuals, such that the relation “defeats or ties by simple majority voting” is
identical with R.

McGarvey’s result has been extended in the later literature. Stearns (1959) gave
more information about the number n required, although almost nothing is known even
nowabout the range of simplemajority voting for fixedn.Hollard andLeBreton (1996)
have considered separable preferences and Mala (1999) has treated λ-majorities. Gib-
son and Powers (2012) use a result of Saari (1989) to extend McGarvey’s theorem
to the plurality social choice mechanism. Gilboa (1990) and Shepardson and Tovey
(2009) consider what super-majority rules can yield all pairwise voting outcomes.

B Shaofang Qi
qi.shaofang@hu-berlin.de; sqi@syr.edu

Jerry S. Kelly
jskelly@maxwell.syr.edu

1 Department of Economics, Syracuse University, Syracuse, NY 13244-1020, USA

2 School of Business and Economics, Humboldt University Berlin, Spandauer Str. 1, 10178 Berlin,
Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00355-015-0948-6&domain=pdf


114 J. S. Kelly, S. Qi

Analogous work has been done by Echenique and Ivanov (2011), Sprumont (2001)
and Qi (2015a) establishing, for small fixed n, conditions on a given quasi-order such
that that quasi-order is the Pareto ranking at some profile on n individuals. The same
question for any fixed number n was initially raised by Dushnik and Miller (1941)
(regarding partial orders) and was recently revisited by Qi (2015b).

This paper addresses such questions about relations generated by the Borda’s rule,
for fixed n. We present evidence for a conjecture that, for fixed n ≥ 2, any weak
ordering of the alternatives is in the range of Borda’s rule unless, for odd n, there is a
barrier presented by the parity of the total Borda score.

2 Notation and terminology

We begin with a finite set N = {1, . . . , n} of individuals, n ≥ 2, and a finite set X of
alternatives, with |X | = m ≥ 2. A binary relation R on X is a non-empty subset of
the Cartesian product, X × X ; if (x, y) ∈ R, we will usually write x Ry. Relation R is

1. reflexive if x Rx for all x in X ;
2. asymmetric if for all x, y in X : x Ry and yRx imply x = y;
3. complete if for all for all x, y in X such that x �= y, either x Ry or yRx ;
4. transitive if x Ry and yRz imply x Rz for all x, y, z in X .

Relation R is a weak ordering on X if it is a reflexive, complete, and transitive
relation on X ; R is a strong ordering on X if it is a weak ordering on X and is also
asymmetric. The set of all strong orderings on X is denoted L(X). If R is a strong
ordering on X , then R[1] is the top-ranked alternative in R; that is, x Ry for all y in
X\{x}. More generally, R[k] is the kth -ranked alternative in R. The inverse R−1 of
a binary relation R is defined by x R−1y if and only if yRx . A profile is an ordered
n-tuple u = (u(1), u(2), . . . , u(n)) ∈ L(X)n of strong orderings.

Given a profile u in L(X)n , define s(u, x, i) = k, if u(i)[k] = x . Then the Borda
score of x at u, S(u, x), is the sum of the s(u, x, i) over i , for 1 ≤ i ≤ n; the Borda
ranking at u is a binary relation� on X that sets x � y if and only if S(u, x) ≤ S(u, y).
It is straightforward to check that the Borda ranking is a weak ordering on X . Borda’s
rule, denoted by fB , is a mapping from L(X)n to the set of all weak orderings on X :
it assigns to each profile u the Borda ranking. See Pattanaik (2002) for more details
on Borda’s rule and related positional rules.

The outcome of Borda’s rule at a given profile u could be alternatively viewed as a
weak ordering � (defined on subsets of X ):

X1 � X2 � · · · � XT

where: (i) � denotes the asymmetric part of �, (ii) each Xi ⊂ X , (iii) the Xi are
pairwise disjoint, (iv) alternatives within an Xi all have the same Borda score (i.e.,
Xi is an equivalence class of the Borda ranking), and (v) i < j if and only if all
alternatives in Xi have Borda score less than all alternatives in X j . To distinguish
from the Borda ranking, in what follows, we use L to denote a given weak ordering
X1 � X2 � · · · � XT ; each Xi is called a level of L.
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The inverse problem asks: are all weak orderings on X images of some profile
under fB? Borda’s rule can be extended to allow individual indifference, but then
the question is trivial: a weak ordering � is then the image under Borda of a profile
made up of n copies of �. So we follow McGarvey and others in requiring individual
preference orderings to be strong, i.e., no non-trivial indifference. Also, McGarvey
allowed n to vary but, as we shall soon see, any weak ordering � is the image under
Borda’s rule of a profile of any even number of individuals. Our problem becomes
interesting only if we both fix n and focus primarily on the cases where n is odd.

3 Four principles

Before directly attacking our problem, we first introduce four principles that will make
our arguments easier.

Principle #1 Because Borda’s rule satisfies neutrality, we can usefully abbreviate our
descriptions of weak ordering images under Borda’s rule. For a given X , we only have
to be concerned with the number of alternatives in each level, not with exactly which
alternatives are in each level. Showing L = {a, b, c} � {d, e} � { f } � {g, h, i, j}
is in the image of fB also shows that L∗ = {i, b, e} � {c, h} � { j} � {g, e, a, f }
is in the range. We indicate this by asking if the sequence (3,2,1,4) is in the range.
More generally, with a slight abuse of language, we say a weak ordering generated by
Borda’s rule is a sequence (m1,m2, . . . ,mT ) where the mi are the cardinalities of the
sets Xi of alternatives with the same Borda score.

Principle #2 Suppose ordering L = (m1,m2, . . . ,mT ) is in the image of fB at a
profile for n individuals. Then L is also in the image of fB at a profile for n + 2k
individuals for any non-negative integer k. All that is needed is to augment the profile
with pairs of inverse individual orderings.

Principle #3 Suppose weak ordering L = (m1,m2, . . . ,mT ) is in the image of fB at
a profile u = (u(1), u(2), . . . , u(n)) on set X and L∗ = (m∗

1,m
∗
2, . . . ,m

∗
S) is in the

image of fB at a profile v = (v(1), v(2), . . . , v(n)) on set X∗ (disjoint from X ). Then
the concatenation

(m1,m2, . . . ,mT ,m∗
1,m

∗
2, . . . ,m

∗
S)

is also in the image of fB at the profile

(u(1) � v(1), u(2) � v(2), . . . , u(n) � v(n))

on the set X∪X∗ where u(i) � v(i) is the ordering obtained by concatenating ordering
v(i) below ordering u(i).

Principle #4 Suppose ordering L = (m1,m2, . . . ,mT ) is in the image of fB at profile
u = (u1, u2, . . . , un). Then L−1 = (mT, . . . ,m2,m1) is in the image of fB at profile
(u−1

1 , u−1
2 , . . . , u−1

n ).
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4 Even n

Theorem 1 If n ≥ 2 is even, and L is a weak ordering on X, then there is a profile u
in L(X)n such that L = fB(u).

Proof First we treat the case n = 2. Start with a weak ordering L = C1 � C2 �
· · · � CT , and, for each i, let Pi be an arbitrary strong ordering on level Ci . Then at
the profile

u = (u(1), u(2)) = (P1 � P2 � · · · � PT , P−1
1 � P−1

2 � · · · � P−1
T )

we have fB(u) = L. Principle #2 then extends this to any even n ≥ 2. 
�

5 Odd n

Theorem 1 allows us to focus, for the rest of this paper, on the case where n is odd.
Here the results are mixed. If L = (1, 1, . . . , 1), then for all odd n, sequence L is in
the range of fB :

Lemma 1 If L = (m1,m2, . . . ,mT ) is a strong ordering on X then for all n there is
a profile u in L(X)n such that L = fB(u).

Proof Just construct u as n copies of L.
If L = (m1,m2, . . . ,mT ) is not a strong ordering on X , then there may or may not

exist a profile u for odd n such that fB(u) = L. We first illustrate with some claims:

(7) is in the range for all odd n ≥ 3; while (6) is not in the range for any odd n.
(4, 4) is in the range for all odd n ≥ 3; while (8) is not in the range for any odd n.
(2, 2, 2, 3) and (2, 2, 2, 2) are both in the range for all odd n ≥ 3, but (2, 2, 2, 4)
is not in the range for any odd n.

Let’s first provide details for one of the cases above. Failure of a weak ordering
to be in the range of fB will be seen to stem from a conflict about parity of the total
Borda scores assigned across all alternatives and all individuals, as illustrated by

Example 1 Let L = (6), i.e., all six alternatives have the same Borda score. Then for
every odd positive integer n, there does not exist a profile u such that fB(u) = L. To see
this, we count the total of the Borda scores in two ways. First, each individuals assigns
scores of 1, 2, . . . , 6, which add up to 21. Summing over n = 2t + 1 individuals,
the total of the Borda scores is 21(2t + 1), which is odd. But the total score must
also be 6S where S is the common Borda score of each alternative. But this is even, a
contradiction.

This parity barrier, a possible conflict between two ways of determining the total
Borda score will be seen to be at the heart of all cases where we can show L is not in
the range of fB for odd n ≥ 3.

The remainder of this section shows that all weak orderings Lwith at least one odd
level are in the range of Borda’s rule for all odd n ≥ 3. We start with the case of a
single level.
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A conjecture on the construction of orderings… 117

Example 2 Suppose L = (m), i.e., all m ≥ 1 alternatives have the same Borda score
and assume m = 2t + 1 is odd. (The case of even m will be covered by Lemma 2.)
Then we can construct a profile u for n = 3 such that fB(u) = L.

A profile u that generates (2t + 1) is:

1 2 3
x1 x2t x2t+1
x2 x2t−2 x2t−1
x3 x2t−4 x2t−3
...

...
...

x6
...

... x4 x5
x2 x3
x2t+1 x1

... x2t−1 x2t
x2t−3 x2t−2

...
... x2t−4

x2t−2
...

...
x2t−1 x5 x6
x2t x3 x4
x2t+1 x1 x2

Here, the t even-labeled alternatives (in red) are above the t+1 odd-labeled alternatives
for individual #2 and below them for individual #3. The common Borda score for all
alternatives is 3t + 3.

The appendix uses the following modification of the profile, u above.

Example 3 We alter the profile in Example 2 to generate sequence (t, t). For each
individual, remove the x2t+1 entry.

1. For individual 1, no remaining alternatives have their Borda score changed;
2. For individual 2, no even-labeled alternatives have their Borda score changed; all

odd-labeled alternatives have their Borda score lowered by 1;
3. For individual 3, all remaining alternatives have their Borda score lowered by 1;

As a consequence, the t even-labeled alternatives have a common score 3t + 2,
which is exactly one more than the common Borda score 3t + 1 of the t odd-labeled
alternatives.

Lemma 2 Suppose L = (m1,m2, . . . ,mT ) is not a strong ordering on X but exactly
onemi is odd. Then for all odd n ≥ 3 there is a profile u in L(X)n such thatL = fB(u).

Proof Since exactly one mi is odd, (m1 + m2 + · · · + mT ) is an odd number and
Example 2 shows we can construct a profile v for three individuals yielding a single
level with (m1 + m2 + · · · + mT ) alternatives:

123



118 J. S. Kelly, S. Qi

1 2 3
x1 x(m1+m2+···+mT )−1 x(m1+m2+···+mT )
x2 x(m1+m2+···+mT )−3 x(m1+m2+···+mT )−2
...

...
...

x4
...

... x2 x3
x(m1+m2+···+mT ) x1

... x(m1+m2+···+mT )−2 x(m1+m2+···+mT )−1
... x(m1+m2+···+mT )−3

...
...

...
x(m1+m2+···+mT )−1 x3 x4
x(m1+m2+···+mT ) x1 x2

We construct a profile u from v by modifying v(1) while keeping v(2) and v(3)
unchanged. In particular, describe v(1) as

v(1) = PmT � PmT−1 � · · · � Pm2 � Pm1

where

PmT = x1 � x2 � · · · � xmT ,

PmT−1 = xmT +1 � xmT +2 � · · · � xmT +mT−1 ,

...

Pm2 = x(mT +mT−1+···+m3)+1 � x(mT +mT−1+···+m3)+2

� · · · � x(mT +mT−1+···+m3)+m2 ,

Pm1 = x(mT +mT−1+···+m3+m2)+1 � x(mT +mT−1+···+m3+m2)+2

� · · · � x(mT +mT−1+···+m3+m2)+m1 .

Then define

v̂(1) = Pm1 � Pm2 � · · · � PmT−1 � PmT

and let u = (v̂(1), v(2), v(3)).
Given the definition of v̂(1), of u, and that fB(v) is a single level, for any single k,

from v to u, options on which Pmk is defined remain having the same Borda score; for
any k < j , from v to u, options on which Pmk is defined have larger Borda score than
options on which Pm j is defined. Therefore, fB(u) = (m1,m2, . . . ,mT ). Principle
#2 then extends this to any odd n ≥ 3. 
�
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Lemma 3 Suppose L = (m1,m2, . . . ,mT ) is not a strong ordering on X but at least
onemi is odd. Then for all odd n ≥ 3 there is a profile u in L(X)n such thatL = fB(u).

Proof By induction on K, the number of odd levels in L. The basis case, K = 1,
is settled by Lemma 2. Now assume the result holds for K = k, and let L =
(m1,m2, . . . ,mT ) be a sequence with k + 1 odd levels. Split L into two subse-
quences of contiguous levels: L∗ = (m1, . . . ,mW ) and L∗∗ = (mW+1, . . . ,mT ),
where mW is the smallest i such that mi is odd. Let m∗ = m1 + · · · + mW and
m∗∗ = mW+1 + · · · + mT . By Lemma 2, there is an n-individual profile u∗ on a set
X∗ of m∗ alternatives such that fB(u∗) = L∗. By the induction hypothesis, there is
an n-individual profile u∗∗ on a set X∗∗ (which we may choose to be disjoint from
X∗) of m∗∗ alternatives such that fB(u∗∗) = L∗∗. Property #3 then implies that the
profile w obtained by concatenating the preferences in u∗∗ below the preferences in
u∗ satisfies fB(w) = L. 
�

Lemma 3 applies to both odd and even m, while the next theorem shows that
Lemma 3 completely determines the answer to our question for odd m.

Theorem 2 Suppose m is odd and L = (m1,m2, . . . ,mT ). Then for all odd n ≥ 3
there is a profile u in L(X)n such that L = fB(u).

Proof If m is odd, at least one mi in the sequence must be odd. Then apply Lemma 3.

�

6 Odd n, even m

What remains is the case where m is even and where n is odd. Of course by Lemma 3,
if in L = (m1,m2, . . . ,mT ) even one mi is odd, L is in the range of Borda’s rule. So
we need only consider the case where all the mi are even. We have already seen that,
for example, (6) is not then in the range of Borda’s rule because of a parity barrier.
This generalizes to many possible L.

Let 2k for k ≥ 1 be the largest power of 2 dividing all the mi , so L =
(2ks1, 2ks2 . . . , 2ksT ). We call s1 + s2 + · · · + sT = m/2k the index of ordering
L, denoted I (L).

Theorem 3 Suppose L = (m1,m2, . . . ,mT ) is not a strong ordering on X; in fact,
assume every mi is even. If I (L) is odd, then for every odd positive integer n, there
does not exist a profile u such that fB(u) = L.
Proof Assume for contradiction there is a profile u such that fB(u) = L. Then each
individual has total score

2k(s1 + s2 + · · · + sT )[2k(s1 + s2 + · · · + sT ) + 1]/2 = 2k−1N (1)

where N is odd.
Summing Eq. (1) over the n individuals yields 2k−1Nn, where Nn is then odd if n

is odd.
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From a different perspective, if the alternatives in the levels have scores p1, p2, …,
pT (integers) respectively, then the total score would be

2ks1 p1 + 2ks2 p2 + · · · + 2ksT pT .

But

2k−1Nn = 2ks1 p1 + 2ks2 p2 + · · · + 2ksT pT = 2k(s1 p1 + s2 p2 + · · · + sT pT )

implies 2 divides Nn, a contradiction. 
�
Finally, we need to consider the remaining case where m is even and n is odd,

where I (L) is even (so m is divisible by 4). We have a few partial theoretical results
and many numerical examples. All are consistent withL being in the range of Borda’s
rule. The first theoretical result treats the case where L = (2ks1, , 2ks2 . . . , 2ksT ) and
all the si are odd.

Lemma 4 Suppose L = (m1,m2, . . . ,mT ) is not a strong ordering on X; in fact,
assume every mi is even. If I (L) is even and all si are odd, then for every odd n ≥ 3,
there exists a profile u such that fB(u) = L.

The proof of Lemma 4 is in an appendix.
The result in Lemma 4 covers more cases than might be apparent. Consider

(2, 2, 6, 10, 6, 14, 4, 12). The value of the largest power of 2 dividing all these levels
is 2; but dividing by 2 does not yield only odd numbers. However we can split this
sequence into parts. Lemma 4 shows that each of (2, 2), (6, 10, 6, 14), and (4, 12) are
in the range of Borda’s rule. Concatenating the relevant profiles and applying Principle
#3 then implies (2, 2, 6, 10, 6, 14, 4, 12) is in the range of Borda’s rule.

7 Conclusion

Summarizing the evidence for our claim that only the parity barrier of Theorem 3
keeps a profile from being in the range of Borda’s rule, we first note that half of all
cases we have considered havem odd, for which any ordering is in the range of Borda’s
rule for all odd n. Of the remaining half with m even, the vast majority of orderings
L have at least two odd levels and all such orderings are in the range of Borda’s rule
for all odd n. For the smaller number of orderings with m even and all levels even,
none of those with odd index are in the range of Borda’s rule for any odd n. We are
left with orderings for even m, all levels even, and even index. We conjecture that all
such rules are in the range of Borda’s rule for all odd n.

Further evidence for this includes:

1. Calculations on small number examples confirms the conjecture for all m < 24.
2. For each such m, there are a few orderings of the form (2k(2t + 1), 2k(2t +

3), 2k(2t + 5)) and each such ordering can be proved to be in the range of Borda’s
rule for all odd n.
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3. For each such m, there are many (long) sequences made up entirely of 2’s and 4’s;
all are in the range of Borda’s rule for all odd n . See Kelly and Qi (2015) for this
result and a generalization.

As a bonus of the analysis in this paper, we also get the solution of the inverse
Borda correspondence problem. The Borda correspondence, GB : L(X)n → X , maps
profiles of strong preferences to non-empty subsets of X . Here GB(u) is the set of
alternatives with maximal Borda score. The inverse Borda correspondence problem
starts from a fixed n and non-empty subset S of X and asks if there is a profile u such
that GB(u) = S. But, GB(u) = S if and only if fB(u) = (m1, . . .) where m1 = |S|.

Our results on fB then imply there is a profile u with GB(u) = S unless n is odd
and S = X where |X | is even. (Most situations are covered by picking a profile u with
fB(u) = (m1, 1, 1, . . . , 1).)

Appendix (proof of Lemma 4)

Recall that s1 + s2 + · · · + sT is even and all si are odd, while T is even.

Case 1 T = 2, i.e., L = (2ks1, 2ks2) where s1, s2 are both odd.
We start by constructing a profile v of 2k(s1 + s2) options with two equal even

levels as in Example 3. Note that the score of the blue options (odd-subscript) is larger
than that of the red ones (even-subscript) by exactly one:

1 2 3
x1 x2k(s1+s2) x2k(s1+s2)−1
x2 x2k(s1+s2)−2 x2k(s1+s2)−3
...

...
...

...
...

...
x4 x3

... x2 x1

... x2k(s1+s2)−1 x2k(s1+s2)
x2k(s1+s2)−3 x2k(s1+s2)−2

...
...

...
...

...
...

x2k(s1+s2)−1 x3 x4

x2k(s1+s2) x1 x2

No changes will be made for individual #1, so that part of the profile will not be
displayed from now on. Similarly, nothing in the bottom half of the orderings for #2
and #3 will be changed and those suborderings are not displayed. We focus on the red
part for individual #2 and blue part for individual #3:
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2 3
x2k(s1+s2) x2k(s1+s2)−1
x2k(s1+s2)−2 x2k(s1+s2)−3
...

...
x4 x3
x2 x1

Note that the two parts combined include all 2k(s1 + s2) alternatives. Now we
partition them into 2k blocks, each consisting of (s1 + s2) options:

2 3
x2k(s1+s2) x2k(s1+s2)−1
x2k(s1+s2)−2 x2k(s1+s2)−3
...

...
x(2k−1)(s1+s2)+4 x(2k−1)(s1+s2)+3
x(2k−1)(s1+s2)+2 x(2k−1)(s1+s2)+1
...

...
x2(s1+s2) x2(s1+s2)−1
x2(s1+s2)−2 x2(s1+s2)−3
...

...
x(s1+s2)+4 x(s1+s2)+3
x(s1+s2)+2 x(s1+s2)+1
x(s1+s2) x(s1+s2)−1
x(s1+s2)−2 x(s1+s2)−3
...

...
x4 x3
x2 x1

We will now modify each block, and to illustrate the idea, we separate two
blocks below, the one consisting of {x1, x2, . . . , x(s1+s2)} and the one consisting of
{x(s1+s2)+1, x(s1+s2)+2, . . . , x2(s1+s2)}:
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2 3
...

...
x2(s1+s2) x2(s1+s2)−1
x2(s1+s2)−2 x2(s1+s2)−3
...

...
x(s1+s2)+4 x(s1+s2)+3
x(s1+s2)+2 x(s1+s2)+1
x(s1+s2) x(s1+s2)−1
x(s1+s2)−2 x(s1+s2)−3
...

...
x4 x3
x2 x1

For each block, we separate the s1+s2 options (combined over the two individuals)
into a group of s1 options (circled) and a group of s2 options:

2 3
...

...
x2(s1+s2) x2(s1+s2)−1
x2(s1+s2)−2 x2(s1+s2)−3
...

...
x(s1+s2)+s1+3 x(s1+s2)+s1+2
x(s1+s2)+s1+1

x(s1+s2)+s1

x(s1+s2)+s1−1 x(s1+s2)+s1−2

...
...

x(s1+s2)+4 x(s1+s2)+3
x(s1+s2)+2 x(s1+s2)+1

x(s1+s2) x(s1+s2)−1
x(s1+s2)−2 x(s1+s2)−3
...

...
xs1+3 xs1+2
xs1+1 xs1

xs1−1 xs1−2

...
...

x4 x3
x2 x1

For each block, we move the circled alternatives above the others:
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2 3
...

...
x(s1+s2)+s1−1 x(s1+s2)+s1

... x(s1+s2)+s1−2

...
...

x(s1+s2)+4
...

x(s1+s2)+2 x(s1+s2)+3

x2(s1+s2)
x(s1+s2)+1

x2(s1+s2)−2 x2(s1+s2)−1
... x2(s1+s2)−3
...

...

x(s1+s2)+s1+3
...

x(s1+s2)+s1+1 x(s1+s2)+s1+2
xs1−1 xs1

... xs1−2

...
...

x4
...

x2 x3

x(s1+s2)
x1

x(s1+s2)−2 x(s1+s2)−1
... x(s1+s2)−3
...

...

xs1+3
...

xs1+1 xs1+2

Note that nothing is changed between blocks, or, within a block, among the circled
alternatives or among the non-circled alternatives.

Recall that beforemoving options, the Borda score of blue options (odd-subscript)
is larger than the score of red options (even-subscript) by exactly one. Therefore,
after moving options, within each block, all the circled options have equal Borda
score; similarly, all the non-circled ones have equal Borda score; and the score of
the uncircled ones is larger than that of circled ones. In addition, between blocks, all
circled options also have equal Borda score; similarly, all non-circled options also
have equal Borda score. Adding up all circled options across blocks, there are 2ks1
and adding up all non-circled options, there are 2ks2. The constructed profile has
fB(u) = L = (2ks1, , 2ks2).
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Case 2 T is even and T > 2.
When T is even and T > 2, we can split levels of L into parts, each of which

consists of only two levels. Case 1 shows that each part is in the range of Borda’s rule
for every odd n ≥ 3. Concatenating the relevant profiles and applying Principle #3
then implies L is in the range for every odd n ≥ 3.
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