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Abstract We consider two natural notions of strategyproofness in random object-
assignment mechanisms based on ordinal preferences. The two notions are stronger
than weak strategyproofness but weaker than strategyproofness. We demonstrate that
the two notions are equivalent, provide a geometric characterization of the new inter-
mediate property which we call convex strategyproofness, and then show that the
(generalized) probabilistic serial mechanism is, in fact, convexly strategyproof. We
finish by showing that the property of weak envy-freeness of the random serial dicta-
torship can be strengthened in an analogous manner.

1 Introduction

We consider some questions of strategyproofness arising in mechanisms for the ran-
dom assignment of heterogeneous indivisible objects among participating agents,
based on their reported ordinal preferences over the objects. The two main (ex-ante
symmetric) suchmechanisms considered in the literature are the randomserial dictator-
ship (Abdulkadiroğlu and Sönmez 1998), and the probabilistic serial (PS) mechanism
(Bogomolnaia and Moulin 2001). The main trade-off between the two mechanisms
is that while the PS mechanism satisfies a stronger efficiency property, it fails to be
strategyproof. Instead, it satisfies a weaker condition, called weak strategyproofness.
Here, we define two natural intermediate incentive properties that are stronger than
weak strategyproofness but weaker than strategyproofness. We show that these two
concepts are equivalent and call the resulting property convex strategyproofness. Then,
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512 I. Balbuzanov

using a simple geometric characterization, we show that the PS mechanism and its
generalization due to Budish et al. (2013) are convex strategyproof.

More specifically, weak strategyproofness means that, holding the reports of the
other agents constant, an agent deviating to a false report cannot induce a probability
distribution over the available objects that strictly first-order stochastically dominates
the outcome that a true report would induce.1 Equivalently, for any outcome corre-
sponding to a false report, there exists a utility function compatible with the agent’s
true ordinal preferences, under which the truth-telling outcome has higher expected
utility. Strategyproofness, on the other hand, means that the outcome corresponding to
the true report first-order stochastically dominates all outcomes corresponding to false
reports. Equivalently, for any utility function compatible with the agent’s true ordi-
nal preferences, the agent’s expected utility from the truth-telling outcome is weakly
greater than her expected utility for any other outcome. Note that, by contrast, weak
strategyproofness does not even guarantee the existence of a single utility function
compatible with the agent’s preferences, under which the truth-telling outcome is the
best one (see Example 1 in Sect. 3).

This observation gives us the first natural candidate for an intermediate property:
requiring the existence of a compatible utility function, such that truth-telling maxi-
mizes utility. The second one is similar to weak strategyproofness but allows for mixed
strategies: namely, this version of strategyproofness holds if no mixed reporting strat-
egy induces a probability distribution that strictly first-order stochastically dominates
the truth-telling outcome. As noted above, we show that these two properties are
equivalent.

This paper is related most closely to Mennle and Seuken (2013) who also study an
intermediate strategyproofness concept, which they call partial strategyproofness, and
apply it to convex combinations (hybrids) of the random serial dictatorship and the
PS mechanism. In particular, they show that the set of utility functions for which the
hybridmechanism is strategyproof (i.e. truth-tellingmaximizes utility) is increasing as
we increase the weight placed on the random serial dictatorship. We can view convex
strategyproofness as a form of minimal partial strategyproofness. Note that the two
papers are logically unrelated.2 Kojima and Manea (2010) study a different aspect of
the incentive properties of the PSmechanism. They show that it becomes strategyproof
if there are sufficiently many copies of each object. By comparison, we show that, for
markets of all sizes, the PS mechanism satisfies an incentive property that is stronger
than weak strategyproofness.

2 Set-up

In what follows, we present a simplified representation of the strategic situations that
agents participating in object-assignment mechanisms face. At the end of this section,
we further discuss how this set-up pertains to the incentive compatibility of such
mechanisms.

1 First-order stochastic dominance here is defined with respect to the agent’s true preferences.
2 See also Lubin and Parkes (2012) for a survey of other ways of relaxing strategyproofness.
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We assume that an agent with unit demand (the decision maker or theDM) can take
several actions. Each action is associated with some probability distribution over the
available objects which the DM receives. The DM has some strict 3 preference order
over the objects, which, via first-order stochastic dominance, induces a partial order
over the possible probability distributions.

Assume that there are n + 1 different objects4 (numbered 1, 2, . . .) and, without
loss of generality, that the DM prefers objects with smaller indices (i.e. 1 � 2 �
· · · � n + 1). We assume that the probability shares of the objects in each probability
distribution sum up to 1. This is alsowithout loss of generality sincewe can always add
a least-preferred “null object” to the list of objects and assign the rest of the probability
weight to it. Thus we can denote any possible probability distribution as an element
of

P :=
{
x ∈ R

n :
n∑

i=1

xi ≤ 1, x ≥ 0

}
.

Consider all utility vectors compatible with the DM’s preferences, which have been
normalized so that un+1 = 0. Denote them by

U := {
u ∈ R

n : u1 > u2 > · · · > un > 0
}
.

For a given utility vector u ∈ U , the von Neumann-Morgenstern expected utility the
DM derives from a probability distribution p ∈ P is u · p = ∑n

i=1 ui pi .
A probability distribution p ∈ P is said to first-order stochastically dominate

a probability distribution q ∈ P (with respect to �) if
∑ j

i=1 p j ≥ ∑ j
i=1 q j for

all j = 1, . . . , n. We say that p strictly first-order stochastically dominates q if
p first-order stochastically dominates q and p �= q. We write p �FOSD q and
p �FOSD q, respectively. A useful fact is that a probability distribution p ∈ P first-
order stochastically dominates q ∈ P if and only if u · p ≥ u · q for all u ∈ U (Hadar
and Russell 1969). Note that the partial order �FOSD can be extended from P to R

n

using the same definition of first-order stochastic dominance. Abusing notation, we
call that order �FOSD as well.

Let the DM’s set of (finitely many) possible actions (e.g. possible reports of her
preferences) be A = {a, b1, . . . , bk} and let the function g : A → P associate each
action with a probability distribution. Note that if the DM chooses a mixed action
strategy, she can induce any probability distribution in the convex hull of the set
{g(a), g(b1), . . . , g(bk)}, which we denote co{g(a), g(b1), . . . , g(bk)} as usual. The
converse is, naturally, also true—any mixed action strategy induces a probability dis-
tribution in that convex hull.We say that the action a is a dominant strategy if g(a)first-
order stochastically dominates all g(bi )’s. We say that the action a is an undominated

3 We restrict our attention to strict preference orders. The main reason for that is that the version of the
(generalized) PS mechanism which allows for indifferences (Katta and Sethuraman 2006; Budish et al.
2013) fails to even be weakly strategyproof. However, the strictness assumption is not crucial. A result
essentially identical to our Proposition 1 can be derived for non-strict preference orders, as well.
4 We allow there to be more than one copy of each object.
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strategy if no g(bi )first-order stochastically dominates g(a).We say that the action a is
compatible with utility maximization if there exists u ∈ U such that u ·g(a) ≥ u ·g(bi )
for all i . Finally, we say that the action a is convexly undominated if there doesn’t
exist a mixed action strategy that induces a probability distribution that strictly first-
order stochastically dominates g(a). This is equivalent to saying that there is no p ∈
co{g(a), g(b1), . . . , g(bk)} such that p �FOSD g(a). The preceding four concepts
were defined with respect to particular set A and function g but the definition of these
objects will be always clear from the background and we will suppress their mention.

Assume that f is a random object-assignment mechanism; i.e. f is a map between
the reported preferences of a set of participating agents and a profile of probability-
share distributions for each agent. Each element of the action set of each agent corre-
sponds to some possible preference order over the objects. Each possible report by an
agent i ismapped into a probability-share distribution by the function fi (·,�−i ), where
�−i denotes the fixed preference profile of the other agents participating in the mecha-
nism.Amechanism is strategyproof (resp.weakly strategyproof ) at a given profile (�i

,�−i ) if for every participating agent i reporting truthfully is a dominant strategy (resp.
an undominated strategy) with respect to fi (·,�−i ). Furthermore, a mechanism is
(weakly) strategyproof if it is (weakly) strategyproof at all possible preference profiles.

2.1 Convex cones and polyhedra

We provide another useful characterization of first-order stochastic dominance using
convex cones. A convex cone C ⊆ R

n is a set such that for all x, y ∈ C we have
αx + βy ∈ C for all α, β ≥ 0. For every partial order � on R

n compatible with
the vector-space operations5 on R

n , there exists a convex cone C� such that p � q
if and only if p ∈ {q} + C�, where {q} + C� := {q + x : x ∈ C�} is the usual
Minkowski set summation. In fact, one can show C� = {x ∈ R

n : x � 0} (e.g.
see Aliprantis and Border 2006, Section 8.1). The convex cone C := C�FOSD then

satisfies C = {x ∈ R
n : x �FOSD 0} or, in other words, C = {x ∈ R

n : ∑ j
i=1 xi ≥

0 for all j = 1, . . . , n}. Using the convex cone C , we can easily give a geometric
characterization of an undominated strategy directly from its definition: given a set
A = {a, b1, . . . , bk} and a function g : A → P , the action a is undominated if and
only if

({g(a)} + C) ∩ {g(a), g(b1), . . . , g(bk)} = {g(a)}.

In this section, we also state a result due to McLennan (2002). Before we do that,
we introduce a couple of additional convex-analysis concepts. Any subset ofR

n that is
a finite intersection of closed half-spaces is called a polyhedron. It is easy to verify that
the convex hull of any finite set is a polyhedron, as is the convex coneC corresponding
to �FOSD . The set of all finite affine combinations of elements of a set S ⊆ R

n is
called the affine hull of S and we denote it by aff(S):

5 That is to say, whenever x � y for some x, y ∈ R
n then αx + z � αy + z for all z ∈ R

n and α ≥ 0.
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aff(S) :=
{

k∑
i=1

αi si : s1, . . . , sk ∈ S, α ∈ R
k,

k∑
i=1

αi = 1

}
.

It is easy to verify that if p · s is constant for some p ∈ R \ {0} and all s ∈ S,
then p · s′ = p · s for all s ∈ S and all s′ ∈ aff(S). In other words, if a set is entirely
contained within a hyperplane, then so is its affine hull.

Given a polyhedron P , the empty set, P itself, and any set of the form P ∩ H
for a hyperplane H , one of whose closed half-spaces contains P , are called faces
of P . Finally, McLennan (2002, Lemma 2) shows that for any convex subset S of a
polyhedron P , there exists a smallest face of P that contains S. That Lemma permits
us to state the following theorem, which is also due to McLennan (2002).

Theorem 1 (The Polyhedral Separating Hyperplane Theorem) For two polyhedra
P1, P2 ⊂ R

n, let F1 and F2 be the smallest faces of, respectively, P1 and P2 that
contain P1 ∩ P2. Let also aff(F1 ∪ F2) �= R

n. Then there exists u ∈ R
n, u �= 0 such

that u · p1 > u · f1 = u · f2 > u · p2 for all pi ∈ Pi \ Fi , fi ∈ Fi for i = 1, 2.

3 The characterization result

Proposition 1 Given a set A = {a, b1, . . . , bk} and a function g : A → P, the
following are equivalent:

(i) action a is compatible with utility maximization;
(ii) action a is convexly undominated;
(iii) ({g(a)}+C)∩co{g(a), g(b1), . . . , g(bk)} = {g(a)}, where C is the convex cone

corresponding to the partial order induced by first-order stochastic dominance.

Proof (i) ⇒(ii) We know that there exists some u ∈ U such that u ·g(a) ≥ u ·g(bi )
for all i . This implies u · g(a) ≥ u · x for all x ∈ co{g(a), g(b1), . . . , g(bk)}.
Assume toward contradiction that there exists some y ∈ co{g(a), g(b1), . . . ,
g(bk)} that strictly first-order stochastically dominates g(a). As remarked above,
however, this implies u · y > u · g(a) for all u ∈ U , which is a contradiction
since u ∈ U .

(ii) ⇒(iii) This follows from the facts that the set co{g(a), g(b1), . . . , g(bk)} equals
the set of elements in P that can be induced by a mixed action strategy, and that
the set of points that strictly first-order stochastically dominates g(a) is the set
({g(a)} + C) \ {g(a)}.

(iii) ⇒(i) For notational simplicity, denote the convex hull co{g(a), g(b1), . . . , g(bk)}
by D. First, note that {g(a)} + C (a translation of the polyhedron C) and D (a
convex hull of a finite set) are both polyhedra. Additionally, it is clear that the
smallest face of {g(a)} + C containing {g(a)} is the singleton F1 := {g(a)}.
Now consider F2—the smallest face of D that contains {g(a)}. Note that we have
F1 = {g(a)} ⊆ F2. So, in order to invoke McLennan’s theorem, it suffices to
show that aff(F2) �= R

n .
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Note that g(a) is on the boundary of D (since g(a)+ ε(1, . . . , 1) ∈ {g(a)}+C for
all ε > 0). Then there exists a hyperplane H separating g(a) and D: i.e. g(a) ∈ H
and D is entirely contained in one of the closed half-spaces defined by H . Therefore,
H ∩ D is a face of D containing g(a), and the smallest such face F2 must satisfy
F2 ⊆ H ∩ D ⊂ H . As noted above, if a set is entirely contained within a hyperplane
H , then so is its affine hull. Therefore, aff(F2) ⊆ H � R

n . Thus the two sets satisfy
the conditions of the Polyhedral Separating Hyperplane Theorem and there exists
u ∈ R

n, u �= 0 such that u · x > u · g(a) ≥ u · y for all x ∈ ({g(a)} +C) \ {g(a)} and
y ∈ D.6

Now, it suffices to show that u1 > u2 > · · · > un > 0. Indeed, denoting the
standard basis vectors by e1, . . . , en , note that g(a)+ ei − e j ∈ ({g(a)}+C) \ {g(a)}
for i < j and g(a) + en ∈ ({g(a)} + C) \ {g(a)}. Hence, we have the inequalities
u · (g(a) + ei − e j ) > u · g(a) for i < j and u · (g(a) + en) > u · g(a). They imply
ui > u j whenever i < j and un > 0, respectively. ��

We say that a mechanism is convexly strategyproof at a given preference profile if
for every agent reporting truthfully is either convexly undominated or, equivalently,
compatible with utility maximization. As above, we also say that a mechanism is
convexly strategyproof if it is convexly strategyproof at all possible preference profiles.
It is obvious that convex strategyproofness is strictly weaker than strategyproofness
and that it implies weak strategyproofness. The converse is not true, as the following
example demonstrates.

Example 1 Consider a set A = {
a, b1, b2

}
and g : A → P , such that for n = 2:

g(a) = (.3, .3)

g(b1) = (.29, .7)

g(b2) = (.41, 0) .

The action a is undominated since g(a) is not first-order stochastically dominated
by either g(b1) (because g(b1)1 < g(a)1) or g(b2) (because

∑
g(b2)i <

∑
g(a)i ).

However, a is not convexly undominated (or, equivalently, not compatible with utility
maximization) because the convex combination

1

2
g(b1) + 1

2
g(b2) = (.35, .35)

first-order stochastically dominates g(a). Since weak strategyproofness is defined via
undominatedness and convex strategyproofness via convex undominatedness, this also
implies that convex strategyproofness is strictly stronger than weak strategyproofness.
Furthermore, it is straightforward to check that this example can be generalized to show

6 The reason we use the Polyhedral Separating Hyperplane Theorem, as opposed to a weaker separating
result, is that it gives us the strict inequality in this sentence. In the next paragraph, it becomes apparent that
the strict inequality is crucial in showing that u is compatible with the preference order.
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g(b1)
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g(b3)g(b4)

{g(a)}+C

1

1

(b)
Fig. 1 Undominated (UD) vs. convexly undominated (cUD) actions. a Action a is UD and cUD. b Action
a is UD but not cUD

that convex strategyproofness is strictly stronger than weak strategyproofness as long
as n > 1.

See also Fig. 1 for a geometric illustration of the difference between undominated
and convexly undominated actions and thus between weak and convex strategyproof-
ness. The Figure illustrates two possible scenarios with n = 2 and 5 possible actions,
which are then mapped into probability-share distributions via the function g. In both
panels, taking action a is undominated since none of the other actions result in first-
order stochastic dominance improvement. In other words, none of the other actions
result in a probability-share distribution that lies in the set {g(a)} + C . However, the
action a is convexly undominated only in panel (a), where no element of the convex
hull co{g(b1), g(b2), g(b3), g(b4)} lies in {g(a)}+C . In panel (b), however, it is clear
that a convex combination of the actions b1 and b2 can result in first-order stochastic
dominance improvement over a.

4 The probabilistic serial mechanism

We start this section with a brief description of the PS mechanism. While being exe-
cuted, it treats each object as one unit of infinitely divisible probability shares. Time
runs continuously, starting at t = 0. The mechanism then allows each agent to contin-
uously claim probability shares of her favorite object among those that have not been
entirely claimed yet. The speed with which each agent claims probability shares is
equal to 1. The mechanism runs until t = 1, when each agent will have claimed a total
of one unit of probability shares. The probability shares claimed by each agent rep-
resent the probability-share distribution induced by the PS mechanism for that agent.
For a more detailed and formal definition, see Bogomolnaia and Moulin (2001).
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Bogomolnaia and Moulin (2001) show that the PS mechanisms is weakly strate-
gyproof.7 In this section, we extend their arguments to show that the PS mechanism
is also convexly strategyproof. As above, we will call the agent of interest the DM
and we will assume that her true preferences (denoted by �) are as above: she strictly
prefers objects with lower indices over those with higher ones. We will denote the
fixed preference profile of the other agents by �− and PS(·) will be a function that
maps a preference profile to the probability distribution that the PSmechanism assigns
to the DM for that preference profile.

Let us first briefly examine the idea behind the proof of weak strategyproofness in
Bogomolnaia andMoulin (2001). The authors show that if theDM reports a preference
�′ (which is potentially different from �) that yields a probability-share distribution
q = PS(�′,�−) such that q1 ≥ p1 for p = PS(�,�−), then this is possible only if
q1 = p1. The authors then iterate this argument to establish weak strategyproofness.
The iterated argument can be summarized in the following lemma.8

Lemma 1 Let p := PS(�,�−) and q := PS(�′,�−) and let some j = 1, . . . , n
be given. If pi = qi for all i < j and if q j ≥ p j , then q j = p j .

The implicit understanding in the statement of Lemma 1 is that if j = 1, the only
condition is q1 ≥ p1. We omit the proof of Lemma 1 as it can be straightforwardly
derived from arguments in Bogomolnaia and Moulin (2001) as outlined above.

Proposition 2 The PS mechanism is convexly strategyproof.

Proof Consider an agent (our decision maker) with true preference �. Let some pos-
sible preferences over the objects be �1, . . . ,�k (not necessarily different from each
other or from�). Finally, let p = PS(�,�−) and qi = PS(�i ,�−) for i = 1, . . . , k.
Assume toward contradiction that the truthful report of DM’s preferences (i.e. report-
ing�) is not convexly undominated, which would imply that the PS mechanism is not
convexly strategyproof.

By the definition, this means that there exist some α1, . . . , αk ≥ 0 with
∑k

i=1 αi =
1 such that

k∑
i=1

αi qi �FOSD p (1)

In fact, without loss of generality, we can assume α1, . . . , αk > 0. Then note that
(1) implies

k∑
i=1

αi qi1 ≥ p1.

This is possible only if there exists i such that qi1 > p1 or if qi1 = p1 for all i . By
Lemma 1, the first case is impossible. Therefore we have qi1 = p1 for all i .

7 Budish et al. (2013) generalize the mechanism by adding group-specific quotas and show that it remains
weakly strategyproof. The results in this paper hold for their Generalized Probabilistic Serial mechanism
as well.
8 Budish et al. (2013) use a similar arguments so the following Lemma would hold in their setting as well.
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We can extend the argument inductively. Consider the induction step: assume that
pl = qil for all l ≤ j . Now (1) implies

k∑
i=1

αi qij+1 ≥ p j+1.

Analogously to the above, this implies either qij+1 > p j+1 for some i or qij+1 =
p j+1 for all i . Using the inductive hypothesis, Lemma 1 implies that the first case is
impossible. Therefore, qij+1 = p j+1 for all i .

We conclude that p = q1 = · · · = qk . But then (1) doesn’t hold. Contradiction!
��

We end by considering a related question regarding envy-freeness and the random
serial dictatorship mechanism. The random serial dictatorship mechanism (Abdulka-
diroğlu and Sönmez 1998) starts by drawing from a uniform distribution over all
possible strict priority orders over the participating agents. Then the first agent in
the resulting priority order is assigned her most preferred object, the second agent in
the order is assigned her most preferred object among the remaining objects etc. The
mechanism clearly induces a profile of probability-share allocations.

As above, we denote the probability-share allocation of agent i under a random-
assignment mechanism f and a preference profile � by fi (�). Then f is said to
be envy-free if we have fi (�) �FOSD

i f j (�) for all i, j and �. We say that f is
weakly envy-free if there is no pair of agents i and j such that f j (�) �FOSD

i fi (�).
Analogously to thewaywe define convex strategyproofness, we can also define convex
envy-freeness by saying that f is convexly envy-free if for all agents i and �, there
exists a utility vector u ∈ R

n that is compatible with�i such that u · fi (�) ≥ u · f j (�)

for all agents j . Proposition 1 implies that this is equivalent to saying that there is no
convex combination of elements in { f j (�)} j �=i that strictly first-order stochastically
dominates fi (�). Bogomolnaia and Moulin (2001) show that while the random serial
dictatorship is strategyproof, it is only weakly envy-free. The method of their proof
can be summarized in a statement that is essentially identical to Lemma 1, except
in that it concerns the probability-share allocations of the other agents rather than
the probability-share allocations an agent can induce by misreporting. The method
used in the proof of Proposition 2 can then be applied to show that the random serial
dictatorship is in fact convexly envy-free.9 We can summarize the results of this section
in the following stronger version of Bogomolnaia and Moulin (2001)’s Proposition 1:

Proposition 3 (i) The PS mechanism is only convexly strategyproof but envy-free;
(ii) The random serial dictatorship is strategyproof but only convexly envy-free.

9 Note that Example 1 can be used to show that convex envy-freeness is strictly stronger than weak envy-
freeness. Namely, let g(a), g(b1), and g(b2) instead refer to the probability-share distributions of three
agents dividing three objects among themselves (note that the probability shares for each object sum up
to 1), and let their preferences be identical: they all prefer objects with smaller indices over objects with
larger indices. Then that allocation would satisfy weak envy-freeness. However, it would not satisfy convex
envy-freeness since the agent corresponding to g(a) would envy a convex combination of the other two
agents’ allocations as shown in the example.
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