
Soc Choice Welf (2016) 46:477–494
DOI 10.1007/s00355-015-0922-3

ORIGINAL PAPER

Representative democracy and the implementation
of majority-preferred alternatives

Katherine Baldiga Coffman1

Received: 4 June 2014 / Accepted: 9 September 2015 / Published online: 17 September 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract In this paper, we contrast direct and representative democracy. In a direct
democracy, individuals have the opportunity to vote over the alternatives in every
choice problem the population faces. In a representative democracy, the population
commits to a candidate ex ante who will then make choices on its behalf. While
direct democracy is normatively appealing, representative democracy is the far more
common institution because of its practical advantages. The key question, then, is
whether representative democracy succeeds in implementing the choices that the group
would make under direct democracy. We find that, in general, it does not. We model
a population as a distribution of voters with strict preferences over a finite set of
alternatives and a candidate as a strict ordering of those alternatives that serves as a
binding, contingent plan of action. We focus on the case where the direct democracy
choices of the population are consistent with a strict ordering of the alternatives. We
show that even in this case, where the normative recommendation of direct democracy
is clearest, representative democracy may not elect the candidate with this ordering.

1 Introduction

Direct democracy is a fundamental principle of collective decision-making. When a
choice problem arrives, individuals should have the opportunity to express preferences
over the alternatives. A good decision-making rule then aggregates these preferences
into a choice that reflects the will of the group. While many aspects of social decision-
making have been debated, this individual right to direct participation has remained a
normative ideal from both a theoretical and popular standpoint.

B Katherine Baldiga Coffman
coffman.201@osu.edu

1 The Ohio State University, 1945 N. High St, Arps Hall 427, Columbus, OH 43210, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00355-015-0922-3&domain=pdf


478 K. B. Coffman

Yet, despite its normative appeal, direct democracy is relatively rare in practice.
Just over half of the states in the United States allow for recalls and/or popular ref-
erendums and no forms of direct democracy exist at the federal level (Bowser 2012).
Direct democracy plays a similarly minor role in the governments of countries around
the world, with the well-studied exception of Switzerland (Frey 1994). Most institu-
tions instead take the form of representative democracies, under which elected officials
make decisions on behalf of the electorate. From a practical perspective, representa-
tive democracies have an edge over direct democracies as they dramatically reduce
transaction costs and shift the burden of decision-making to a small group of well-
informed leaders. The question, then, is whether representative democracy, with its
practical advantages, can successfully implement the choices that would be reached
under the more normatively attractive direct democracy.1

This paper tackles this question from a theoretical perspective. We take a majori-
tarian approach to modeling both direct and representative democracy. In addition to
being a widely-implemented and well-accepted political principle, majoritarianism
has been shown to be a collective decision-making rule that works well over a large
class of domains (Dasgupta and Maskin 2008). To analyze outcomes under direct
democracy, we simply look at the tournament over alternatives induced by majority
rule. We focus on populations where majority preferences over alternatives produce
a ranking of alternatives, with each alternative majority-preferred to all others below
it in the ranking.2 In these cases, the normative recommendation for representative
democracy is most clear: we expect that the candidate whose preferences best match
this ordering of alternatives should be elected.

In our model of representative democracy, members of the population vote over
candidates rather than alternatives. To simplify our setting, we define a candidate as
an ordinal ranking of alternatives: a binding, contingent plan of action for future choice
problems. We assume that when a choice problem of alternatives arrives, the social
decision ismade according to the ordering of the elected candidate.3 The keymodeling
assumption is how individuals vote over candidates. We use the Kemeny distance to
map preferences over alternatives into preferences over candidates. That is, when faced
with a pairwise choice between candidates, we assume that an individual votes for the
candidate with whom she is most likely to agree about the choice from a randomly
selected pair of alternatives. Once we know individuals’ preferences over candidates,
we can compare these candidates pairwise. In a comparison of two candidates, the
winning candidate is the candidate who earns a majority of the population’s votes:
the candidate with whom the majority of the population is closer to according to
the Kemeny distance. This type of political action generates a tournament over the

1 There is a rich existing literature on representative democracy, though in general this literature has focused
more on voting power and proportional representation. See, for example, Tullock (1967), Chamberlin and
Courant (1983), Monroe (1995), Felsenthal and Machover (1998), and Potthof and Brams (1998).
2 This is the case where the tournament over alternatives is not only complete and asymmetric, but also
transitive.
3 In the language of Edward Burke, this is a delegate model of representative democracy, rather than a
trustee model, as the elected official is committed to enacting the platform selected by the voters. See
Maskin and Tirole (2004) or Fox and Shotts (2009) for discussions of the delegate versus trustee debate.
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candidates. We use the uncovered set to identify the winning candidates given an
arbitrary tournament structure. The uncovered set is an appealing solution concept,
as it is Condorcet consistent and contains only Pareto undominated orderings. The
uncovered set also contains many other popular tournament solution concepts, which
allows us to generalize our results to a variety of other settings.

Wefind that for problemswith a small number of alternatives, representative democ-
racy does succeed in electing candidates that implement the choices made under direct
democracy. But, for general problems, we derive a negative result. We show that even
for the most well-behaved populations, where majority preferences over the alterna-
tives are consistent with a strict ordering, representative democracy may not elect
the candidate with this ordering. That is, when given a chance to commit ex ante
to a binding plan of action, the population may select a plan which contradicts the
majority preferences on some choice problems. Following our results section, we dis-
cuss related works that highlight the more general difficulty in identifying forms of
representative democracy that are consistent with direct democracy.

2 Notation and model

We first lay out notation and then discuss our model.

2.1 Notation

Wewill adopt much of the notation of Baldiga and Green (2013). We use a finite space
of alternatives, X = {a1, a2, ...., an}. A preference, denoted π , is a strict ordering
of the alternatives, where π corresponds to a permutation of the integers {1, ..., n};
given the preference π = (aπ(1)aπ(2)...aπ(n)), ai is preferred to a j if and only if
π−1(i) < π−1( j). The set of all n! preferences over X is �. It will be useful to write
e to represent the natural ordering of the alternatives, e = (a1a2...an) ∈ �.

A population, λ, is a distribution over �.

Wemodel a candidate as a strict ordering of the alternatives in X , which serves as a
binding, contingent plan of action. We will write candidate π to denote the candidate
with ordering π . In all analysis below, we consider all candidates to be available; that
is, the set of candidates is equal to �.

We model these majoritarian systems using tournaments. A tournament is a com-
plete, asymmetric binary relation. Our analysis considers two types of tournaments:
tournaments on the alternative space and tournaments on the candidate space. We use
�(X) to denote a tournament on the space of alternatives; we reserve the traditional T
to refer to a tournament on the space of candidates, T (�). In both cases, a tournament
depends upon the preferences of the population; therefore, wewrite�λ or T λ to denote
the tournaments generated by a population λ.

2.2 Models of direct and representative democracy

Under direct democracy, members of the population vote over alternatives. We use
the majority tournament to model these decisions. In this tournament, the relation-
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ship between any pair of alternatives is determined by majority rule: ai�λa j if∑
π∈�(λ(π |ai � a j )) >

∑
π∈�(λ(π |a j � ai )).4 We write ai�λa j if ai beats a j

in the tournament �λ(X). In the populations we consider below, majority rule over
alternatives will be consistent with a strict ordering. We study this case because of the
clear normative recommendation available. When the majority rule tournament over
alternatives produces a strict ordering, then in order for representative democracy to
be consistent with direct democracy, it must also produce this ordering. In other cases,
when majority preferences over alternatives are not consistent with a strict ordering,
there is no clear expectation for how representative democracy should behave. There-
fore, we choose only to define and test for consistency in the case when majority
preferences over alternatives do not cycle.5

Building a model of representative democracy requires a theory of how individuals
choose to vote over candidates.We use the Kemeny distance (also known as the bubble
sort distance and the Kendall tau distance) to define individuals’ preferences over
candidates. The Kemeny distance between π and π ′, which we will denote f (π, π ′),
is the number of pairs of alternatives the two orderings rank differently (Kemeny 1959;
Kemeny and Snell 1962); we assume that voters prefer candidates who are closer (in
terms of Kemeny distance) to their own ordering of alternatives. Formally, given two
candidatesπ andπ ′, a voter with preferenceπ ′′ will preferπ if and only if f (π ′′, π) <

f (π ′′, π ′). This is equivalent to assuming that a voter prefers candidate π to candidate
π ′ if she is more likely to agree with candidate π about the ranking of a randomly-
drawn pair of alternatives (Baldiga and Green 2013 formalize this interpretation). Of
course, there are other ways of mapping preferences over alternatives into preferences
over candidates, and our results will be sensitive to this particular choice. However,
in order for our negative result to be as strong and surprising as possible, we want to
create as much parallelism as we can between the direct and representative democracy
models. Using the Kemeny distance to define preferences over candidates creates
an appealing symmetry between the direct and representative democracy models.
The preferences over candidates defined by f (π, π ′) depend only on each voter’s
pairwise preferences over alternatives, just as the preferences over alternatives defined
by majority rule do. Previous work in this area has also used the Kemeny distance
to determine voters’ preferences over orderings. For instance, in their investigation
of the strategy-proofness of social welfare functions, Bossert and Storcken (1992)
assume, as we do, that individuals’ preferences over orderings are determined by
relative proximity under the Kemeny distance. In Fig. 1, we provide an illustration of
the Kemeny distances between the six strict orderings in � for the n = 3 case.

Voters’ preferences over candidates generate a tournament on �, which we denote
T λ. Consider two strict orderings, π ′ and π . Define a subset of preferences, �1,
such that for all π ′′ ∈ �1, we have f (π ′′, π ′) < f (π ′′, π), and define a subset of
preferences, �2, such that for all π ′′ ∈ �2, we have f (π ′′, π) < f (π ′′, π ′). Then,

4 We restrict attention to populations with no ties in the majority relation, guaranteeing a complete and
asymmetric tournament. This is similar to assuming an odd number of voters in the more common discrete
population framework.
5 This is consistent with the approach of Laffond and Lainé (2000), who also focus on the case where
majority preferences over alternatives produce an ordering.
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Fig. 1 We use a hexagon to demonstrate the space of orderings for the n = 3 case, with each vertex
representing an ordering. Above, we illustrate the Kemeny distances from e = a1a2a3 to each of the other
orderings in the space

we will say that π ′ defeats π, that is π ′T λπ, if λ(�1) > λ(�2). In the event that
λ(�1) = λ(�2), we can use a random tie-breaking rule such as a coin flip to determine
the T λ relationship between π and π ′.Note that in the space of distributions over strict
orderings, this is a non-generic event. Furthermore, none of the results presented below
depend upon this assumption. This simply assures that all tournaments are complete
and asymmetric.6

2.3 Tournament solutions

We consider only the simplest direct democracy tournaments, restricting our attention
to those tournaments generated by populations in whichmajority rule over alternatives
is consistent with a strict ordering. In these cases, there is a clear winner of the tourna-

6 This definition means we employ relativemajority rule. We could alternatively define our tournaments in
terms of absolute majority rule. Under this assumption, we would have π ′T λπ only if a majority of voters
are strictly closer to π ′ than π . For absolute majority rule, if neither candidate is closer to more than half
of the population, the two candidates would tie in the tournament relation.
In our framework, voters will often be indifferent between candidates. Each voter has a set of indifference

curves: a voter most prefers the candidate with his own ordering, then he equally prefers all candidates with
whom he disagrees about the choice from one pair of alternatives, and next he equally prefers all candidates
with whom he disagrees about the choice from two pairs of candidates, etc.
Given the large amount of indifference in our population, choosing to use absolute majority rule would

result in a large number of ties in our tournaments over orderings. These ties would disregard the information
we have on the voters who are not indifferent. For instance, in a tie between candidate π and π ′, we may
have that 30 % of the voters are indifferent between candidate π and candidate π ′, 49 % of the voters prefer
π to π ′, and only 21 % of voters prefer π ′ to π . Despite the large disparity in the number of voters that
strictly prefer π to π ′ as opposed to π ′ to π , these two orderings would tie in the tournament relation.
By using relative majority rule, we use this information on strict preference, even in the cases where large
subsets of voters are indifferent between the two candidates.
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ment: the alternative which defeats all others in the tournament relation, the Condorcet
winner. Furthermore, because there are no cycles, we can describe the tournament by
a strict ordering where each alternative is majority-preferred to all those below it.

However, for general tournaments, including the tournaments over strict orderings
we study below, identifying the winners is non-trivial as the tournament relation may
cycle. Therefore, we need a tournament solution that will determine the best elements
given an arbitrary tournament structure. We use the uncovered set as our tournament
solution (see Gilles 1959; Fishburn 1977;Miller 1980 for early work on this topic).We
follow the definition given by Laslier (1997), applied to our tournaments over strict
orderings. First, define the covering relation of T . For a given T , we say πi covers π j

if and only if:
(a) πi Tπ j , and
(b) for all πk ∈ �, π j Tπk ⇒ πi Tπk

The uncovered set of T is the set of maximal elements of the covering relation:
πi ∈ UC(T ) if and only if there does not exist π j ∈ � such that π j covers πi .

AsMiller (1980) describes, the uncovered set has a number of appealing properties.
The uncovered set is always a non-empty subset of the top cycle. And, unlike the top
cycle, it contains only Pareto undominated orderings.7 It is Condorcet consistent:
if a Condorcet winner exists, it will be the sole member of the uncovered set. The
uncovered set also characterizes the outcomes under a variety of familiar voting rules.
Miller (1980) and Shepsle and Weingast (1984) have shown that a number of voting
procedures under both sincere and sophisticated voting implement elements of the
uncovered set. These results motivate our use of the uncovered set. By working with
this tournament solution, we avoid making specific institutional assumptions. Instead,
we identify the likely winners under majoritarian voting rules more generally, under
both sincere and strategic voting.Most importantly, for our purposes, the uncovered set
contains many other familiar tournament solution concepts. Thus, the negative result
we prove in this framework extends to a wide variety of other reasonable approaches.

With this solution concept in place, we are ready to define consistency between
direct and representative democracy in our setting.

Definition 1 Ifmajority preferences over alternatives are consistentwith a strict order-
ing, π , and π ∈ UC(T λ), we will say that order consistency holds. If, in addition,
UC(T λ) is a singleton, we will say that strong order consistency holds.

Note that UC(T λ) will be a singleton if and only if there is a Condorcet winner of
this tournament. Thus, strong order consistency requires that the candidate consistent
withmajority preferences is selected as the uniqueCondorcetwinner of the tournament
over candidates. In the analysis that follows, we show that strong order consistency
holds for the case of n = 3 but fails for problems with n > 3. Then, we provide a
counterexample that illustrates order consistency fails for n � 10.

7 Note that a positive result (consistency between these forms of direct and representative democracy) could
be derived if one chose to use the less selective top cycle as the tournament solution concept. We discuss
this in more detail in Sect. 3.
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3 Consistency results for direct and representative democracy

First, we introduce a useful proposition.

Proposition 1 Consider a population where majority preferences are consistent with
e. Consider a strict ordering π . Obtain π ′ from π by transposing exactly one pair of
adjacent alternatives that appear in the natural order in π (that is, transpose a pair
of adjacent alternatives that π ordered in line with majority preference). Then, it must
be that πT λπ ′ for all such π ′. Furthermore, if we take any of these π ′ and obtain π ′′
from π ′ by transposing exactly one pair of adjacent alternatives that appeared in the
natural order in both π and π ′, we must have πT λπ ′′.
Proof Intuitively, when π and π ′ agree on all but a single pair of alternatives, a voter
with the ordering π ′′′ will be closest to whichever of these orderings it agrees with
on the pair in the question. Since π agrees with the majority preference on the pair in
question, a greater share of the population must be closer to π , yielding πT λπ ′.

We can take this logic one step further to prove the claim for cases where π and π ′′
agree on all but two pairs of alternatives. Denote by α the subset of the population that
agrees with π on the first pair in question (the one transposed to obtain π ′). Denote by
β the subset of the population that agrees with π on the second pair in question (the
one transposed to obtain π ′′). Because π is consistent with the majority preference on
both of these pairs, we know that λ(α) > 1

2 and λ(β) > 1
2 . Therefore:

2 × (λ(α ∩ β)) + λ(α\β) + λ(β\α) > 1

We can rearrange this expression to show that:

λ(α ∩ β) > 1 − (λ(α\β) + λ(β\α) + λ(α ∩ β))

The left-hand side of this equation is the fraction of the population that agrees with
π on both of the pairs in question and will be closer to π . The right-hand side of this
equation is the fraction of the population that disagrees with π on both of the pairs in
question and will be closer to π ′′. The rest of the population will be equidistant. Thus,
the equation tells us that a larger fraction of the population will be closer to π than
π ′′, yielding πT λπ ′′. ��

The following corollary is a straightforward implication of Proposition 1 and will
prove useful in the following sections.

Corollary 1 A strict ordering that is consistent with the majority preferences of a
populationλ, call thisπ∗, must beat all strict orderings that are nomore than two trans-
positions away from it; that is, we must have π∗T λπ for all π such that f (π∗, π) ≤ 2.

3.1 Consistency for n = 3

We exploit this knowledge of the structure of tournaments over orderings to prove
results for the n = 3 case for populations with majority preferences consistent with a
strict ordering.
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Proposition 2 For n = 3,UC(T λ) satisfies strong order consistency.

Proof We will work through the case where a1�λa2, a2�λa3, and a1�λa3. As Fig. 1
clearly demonstrates, we know that a1a3a2, a2a1a3, a2a3a1, and a3a1a2 are each
less than or equal to distance 2 from a1a2a3. Therefore, by Proposition 1, we know
a1a2a3T λπ for each π ∈ {a1a3a2, a2a1a3, a2a3a1, a3a1a2}. Therefore, we just need
to show that a1a2a3T λa3a2a1 in order to prove that a1a2a3 is the Condorcet winner
of the tournament, and hence the only member of the uncovered set. We can use the
fact that a1�λa3.

∑

πi∈�

(λ(πi )|a1 �πi a3) >
∑

πi∈�

(λ(πi )|a3 �πi a1)

λ(a1a2a3) + λ(a1a3a2) + λ(a2a1a3) > λ(a2a3a1) + λ(a3a1a2) + λ(a3a2a1)

This inequality states that the fraction of the populationwith orderings closer to a1a2a3
than a3a2a1 (the left-hand side) is greater than the fraction of the populationwith order-
ings closer to a3a2a1 than a1a2a3. Thus, a1a2a3T λa3a2a1, andUC(T λ) = {a1a2a3}.

��
3.2 Inconsistency for general problems

First, we present an example that shows that for n = 4, strong order consistency fails.
Consider the following population:

π λ(π)

a1a2a3a4 .399

a2a4a1a3 .2

a1a4a3a2 .2

a3a4a1a2 .201

The majority preferences of this population are consistent with e = a1a2a3a4.
But, there is no Condorcet winner of the tournament over candidates. Consider
π̂ = a4a1a3a2. We have f (π̂, a1a4a3a2) < f (e, a1a4a3a2) and f (π̂, a3a4a1a2) <

f (e, a3a4a1a2), and we have f (π̂, a2a4a1a3) = f (e, a2a4a1a3). So,

∑

π∈�

[λ(π)| f (π̂, π) < f (e, π)] >
∑

π∈�

[λ(π)| f (e, π) < f (π̂, π)]

As a result, π̂T λe. And, in fact, we can show that π̂ ∈ UC(T λ), with UC(T λ) =
{e, a1a2a4a3, a1a4a2a3, π̂}. We can extend this n = 4 example to a problem with an
arbitrary number of alternatives by preserving the structure above for the first four
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alternatives and simply appending additional alternatives in their natural order to the
right end of each of the four orderings above. This leads to the following proposition.

Proposition 3 For n > 3,UC(T λ) fails strong order consistency.

This is the strongest result that we can achieve for n = 4. In the Appendix, we
prove that order consistency must hold for n = 4 populations. For n ≥ 10, we are
able to prove a stronger result. We identify populations in which the strict ordering
consistent with the majority preferences is covered.

Theorem 1 For n ≥ 10,UC(T λ) fails order consistency.

Proof We prove this through a general counterexample. First, we construct the pop-
ulation. The majority preferences of our population λ will be consistent with e on all
possible pairs drawn from among the n alternatives. Select a set of j pairs of alter-
natives, where 5 ≤ j ≤ n

2 . Each pair should consist of two adjacent elements in the
natural ordering, and all pairs in the set should be disjoint. For example, it would be
permissible to select {a1, a2} and {a3, a4} as two of the pairs, but one could not select
{a1, a2} and {a2, a3}, or {a1, a3} and {a4, a6}. It will be helpful to have notation for the
j pairs; let them be denoted p1, p2, ..., p j . Note that since the pairs consist of adjacent
and disjoint alternatives, it is always possible to find a strict orderingπ that agrees with
the majority preference on any particular subset of the pairs {p1, p2, ..., p j } exactly.

Wewill associate with each of the j pairs a particular strict ordering, πpi , where πpi
agrees with the majority preference on pair pi , disagrees with the majority preferences
on the other j − 1 pairs in the set {p1, p2, ..., p j }, and agrees with the majority
preference on all other pairs of alternatives.

Allocate the population as follows. Let λ(e) = 1
2 − ε, where ε < 1

2 j . Divide the
rest of the population evenly among the strict orderings {πp1 , πp2 , ..., πp j }, creating
j equal masses of size

1
2+ε

j .

It is straightforward to check that this population produces majority rule over alter-
natives that agrees with e. For each pair not included in {p1, p2, ..., p j }, the population
unanimously prefers ai to ai+k , where i, k ∈ {1, .., n − 1}. For each of the pairs in

{p1, p2, ..., p j }, we have that ( 12 − ε) + (
1
2+ε

j ) > 1
2 agrees with e.

Now we will show that for this population e /∈ UC(T λ). We do so by identifying a
strict ordering that covers e.Consider the strict ordering that disagreeswith themajority
preferences on all of the pairs {p1, p2, ..., p j } and agrees with the majority preference
on all other pairs. Denote this ordering π̂ . Since we are working with f (π, π ′), the
distance between any two orderings is, up to a scale factor, the number of pairs over
which the two orderings disagree. For simplicity, we will scale our distances below to
the number of pairwise disagreements.

First we will show that π̂T e. We have f (πpi , π̂) = 1 and f (πpi , e) = j − 1
∀i ∈ {1, ..., j}. Therefore, we have 1

2 + ε of the population that is closer to π̂ than e,
so π̂T e.

In order to prove that π̂ covers e, we must show that there cannot exist a π ′ such
that eTπ ′ but π ′T π̂ . Suppose there did exist such a π ′.
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We have that eTπ ′. This implies that we have f (e, πpi ) ≤ f (π ′, πpi ) for at
least some i ∈ {1, ..., j}. Because we know f (e, πpi ) = j − 1, this implies that
f (π ′, πpi ) ≥ j − 1 for at least some i ∈ {1, ..., j}.
We also know that π ′T π̂ . Then we must have that f (π ′, πpk ) ≤ f (π̂, πpk ) for at

least some k ∈ {1, ..., j}. We know that f (π̂, πpk ) = 1 for all k ∈ {1, ..., j}, which
implies that f (π ′, πpk ) ≤ 1 for at least some k ∈ {1, ..., j}.

Finally, we know that f (πpi , πpk ) ≤ 2 for any i, k ∈ {1, ..., j}.
This creates the following violation of the triangle inequality: f (π ′, πpk ) ≤ 1,

f (πpi , πpk ) ≤ 2, and f (π ′, πpi ) ≥ j − 1, where j ≥ 5. This is a contradiction.
Therefore, there can exist no π ′ such that eTπ ′ but π ′T π̂ . As a result, we can

conclude that π̂ covers e. Thus, e cannot be a member of the uncovered set. ��

This proof describes a method for constructing populations for which direct and
representative democracy yield different choices. These populations have a rather intu-
itive interpretation. Let us think about a population constructed by the method above
for the case of n = 10. First, we note the distinction between the five “contested” issues
({a1, a2}, {a3, a4}, {a5, a6}, {a7, a8}, {a9, a10}) and the other 40 pairwise choices that
are decided unanimously. The largest mass of voters, just under half of them, have
the preference e. Let us call these our “mainstream” voters. The remaining voters are
divided evenly among five smaller minority preferences. Each minority agrees with
the mainstream preference on just one of the contested issues; on the other hand, each
minority group agrees with every other minority group on three of the five contested
issues. In this way, the minority preferences are all more similar to one another than
to the mainstream voters.

When voting directly over the alternatives, the population implements choices con-
sistent with e. Most of the choices are unanimous; and, for the five contested pairs, the
mainstream voters and one of the minority groups form a majority. Though the minor-
ity groups have similar preferences, when voting issue-by-issue, they never vote all
together on a contested issue. As a result, the mainstream voters are able to implement
their preferred choices. We can contrast this with the dynamic under representative
democracy. In this setting, candidate e cannot be elected. Though e attracts the main-
stream voters, there exist candidates that all five minority groups prefer to e. Consider
candidate π̂ , who agrees with the unanimous choices of the population but disagrees
with the majority preference on the five contested pairs. All five minority groups pre-
fer π̂ to e; together, they consist of a majority of the population and can succeed in
electing this compromise candidate. The choices of the selected candidates in rep-
resentative democracy are more closely aligned with the minority preferences than
the choices under direct democracy. The ability of the minority groups to compro-
mise under representative democracy produces choices that are different than those
implemented under direct democracy but that are preferred by more than half the
population.

We summarize our results in Table 1, with + indicating a positive result and −
indicating a negative result. Order consistency results for 5 ≤ n ≤ 9 remain an open
question. Our strategy here focuses on generating populations by manipulating pref-
erences over disjoint, adjacent pairs. This approach has been fruitful in constructing
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Table 1 Summary of
consistency results

+, a positive result for given n
and property; −, a negative
result

Strong order consistency Order consistency

n = 3 + +
n = 4 − +
5 ≤ n ≤ 9 − ?

n > 10 − −

populations for which order consistency fails, though it may require more alternatives
than might be necessary with other approaches.

4 Related work and discussion

Our result is closely related to the work of Laffond and Lainé (2000). Laffond and
Lainé (2000) define a tournament consistency axiom that is very similar to our strong
order consistency property. Their tournament consistency requires that if majority
preferences over alternatives are consistent with an ordering, then the candidate with
that ordering must be the Condorcet winner of the tournament over candidates. They
characterize the set of preference extension rules (mappings from preferences over
alternatives into preferences over candidates) that satisfy tournament consistency.
There are technical differences between the two environments, including the important
distinction that Laffond and Lainé (2000) require this type of tournament consistency
over any subset of alternatives; that is, if majority preferences over some subset of
alternatives are consistent with an ordering, the candidate (defined as an ordering over
that subset) whose ordering is consistent with those preferencesmust be the Condorcet
winner of the tournament of orderings restricted to that subset.8 But, the more impor-
tant conceptual difference is that we prove that for one particular and intuitive way
of defining preferences over candidates from preferences over alternatives, something
even weaker than strong order consistency (or tournament consistency) fails. Not only
is the candidate whose ordering is consistent with majority preferences not the Con-
dorcet winner of the tournament (what we call a failure of strong order consistency),
that candidate may not even be a member of the uncovered set of the tournament (a
failure of order consistency).

Also related is the work of Lainé et al. (2015). In their framework, preferences
over alternatives are mapped into preferences over candidates (or hyper-preferences)
by a betweenness criterion: an individual with preference over alternatives π prefers
candidate π ′ to candidate π ′′ if the set of pairs that π and π ′′ agree on is a subset of the
set of pairsπ andπ ′ agree on. As they describe, the preference extension defined by the

8 The other technical difference is that Laffond and Lainé (2000) restrict the set of preference extension
rules (mappings from preferences over alternatives into preferences over candidates) they consider to those
rules that produce complete linear orders over candidates, explicitly disallowing indifference. We map
preferences over alternatives into preferences over candidates using the Kemeny distance, and we allow
voters to be indifferent over candidates whose orderings are equidistant from their own. In this way, the
particular mapping we study is not in their permissible class of preference extension rules.
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Kemeny distance is a member of this family. They then define Kemeny-stability, a type
of consistency property for a social welfare function. They describe a social welfare
function as Kemeny-stable if a linear extension of the weak order selected by the social
welfare functionwhen applied to the population of preferences over alternatives is also
selected by the social welfare function when applied to the population of preferences
over candidates (where preferences over candidates are determined by the Kemeny
distance). They show that many popular social welfare functions are not Kemeny
stable, including unanimous scoring rules, the Copeland solution, the Slater solution,
and the Kemeny rule. Their Kemeny-stability consistency property is very close to our
notion of order consistency. In relation to their results, our paper could be interpreted
as showing that the uncovered set fails a property similar to Kemeny-stability.

While our model is quite different, our results echo the findings of Besley and Coate
(2008), who study the question of whether citizens’ initiatives that allow citizens to
cast votes directly over issues improve upon the outcomes reached under electoral
competition among representatives. Their model consists of a two party political sys-
tem, where the population makes decisions in a two-dimensional policy space. Using
this framework, they show that the elected candidates may implement policies that
are at odds with the majority preferences of the population. They attribute these errors
to the bundling of issues that is inherent in the election of a representative. As in our
model, when issues are decided upon concurrently, via the choice of a representative,
decisions may diverge from those made when citizens are able to vote directly over
issues, one at a time. Ahn and Oliveros (2012) prove a similar result in the case where
individuals’ preferences over issues are not separable. They work in a game-theoretic,
cardinal environment, in which voters’ preferences over bundles of issues are deter-
mined by expected utility-maximization. They show, when voters’ preferences over
the issues are not separable, the voting strategies that result in the election of the
Condorcet winning bundle may not be an equilibrium of the model. Our paper shows
that, in a much simpler, ordinal environment, even in the case where there are no
complementarities or substitutabilities across issues, the bundling of choices may be
distortionary.

We have chosen to use the uncovered set as the solution concept for our tourna-
ments. How heavily does our result depend on this choice? One of the most attractive
features of the uncovered set is that many other popular tournament solution concepts
are subsets of the uncovered set (Laslier 1997). Therefore, it is possible to extend our
negative result to many other solution concepts. This includes the basic refinements
of the uncovered set, the iterated uncovered set and the minimal covering set. It also
includes the Banks solution and the Bipartisan set (Banks 1985; Laffond et al. 1993) .
Another well-studied method for identifying tournament winners is ranking the mem-
bers of the tournament based upon their victories and losses within the tournament.
Themost popular of these rankingmethods include the Copeland solution, theMarkov
solution, and the Slater solution, each of which is also a refinement of the uncovered
set (see, Copeland 1951; Daniels 1969; Slater 1961). In addition, Brandt et al. (2015)
have shown that any Pareto optimal method for selecting winners of the majoritarian
tournament must be a refinement of the uncovered set; thus, our negative result extends
to every rule in that family of tournament solutions as well. The comparably large size
of the uncovered set is quite an attractive property for our purposes. Furthermore, the
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uncovered set has the appealing property that manymodels of strategic voting, not just
sincere voting, lead to selection of members of the uncovered set; for instance, Miller
(1980) develops a model of two-party electoral competition with strategic voting that
leads to election of a member of the uncovered set, and Shepsle and Weingast (1984)
show that the amendment procedure under strategic voting also elects a member of
the uncovered set. Therefore, our negative result would also extend to these specific
models of sophisticated voting.

However, if we expanded our solution concept to the top cycle (Schwartz 1972),
which contains the uncovered set, we could prove a positive result.9

Proposition 4 For any population with majority preferences consistent with an order-
ing, π∗, π∗ is a member of the top cycle of the tournament over orderings.

We can prove this using Proposition 1. Start with π∗. By performing one transposi-
tion at a time, each time transposing a pair of alternatives that were ordered according
to the majority preference, we can construct a chain, π∗T λπi T λπ j T λ...T λπ , from
π∗ to any other ordering π . Thus, we must have π∗ ∈ TC(T λ). ��

But for populations like the one in our counterexample, the top cycle is large; it
will contain many other orderings, including our π̂ . Thus, while order consistency
would hold, strong order consistency would fail: a candidate whose preferences are
misaligned with the majority preferences over at least some issues would be electable.
The results of Laffond and Lainé (2000) and Lainé et al. (2015) also highlight the
more general difficulty of identifying forms of representative democracy that respect
majority preferences over alternatives. Laffond andLainé (2000) show that only lexico-
graphic preference extension rules (preference extension rules formappingpreferences
over alternatives into preferences), result in consistency between direct and represen-
tative democracy in their environment; Lainé et al. (2015) show that when preferences
over candidates are defined by the Kemeny distance, many other familiar social wel-
fare functions, including unanimous scoring rules, result in inconsistencies between
choices under direct and representative democracies.

Our models operate on populations of strict preferences, however, the negative
result that we have identified can be derived in a more basic setting as well. Consider a
population of individuals who each had a yes/no preference on five different spending
projects. We can apply our same rule for mapping individuals’ preferences over alter-
natives into preferences over candidates. When deciding between two candidates, we
assume that an individual votes for the candidate with whom she agrees on the greatest
number of issues. In a population similar to that described in the proof of Theorem 1,
the majority preference would be to vote yes on each of these five issues separately,
but under representative democracy, the population would never elect the candidate
who would vote yes on all five issues.

This example shows that our result does not depend on our assumption that voters’
preferences take the form of orderings.What is important for our result is the existence
of multiple issues. Under a direct democracy, voters express preferences over issues

9 Lainé et al. (2015) prove a stronger version of this proposition, showing that the top cycle not only fails
Kemeny-stability (similar in spirit to what we show here), but also fails their more general hyper-stability
property. See Theorem 6 in their paper.
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one at a time. Therefore, voters whomay be very similar with respect to their decisions
over the entire set of issues—they would agree most of the time—can end up voting
differently on any one particular issue. But in a representative democracy, voters are
able to express preferences over the entire set of issues by voting for a candidate. In
this way, representative democracy can serve to unite and empower groups of voters
with similar, but not identical preferences.
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Appendix

Proof for n = 4

In this section, we prove Proposition 3 stated in Sect. 3.2. For n = 4,UC(T λ) satisfies
order consistency.

Proof Assume majority preferences are consistent with e. We show that there is no
ordering that can cover e. The key step is to recognize that we can apply Proposition 1
to rule out any ordering fewer than five transpositions from e: eT λπ for any π within
two transpositions, so they cannot cover e, and for those three or four transpositions
away, even if they beat e, theywill be defeated by at least one ordering one or two trans-
positions from e (which e beats). So, the only orderings that could potentially cover e
are five or six transpositions away from e: {a4a3a1a2, a4a2a3a1, a3a4a2a1, a4a3a2a1}.
We rule these out one at a time:

– We cannot have a4a3a1a2 covers e, since eT λa2a3a1a4T λa4a3a1a2 for any
population with majority preferences consistent with e. Proposition 1 proves
eT λa2a3a1a4. We cannot have a4a3a1a2T λa2a3a1a4 since all of the orderings
closer or equidistant to a4a3a1a2 than a2a3a1a4 have a4 precedes a2. Thus, if
more than half the population were closer to or equidistant to a4a3a1a2, we would
not have a2 � a4 in the majority preference.

– We cannot have a4a2a3a1 covers e, since we must have eT λa4a2a3a1. All of the
orderings closer or equidistant to a4a3a1a2 than e have a4 precedes a1. Thus, if
more than half the population were closer to or equidistant to a4a2a3a1 than to e,
we would not have a1 � a4 in the majority preference.

– We cannot have a3a4a2a1 covers e, since eT λa1a4a2a3T λ a3a4a2a1 for any
population with majority preferences consistent with e. Proposition 1 proves
eT λa1a4a2a3. We cannot have a3a4a2a1T λa1a4a2a3 since all of the orderings
closer or equidistant to a1a4a2a3 than a3a4a2a1 have a3 precedes a1. Thus, if
more than half the population were closer to or equidistant to a3a4a2a1, we would
not have a1 � a3 in the majority preference.

– We cannot have a4a3a2a1 covers e, since eT λa1a3a2a4T λa4a3a2a1 for any
population with majority preferences consistent with e. Proposition 1 proves
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eT λa1a3a2a4. We cannot have a4a3a2a1T λa1a3a2a4 since all of the orderings
closer or equidistant to a4a3a2a1 than a1a3a2a4 have a4 precedes a1. Thus, if
more than half the population were closer to or equidistant to a4a3a2a1, we would
not have a1 � a4 in the majority preference. ��

Population restrictions

A natural question to ask in this context is whether we can impose restrictions on
the distribution of preferences that would guarantee order consistency. This domain
restriction approach has been adopted by many social choice theorists in attempts
to rule out other paradoxical outcomes; perhaps most classic is the single-peakedness
restriction pioneered independently byBlack (1948) andArrow (1951) andgeneralized
bySen andPattanaik (1969). Their goalwas to describe a class of populations forwhich
majority rule over alternatives would not cycle. The domain restriction they proposed
requires populations to be unimodal in the sense that all members of the population,
for any particular triple of alternatives, must be able to agree on an alternative that
is not worst. Assuming the number of voters is odd, this condition is sufficient for
transitive majority rule.

Clearly, this restriction will not be enough to assure order consistency, as the class
of populations we consider in our counterexample above are indeed single-peaked
in terms of preferences over alternatives. However, we can use a similar idea, that
of restricting the number of modes in the distribution, in order to derive a sufficient
condition for order consistency in our framework. The class of populations with tran-
sitive majority rule consistent with the ordering e can be thought of as having a “peak”
or cluster of weight around e. Our sufficiency condition says that as we move away
from e, we must not encounter another cluster of orderings similar to one another. In
order to state this condition more formally, it will be useful to introduce some new
terminology. When referring to a population with transitive majority rule consistent
with e, we will call any pairwise disagreement with e an error. For example, we will
say that an ordering π that is m transpositions from e contains m errors. We can state
our sufficiency condition in terms of these errors.

Proposition 5 Consider the class of populations with transitive majority rule con-
sistent with e. Then, order consistency holds if for any set of m errors, m � 5, we
have

∑
λ

(

π |π contains at least
1

2
of these m errors

)

<
1

2

Proof Suppose e /∈UC(T λ). We will show there must exist a set of m errors, m � 5,

such that
∑

λ(π |π contains at least 1
2 of these m errors) > 1

2 . Since e /∈UC(T λ), we

know there exists π̂ such that π̂ covers e. Let π̂ contain m errors; we know m � 5 in
order for π̂ to cover e. Since π̂ and e agree on all pairwise choices outside of the m
errors, we know that f (π, π̂) and f (π, e) are determined only by how many of the
m errors π contains. Those π that have less than 1

2 of the m errors have f (π, e) <
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f (π, π̂). So, suppose the set of orderings that had at least 12 of thesem errors in common
with π̂ had mass less than 1

2 . Then, we would have
∑

λ(π | f (π, e) < f (π, π̂) > 1
2 .

This would imply eT λπ̂ , contradicting π̂ covers e. ��
This sufficiency condition has a straightforward intuition. If we encounter a pop-

ulation that contains a mass of orderings that are both (a) relatively distant from e,
and (b) relatively close to one another, then we may have the type of counterexample
presented above. This type of cluster of similar orderings far from e may be able to
agree upon a compromise candidate which covers e, but only if together they constitute
a majority. The condition rules out this possibility by assuring that no such cluster of
mass greater than 1

2 exists.
This is a sufficient but not necessary condition for order consistency. A gray area

exists between the class of populations described in our counterexample above and the
class of populations described by this sufficiency condition. For some populations that
fail the condition above, the distribution of mass on orderings far from e may be too
dispersed to agree upon an ordering like π̂ which could beat everything that e beats.
One might ask whether we could improve the sufficiency condition by restricting this
set of distant orderings to fall within a certain radius of one another. Below, we provide
an example that illustrates why this strategy fails.

Example 1 Why Tightening the Sufficiency Condition by Restricting the Radius of
the Outlier Orderings Does Not Work.

Consider the following population, a slight variant from the example presented in
Sect. 3:

π λ(π)

e 1
2 − 2ε

a1a2a4a3a6a5a8a7a10a9
1
5(

1
2 − ε)

a2a1a3a4a6a5a8a7a10a9
1
5(

1
2 − ε)

a2a1a4a3a5a6a8a7a10a9
1
5(

1
2 − ε)

a2a1a4a3a6a5a7a8a10a9
1
5(

1
2 − ε)

a2a1a4a3a6a5a8a7a9a10
1
5(

1
2 − ε)

a10a9a8a7a6a5a4a3a2a1 3ε

Using the strategy from the proof above, we can show that π̂ = a2a1a4a3a6a5a8a7
a10a9 covers e, the ordering consistent with majority preferences. We need to show
that (a) π̂T λe and (b) for all π ′ ∈ �, eT λπ ′ ⇒ π̂T λπ ′. First we will show that π̂T λe.
For the five orderings in population with weight 1

5 (
1
2 − ε), we have f (π, π̂) = 1 and

f (π, e) = 4. And, we know a10a9a8a7a6a5a4a3a2a1 is closer to π̂ than e, since it is
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maximally distant from e. Thus, 12 +2ε of the population is closer to π̂ than e, so π̂T λe.
Nowwe need to show there cannot exist π ′ such that eT λπ ′ but π ′T λπ̂ . Suppose there
did exist such a π ′. Then, eT λπ ′ implies that for at least one of the orderings π in
population other than e, f (e, π) ≤ f (π ′, π). We know there cannot exist a π ′,
π ′ = e, such that f (e, a10a9a8a7a6a5a4a3a2a1) ≤ f (π ′, a10a9a8a7a6a5a4a3a2a1).
So, it must be that this is true for one of the remaining five orderings. Since for any
of these orderings f (e, π) = 4, we must have f (π ′, π) ≥ 4 for at least one of those
five orderings π . And, the fact that π ′T λπ̂ implies that we have at least one of the
following two cases:

1. For at least one of the orderings with weight 1
5 (

1
2 − ε), we have f (π ′, π) ≤

f (π̂, π).
2. For both e and a10a9a8a7a6a5a4a3a2a1, we have f (π ′, π) < f (π̂, π).

For case 1, we know f (π̂, π) = 1, so this would imply, f (π ′, π) ≤ 1 for one
of the orderings with weight 1

5 (
1
2 − ε). This leads to the same violation of the tri-

angle inequality that we reached above, since for any two orderings with weight
1
5 (

1
2 − ε), we have f (πi , π j ) ≤ 2. For case 2, f (π ′, e) < f (π̂, e) implies f (π ′, e) <

5. And, f (π ′, a10a9a8a7a6a5a4a3a2a1) < f (π̂, a10a9a8a7a6a5a4a3a2a1) implies
f (π ′, a10a9a8a7a6a5a4a3a2a1) < 40. But, f (π ′, e) < 5 and f (π ′, a10a9a8a7a6a5a4
a3a2a1) < 40 cannot both hold, since the first implies π ′ has fewer than five errors
and the second implies it has more than five errors. This leads to a contradiction. Thus,
order consistency fails for this population.

This example illustrates the difficulty we encounter if we attempt to tighten the
sufficiency condition for ordering consistency by imposing a radius around the order-
ings with common errors. Taking the basic counterexample from above, where the
minority orderings all lie relatively close to another, we can move some weight to
a10a9a8a7a6a5a4a3a2a1 and still arrive at π̂ covers e. Thus, it is not always true that
we need the minority orderings to be relatively close to one another in order to have
order consistency fail.
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