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Abstract We study solidarity and strategic properties in binary social choice.We con-
sider both the standard setting with strict preferences and the “full” preference domain
which allows for indifference. Two solidarity properties drive our investigation: “Wel-
fare dominance under preference replacement”, which says that when the preferences
of one agent change, the other agents all weakly gain or all weakly lose; and “popu-
lation monotonicity”, which requires the same conclusion when one agent leaves. We
identify the families of rules satisfying these properties on each preference domain.
Additionally requiring efficiency characterizes the “consensus” rules in each case.
We also relate welfare dominance to other properties. Two results highlight the role
of indifference: Welfare dominance implies “anonymity” when preferences are strict,
but not otherwise; “group strategy-proofness” implies welfare dominance when indif-
ference is allowed, but not otherwise. Finally, we introduce a “duality” operator which
structures the space of rules and extends our results to a model in which rules may
select neither alternative. Only in this case are our solidarity properties consistent with
“neutrality”.

JEL Classification D63 · D71

1 Introduction

In the classic social choice problem, a group of agents must choose among a set
of alternatives. We consider the special case where two alternatives are available, a
setting that has spawned considerable literature sinceMay’s seminalwork (May 1952).
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98 P. Harless

Choosing between two alternatives covers many important situations, such as two-
candidate elections, up-down votes on legislation, and yes-no decisions about building
a new public facility. Extending previous work, we search for rules with desirable
solidarity and incentive properties on two preference domains. In the first case, we
assume all agents have strict preferences over the alternatives, and in the second
case, we allow agents to be indifferent between the alternatives. This model admits a
rich variety of rules, especially when agents may express indifference. Moreover, our
solidarity requirements are compatible with other attractive properties. Our analysis
can help policy-makers choose among rules.

Our approach is axiomatic and emphasizes solidarity. As a general principle, soli-
darity says when the environment changes, agents should all gain together or all lose
together. The principle is compelling when applied to agents who bear no responsi-
bility for the change. We analyze two such situations: Changes in the preference of
other agents and changes in the population of agents. Our first requirement, “welfare
dominance under preference replacement”, considers a change in the preferences of
one agent. It says that when the preferences of one agent change, the welfares of the
other agents should move in the same direction. Our second requirement, “popula-
tion monotonicity”, applies when the population changes. It says that when one agent
leaves, the welfares of the remaining agents should be in the same direction. In our
model, population monotonicity implies welfare dominance (Lemma 3).

We identify a class of eight rules satisfyingwelfare dominancewhen all preferences
are strict (Theorem 1) and a large class of rules satisfying the property on the “full”
preference domain, which allows for indifference (Theorem 2). Allowing for variable
populations, we generalize these results to characterize the rules satisfying population
monotonicity (Theorem 3). In each case, only the “consensus” rules are also efficient.
A consensus rule selects an alternative when all agents with a strict preference favor
that alternative and selects a default otherwise.Highlighting the role of indifference,we
relate our solidarity properties to another desirable property, “anonymity”, which says
that the names of the agents should not matter. On the strict preference domain, each
of our solidarity properties implies anonymity. Surprisingly, allowing indifference
overturns these results: On the full preference domain, neither solidarity property
implies anonymity.

Turning to incentives, we find thatwelfare dominance is compatible with “strategy-
proofness”, which says that no agent should be able to gain by misreporting her
preferences, as well as “group strategy-proofness”, the requirement that no group of
agents be able to jointly misrepresent their preferences so that at least one member
gains and no member loses. Encouragingly, the consensus rules satisfy both incen-
tive properties (Manjunath 2012). On the strict preference domain, strategy-proofness
and group strategy-proofness coincide, and as we show, neither is logically related
to welfare dominance. Including indifference changes these results dramatically: The
two notions of strategy-proofness no longer coincide and, surprisingly, group strategy-
proofness now implieswelfare dominance (Proposition 2). Strategy-proofness requires
that truth-telling be a dominant strategy. A stronger strategic requirement, “secure
strategy-proofness” additionally requires that the outcome of truth-telling be the
only Nash equilibria of the related implementation game. Unfortunately, this prop-
erty is satisfied only by undesirable rules: Dictatorship and constant rules on the
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Reaching consensus 99

strict preference domain and only the constant rules on the full preference domain
(Theorem 5).

To better understand the structure of the space of rules, we introduce a notion
of “duality”. This investigation uncovers additional relationships among axioms and
provides a new interpretation for “neutrality”, the requirement that the labels of the
alternatives should not matter. Implicitly, duality measures the “bias” of a rule in favor
of one alternative over the other. Since neutrality is incompatible with either of our
solidarity axioms in our framework, we extend the model to allow rules to sometimes
choose neither alternative. Our results extend naturally to this setting, and once again,
lead to the consensus rules.

1.1 Related literature

The solidarity principle embodied bywelfare dominance has important implications in
severalmodels.1 In a binary social choicemodel similar to ours butwith side payments,
welfare dominance is the key axiom characterizing the “egalitarian” rule (Moulin
1987). In a model with a continuum of alternatives over which agents have single-
peaked preferences, the combination of welfare dominance and efficiency identifies a
class of “target” rules (Thomson 1993). When two alternatives are to be selected, only
the “left peaks” and “right peaks” rules satisfy both properties (Miyagawa 2001). If the
alternatives have a tree structure, no rule for choosing two alternatives satisfies both
axioms (Umezawa 2012). In a generalized public decision model, the combination
of welfare dominance and efficiency together with “replication indifference” implies
population monotonicity as well as the existence of a special alternative that acts
as a default selection (Gordon 2007). Applied to rationing a divisible resource and
to allocating objects with money, welfare dominance is particularly demanding. In
these models, it is incompatible with other standard properties except in special cases
(Thomson 1997, 1998).

Incentive properties are similarly restrictive. In a social choice setting with three or
more alternatives, the results are disappointing. On the strict preference domain, the
only strategy-proof rules with full range are dictatorships (Gibbard 1973; Satterth-
waite 1975), and on the full preference domain these properties are satisfied only by
the slightly larger class of “sequential dictatorships” (Larsson and Svensson 2006).
Restricted to two alternatives, however, rules significantly different from dictatorships
satisfy both properties. On the strict preference domain, it is possible to move quite
far from dictatorship. Here, strategy-proofness and full range are satisfied by a class
of rules called “voting by committees” (Barberà et al. 1991). Allowing indifference
makes available an even more diverse class of rules defined by “extended committees”
(Larsson and Svensson 2006). It is even possible to strengthen the incentive require-
ment to group strategy-proofness, which leads back to the consensus rules (Manjunath
2012).

Binary social choice has received considerable attention, and continues to be an
active area of research. May’s Theorem characterizes simple majority voting by

1 See Thomson (1999) for a survey.
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100 P. Harless

anonymity, monotonicity, and neutrality (May 1952). With a slightly weaker version
of monotonicity, a family of voting rules based on absolute and relative majorities
satisfy these properties (Llamazares 2013). Although restricted to two alternatives,
the voting rules in this family are allowed to select neither alternative. Moving from
binary choice to the model with single-peaked preferences over an interval, each of the
“generalized Condorcet-winners” is group strategy-proof (Moulin 1984). The target
rules fall in this family (Thomson 1993).

In Sect. 2, we introduce the model.We study the implications ofwelfare dominance
population monotonicity in Sect. 3 and of incentive properties in Sect. 4. We introduce
duality in Sect. 5, extend the model to allow rules which choose neither option in
Sect. 6, and conclude in Sect. 7.

2 Model

Let A ≡ {a, b} be the set of alternatives. Let N ∈ N be a set of agents drawn from
a set of potential agents N . We assume throughout that |N | ≥ 3. Each agent i ∈ N
has a preference relation Ri over A. Let Ra represent preference for a over b, Rb

represent preference for b over a, and Rab represent indifference between a and b.
The full preference domain isR ≡ {Ra, Rb, Rab} and the strict preference domain
is R∗ ≡ {Ra, Rb}. We will also write a Pi b if Ri = Ra , a Ri b if Ri ∈ {Ra, Rab},
a Ii b if Ri = Rab, and similarly if Ri = Rb or Ri ∈ {Rb, Rab}.

An economy is a preference profile R ∈ RN . For each N ′ ⊆ N , let RN ′ ≡
(Ri )i∈N ′ and R−N ′ ≡ (Ri )i∈N\N ′ so R = (RN ′ , R−N ′). Abusing notation slightly,
we write R−i for R−{i}, R−i j for R−{i, j}, and so on. A rule ϕ : RN → A selects
one alternative for each economy. For each α ∈ {a, b, ab}, let Nα(R) ≡ {i ∈ N :
Ri = Rα} be the set of agents with preferences Rα . We distinguish three types of
economies. For each R ∈ RN , we say that there is disagreement at R and call
R a disagreement economy if Na(R) �= ∅ and Nb(R) �= ∅; we say that there
is consensus at R and call R a consensus economy if Na(R) �= ∅ = Nb(R) or
Na(R) = ∅ �= Nb(R); and we call R the indifference economy if Nab(R) = N .
Finally, let �N be the set of permutations of N . For each R ∈ RN and each π ∈ �N ,
let π(R) ≡ (Rπ(i))i∈N .

We will also allow the population to vary. To accommodate changes in the popu-
lation, we extend the definition of an economy to include the set of agents as well as
preferences. Let E ≡ {(N , R) : N ∈ N , R ∈ RN }. A variable-population economy
is a pair (N , R) ∈ E and a variable-population rule is a mapping ϕ : E → A. Each
variable-population rule is a collection of fixed-population rules, which we call the
components of the rule.

2.1 Axioms

In this section, we introduce desirable properties for rules. Let ϕ be a rule.
According to our first axiom, whenever it is possible to make at least one agent

better off without making another agent worse off, we should do so. In terms of our
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Reaching consensus 101

model, if there is an alternative which all agents find at least as desirable as the other
alternative and at least one agent prefers, then the rule should select it.2

Efficiency for each R ∈ RN , if Na(R) �= ∅ = Nb(R), then ϕ(R) = a, and if
Na(R) = ∅ �= Nb(R), then ϕ(R) = b.

While desirable, efficiency may be unattainable. Our next axiom imposes a weaker
requirement. If all agents prefer the same alternative, then the rule should select it.

Unanimity ϕ(Ra, . . . , Ra) = a and ϕ(Rb, . . . , Rb) = b.

Efficiency implies unanimity. On the strict preference domain, the axioms are equiv-
alent. While unanimity is very mild and only applies to two economies, the following
axiom is even weaker. The rule should not select the same alternative in all economies.

Full range there is a pair {R, R′} ⊆ RN such that ϕ(R) = a and ϕ(R′) = b.

Our next requirement is that the names of the agents should not matter. When the
identities of the agents are shuffled, the rule should select the same alternative.

Anonymity for each R ∈ RN and each π ∈ �N , we have ϕ(R) = ϕ(π(R)).

Applied to variable-population rules, anonymity requires invariance when the set of
potential agents is permuted.

Our next two axioms concern potential manipulation. First, no agent should gain
by reporting false preferences.

Strategy-proofness for each R ∈ RN , each i ∈ N , and each R′
i ∈ R, ϕ(R) Ri

ϕ(R′
i , R−i ).

In addition, we may be concerned with manipulation by groups of agents. No group
of agents should be able to misrepresent their preferences so that one member of the
group is better off and no member of the group is worse off.

Group strategy-proofness for each R ∈ RN , each S ⊆ N , and each R′
S ∈ RS ,

if there is i ∈ S such that ϕ(R′
S, R−S) Pi ϕ(R), then there is j ∈ S such that

ϕ(R) Pj ϕ(R′
S, R−S).

On the strict preference domain, strategy-proofness and group strategy-proofness are
equivalent.3 Also, group strategy-proofness and full range together imply efficiency.

Strategy-proofness guarantees implementation in dominant strategies.4 However,
in a given economy, the direct revelation game associated with a rule may still have
undesirable Nash equilibria. Our next axiom strengthens strategy-proofness by requir-
ing a rule to be doubly implementable in dominant strategies and in Nash equilibria.

2 Efficiency and unanimity are also known as the “strong Pareto principle” and “weak Pareto principle”
respectively.
3 A weaker notion of group strategy-proofness requires that all misrepresenting agents gain. This condition
is equivalent to strategy-proofness very generally (Barberà et al. 2010, 2012; Le Breton and Zaporozhets
2009).
4 That is, it is a dominant strategy for each agent to truthfully report her preferences, and this constitutes a
Nash equilibrium.
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102 P. Harless

To define the axiom formally, let�ϕ ≡ (ϕ,R) be the game form associated with ϕ and
for each R ∈ RN , let NE(�ϕ, R) be the set of Nash equilibria of the direct revelation
game associated with ϕ at R. That is, for each pair {R, R′} ⊆ RN , R′ ∈ NE(�ϕ, R)

if for each i ∈ N and each R′′
i ∈ R, we have ϕ(R′) Ri ϕ(R′′

i , R
′−i ).

5

Secure strategy-proofness ϕ is strategy-proof and for each pair {R, R′} ⊆ RN , if
R′ ∈ NE(�ϕ, R), then ϕ(R′) = ϕ(R).

In addition to strategy-proofness, secure strategy-proofness further requires that, in
each economy, all Nash equilibrium outcomes of the direct revelation game coincide.

Our final axioms, and the central axioms of our study, require forms of solidarity.
Our first solidarity axiom applies to economies with fixed populations. When the
preferences of one agent change, all of the agents whose preferences are fixed should
be affected in the same direction: Either no agent is made worse off or no agent is
made better off.6

Welfare dominance under preference replacement for each R ∈ RN , each i ∈ N ,
and each R′

i ∈ R, either (i) for each j ∈ N\{i}, we have ϕ(R) R j ϕ(R′
i , R−i ) or

(ii) for each j ∈ N\{i}, we have ϕ(R′
i , R−i ) R j ϕ(R).

In addition to replacement of one agent’s preferences, we may consider the effect
simultaneously replacing the preferences of a group of agents. Applied to such cases,
the axiom would require solidarity among the agents whose preferences are fixed.
However, these notions are equivalent in our model with two alternatives.

Welfare dominance alone imposes no restrictions when the population changes.
For anonymous rules, welfare dominance requires solidarity when one agent replaces
another agent. Following this line of reasoning, we may also consider the effect when
an agent leaves. This leads to our second solidarity axiom. We require that when one
agent leaves, all of the agents who remain should be affected in the same direction:
Either no agent is made worse off or no agent is made better off.7

Population monotonicity for each (N , R) ∈ E and each i ∈ N , either (i) for each
j ∈ N\{i}, we have ϕ(N\{i}, RN\{i}) R j ϕ(N , R) or (ii) for each j ∈ N\{i}, we
have ϕ(N , R) R j ϕ(N\{i}, RN\{i}).

2.2 Rules

We present several classes of rules. Within each class, we identify a specific rule by a
collection of parameters which we call the signature of the rule.

The simplest rules choose the same alternative in each economy. There are two
such rules, one associated with each alternative.

5 Saijo et al. (2007) introduce this property as “secure implementability” and allow for indirectmechanisms.
However, they show that it is without loss of generality to consider only direct revelation mechanism.
6 Welfare dominance has been studied in a several models under various names such as “agreement” or
“replacement principle”. See Thomson (1999) for additional details.
7 Population monotonicity was originally introduced in the context of bargaining (Thomson 1983a, b) and
has recently been considered in social choice (Bu 2013).
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Reaching consensus 103

Constant rule associated with alternative d ∈ A, C̄d : For each R ∈ RN , C̄d(R) ≡
d.

Of course, the constant rules are not efficient, nor do they have full range. Our next rules
are more responsive. Each rule is identified by a pair of parameters, (d1, d2) ∈ A2.
The first parameter specifies the choice of the rule in each disagreement economy; the
second parameter specifies the choice of the rule when all agents are indifferent. In
each consensus economy, the rule follows the consensus.

Consensus rule with defaults (d1, d2) ∈ A2, Cd1,d2 for each R ∈ RN ,

Cd1,d2(R) ≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a if Na(R) �= ∅ and Nb(R) = ∅
b if Na(R) = ∅ and Nb(R) �= ∅
d1 if Na(R) �= ∅ and Nb(R) �= ∅
d2 if Na(R) = ∅ and Nb(R) = ∅

.

In the signature of a consensus rule, we call d1 the disagreement default and d2
the indifference default. While the disagreement default is a parameter of the rule
rather than a parameter of the problem, its role is similar to that of a status quo:
One privileged alternative is selected unless it receives no support. In all, there are
four consensus rules, although those differing only by their indifference default are
welfare-equivalent.

The next rules are clearly undesirable. Yet, they are essential to consider for a
complete understanding of our axioms. Like a consensus rule, one of these rules
makes the same selection in each disagreement economy. In each consensus economy,
however, the rule opposes the consensus. In the indifference economy, a second default
applies.

Anti-consensus rule with defaults (d1, d2) ∈ A2, Ĉd1,d2 for each R ∈ RN ,

Ĉd1,d2(R) ≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b if Na(R) �= ∅ and Nb(R) = ∅
a if Na(R) = ∅ and Nb(R) �= ∅
d1 if Na(R) �= ∅ and Nb(R) �= ∅
d2 if Na(R) = ∅ and Nb(R) = ∅

.

In addition to following each consensus or opposing each consensus, a rule may
follow a consensus in some economies and oppose a consensus in others. A rule in
the next class selects the same alternative in each consensus economy, whether the
consensus supports or opposes that alternative, and selects the other alternative in each
disagreement economy. Again, a second default covers the indifference economy.

Mixed-consensus rule with defaults (d1, d2) ∈ A2, C̃d1,d2 for each R ∈ RN ,

C̃d1,d2(R) ≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A\{d1} if Na(R) �= ∅ and Nb(R) = ∅
A\{d1} if Na(R) = ∅ and Nb(R) �= ∅
d1 if Na(R) �= ∅ and Nb(R) �= ∅
d2 if Na(R) = ∅ and Nb(R) = ∅

.
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104 P. Harless

On the strict preference domain, the indifference defaults for rules in each of the
previous three classes never apply. On this domain, we simplify our notation. Denoting
the disagreement default by d, we write Cd for a consensus rule, Ĉd for an anti-
consensus rule, and C̃d for a mixed-consensus rule.

Remark 1 On the strict preference domain, the constant, consensus, anti-consensus,
and mixed-consensus rules constitute a class of eight rules. These rules are distin-
guished by their choices in three types of economies: The consensus economy for a,
the consensus economy for b, and all disagreement economies.

Our next class of rules includes each of the rules previously defined. On the full
preference domain, we can now distinguish among consensus economies favoring
the same alternative. This leads us to generalize our notion of defaults in consensus
economies. A consensus mapping is a function D : 2N\{∅} → A which assigns one
alternative to each non-empty subset of agents. Let D be the collection of consensus
mappings.

We define a rule by selecting two consensus mappings and two defaults. The sig-
nature of the rule is a collection (Da, Db, d1, d2) ∈ D2 × A2, which specifies a
choice for each consensus economy favoring a, each consensus economy favoring b,
all disagreement economies, and the indifference economy.

Generalizedmixed-consensus rulewith signature (Da,Db, d1, d2),CDa,Db,d1,d2

for each R ∈ RN ,

CDa ,Db,d1,d2(R) ≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Da(Na(R)) if Na(R) �= ∅ and Nb(R) = ∅
Db(Nb(R)) if Na(R) = ∅ and Nb(R) �= ∅
d1 if Na(R) �= ∅ and Nb(R) �= ∅
d2 if Na(R) = ∅ and Nb(R) = ∅

.

Remark 2 The constant, consensus, anti-consensus, and mixed-consensus rules are
examples of generalized mixed-consensus rules. On the strict preference domain, each
generalized mixed-consensus rule is outcome-equivalent to one of these eight rules.

Our final class of rules give some agents priority over others. For each rule in this
class, one special agent is chosen. If she prefers one alternative, then the rule selects it.
If she is indifferent, then the rule proceeds to a second special agent and so on. If all
agents are indifferent, then the rule selects an indifference default.

Serial dictatorship rule relative to π ∈ �N with indifference default d, Dπ,d for
each R ∈ RN ,

Dπ,d(R) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a if π(1) ∈ Na(R)

b if π(1) ∈ Nb(R)

a if π(1) ∈ Nab(R) and π(2) ∈ Na(R)

b if π(1) ∈ Nab(R) and π(2) ∈ Nb(R)

...

d if Nab = N

.
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Reaching consensus 105

Each serial dictatorship8 is efficient and strategy-proof. On the strict preference
domain, the first special agent always prefers one alternative, so only the first two
cases are relevant. On this domain, we call the rule a dictatorship and denote the rule
by Di where i ∈ N is the first special agent.

3 Solidarity properties

In this section, we search for rules satisfying our solidarity requirements. We begin
by identifying all rules that satisfy welfare dominance on the strict preference domain
(Theorem 1) and on the full preference domain (Theorem 2). Allowing the popula-
tion to vary, we extend these results to characterize the rules satisfying population
monotonicity (Theorem 3). In each case, additionally requiring efficiency leads to the
consensus rules. Finally, contrasting the strict and full preference domains, we relate
our solidarity properties to anonymity.

3.1 Welfare dominance

We begin with the fixed-population model. Our first lemma shows that welfare domi-
nance requires a uniform choice in all disagreement economies. Although Lemma 1
refers only to welfare dominance, it plays a central role in our analysis of population
monotonicity as well.

Lemma 1 If a rule satisfies welfare dominance, then it selects the same alternative
in each disagreement economy.

Proof Let {R, R′} ⊆ RN be such that Na(R), Nb(R), Na(R′), and Nb(R′) are non-
empty. Let i ∈ Na(R) and j ∈ Nb(R). By welfare dominance, ϕ(Ra, Rb, R′−i j ) =
ϕ(R). There are four cases.
Case 1: R′

i = Ra and R′
j = Rb. Then R′ = (Ra, Rb, R′−i j ) and ϕ(R′) =

ϕ(Ra, Rb, R′−i j ) = ϕ(R).

Case 2: R′
i = Rb and R′

j = Rb. Then R′ = (Rb, Rb, R′−i j ). Since Na(R′) �= ∅,
there is k ∈ N\{i, j} such that R′

k = Ra . Then by welfare dominance, ϕ(R′) =
ϕ(Rb, Rb, R′−i j ) = ϕ(Ra, Rb, R′−i j ) = ϕ(R).
Case 3: R′

i = Ra and R′
j = Ra . Then R′ = (Ra, Ra, R′−i j ). Since Nb(R′) �= ∅,

there is k ∈ N\{i, j} such that R′
k = Rb. Then by welfare dominance, ϕ(R′) =

ϕ(Ra, Ra, R′−i j ) = ϕ(Ra, Rb, R′−i j ) = ϕ(R).

Case 4: R′
i = Rb and R′

j = Ra . Since |N | ≥ 3, there is k ∈ N\{i, j}. By wel-

fare dominance, ϕ(Ra, R−k) = ϕ(R) so ϕ(Ra, R−k) = ϕ(Ra, Rb, R′−i j ). Then

by repeated application of welfare dominance, ϕ(R) = ϕ(Ra, Rb, Ra, R′−i jk) =
ϕ(Rb, Rb, Ra, R′−i jk) = ϕ(Rb, Ra, Ra, R′−i jk) = ϕ(Rb, Ra, R′−i j ). 
�

8 We define serial dictatorship rules according to a fixed order. Instead, a rule may allow the order of later
dictators may depend on the preferences of earlier dictators. While this approach often leads to a larger
class of rules (e.g., Larsson and Svensson 2006), there is no difference in our model.
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106 P. Harless

Lemma 2 identifies several rules that satisfy welfare dominance on both preference
domains.

Lemma 2 The constant rules, consensus rules, and anti-consensus rules satisfy wel-
fare dominance.

Proof We prove the result on the strict preference domain; the argument extends
immediately to the full preference domain because the conclusion of welfare domi-
nance is trivially satisfied by all agents who are indifferent between the alternatives.
Let R ∈ (R∗)N , i ∈ N , and R′

i ∈ R∗.
Constant rules: Since the constant rules are independent of preferences, they satisfy
welfare dominance.

Consensus rules: If Ca(R) = Ca(R′
i , R−i ), then welfare dominance is satisfied so

suppose instead that Ca(R) = a and Ca(R′
i , R−i ) = b, relabeling if necessary. By

definition of a consensus rule, Nb(R′
i , R−i ) = N and Na(R′

i , R−i ) = ∅. Therefore, for
each j ∈ N\{i}, we have Ca(R′

i , R−i ) R j Ca(R) as required by welfare dominance.

Anti-consensus rules: If Ĉa(R) = Ĉa(R′
i , R−i ), then welfare dominance is satisfied

so suppose instead that Ĉa(R) = a and Ĉa(R′
i , R−i ) = b, relabeling if necessary.

By definition of an anti-consensus rule, Nb(R′
i , R−i ) = ∅ and Na(R′

i , R−i ) = N .

Therefore, for each j ∈ N\{i}, we have Ĉa(R) R j Ĉa(R′
i , R−i ), as required by

welfare dominance.

Mixed-consensus rules: If C̃a(R) = C̃a(R′
i , R−i ), thenwelfare dominance is satisfied,

so suppose instead that C̃a(R) = a and C̃a(R′
i , R−i ) = b, relabeling if necessary. By

definition of a mixed-consensus rule, Na(R′
i , R−i ) = ∅ or Na(R′

i , R−i ) = N . In the
first case, for each j ∈ N\{i}, we have C̃a(R′

i , R−i ) R j C̃a(R). In the second case,
for each j ∈ N\{i}, we have C̃a(R) R j C̃a(R′

i , R−i ). Therefore, C̃a satisfies welfare
dominance. 
�

Notably, the dictatorship rules do not satisfy welfare dominance.

Example 1 Dictatorship rules violate welfare dominance. Consider D1. Let R ∈
(R∗)N be such that R2 = Ra and Ri = Rb for each i ∈ N\{2}. Let R′

1 = Ra . Then
D1(R) = b and D1(R′

1, R−1) = a. Since a P2 b while b P3 a, this violates welfare
dominance.

In fact, on the strict preference domain, the converse of Lemma 2 is true. On this
domain, welfare dominance characterizes a class of eight rules: The constant, con-
sensus, anti-consensus, and mixed-consensus rules. Among these, only the consensus
rules are unanimous.

Theorem 1 On the strict preference domain:

(a) A rule satisfies welfare dominance if and only if it is a constant, consensus, anti-
consensus, or mixed-consensus rule.

(b) A rule satisfies welfare dominance and unanimity if and only if it is a consensus
rule.
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Proof (a) By Lemma 2, each of the named rules satisfieswelfare dominance. To prove
the converse, let ϕ be a rule satisfying welfare dominance. Let R ≡ (Ra, . . . , Ra),
R′ ≡ (Rb, . . . , Rb), and R′′ ≡ (Ra, Rb, . . . , Rb). Let d1 ≡ ϕ(R), d2 ≡ ϕ(R′), and
d3 ≡ ϕ(R′′). Now let R′′′ ∈ (R∗)N . If R′′′ �= R and R′′′ �= R′, then Na(R′′′) �= ∅
and Nb(R′′′) �= ∅. By Lemma 1, ϕ(R′′′) = ϕ(R′′) = d3. Therefore, ϕ is completely
determined by d1, d2, and d3. There are four cases:
Case 1: d1 = d2 = d3. Then ϕ is a constant rule.
Case 2: d1 = a and d2 = b. Then ϕ is a consensus rule.
Case 3: d1 = b and d2 = a. Then ϕ is an anti-consensus rule.
Case 4: d1 = d2 �= d3. Then ϕ is a mixed-consensus rule.

(b) The consensus rules are unanimous while the constant, anti-consensus, and
mixed-consensus rules are not. The conclusion follows by (a). 
�

We now extend the preference domain to allow for indifference and again search
for rules satisfying welfare dominance. While each of the previously identified rules
continues to satisfy welfare dominance on the full preference domain, the entire class
of such rules is considerably larger. On this domain, welfare dominance characterizes
the generalized mixed-consensus rules. As on the strict preference domain, only the
consensus rules are also efficient.

Theorem 2 On the full preference domain:

(a) A rule satisfieswelfare dominance if and only if it is a generalizedmixed-consensus
rule.

(b) A rule satisfies welfare dominance and efficiency if and only if it is a consensus
rule.

Proof (a) Let ϕ satisfy welfare dominance. Let R ∈ RN be such that R1 = Ra ,
R2 = Rb, and Ri = Rab for each i ∈ N\{1, 2}. Let d ≡ ϕ(R). By Lemma 1, ϕ selects
d in each disagreement economy. Therefore, ϕ is a generalized mixed-consensus rule.

Let ϕ be a generalized mixed-consensus rule. Let R ∈ RN , i ∈ N , and R′
i ∈

R. If both R and (R′
i , R−i ) are disagreement economies, then ϕ(R) = ϕ(R′

i , R−i ).
Suppose this is not the case.Without loss of generality, suppose Na(R) = ∅, relabeling
if necessary. There are two cases: Either for each j ∈ N\{i}, we have ϕ(R) R j

ϕ(R′
i , R−i ); or for each j ∈ N\{i}, we have ϕ(R′

i , R−i ) R j ϕ(R). In either case,
welfare dominance is satisfied.

(b) We have argued previously that the consensus rules satisfy welfare dominance
(Lemma 1). By construction, the consensus rules are efficient. We now prove the
converse.

Let ϕ satisfy welfare dominance and efficiency. Then ϕ is a generalized mixed-
consensus rule defined by a default family (Da,Db, d1, d2). Let S ∈ 2N\{∅}. Let
R ∈ RN be such that Na(R) = S and Nb(R) = ∅. Then by efficiency, ϕ(R) = a
and so Da(S) = a. Next, let R′ ∈ RN be such that Na(R′) = ∅ and Nb(R) = S.
Then, again by efficiency, ϕ(R′) = b and so Db(S) = a. Since this is true for each
S ∈ 2N\{∅}, we have ϕ = Cd1,d2 and ϕ is a consensus rule. 
�

Theorem 2(b) is false if efficiency is replaced by unanimity; several generalized
mixed-consensus rules follow a unanimous choice but oppose the consensus in other
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economies. In fact, the class of generalized mixed-consensus rules is large, and the
number of rules in the class grows exponentially with the size of the population.9

3.2 Population monotonicity

We now allow the population to vary and search for population monotonic rules. In
contrast with other models,10 population monotonicity is stronger than welfare domi-
nance (Lemma 3). Theorem 3, which characterizes the class of population monotonic
rules, extends our results from the fixed-population model.

Lemma 3 Population monotonicity implies welfare dominance.

Proof We prove the contra-positive. Let ϕ be a rule that violates welfare dominance.
Then there is (N , R) ∈ E with |N | ≥ 3, {i, j, k} ⊆ N , and R′

i ∈ R such that
ϕ(N , R′

i , R−i ) Pj ϕ(N , R) and ϕ(N , R) Pk ϕ(N , R′
i , R−i ). Let R′ ≡ (R′

i , R−i ). Let
N ′ ≡ N\{i}. Then RN ′ = R′

N ′ so ϕ(N ′, R′
N ′) = ϕ(N ′, RN ′). There are two cases.

Case 1: ϕ(N ′, RN ′) = ϕ(N , R). Then ϕ(N ′, RN ′) �= ϕ(N , R′) and so ϕ(N , R′) Pj

ϕ(N ′, RN ′) while ϕ(N ′, RN ′) Pk ϕ(N , R′).
Case 2: ϕ(N ′, RN ′) �= ϕ(N , R). Then ϕ(N ′, RN ′) = ϕ(N , R′) and so ϕ(N ′, RN ′) Pj

ϕ(N , R) while ϕ(N , R) Pk ϕ(N ′, RN ′).
In either case, population monotonicity is violated and so ϕ is not population

monotonic. 
�
The generalized mixed-consensus rules can be extended to population monotonic

rules. To do so, we select one such rule for each population, with the restriction that
each rule have the same disagreement default. In fact, this technique characterizes the
class of population monotonic rules. Consistent with our previous results, additionally
requiring efficiency leaves us with rules whose components are consensus rules.

Theorem 3 On the full preference domain:

(a) A rule satisfies population monotonicity if and only if its components are gener-
alized mixed-consensus rules with a common disagreement default.

(b) A rule satisfies population monotonicity and efficiency if and only if its compo-
nents are consensus rules with a common disagreement default.

Proof (a) First, we show that each such rule is population monotonic. Let d ∈ A.
For each N ∈ N , let ϕN be a generalized mixed-consensus rule defined on RN with
disagreement default d. For each (N , R) ∈ E , let ϕ(N , R) ≡ ϕN (R). To show that
the extended rule ϕ is population monotonic, let N ∈ N , i ∈ N , and R ∈ RN . Let
N ′ ≡ N\{i} and R′ ≡ RN ′ and suppose that ϕ(N , R) �= ϕ(N ′, RN ′). By definition,
ϕ(N , R) = ϕN (R) and ϕ(N ′, R′) = ϕN ′

(R′). Moreover, since ϕN and ϕN ′
have the

same disagreement default, there is no disagreement in the reduced economy. Without
loss of generality, suppose Na(R′) = ∅. There are two cases according to whether

9 More precisely, for each N ∈ N , there are 2|N |+1 generalized mixed-consensus rules.
10 Gordon (2007) shows that under efficiency and “replication indifference”, welfare dominance implies
population monotonicity very generally.

123



Reaching consensus 109

ϕ(N , R) = a or ϕ(N , R) = b. However, for each j ∈ N ′, b R j a so population
monotonicity is satisfied in either case.

Next, we show that the components of each population monotonic are as claimed.
Let ϕ̂ be a population monotonic rule. By Lemma 3, ϕ̂ satisfies welfare dominance. In
particular, for each N ∈ N there is ϕ̂N such that for each R ∈ RN , ϕ̂(N , R) = ϕ̂N (R).
For each N ∈ N , let d̂N be the disagreement default associated with ϕ̂N . To see that
the disagreement defaults are the same, let {N ′, N ′′} ⊆ N and let N ≡ N ′ ∪N ′′. Since
there are two alternatives, either d̂N = d̂N ′ or d̂N = d̂N ′′ . Without loss of generality,
suppose d̂N = d̂N ′ . Let R ∈ RN be such that there is a pair {i, j} ⊆ N ′′ with
i ∈ Na(R) and j ∈ Nb(R). Beginning from the economy (N , R), we remove each
agent k ∈ N\N ′′ in turn. Since {i, j} ⊆ N ′′, there is disagreement in each economy
in the sequence. Applying population monotonicity at each step, we conclude that
d̂N = ϕ̂(N , R) = ϕ̂(N ′, R′) = d̂N ′′ . Since d̂N = d̂N ′ , we have d̂N ′′ = d̂N ′ .

(b) By Theorem 2(b), the components of each such rule are consensus rules. By
(a), these components have a common disagreement default. 
�

Combining the results of Theorems 1 and 3, we are able to identify the subclasses of
rules that satisfypopulationmonotonicity or the combination ofpopulationmonotonic-
ity and unanimity on the strict preference domain. Once again, the key requirement of
population monotonicity is that the components have a common disagreement default.

Theorem 4 On the strict preference domain:

(a) A rule satisfies population monotonicity if and only if its components are constant,
consensus, mixed-consensus, or anti-consensus rules with a common disagree-
ment default.

(b) A rule satisfies population monotonicity and unanimity if and only if its compo-
nents are consensus rules with a common disagreement default.

As Theorems 3 and 4 show, population monotonicity adds to welfare dominance a
uniformity across populations. When an agent who prefers one alternative becomes
indifferent, she no longer has an interest in the outcome. Intuitively, we may think of
her as “leaving” the economy. Welfare dominance applies to this hypothetical pop-
ulation change. When we allow actual population changes, population monotonicity
applies. Theorems 3 and 4 show that when considered from either perspective, soli-
darity restricts rules in the same way.

3.3 Solidarity and anonymity

Depending on the preference domain, our solidarity properties may or may not imply
anonymity. These results highlight the role of indifference.

Since the consensus rules are anonymous, Theorem 2 shows thatwelfare dominance
and efficiency together imply anonymity. Efficiency is required for this conclusion on
the full preference domain but not on the strict preference domain.

Proposition 1 On the strict preferencedomain,welfare dominance implies anonymity.
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Proof Let ϕ satisfy welfare dominance and let π ∈ �N . Let R ∈ (R∗)N and let
R′ ≡ π(R). By construction, |Na(R)| = |Na(R′)| and |Nb(R)| = |Nb(R′)|. Suppose
by way of contradiction that ϕ(R) �= ϕ(R′). Then Na(R) �= Na(R′) and Nb(R) �=
Nb(R′). In particular, since Na(R) ∪ Nb(R) = Na(R′) ∪ Nb(R′) = N , we have
Na(R) �= ∅ and Nb(R) �= ∅. Let i ∈ Na(R), j ∈ Nb(R), and k ∈ N\{i, j}. By
welfare dominance, ϕ(Ra, R−k) = ϕ(R). Without loss of generality, then, we may
assume Rk = Ra so |Na(R)| ≥ 2.

Let S ⊆ N be the set of agents whose preferences change: S ≡ {h ∈ N : Rh �=
R′
h}. Then |S ∩ Na(R)| = |S ∩ Nb(R′)| and |S| is even. List the agents of S as

(s1, s2, . . . , s2m) so that adjacent agents have opposite preferences: For each k =
1, . . . ,m, s2k−1 ∈ Na(R) and s2k ∈ Nb(R). Let R(0) ≡ R, R(1) ≡ (R′

s1 , R−s1),
R(2) ≡ (R′

s1 , R
′
s2 , R−s1s2), and so on to R(k) ≡ (R′

S, R−S) = R′. For each l =
1, . . . , k, Na(R(l)) �= ∅ and Nb(R(l)) �= ∅, so welfare dominance implies ϕ(R(l)) =
ϕ(R(l−1)). But then ϕ(R) = ϕ(R(0)) = ϕ(R(k)) = ϕ(R′), which contradicts our
initial assumption. 
�

A key step in the proof is deducing that both Na(R) and Nb(R) are non-empty.
This implication does not hold on the full preference domain because in that case there
is a third set Nab(R) to consider. Example 2 illustrates a rule that satisfies welfare
dominance (and is unanimous) yet is not anonymous.

Example 2 Arule satisfyingwelfaredominanceandunanimitybutnot anonymity.
For each R ∈ RN , define ϕ by

ϕ(R) ≡
{
a if 1 ∈ Na(R) and Nb(R) = ∅
b otherwise

.

For each R ∈ RN , if 1 ∈ Na(R), then ϕ(R) = a and if 1 ∈ Nb(R), then ϕ(R) = b
so ϕ satisfies unanimity. To see that ϕ satisfies welfare dominance, let R ∈ RN ,
i ∈ N , and R′

i ∈ R be such that ϕ(R) = a and ϕ(R′
i , R−i ) = b. By definition,

1 ∈ Na(R) and Nb(R) = ∅. Then Nb(R′
i , R−i )\{i} = ∅ and for each j ∈ N\{i} we

haveϕ(R) R j ϕ(R′
i , R−i ). Of course,ϕ distinguishes agent 1 and so is not anonymous.

The rule in Example 2 is not efficient and so shows that efficiency is not implied by
the combination of welfare dominance and unanimity. The next example shows that
efficiency is not implied even when anonymity is included.

Example 3 A rule satisfying welfare dominance, anonymity, and unanimity but
not efficiency. For each R ∈ RN , define ϕ by

ϕ(R) ≡
{
a if Na(R) = N

b otherwise
.

The rule is a generalized mixed-consensus rule and so satisfies welfare dominance. It
is anonymous and unanimous essentially by definition. To see that ϕ is not efficient,
let R ∈ RN be such that that Nab(R) = {1} and Na(R) = N\{1}. Then ϕ(R) = b in
violation of efficiency.
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Since population monotonicity implies welfare dominance (Lemma 3), Proposi-
tion 1 shows that on the strict preference domain, population monotonicity implies
anonymity as well. On the full preference domain, however, these properties are inde-
pendent.

Example 4 A population monotonic and efficient rule that is not anonymous. For
each N ∈ N , let Cd1,d2

N be the consensus rule with defaults (d1, d2) defined on RN .
For each (N , R) ∈ E , define ϕ by

ϕ(N , R) ≡
{
Ca,a
N (R) if 1 ∈ N

Ca,b
N (R) otherwise

.

Since agent 1 plays a special role, ϕ is not anonymous. However, ϕ is an extended
generalized mixed-consensus rule and so satisfies population monotonicity by Theo-
rem 3.

Example 4 shows that, in contrast with the fixed-population model, anonymity is
not even implied under efficiency. Of course, the possible violations of anonymity have
no welfare significance, as they are limited to changes in the indifference default.

4 Strategic properties

In this section, we turn to incentive properties and relate these properties to our solidar-
ity properties. The literature provides ready characterizations of strategy-proof rules
with full range on both the strict and full preference domains: They are described as
“voting by committees” (Barberà et al. 1991) and “voting by extended committees”
(Larsson and Svensson 2006). Moreover, as examples of serial dictatorship and anti-
consensus rules show, strategy-proofness is logically independent from our solidarity
properties on either the strict or full preference domain. Thus, we turn immediately to
stronger strategic requirements.

On the full preference domain, we uncover a surprising connection between nor-
mative and strategic properties: Group strategy-proofness implies welfare dominance
(Proposition 2). Strengthening our strategic requirement to secure strategy-proofness,
we show that only undesirable rules remain admissible. On the strict preference
domain, only the dictatorship and constant rules are securely strategy-proof and on
the full preference domain, only the constant rules satisfy the property (Theorem 5).

4.1 Group strategy-proofness

On the strict preference domain, strategy-proofness and group strategy-proofness
are equivalent (Le Breton and Zaporozhets 2009). Thus, the rules satisfying group
strategy-proofness) and full range are also “voting by committees” rules (Barberà et
al. 1991). On the full preference domain, however, these relationships change. For
example, when indifferences are allowed, the serial dictatorship rules continue to
be strategy-proof but are no longer group strategy-proof. Intuitively, group strategy-
proofness becomes more demanding because an indifferent agent may be able to
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influence the outcome by misrepresenting her preferences, thereby benefiting other
without cost to herself.

On the strict preference domain, neither incentive property is logically related to
welfare dominanceoranonymity.Allowing for indifference, however, yields a surprise:
On the full preference domain, welfare dominance is a necessary condition for group
strategy-proofness. Proposition 2 summarizes.

Proposition 2 (a) On the strict preference domain, welfare dominance neither
implies nor is implied by group strategy-proofness.

(b) On the full preference domain, group strategy-proofness implies welfare domi-
nance.

Proof (a) The dictatorship rules are group strategy-proof but violate welfare domi-
nance. The anti-consensus rules satisfy welfare dominance but are not group strategy-
proof.

(b) We prove the contra-positive. Suppose ϕ violates welfare dominance. Then
there are R ∈ RN , {i, j, k} ⊆ N , and R′

i ∈ R such that ϕ(R′
i , R−i ) Pj ϕ(R) and

ϕ(R) Pk ϕ(R′
i , R−i ). If Ri = Rab, then i and j can manipulate at R. Similarly, if

R′
i = Rab, then i and k can manipulate at (R′

i , R−i ). In either case, ϕ is not group
strategy-proof.

Suppose instead that Ri , R′
i ∈ R∗. Let R′′

i = Rab. Since there are two alternatives,
either ϕ(R′′

i , R−i ) = ϕ(R) or ϕ(R′′
i , R−i ) = ϕ(R′

i , R−i ). In the first case, i and j can
manipulate at (R′′

i , R−i )while in the second case i and k can manipulate at (R′′
i , R−i ).

Thus, ϕ is not group strategy-proof. 
�
On the full preference domain, the consensus rules are the only group strategy-proof

rules with full range (Manjunath 2012). Based on this characterization and Theorem 2,
we have an immediate relationship among axioms:

Proposition 3 On the full preference domain, the combination of group strategy-
proofness and full range is equivalent to the combination of welfare dominance and
efficiency.

4.2 Secure strategy-proofness

We now turn to secure strategy-proofness. Since strategy-proofness is already a
demanding property, we expect secure strategy-proofness to be very difficult to sat-
isfy, as our analysis will show. To proceed, we introduce a helpful technical property.
Consider a true preference profile R and an alternative preference profile R′. Suppose
that each agent is indifferent between the outcome when reporting truthfully and when
individually deviating to R′

i . Then, we require the outcomes assigned to R and R′ be
the same.

Rectangle property for each N ∈ N and each pair {R, R′} ⊆ RN , if for each
i ∈ N , ϕ(R′

i , R−i ) Ii ϕ(R), then ϕ(R′) = ϕ(R).

A rule is securely strategy-proof if and only if it is strategy-proof and satisfies the
rectangle property (Saijo et al. 2007). Intuitively, the rectangle property is the “dif-
ference” between strategy-proofness and secure strategy-proofness.
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Since group strategy-proofness and strategy proofness are equivalent on the strict
preference domain, secure strategy-proofness implies group strategy-proofness by
definition. On the full preference domain, this implication continues to hold, but now
requires proof.

Proposition 4 On the full preference domain, secure strategy-proofness implies both
group strategy-proofness and welfare dominance.

Proof By Proposition 2, group strategy-proofness implies welfare dominance, so it
suffices to show that secure strategy-proofness implies group strategy-proofness.

Let ϕ be a strategy-proof rule that is not group strategy-proof. We will show that
ϕ violates the rectangle property and so is not securely strategy-proof. Since ϕ is not
group strategy-proof, there are N ′ ⊆ N and {R, R′} ⊆ RN with RN\N ′ = R′

N\N ′ such
that for each j ∈ N ′ and for some i ∈ N ′, we have ϕ(R′) R j ϕ(R) and ϕ(R′) Pi ϕ(R).
In particular, ϕ(R) �= ϕ(R′).

We claim that for each k ∈ N ,ϕ(R′
k, R−k) Ik ϕ(R). Since there are two alternatives,

if ϕ(R′
k, R−k) �= ϕ(R), then ϕ(R′

k, R−k) = ϕ(R′). Also, R′
k �= Rk , so k ∈ N ′ and

ϕ(R′
k, R−k) = ϕ(R′) Rk ϕ(R). By strategy-proofness, ϕ(R) Rk ϕ(R′

k, R−k) =
ϕ(R′). Together, ϕ(R) Ik ϕ(R′), as claimed.

For each k ∈ N , ϕ(R′
k, R−k) Ik ϕ(R), so the hypothesis of the rectangle property

is satisfied. However, ϕ(R) �= ϕ(R′) so the conclusion is violated. 
�
On the strict preference domain, dictatorship rules are securely strategy-proof. How-

ever, as Example 5 shows, the consensus rules are not.

Example 5 The consensus rules are not securely strategy-proof. Consider Ca . Let
R ∈ (R∗)N be such that Na(R) = {1, 2} and Nb(R) = N\{1, 2} and let R′

1 = R′
2 =

Rb. Then Ca(R) = Ca(R′
1, R−1) = Ca(R′

2, R−2) = a while Ca(R′
1, R

′
2, R−12) = b.

This violates the rectangle property and so Ca is not securely strategy-proof.

The examples of dictatorship and consensus rules show that on the strict preference
domain there is no logical relation between secure strategy-proofness and welfare
dominance. On the full preference domain, secure strategy-proofness is nearly impos-
sible to satisfy. On this domain, only the consensus rules and constant rules satisfy
group strategy-proofness (Manjunath 2012). Since the consensus rules violate secure
strategy-proofness even on the strict preference domain (Example 5), we are left with
only the constant rules. Theorem 5 summarizes.

Theorem 5 (a) On the strict preference domain, a rule is securely strategy-proof if
and only if it is a dictatorship rule or a constant rule.

(b) On the full preference domain, a rule is securely strategy-proof if and only if it is
a constant rule.

5 Duality

In this section, we study the the structure of the space of rules. With two alterna-
tives, a natural symmetry arises with respect to economies, rules, and the alternatives
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themselves. In fact, as we will explain, the appropriate notion of “self duality” has a
straightforward interpretation: The alternatives should be treated symmetrically. More
generally, duality helps us to understand the extent to which a rule favors one alter-
native over the other. Further developing our results, we define a “duality operator”
which pairs each rule with a rule that exhibits the opposite bias. To investigate these
ideas formally, we need additional notation.

Let ϕ be a rule. There is a unique rule that selects in each economy the alternative
that ϕ does not select. Formally, the opposite of ϕ, ϕ−1, is such that for each R ∈ RN ,
ϕ−1(R) ≡ A\ϕ(R). Since |A| = 2, ϕ−1 is well-defined. We have seen several pairs
of opposites. For example, the two constant rules are opposites, and each consensus
rule is the opposite of an anti-consensus rule. The opposite of a serial dictatorship rule
is a serial “anti-dictatorship” rule: The rule selects the less preferred alternative of the
first special agent who is not indifferent.

We next define a symmetry relationship between economies. To each economy we
associate a second economy in which each agent’s preference is reversed: For each
R ∈ RN , Rd is the dual economy of R, if Na(Rd) = Nb(R) and Na(Rd) = Nb(R).
Next we identify the rule that selects in each economy the alternative that ϕ does not
select in the dual economy, which we call its dual. Formally,

Dual of ϕ, ϕd for each R ∈ RN , ϕd(R) ≡ (ϕ−1(Rd)).

We say the two properties are dual if whenever a rule satisfies the property, its dual
satisfies the other property. A rule ϕ is self-dual if ϕd = ϕ. Self-duality requires that
a rule reverse its selection when faced with a dual economy. In particular, self-duality
implies that the labels of the objects do not matter. That is, self-duality is equivalent to
the property commonly called neutrality. Since the constant rules are not self-dual,
either property immediately implies full range.

Unfortunately, on the full preference domain, no rule is self-dual. The reason is that
we require rules to select an alternative in each economy, including the indifference
economy. Necessarily, the dual of a rule will make the opposite selection in this
economy. Our first proposition summarizes the preceding discussion.

Proposition 5 On the full preference domain, no rule is self-dual.

On the full preference domain, the dictatorship rules violate self-duality only
because they must make a default choice in the indifference economy, a technical-
ity that does not arise on the strict preference domain.11

Lemma 4 On the strict preference domain, the dictatorship rules are self-dual.

Proof Consider D1. Let R ∈ R∗ and suppose D1(R) = a. Then 1 ∈ Na(R) and so
1 ∈ Nb(Rd). Therefore, D1(Rd) = b. 
�

On the strict preference domain, the dictatorship rules are strategy-proof and effi-
cient, so self-duality is now compatible with these properties. In fact, efficiency is
implied by the other axioms. This is because self-duality implies full range and the
combination of strategy-proofness and full range implies efficiency.

11 Majority rule is another rule that violates self-duality only rarely. On the strict preference domain with
an odd number of agents, majority rule is self-dual.
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Corollary 1 On the strict preference domain, strategy-proofness and self-duality
imply efficiency.

More generally, we may ask which self-dual rules are strategy-proof. Since these
properties together imply efficiency, the class of rules satisfying both properties is a
subset of the “voting by committees” rules (Barberà et al. 1991). To satisfy self-duality,
we require that the winning coalitions be the same for both alternatives: S ⊆ N is a
winning coalition for a if and only if S is a winning coalition for b.

To better understand the properties of opposites and duals, it is helpful to think in
terms of operators, or mappings from the space of rules into itself. Let ϕ be a rule.
The opposition operator associates ϕ with ϕ−1 and the duality operator associates ϕ

with ϕd . These operators commute.

Lemma 5 For each rule ϕ, (ϕ−1)d = (ϕd)−1.

Proof Let ϕ be a rule and let R ∈ RN . By definition, ϕd(R) = ϕ−1(Rd). Computing
twice,

(ϕ−1)d(R) = (ϕ−1)−1(Rd) = A\ϕ−1(Rd) = A\(A\ϕ(Rd)
) = ϕ(Rd) and

(ϕd)−1(R) = A\ϕd(R) = A\ϕ−1(Rd) = A\(A\ϕ(Rd)
) = ϕ(Rd).

Comparing results, (ϕ−1)d(R) = (ϕd)−1(R). 
�
Several properties are preserved under opposition.

Proposition 6 Opposition preserves full range, anonymity, welfare dominance, and
population monotonicity.

Proof Full range: Let ϕ be a rule satisfying full range. Then there is a pair {R, R′} ⊆
RN such that ϕ(R) = a and ϕ(R′) = b. Then ϕ−1(R) = b and ϕ−1(R′) = a.

Anonymity: Let ϕ be a rule satisfying anonymity. Let R ∈ RN and π ∈ �N . By
anonymity, ϕ(R) = ϕ(π(R)) and ϕ(Rd) = ϕ(π(Rd)). Since π(Rd) = (π(R))d , we
have ϕ−1(R) = ϕ−1(π(R)).

Welfare dominance: Letϕ be a rule satisfyingwelfare dominance. Let R ∈ RN , i ∈ N ,
and R′

i ∈ RN . Bywelfare dominance, either for each j ∈ N\{i}, ϕ(R) R j ϕ(R′
i , R−i )

or for each j ∈ N\{i}, ϕ(R′
i , R−i ) R j ϕ(R). Without loss of generality, suppose the

first case. Then for each j ∈ N\{i}, ϕ−1(R′
i , R−i ) R j ϕ−1(R).

Population monotonicity: Let ϕ be a rule satisfying population monotonicity. Let
(N , R) ∈ E and i ∈ N . By population monotonicity, either for each j ∈ N\{i},
ϕ(N , R) R j ϕ(N\{i}, RN\{i}) or for each j ∈ N\{i}, ϕ(N\{i}, RN\{i}) R j ϕ(N , R).
In the first case, for each j ∈ N\{i}, ϕ−1(N\{i}, RN\{i}) R j ϕ−1(R) and in the second
case, for each j ∈ N\{i}, ϕ−1(R) R j ϕ−1(N\{i}, RN\{i}). 
�

On the other hand, many properties are not preserved. For example, if a rule is
unanimous, then its opposite is not unanimous. Similarly, if a rule is efficient, then its

123



116 P. Harless

opposite is not efficient. A rule and its opposite are both strategy-proofness if and only
if they are constant.

We now turn to the duality operator. Several leading families are closed under
duality.

Proposition 7 Each of the following families is closed under duality: (i) general-
ized mixed-consensus rules, (ii) constant rules, (iii) consensus rules, and (iv) serial
dictatorship rules.

Proof Generalized mixed-consensus rules: Let (D1, D2, d1, d2) ∈ D2 × A2 and ϕ ≡
CD1,D2,d1,d2 . Without loss of generality, suppose d1 = a. Let R ∈ RN be a disagree-
ment economy. Then Rd is also a disagreement economy and ϕ(R) = ϕ(Rd) = a.
Therefore, ϕd(R) = ϕ−1(Rd) = b. Since ϕd selects b in each disagreement economy,
it is a generalized mixed-consensus rule. In fact, it is the generalized mixed-consensus
rule with signature (D2, D1, A\{d1}, A\{d2}).
Constant rules: The two constant rules are dual rules, so closure follows immediately.

Consensus rules: Consider Ca . By the previous result, (Ca)d is a generalized mixed-
consensus rule with disagreement default b. Let R ∈ RN be a consensus econ-
omy favoring a. Then Rd is a consensus economy favoring b. Therefore, Ca(R) =
(Ca)d(R) = a and Ca(Rd) = (Ca)d(Rd) = b. Therefore, (Ca)d = Cb.

Serial dictatorship rules: The dual of a serial dictatorship rule differs from the original
only in the default it selects when all agents are indifferent. Therefore, the dual of a
serially dictatorial rule is also a dictatorial rule with the same ordering of agents. 
�

The proposition implies that welfare dominance is preserved under duality. In fact,
duality preserves all of the standard properties.

Proposition 8 Duality preserves full range, anonymity, welfare dominance, popula-
tion monotonicity, unanimity, efficiency, and strategy-proofness.

Proof Letϕ be a rule.By commutativity of the operators (Lemma5), for each R ∈ RN ,
we have ϕd(R) = ϕ−1(R) and ϕ−1(R) = ϕd(Rd). Since full range, anonymity, wel-
fare dominance, and population monotonicity are preserved under opposition (Propo-
sition 6), they are also preserved under duality. We verify the remaining properties.

Unanimity: Supposeϕ satisfiesunanimity. Thenϕ(Ra, . . . , Ra)=a andϕ(Rb, . . . , Rb)

= b. By definition, ϕd(Ra, . . . , Ra)=ϕ−1(Rb, . . . , Rb) = a and ϕd(Rb, . . . , Rb)=
ϕ−1(Ra, . . . , Ra) = b.

Efficiency: Suppose ϕ satisfies efficiency. Without loss of generality, let R ∈ RN be an
economy with consensus for a. Then Nb(R) = Na(Rd) = ∅. By efficiency, ϕ(R) = a
and ϕ(Rd) = b. Then by definition, ϕd(R) = ϕ−1(Rd) = a.

Strategy-proofness: Suppose ϕd is not strategy-proof. Then there are R ∈ RN , i ∈ N ,
and R′

i ∈ R such that ϕd(R′
i , R−i ) Pi ϕd(R). Without loss of generality, suppose

ϕd(R) = a so ϕd(R′
i , R−i ) = b and Ri = Rb. By definition, ϕ−1(Rd) = ϕd(R) = a

so ϕ(Rd) = b. Similarly, ϕ−1(R
′d
i , Rd

−i ) = ϕd(R′
i , R−i ) = b so ϕ(R

′d
i , Rd

−i ) = a.

Since Ri = Rb, Rd
i = Ra . Therefore, ϕ(R

′d
i , Rd

−i ) = a Pd
i b = ϕ(Rd) and so ϕ is

not strategy-proof. 
�
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6 Extended model allowing no choice

Ourmodel requires a rule to select one alternative in each economy. In some situations,
it is possible to postpone a decision and such “resoluteness” is unnecessary. In this
section, we modify our model to accommodate rules which select neither alternative
in some economies. Formally, we extend the set of alternatives to Ā ≡ {{a},∅, {b}} ⊆
P(A). Our rules are nowcorrespondencesmapping economies into Ā. To keep notation
simple, however, we will continue to write a and b instead of {a} and {b}. Reusing
notation, we extend the preference relations in our domainR = (Ra, Rb, Rab) so that
a Pa ∅ Pa b, b Pb ∅ Pb a, and a I ab ∅ I ab b.12 Each preference relation has the
same interpretation as in the original model. Augmented in this way, our model is a
special case of social choice with three alternatives. To apply our notion of duality, we
modify our definition of opposite so that for each R ∈ RN ,

ϕ−1(R) ≡

⎧
⎪⎨

⎪⎩

a if ϕ(R) = b

b if ϕ(R) = a

∅ if ϕ(R) = ∅
.

In this extended model, the signature of a generalized consensus rule has the same
form but may now include ∅ for some defaults. Our main result is that welfare domi-
nance is now compatible with self-duality. Self-duality requires that the disagreement
default be the emptyset. On the strict preference domain, adding self-duality towelfare
dominance and unanimity identifies a unique rule.

Theorem 6 On the strict preference domain in the extended model:

(a) A rule satisfies welfare dominance and self-duality if and only if it is a consensus
rule, an anti-consensus rule, or a constant rule with the emptyset as its disagree-
ment default.

(b) A rule satisfies welfare dominance, self-duality, and unanimity if and only if it is
the consensus rule with the emptyset as its disagreement default.

Proof (a) Trivially, C̄∅ satisfies the two properties. We verify the properties for a
consensus rule; the argument for an anti-consensus rule is parallel. Since the con-
sensus rules satisfy welfare dominance in the original model, C∅ satisfies welfare
dominance in the extended model. Let R ∈ RN . If R is a disagreement economy,
then so is Rd . In this case, C∅(R) = ∅ = C∅(Rd). Suppose instead that R is not a
disagreement economy. Then, since preferences are strict, it is a consensus economy
unanimously favoring one alternative, say a. In this case,C∅(R) = a andC∅(Rd) = b
so (C∅)−1(Rd) = a. Therefore, C∅ is self-dual.

Conversely, letϕ be a rule satisfyingwelfare dominance and self-duality. Bywelfare
dominance, there is d0 ∈ Ā such that for each economy R ∈ RN with disagreement,
ϕ(R) = d0. Then ϕ(Rd) = d0. By self-duality, ϕ−1(Rd) = d0 = ϕ(Rd) and so
d0 = ∅. Now consider R ≡ (Ra, . . . , Ra). By self-duality, (Rb, . . . , Rb) = ϕ(Rd) =

12 This assumption means that preferences are “single-peaked” with respect to the order (a,∅, b).

123



118 P. Harless

ϕ−1(R). If ϕ(R) = a, then ϕ = C∅; if ϕ(R) = b, then ϕ = Ĉ∅; and if ϕ(R) = ∅,
then ϕ = C̄∅.

(b) In the original model, welfare dominance and unanimity characterize the con-
sensus rules (Theorem 1(b)). By (a), the default in the extended model must be the
emptyset. 
�

On the full preference domain, the results are similar. Since generalized mixed-
consensus rules nowhavemoreparameters, self-duality imposes correspondinglymore
requirements. The combination of welfare dominance, self-duality, and unanimity no
longer pinpoints a single rule, but only one rule is also efficient.

Theorem 7 On the full preference domain in the extended model:

(a) A rule satisfies welfare dominance and self-duality if and only if it is a gener-
alized mixed-consensus rule with a symmetric signature and the emptyset as its
disagreement default.

(b) A rule satisfies welfare dominance, self-duality, and efficiency if and only if it is
the consensus rule with the emptyset as its disagreement default.

Proof (a) Let D ∈ D. For each S ⊆ N define D−1 by

D−1(S) ≡

⎧
⎪⎨

⎪⎩

a if D(S) = b

b if D(S) = a

∅ otherwise

.

Consider CD,D−1,∅,∅. Since each generalized mixed-consensus rule satisfies wel-
fare dominance in the original model, CD,D−1,∅,∅ satisfies welfare dominance in
the extended model. Let R ∈ RN . If R is a disagreement economy or the
indifference economy, then CD,D−1,∅,∅(R) = ∅ and CD,D−1,∅,∅(Rd) = ∅. Sup-
pose instead that R is a consensus economy, say in favor of a, and let S ≡

Table 1 Properties satisfied by various rules on the full preference domain

Serial Constant Consensus Anti- Gen. mixed-
dictatorship consensus consensus

Full-range + − + + Some

Unanimity + − + − Some

Efficiency + − + − Only consensus

Anonymity − + + − Some

Welfare-dom. − + + + +
Pop. mon. − + + + By extension

Stp. + + + − Some

Group stp. − + + − Some

Secure stp. − + − − Only constant

To extend a generalized mixed-consensus to a population monotonic rule, we require the disagreement
default be uniform across populations
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Fig. 1 Relationships among axioms on the strict preference domain

Fig. 2 Relationships among axioms on the full preference domain

Na(R). Then CD,D−1,∅,∅(R) = D(S) and CD,D−1,∅,∅(Rd) = D−1(S). Therefore,
CD,D−1,∅,∅(R) = (CD,D−1,∅,∅)−1(Rd).

Conversely, let ϕ be a rule satisfying welfare dominance and self-duality. For each
S ⊆ N , define D(S) ≡ ϕ(Ra

S, R
ab
N\S). By welfare dominance, there is d0 ∈ Ā such

that for each disagreement economy R ∈ RN , ϕ(R) = d0. Let R ∈ RN . If R is a
disagreement economy, then ϕ(R) = d0 and ϕ(Rd) = d0 as well. By self-duality,
ϕ−1(Rd) = d0 = ϕ(Rd) so d0 = ∅. If R is the indifference economy, then Rd = R
and self-duality implies ϕ(R) = ϕ(Rd) = ∅. Finally, suppose R is a consensus
economy favoring a and let S ≡ Na(R). Then ϕ(R) = D(S). Now Na(Rd) = ∅ and
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Nb(Rd) = S, so by self-duality, ϕ(Rd) = ϕ−1(R). Therefore, ϕ(Rd) = D−1(S).
Altogether, ϕ = CD,D−1,∅,∅.

(b) In the original model, welfare dominance and efficiency characterize the con-
sensus rules in the original model (Theorem 2(b)). By (a), the default in the extended
model must be the emptyset. 
�

7 Conclusion

We studied the implications of the solidarity and incentive properties in binary social
choice. Encouragingly, we uncovered a large class of rules that satisfy our solidarity
requirements. Moreover, when combined with efficiency, solidarity and strategic con-
siderations lead to the same recommendation: The consensus rules. While these rules
are strategy-proof and even group strategy-proof, they are not securely strategy-proof.
Unfortunately, only dictatorship and constant rules satisfy this stronger property.

Aside from characterizing rules, comparing preference domains revealed impor-
tant sensitivities to indifferences. Some relationships that hold on the strict preference
domain, such as between welfare dominance and anonymity, do not carry over to
the full preference domain. At the same time, moving to the full preference domain
also creates new relationships, as with group strategy-proofness and welfare domi-
nance, and preserves others, as with population monotonicity and welfare dominance.
Comparing the role of indifference across models remains an open question.

Table 1 summarizes the properties satisfied by the various rules. Figures 1 and 2
summarize the relationships among axioms on the strict and full preference domains.
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