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Abstract An alternative is said to be a Condorcet winner of an election if it is preferred
to any other alternative by a majority of voters. While this is a very attractive solution
concept, many elections do not have a Condorcet winner. In this paper, we propose
a set-valued relaxation of this concept, which we call a Condorcet winning set: such
sets consist of alternatives that collectively dominate any other alternative. We also
consider a more general version of this concept, where instead of domination by a
majority of voters we require domination by a given fraction θ of voters; we refer
to such sets as θ -winning sets. We explore social choice-theoretic and algorithmic
aspects of these solution concepts, both theoretically and empirically.

1 Introduction

When a group of agents is trying to decide on a joint plan, it is often the case that
no single alternative is consensual enough to be chosen as the collective decision.
For instance, this is the case if consensual alternatives are identified with Condorcet
winners, since some profiles do not have Condorcet winners. Similarly, in approval
voting, we might view an alternative as consensual if it is approved by all voters: again,
in many cases there will be no consensual alternative.
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For instance, consider a common practical problem, namely, the choice of a time slot
for a departmental seminar. Each faculty member approves of some of the time slots and
disapproves of others (based, e.g., on their teaching schedule), so it is natural to make
this choice using approval voting. Now, ideally, research seminars in a department
should always be held on the same day of the week and at the same time. However,
this requirement (R) will have the unfortunate consequence that some members of
the department will always miss the research seminar, just because they teach every
week at that time. In this case, rather than choosing the time slot acceptable to the
highest number of voters, we might instead relax requirement (R) and allow two slots
to be chosen, i.e., ask whether there is a set of two slots {s, s′} such that every voter
approves either s or s′. If such a pair exists, then by alternating between s and s′, we
can ensure that everyone can attend at least some seminars. More generally, we may
be interested in a set of slots of minimal cardinality such that every voter approves at
least one slot in this set.

In this paper, we extend this approach to the more common model of voting, where
voters submit rankings of candidates, and to a weaker notion of collective acceptability.
That is, we consider the problem of finding a (minimum-size) set of alternatives such
that collectively the voters are happy enough with at least one alternative in the set. Sets
of alternatives are thus considered disjunctively. More formally, let π be a property
of alternatives; then a set of alternatives Y is deemed to satisfy π if, in the profile
obtained by

(a) replacing the top alternative from Y in each vote by a new alternative [Y ], and
(b) removing all other elements of Y from each vote,

the property π is satisfied by the new alternative [Y ]. This idea of disjunctive domi-
nation is central to the notions we develop in this paper.

Applied to approval voting, and taking π to be “being approved by every voter”,
this approach reduces to finding a (smallest) subset of alternatives Y such that every
voter approves at least one alternative in Y , which is equivalent to the well-known
hitting set problem (Garey and Johnson 1979). If π is defined in terms of the Borda
count or, more generally, some scoring function, then this procedure is closely related
to the Chamberlin–Courant proportional representation rule (see Sect. 7). If we take π

to be the Condorcet criterion, we get the following notion: Y is a Condorcet winning
set if for every candidate z in X\Y, a majority of voters prefer some candidate in
Y to z; in particular, a Condorcet winner is a Condorcet winning set of size 1. This
concept can be generalized by varying the quota: we say that a set Y is a θ -winning
set, θ ∈ [0, 1), for an n-voter profile if for every alternative x not in Y , more than θn
voters prefer some alternative in Y to x ; Condorcet winning sets correspond to θ = 1

2 .
This relaxation is inspired by viewing collective decision making as a multicriteria
optimization problem, where the aim is to select a set of candidates that is as small as
possible and dominates all other candidates as strongly as possible.

The goal of this paper is to develop a basic understanding of Condorcet winning
sets, and, more generally, θ -winning sets. In Sect. 2 we give the formal definition of a
Condorcet winning set and provide some illustrative examples. In Sect. 3 we contrast
this new concept with standard tournament solution concepts. Section 4 is concerned
with the size of Condorcet winning sets and the problem of efficiently computing
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Condorcet winning sets of minimum possible size. In Sect. 5 we define and discuss θ -
winning sets. We complement our theoretical results with empirical analysis (Sect. 6).
Section 7 provides an overview of related work.

2 Condorcet winning sets: definitions and examples

Throughout the paper, we will usually consider elections with a set of candidates
(alternatives) X = {x1, . . . , xm} and a set of voters N = {1, . . . , n}. Each voter i is
associated with a linear order �i over X , which is called his preference order. If a
voter i ranks the candidates as a � b � · · · � z, we will sometimes abbreviate his
preference order as ab . . . z. The vector 〈�1, . . . ,�n〉 of all voters’ preference orders
is called a preference profile and is usually denoted by P . We will denote the number
of voters in a preference profile P by |P|. A subprofile of P is a profile obtained from
P by removing a subset of X and/or a subset of N .

We say that a candidate x ∈ X beats another candidate y ∈ X in a pairwise election
if a strict majority of voters prefer x to y; if exactly half of the voters prefer x to y,
then x and y are said to be tied. A candidate is said to be a Condorcet winner if she
wins in all of her pairwise elections. Clearly, each election has at most one Condorcet
winner, but many elections have no Condorcet winners.

We can now formally define Condorcet winning sets.

Definition 1 Given an election over X with a preference profile P = 〈�1, . . . ,�n〉,
a set Y ⊆ X is said to cover an alternative z ∈ X\Y if

#
{
i ∈ N | ∃y ∈ Y such that y �i z

}
>

n

2
.

We say that Y is a Condorcet winning set if Y covers each alternative in X\Y.

An equivalent definition of Condorcet winning sets, which was alluded to in
Sect. 1, can be formulated as follows. Given an election with a preference profile
P = 〈�1, . . . ,�n〉 over X and a set Y ⊆ X , we introduce a new alternative [Y ] 	∈ X
and construct a preference profile P[Y ] = 〈�′

1, . . . ,�′
n〉 over the set of candidates

(X\Y)∪{[Y ]} using the following procedure. For each voter i , we construct the vote
�′

i by identifying the top candidate in Y according to �i , replacing it with [Y ], and
removing all other elements of Y from �i . Then Y is a Condorcet winning set if and
only if [Y ] is a Condorcet winner in P[Y ].

Given a k ∈ N, we will denote by CWS(P, k) the collection of all Condorcet winning
sets of size k in a profile P; also, we set CWS(P) = ∪kCWS(P, k). For instance, if
P has a Condorcet winner c, then CWS(P, 1) = {{c}}, otherwise, CWS(P, 1) = ∅.
Observe that the set family CWS(P) is upwards-closed: if A ∈ CWS(P) and A ⊆ B,
then B ∈ CWS(P). We say that A is a minimal Condorcet winning set for P if
A ∈ CWS(P) and there is no B ∈ CWS(P) such that B ⊂ A. We denote the collection
of all minimal Condorcet winning sets in P by CWSmin(P).

Typically, we are interested in winning sets that are as small as possible. Thus,
we define the Condorcet dimension dimC (P) of a given profile P as the size of the
smallest Condorcet winning set for P .
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Example 1 Let X = {a, b, c, d}, n = 3, and consider the profile

P = 〈abcd, cdab, dabc〉.

– {a, c} covers d (because two voters out of three prefer either a or c to d) and b
(because every voter prefers either a or c to b); thus, {a, c} is a Condorcet winning
set for P . This can also be seen from the fact that [{a, c}] is a Condorcet winner of
P[{a,c}] = 〈[{a, c}]bd, [{a, c}]db, d[{a, c}]b〉.

– {a, b} does not cover d, therefore {a, b} is not a Condorcet winning set for P .
– CWS(P, 2) = {{a, c}, {a, d}, {b, d}, {c, d}}; as CWS(P, 1) = ∅ (P has no Con-

dorcet winner), all these pairs are also minimal Condorcet winning sets. Conse-
quently, dimC (P) = 2.

In Example 1, most of the sets of size 2 are Condorcet winning sets. We will now
provide an example where every set of size 2 is a Condorcet winning set.

Example 2 Consider a preference profile P∗ over a candidate set X that contains a
single copy of each of the possible |X |! orderings of the candidates. We claim that
dimC (P∗) = 2 and, moreover, every set of size 2 is a Condorcet winning set for P∗.
Note first that every pairwise election ends in a tie, and therefore dimC (P) > 1. Now,
let n = |X |! and consider an arbitrary pair of candidates Y = {x, y}. There exists a
voter i that ranks x first and y last. Pick a candidate z ∈ X\Y. By symmetry, there is a
set S of n/2 voters that rank y above z; moreover, we have i 	∈ S, since i ranks y last.
Hence, the set S ∪ {i} contains more than n/2 voters and z is ranked below x or y by
every voter in S ∪ {i}. This implies that Y is a Condorcet winning set for P∗.

Furthermore, if the number of voters is large relative to the number of candidates,
preference profiles where every set of size 2 is a Condorcet winning set are very
likely to arise under the impartial culture assumption (IC), i.e., if every vote is chosen
uniformly at random from the set of all permutations of X .

Proposition 1 Let P be an n-voter preference profile over a set of candidates X,
|X | = m, obtained by drawing each of the n votes uniformly at random from all
permutations of X, and let S = {a, b} be an arbitrary 2-element subset of X. Then
with probability at least 1 − me−n/24 the set S is a Condorcet winning set for P.
Moreover, with probability at least 1 − m3e−n/24/2 every size-2 subset of X is a
Condorcet winning set.

Proof Consider an arbitrary candidate c ∈ X\{a, b}. Any given vote is equally likely to
contain any of the six possible permutations of a, b, and c. Therefore, with probability
2
3 in any given vote either a or b is ranked above c. Hence, the expected number of
votes where a or b beats c is 2n

3 . By Chernoff bound (see, e.g., Alon and Spencer 1992),
the probability that c is ranked above a and b in at least n

2 votes is at most e−n/24.
Thus, by the union bound, the probability that {a, b} is not a Condorcet winning set
is at most me−n/24, and our first claim follows.

To prove the second claim, we observe that the number of size-2 subsets of X is
bounded from above by m2/2, and apply the union bound again. ��
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Proposition 1, together with the known bounds on the probability of having a
Condorcet winner (see, e.g., Jones et al. 1995), suggests that the notion of a Condorcet
winning set is not particularly useful if our goal is to construct a decisive voting
correspondence. Indeed, perhaps the most natural voting correspondence inspired by
this notion is the mapping ρ defined by ρ(P) = ∪S∈CWSmin(P)S: given a profile P ,
ρ returns all candidates that belong to some minimal Condorcet winning set for P .
But ρ can be very far from being decisive: Proposition 1 implies that, under IC, if the
number of voters is large relative to the number of candidates, ρ is likely to return
(almost) all candidates. Moreover, one can construct elections where the output of ρ

contains the Condorcet loser or even a Pareto-dominated alternative. To remedy this,
in Sect. 5, we introduce a generalization of Condorcet winning sets, which we refer
to as θ -winning sets, and show (empirically) that it produces a much more attractive
voting correspondence. However, before we move on to the study of θ -winning sets, we
would like to discuss some combinatorial questions pertaining to Condorcet winning
sets.

3 Condorcet winning sets vs. dominating sets

Given a profile P over a candidate set X , its majority graph G(P) is the directed
graph (also called a weak tournament) with the vertex set X that contains a directed
edge from x to y if x beats y in their pairwise election. If the number of voters is
odd, then for each pair (x, y) either (x, y) or (y, x) is present in the graph, i.e., G(P)

is a tournament. A weighted majority graph Gw(P) labels each edge (x, y) with the
number of voters that prefer x to y. A (weighted) tournament function is a mapping F
defined on preference profiles that satisfies F(P) = F(Q) whenever P and Q have
the same (weighted) majority graph (see, e.g., Laslier 1997).

There is a certain similarity between the concept of a Condorcet winning set and a
classic tournament function, namely, the dominating sets. Recall that a set of vertices
S of a directed graph G = (N , A) is called a dominating set if for every vertex x ∈
N\S there exists a vertex y ∈ S such that the directed edge (y, x) is in A. Now,
clearly, if S is a dominating set for G(P), then S is a Condorcet winning set for P .
However, Example 2 shows that the converse is not true: for the preference profile P∗
considered in this example, the graph G(P∗) consists of |X | isolated vertices, so the
smallest dominating set for G(P∗) is X itself, whereas, as argued in Example 2, every
size-2 set of candidates is a Condorcet winning set for that profile.

Indeed, a stronger statement is true: the function that outputs all Condorcet winning
sets for a given profile is not a (weighted) tournament function, i.e., there exist a set
of candidates X and two profiles P and Q over X such that Gw(P) = Gw(Q), but
CWS(P) 	= CWS(Q). This is shown by the following example.

Example 3 Consider the following pair of four-candidate, three-voter profiles:

P = 〈abcd, cdba, dabc〉, Q = 〈acdb, bcda, dabc〉.

The weighted majority graphs for P and Q coincide: a beats b and c, b beats c, c
beats d, d beats a and b, and in each pairwise election the winner is preferred to the
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loser by exactly two voters. However, {a, b} is a Condorcet winning set for Q, but not
for P .

Note that the preference profile P constructed in Example 3 has an odd number of
voters, so this example shows that a Condorcet winning set may fail to be a dominating
set even if G(P) is a tournament.

Intuitively, the main difference between Condorcet winning sets and dominating
sets is the underlying notion of collective dominance: for Condorcet winning sets it is
disjunctive (S dominates x if there are more than n/2 voters such that each of these
voters prefers some alternative in S to x), whereas for dominating sets it is conjunctive
(S dominates x if there is an alternative y ∈ S such that more than n/2 voters prefer
y to x).

This intuition suggests that Condorcet winning sets that are far from being domi-
nating sets are typically sets of alternatives which complement each other.

Example 4 Consider an n-voter profile P over the set of candidates {x1, . . . , xk, a, b},
where n is divisible by 4, n/4+1 voters ranks the candidates as ax1 . . . xkb, n/4 voters
ranks the candidates as bx1 . . . xka, and the remaining voters rank the candidates as
x1 . . . xkab. In this profile, the set {a, b} is a Condorcet winning set, but it is very far
from being a dominating set: for each i = 1, . . . , k it holds that 3n/4−1 voters prefer
xi to a and 3n/4 + 1 voters prefer xi to b.

Conversely, if a Condorcet winning set consists of alternatives that are very similar
to each other, it is likely to be a dominating set. For instance, it is not hard to see that
if a Condorcet winning set Y is a clone set in the sense of (Tideman 1987) (i.e., for
every pair of alternatives a, b ∈ Y and every alternative c ∈ X\Y it holds that no voter
ranks c between a and b), then it is also a dominating set.

In Sect. 6, we provide empirical evidence that the collection of Condorcet winning
sets of a given election is typically very different from the collection of dominating
sets of the majority graph of this election.

4 Condorcet dimension: upper and lower bounds

In this section, we focus on the notion of Condorcet dimension. We have already
seen (Proposition 1) that for most profiles their Condorcet dimension is 2 or less. It is
therefore interesting to ask whether profiles with a higher Condorcet dimension exist.

4.1 Profiles of Condorcet dimension 1, 2, and 3

Observe that the Condorcet dimension of a given profile P is 1 if and only if P has a
Condorcet winner. Thus, it is easy to construct a profile whose dimension exceeds 1:
consider, for instance, a Condorcet cycle of size m, m ≥ 2, i.e., an m-voter, m-candidate
preference profile Pm , where the i th voter places the j th candidate in position i + j −1
mod m (e.g., for m = 3 the Condorcet cycle over the candidate set X = {1, 2, 3} is
given by P3 = 〈123, 231, 312〉). Clearly, Pm has no Condorcet winner, so dimC (Pm) ≥
2. In fact, it is not hard to see that dimC (Pm) = 2 for every m ≥ 2: indeed, candidates
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1 and �m/2� + 1 form a dominating set in G(Pm) (and hence a Condorcet winning
set).

To exhibit a profile of Condorcet dimension 3, we borrow some terminology from
linear algebra. Let A = (ai j ) be a p-by-q matrix and let B = (bk�) be a p′-by-q ′
matrix. Recall that the Kronecker product of A and B is a pp′-by-qq ′ matrix A ⊗ B
of the form

⎛

⎝
a11 B . . . a1q B
. . . . . . . . .

ap1 B . . . apq B

⎞

⎠ .

Now, any n-voter, m-candidate preference profile P can be associated with an m-by-
n matrix M(P): the i th entry in the j th column of M(P) is the name of the candidate
that is ranked in the i th position by the j th voter. Thus, given a preference profile P
over a set of candidates X and a preference profile Q over a set of candidates Y , we can
define P ⊗ Q as a preference profile over the set of candidates X ×Y (i.e., pairs of the
form (xi , y j ), where xi ∈ X , y j ∈ Y ) that corresponds to the matrix M(P) ⊗ M(Q),
where we identify the product xi y j with the pair (xi , y j ).

For instance, if P = 〈321, 231〉 is a preference profile over X = {1, 2, 3} and
Q = 〈12, 21〉 is a preference profile over Y = {1, 2}, then the first voter in P ⊗ Q has
the preference ordering

(3, 1) � (3, 2) � (2, 1) � (2, 2) � (1, 1) � (1, 2)

over the candidate set {(i, j) | i = 1, 2, 3, j = 1, 2}.
We are now ready to present an example of a profile with an odd number of voters

whose Condorcet dimension is 3.

Proposition 2 There exists a 15-candidate profile with an odd number of voters whose
Condorcet dimension is 3.

Proof Let X = {0, 1, 2}, Z = {0, 1, 2, 3, 4}, and consider the profile P3 ⊗ P5 over
X × Z , where Pk , k ∈ {3, 5}, is the Condorcet cycle over {0, 1, 2, . . . , k − 1}. This
profile is given in the table below, where we identify the element (i, j) with 5i + j +1.
We claim that dimC (P3 ⊗ P5) = 3.

It is immediate that P3⊗P5 does not have a Condorcet winner. Now, suppose that S is
a Condorcet winning set of size 2 for P3⊗P5. For every i ∈ X , let Ti = {(i, j) | j ∈ Z}.
Assume first that S ⊆ Ti for some i ∈ X ; by symmetry we can assume that S ⊆ T0.
Then the candidates in T2 are not covered, a contradiction. Thus, we have |S ∩Ti | = 1,
|S ∩ Tj | = 1 for some i 	= j ; again, by symmetry we can assume that |S ∩ T0| = 1,
|S ∩ T1| = 1, i.e., S = {(0, k), (1, �)} for some k, � ∈ Z . Now, consider the candidate
(0, k′), where k′ = k − 1 mod 5. This candidate is ranked below (0, k) in 3 votes
and below (1, �) in 5 votes; moreover, there is exactly one vote where (0, k′) is ranked
below both (0, k) and (1, �), so altogether (0, k′) is ranked below (0, k) or (1, �) in 7
votes, i.e., (0, k′) is not covered.
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v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 3 4 5 1 7 8 9 10 6 12 13 14 15 11
3 4 5 1 2 8 9 10 6 7 13 14 15 11 12
4 5 1 2 3 9 10 6 7 8 14 15 11 12 13
5 1 2 3 4 10 6 7 8 9 15 11 12 13 14
6 7 8 9 10 11 12 13 14 15 1 2 3 4 5
7 8 9 10 6 12 13 14 15 11 2 3 4 5 1
8 9 10 6 7 13 14 15 11 12 3 4 5 1 2
9 10 6 7 8 14 15 11 12 13 4 5 1 2 3
10 6 7 8 9 15 11 12 13 14 5 1 2 3 4
11 12 13 14 15 1 2 3 4 5 6 7 8 9 10
12 13 14 15 11 2 3 4 5 1 7 8 9 10 6
13 14 15 11 12 3 4 5 1 2 8 9 10 6 7
14 15 11 12 13 4 5 1 2 3 9 10 6 7 8
15 11 12 13 14 5 1 2 3 4 10 6 7 8 9

Finally, it is easy to see that P3 ⊗ P5 has a Condorcet winning set of size 3:
for instance, take any set S such that S ∩ Ti 	= ∅ for i = 0, 1, 2 or, e.g., the set
{(0, 0), (0, 2), (1, 0)}. ��

After the conference version of this paper was published, a number of authors
worked on constructing smaller profiles with Condorcet dimension 3. In particular,
Laforest (2012) observed that if we do not require the number of voters to be odd, there
are subprofiles of P3 ⊗ P5 whose Condorcet dimension remains 3. Two such examples
have been identified: P3⊗P4, where P4 is the Condorcet cycle over {0, 1, 2, 3}; and the
profile obtained from P3⊗P5 by removing even-numbered voters (i.e., v2, v4, . . . , v14)
and candidates 2 and 3 (Laforest 2012). The former has 12 voters and 12 candidates; the
latter has 8 voters and 13 candidates. Geist (2014) has recently obtained an even smaller
profile of Condorcet dimension 3: he reduced this question to a satisfiability problem
and used a SAT solver to identify a 6-candidate 6-voter profile P with dimC (P) = 3.
His proof also shows that no smaller examples exist.

For profiles with an odd number of voters, this question was explored by Cervone
and Zwicker (2011), who exhibit a profile P with 11 candidates and 11 voters with
dimC (P) = 3; this profile was obtained by computer search and has a more complex
structure than our example. More recently, Cervone et al. (2012) have constructed a
profile of Condorcet dimension 3 with even fewer candidates (7), but with 21 voters.
We remark that Corollary 1 (see below) implies that every profile with an odd number
of voters that has Condorcet dimension 3 or higher has to have at least 7 candidates.

4.2 Searching for profiles of Condorcet dimension 4 or higher

The next natural question is whether there exist profiles whose Condorcet dimension
exceeds 3. Intriguingly, we do not have any examples of such profiles: while we do
believe that profiles of arbitrarily high dimension exist, we were not able to identify
them. We will now discuss some promising approaches to constructing such profiles
that nevertheless fail.
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First, one might think that by taking a Kronecker product of s sufficiently long
Condorcet cycles, we always get a profile of Condorcet dimension s + 1. However, it
turns out that this is not the case: a product of a Condorcet cycle and any profile has
Condorcet dimension that does not exceed 3.

Proposition 3 Let P be a Condorcet cycle over the candidate set X = {x1, . . . , xm},
m ≥ 2, and let Q be a profile over the candidate set Y = {y1, . . . , yk}. Then dimC (P⊗
Q) ≤ 3.

Proof Let y be some candidate in Y that is ranked first by some voter in Q.
Suppose first that m = 2. Then {(x1, y), (x2, y)} is a Condorcet winning set for

P ⊗ Q. Indeed, consider a candidate (x1, z), z 	= y. At least one of the first |Q| voters
ranks him below (x1, y), and the last |Q| voters rank him below (x2, y). Similarly,
candidate (x2, z), z 	= y, is ranked below (x1, y) by the first |Q| voters, and at least
one of the last |Q| voters ranks him below (x2, y).

Now, suppose that m > 2. Then the set S = {(x1, y), (xi , y), (xm, y)}, where
i = �m/2�, is a Condorcet winning set for P ⊗ Q. Indeed, consider any z = (x j , y�) ∈
X × Y . If 1 < j ≤ i , then z is covered by (x1, y), if i < j ≤ m − 1, then z is covered
by (xi , y), and if j = 1, then z is covered by (xm, y). Finally, suppose that j = m.
Then the first i |Q| voters rank (xi , y) above z. If m is odd, this implies that z is covered
by (xi , y). On the other hand, suppose that m is even. Then if y� = y, we have z ∈ S,
and otherwise at least one among the last |Q| voters ranks z below (xm, y), so we are
done. ��

Another appealing approach is the probabilistic method (Alon and Spencer 1992):
one could try to generate a preference profile randomly according to a suitable prob-
ability distribution and argue that it has a high Condorcet dimension with non-zero
probability. However, Proposition 1 shows that this distribution would have to be more
complicated than IC, and we have not been able to identify a suitable distribution.

Finally, one could try to exploit the connection between Condorcet winning sets and
dominating sets that was discussed in Sect. 3. Specifically, one could take a tournament
in which the smallest dominating set is large and construct an election whose majority
graph coincides with this tournament; it seems plausible that this election may have
a high Condorcet dimension. The simplest way to construct an election with a given
majority graph dates back to McGarvey (1953). In McGarvey’s construction, given a
tournament with a vertex set X , we fix an order � over X , and for every edge (x, y) in
the tournament we add two votes: in the first vote, x is ranked first, y is ranked second,
and the order of all other candidates is given by �, and in the second vote y is ranked
in the last position, x is ranked just above y, and other candidates appear in the first
m − 2 positions, in the order given by the reverse of �. Clearly, the majority graph of
the resulting election coincides with the input tournament. However, this construction
always produces profiles with Condorcet dimension 2 or less.

To see this, let a be the first candidate in � and let z be the last candidate in �. We
claim that {a, z} is a Condorcet winning set. Indeed, consider an arbitrary candidate x ,
and a pair of votes that implements some edge (s, t). If {s, t} is disjoint from {x, z}
then in the first vote in this pair a is ranked above x and in the second vote z is ranked
above x , so x is dominated in both votes. Otherwise, x is ranked below a or z in at
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least one of the votes in this pair. If there are at least 4 candidates, then there is a pair
of candidates that is disjoint from {x, z} and therefore x is dominated by {a, z} in a
strict majority of votes. Importantly, this holds even if x beats both a and z in the
tournament. This proves our claim. A similar argument shows that the construction
used by Alon et al. (2006) to design a tournament with a large dominating set using a
small number of voters (which is based on a generalization of McGarvey’s argument)
also fails to produce a profile with Condorcet dimension 3 or higher.

4.3 Upper bounds and computational complexity

While we did not succeed in using the connection between Condorcet winning sets
and dominating sets in tournaments to construct a profile with a large Condorcet
dimension, we can use this connection to derive an upper bound on the Condorcet
dimension. Specifically, Megiddo and Vishkin (1988) show that any tournament on
m vertices has a dominating set of size �log2 m�: the proof proceeds by selecting
the vertex with the highest outdegree, which by the pigeonhole principle dominates at
least half of the other vertices, deleting this vertex and all vertices dominated by it, and
recursively applying the same procedure to the remaining graph. We will now show
that this result implies a similar upper bound on the Condorcet dimension; while this
is immediate for profiles with an odd number of voters, the case where the number of
voters is even (and hence the majority graph is not necessarily a tournament) requires
some effort.

Proposition 4 For every m-candidate profile P we have dimC (P) ≤ �log2 m� + 1.

Proof Consider a profile P . If P has an odd number of voters, then the graph G(P)

is a tournament. Because every dominating set of G(P) is a Condorcet winning set of
P , and because every tournament on m vertices has a dominating set of size �log2 m�,
it follows that dimC (P) ≤ �log2 m�.

Now, suppose that P has an even number of voters. Let x be the candidate ranked
first by the last voter in P , and let A be a minimum-size Condorcet winning set for
the profile P ′ that is obtained from P by removing the last voter. Then A ∪ {x} is a
Condorcet winning set for P: for every z 	∈ A ∪ {x}, there are at least |P|/2 voters in
P ′ who rank some candidate in A above z, and the last voter in P ranks x above z.
Since P ′ has an odd number of voters, we have |A| = dimC (P ′) ≤ �log2 m�. ��

We can get a somewhat stronger bound on the size of the smallest dominating set
in a tournament by observing that if, at some step of the algorithm, the number of
remaining candidates m is even, then at the next step there remain at most m

2 − 1
candidates, and if it is odd, then at the next step there remain at most m−1

2 candidates.
Define the functions f and g by setting

f (m) =
{ m

2 − 1 if m is even
m−1

2 if m is odd

and g(m) = min{k | f k(m) = 0}. Then we can strengthen Proposition 4 as follows.
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Corollary 1 For every m-candidate n-voter profile P we have dimC (P) ≤ g(m) if n
is odd and dimC (P) ≤ g(m) + 1 if n is even.

We have g(1) = g(2) = 1; g(3) = · · · = g(6) = 2; g(7) = · · · = g(14) = 3. Thus,
if we require the number of voters to be odd, to find a profile of Condorcet dimension
4 or higher we need to consider profiles with 15 or more candidates.

We can also bound the Condorcet dimension of a given profile in terms of the number
of voters. Specifically, for an n-voter profile we can obtain a Condorcet winning set of
size at most � n

2 �+1 by picking the top candidates of some � n
2 �+1 voters; we emphasize

that this holds irrespective of the number of candidates. While this observation is very
simple, it can be useful if the number of candidates is much larger than the number of
voters.

From the algorithmic perspective, it is natural to ask if we can efficiently compute the
Condorcet dimension of a given profile; we will refer to this problem as Condorcet
Dimension. Now, if there exists a constant K such that dimC (P) ≤ K for every profile
P , Condorcet Dimension can be solved in polynomial time by direct enumeration.
However, even if this is not the case, and profiles of arbitrarily high dimension do
exist, Condorcet Dimension is nevertheless unlikely to be too hard. Indeed, by
Proposition 4 we can find a Condorcet winning set by enumerating all subsets of
candidates of size log2 m + 1. Thus, Condorcet Dimension can be solved in time
poly(n, m)mlog2 m , i.e., it is in the class QP of quasi-polynomial problems.1 Therefore,
Condorcet Dimension is unlikely to be NP-complete, as this would imply QP =
NP, and it is strongly believed that QP is strictly contained in NP.

Observe also that Proposition 1 shows that our problem admits an algorithm whose
running time is polynomial in expectation under the impartial culture assumption when
n is sufficiently large relative to m. Namely, given a profile P , we pick an arbitrary
set of candidates of size 2, and check if it is a Condorcet winning set for P . If this
is not the case, we perform the same check for all subsets of candidates of size at
most �log2 m� + 1; there are at most mlog2 m+2 ≤ e(log2 m+2)2

such subsets and by
Proposition 4 for at least one of them the answer is “yes”. The probability that we
execute the second stage is at most me−n/24, so the expected running time of this
algorithm is polynomial in n and m as long as n ≥ 25(log2 m + 2)2.

5 θ -winning sets

In the definition of a Condorcet winning set, we say that S is a Condorcet winning set
if for every candidate x outside of S, a majority of voters prefers some candidate in
S to x . We now generalize this notion by requiring that a given fraction θ of voters
should prefer some candidate in S to x .

1 This complexity class consists of problems that can be solved in time 2O((log n)c) for some constant c on
an input of size n, and includes, in particular, the minimum dominating set problem (Megiddo and Vishkin
1988).
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Definition 2 Given an election over X with a preference profile P = 〈�1, . . . ,�n〉,
a set Y ⊆ X is said to θ -cover an alternative z ∈ X\Y for θ ∈ [0, 1) if

#
{
i ∈ N | ∃y ∈ Y such that y �i z

}
> θn.

For θ = 1, we say that a set Y ⊆ X 1-covers an alternative z ∈ X\Y if

#
{
i ∈ N | ∃y ∈ Y such that y �i z

} = n.

Given a θ ∈ [0, 1], we say that Y is a θ -winning set if Y θ -covers each alternative
in z ∈ X\Y.

Clearly, a 1
2 -winning set is a Condorcet winning set.

Just as for Condorcet winning sets, we can reformulate this definition in terms of
candidate merging: it is not hard to see that a subset of candidates Y ⊆ X is a θ -
winning set for θ < 1 if and only if for each x ∈ X\Y it holds that in the preference
profile P[Y ] (defined in Sect. 2) more than θn voters prefer [Y ] to x . For θ = 1, this
reformulation is particularly convenient: Y is a 1-winning set if and only if [Y ] is
ranked first by all voters in P[Y ].

θ -winning sets are quite similar to Condorcet winning sets. In particular, a simple
modification of the proof of Proposition 1 gives us the following corollary.

Corollary 2 Let P be a random n-voter preference profile over a set X, |X | = m,
generated under the impartial culture assumption, and let S be a k-element subset of
X. Then for every ε ∈ (

0, k
k+1

)
it holds that S is a

( k
k+1 − ε

)
-winning set for P with

probability at least 1 − m · exp
( − kε2

(k+1)n

)
.

5.1 Defining voting correspondences via θ -winning sets

The notion of a θ -winning set is useful if we want to define a voting correspondence
based on the idea of disjunctive domination. Recall that in Sect. 2 we defined a mapping
ρ(P) = ∪S∈CWSmin(P)S: given a profile P , ρ returns all candidates that belong to
some minimal Condorcet winning set for P . However, we have argued that under the
impartial culture assumption every subset of candidates of size two is likely to be a
Condorcet winning set, and therefore in the absence of a Condorcet winner this voting
correspondence is going to be extremely indecisive. The notion of a θ -winning set
provides a natural way to define two families of more decisive voting correspondences
using the same approach: First, we can pick a θ ∈ (0, 1] and output all candidates that
belong to some minimal (or minimum-size) θ -winning set. Alternatively, we can fix
the desired size of the winning set (say, k), find the largest value of θ such that there
exists a θ -winning set of size k, and output all candidates that belong to some such
set. A variant of the latter approach is to pick one θ -winning set of size k according
to some tie-breaking rule, thus obtaining a committee selection rule (see Sect. 7).

Formally, for every θ ∈ (0, 1] and every k ≥ 1 define D(P, θ, k) to be the collection
of all θ -winning sets of size k. For a fixed θ ∈ (0, 1], we let k(P, θ) be the smallest
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value of k such that D(P, θ, k) 	= ∅, and define a voting correspondence Dθ by setting

Dθ (P) = ∪D∈D(P,θ,k(P,θ)) D;

note that Dθ (P) 	= ∅ for every θ ∈ (0, 1]. For instance, if k(P, θ) = 1, the set Dθ (P)

consists of all candidates that get more than θn votes in every pairwise election they

participate in. Observe that there is a subtle difference between D
1
2 and ρ: while ρ

outputs the union of all minimal Condorcet winning sets, D
1
2 outputs the union of all

minimum-size Condorcet winning sets. Thus, D
1
2 is a refinement of ρ.

To define our second family of voting correspondences, for a given k ≥ 1, let

θ(P, k) = sup
{
θ | D(P, θ, k) 	= ∅}

.

Since the definition of a θ -winning set involves a strict inequality, we have

D(
P, θ(P, k), k

) = ∅.

Therefore, we set θ ′(P, k) = θ(P, k) − 1
n , where n is the number of voters in P ,

and define a voting correspondence Dk by setting

Dk(P) = ∪D∈D(P,θ ′(P,k),k) D.

We can replace 1
n in the definition of θ ′(P, k) by any sufficiently small value: it is

not hard to see that

Dk(P) = ∩0<ε<θ(P,k)

(∪D∈D(P,θ(P,k)−ε,k) D
)
.

Indeed, we have D ∈ D(P, θ ′(P, k), k) if and only if |D| = k and for every x 	∈ D
more than θ ′(P, k)n = θ(P, k)n − 1 voters in P[D] prefer [D] to x , or, equivalently,
at least θ(P, k)n voters in P[D] prefer [D] to x ; clearly, choosing ε in (0, 1

n ) results in
the same criterion, and choosing ε in ( 1

n , θ(P, k)) produces a collection of sets that
contains D(P, θ ′(P, k), k).

Instead of fixing k in advance, one can set k = dimC (P); this ensures that all
sets in D(P, θ ′(P, k), k) are Condorcet winning sets. Thus, for this value of k the

voting correspondence Dk is a refinement of D
1
2 : while D

1
2 outputs the elements of

all minimum-size Condorcet winning sets, Dk only considers the “best” Condorcet

winning sets of that size. Recall that D
1
2 is itself a refinement of ρ, and ρ has been

shown to be extremely indecisive under the impartial culture assumption; in contrast,
Dk for small values of k can be empirically shown to be quite decisive (see Sect. 6).

Interestingly, the voting correspondence D1(P) is well-known in the social choice
literature under a different name: namely, it is simply the Maximin correspondence.
We recall that under Maximin, a candidate’s score is the number of votes she gets
in her worst pairwise election, i.e., x’s score equals miny∈X\{x} #{i | x �i y}; the
Maximin winners are the candidates with the maximum score.
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Proposition 5 Given an n-voter election with a preference profile P, the set

D1(P) = ∪D∈D(P,θ ′(P,1),1) D

is exactly the set of Maximin winners in P.

Proof Let c be a Maximin winner in P , and let s be its Maximin score. Then we
have {c} ∈ D(P, θ, 1) for every θ < s

n , and for every alternative x it holds that
{x} 	∈ D(P, s

n , 1). Therefore, θ(P, 1) = s
n and hence D1(P) = ∪D∈D(P, s−1

n ,1) D, so

c is in D1(P). Since this is true for every Maximin winner of P , the set of all Maximin
winners in P is contained in D1(P). On the other hand, if d is not a Maximin winner,
his Maximin score is at most s−1

n , so we have {d} 	∈ D(P, θ ′(P, 1), 1). Since the set
family D(P, θ ′(P, 1), 1) consists of singletons only, this completes the proof. ��

5.2 Computational complexity

We already know that for θ = 1
2 computing a θ -winning set of size k (or deciding that

none exists) is unlikely to be NP-hard. This holds a fortiori for every θ < 1
2 . Also,

we can compute a 1-winning set of size k (or decide that none exists) in linear time: it
suffices to count the number of candidates ranked first by at least one voter. However,
there are values of θ for which computing a θ -winning set is computationally difficult.
We first state the respective decision problem.
Existence of a θ -winning set of size k

Given an n-voter, m-candidate profile P , an integer k ≤ m, and a rational number
θ ∈ (0, 1], decide whether P admits a θ -winning set of size k.
Note that in this decision problem k and θ are both included in the input.

Theorem 1 Existence of a θ -winning set of size k is NP-complete.

Proof Membership in NP is straightforward. To prove NP-hardness, we will now
present a polynomial-time reduction from the Hitting Set problem, which is known
to be NP-complete (Garey and Johnson 1979).
Hitting Set

Given a set C of size r , a collection S = {S1, . . . , Sp} of subsets of C , and an
integer s, decide whether there exist a subset Y of C such that |Y | ≤ s and Y ∩ Si 	= ∅
for each i = 1, . . . , p.

Without loss of generality, we can assume that s ≤ p − 3. In what follows, given a
set of alternatives X and two disjoint subsets Y, Z of X , we write . . . � Y � Z � . . .

to denote a vote where all elements of Y are ranked above all elements of Z , in an
arbitrary order. Given an instance 〈C,S, s〉 of Hitting Set with C = {c1, . . . , cr },
we construct an instance of Existence of a θ -winning set of size k as follows.

– The set of alternatives is X = C ∪ A ∪ {b}, where A = {a1, . . . , ap}.
– The profile P consists of p2(p+1) votes: p2 votes of type 1 and p3 votes of type 2.

Specifically, for each i = 1, . . . , p we have
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– p type 1 votes:

Si � a1 � A \ {a1} � X \ Si � b

Si � a2 � A \ {a2} � X \ Si � b

. . .

Si � ap � A \ {ap} � X \ Si � b

– p2 type 2 votes:

p2 copies of ai � b � C � A \ {ai }.

– θ = p
p+1 − 1

p3(p+1)
. Note that p−1

p < θ <
p

p+1 .
– k = s + 1.

We claim that P admits a θ -winning set of size k if and only if S admits a hitting set
of size s.

Let Y ⊆ C be a hitting set of size s for S. Let Y ′ = Y ∪{b}. For every c j ∈ C \Y it
holds that b is ranked above c j in all votes of type 2. Therefore the fraction of voters

who prefer some element of Y ′ to c j is at least p3

p2(p+1)
= p

p+1 > θ . Now consider an
arbitrary ai in A. Since Y is a hitting set, some element of Y is ranked above ai in all
votes of type 1, and b is ranked above ai in p2(p − 1) votes of type 2. Thus, some
element of Y ′ is ranked above ai in at least p2 + p2(p −1) = p3 votes, so the fraction

of voters who prefer some element of Y ′ to ai is at least p3

p2(p+1)
= p

p+1 > θ . Hence,

Y ′ is a θ -winning set of size k.
Conversely, suppose that P admits a θ -winning set of size k; let Y ′ be some such

set. If b /∈ Y ′, then b is ranked above all elements of Y ′ in at least p2(p − k) votes of
type 2, so the fraction of voters who prefer some element of Y ′ to b is at most

p2k + p2

p2(p + 1)
= k + 1

p + 1
≤ p − 1

p + 1
<

p − 1

p
< θ

(recall that we have set k = s +1 and assumed s ≤ p −3). Therefore, we have b ∈ Y ′.
Now, let A′ = Y ′ ∩ A, C ′ = Y ′ ∩C . Note that |A′| ≤ k < p, and therefore A\ A′ 	= ∅.
We will argue that C ′ is a hitting set for S.

Indeed, suppose that this is not the case, i.e., there exists an S j ∈ S such that
S j ∩ C ′ = ∅. Consider an alternative ai /∈ A′. There exists a vote of type 1 where
the candidates from S j are ranked in top |S j | positions, followed by ai . In this vote
ai appears above all candidates in Y ′. Also, there are p2 votes of type 2 where ai is
ranked first. Thus, the total number of votes where some candidate in Y ′ is ranked
above ai is at most p2(p − 1) + p2 − 1 = p3 − 1, and we have

p3 − 1

p2(p + 1)
= p

p + 1
− 1

p3 + p2 <
p

p + 1
− 1

p4 + p3 = θ,

so Y ′ is not a θ -winning set, a contradiction. ��
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The reader may have noticed that in Theorem 1 the value of θ depends on the
number of voters. We will now argue that for constant θ our computational problem
is unlikely to be hard, by generalizing the argument for θ = 1

2 .

Proposition 6 If Existence of a θ -winning set of size k is NP-complete for
some constant θ ∈ (0, 1), then QP = NP.

Proof We will argue that for any constant θ ∈ (0, 1) our computational problem can
be solved in time poly(n, m)mO(log2 m), and therefore belongs to the class QP (see
Footnote 1).

Fix a θ ∈ (0, 1). Since θ < 1, there exists a constant s such that θ < s−1
s .

We will argue that any n-voter m-candidate profile admits a θ -winning set of size
(s − 1) log s

s−1
m, and therefore a θ -winning set can be found by exhaustive search in

time poly(n, m)mα log2 m , where α = s−1
log2

s
s−1

; note that s is a constant, i.e., it does not

depend on n and m. The proof proceeds by induction on m (with n fixed).
Given an n-voter m-candidate profile P over a candidate set X , we construct a

bipartite graph (L , R, E) with parts L and R and the set of edges E as follows. The
set L consists of all subsets of X of size s − 1 (and hence |L| = ( m

s−1

)
) and R = X .

Further, there is an edge between a subset A and a candidate a if and only if at least
θn voters rank some candidate in A above a.

We claim that |E | ≥ (m
s

)
. To see this, consider an arbitrary subset of candidates

B of size s. There is a candidate b in B that is ranked above all other candidates in
B in at most n

s votes. That is, the fraction of voters that prefer some candidate in
B \ {b} to b is at least 1 − 1

s > θ . Therefore, (B \ {b}, b) is an edge in E , and different
size-s subsets of X correspond to different edges in E . By the pigeonhole principle,
there is a vertex A of L that is adjacent to at least

(m
s

)
/
( m

s−1

) = m−s+1
s edges. Let

Y = {a ∈ X | (A, a) ∈ E}, set X ′ = X \ (Y ∪ A), and consider the profile P ′ = P|X ′ .
We have |Y ∪ A| > m

s , so |X ′| ≤ m s−1
s , and hence by the inductive hypothesis P ′

admits a θ -winning set A′ of size

(s − 1) log s
s−1

(
m

s − 1

s

)
= (s − 1) log s

s−1
m − (s − 1).

As |A| = s −1, it follows that A∪ A′ is a θ -winning set for P of size (s −1) log s
s−1

m,
which is what we wanted to prove. ��

5.3 Social choice-theoretic properties

We have argued that the notion of θ -winning set can be used to define two families
of voting correspondences: Dk and Dθ . Therefore, it is natural to ask which social
choice-theoretic properties are satisfied by these voting correspondences. Since defin-
ing new voting correspondences is not the primary motivation of our work, this issue
is discussed briefly; a deeper study, perhaps with an axiomatic characterization, would
be the topic of another paper. Since D1 is Maximin, we focus on properties satisfied
by Maximin; thus, in particular, we do not consider Smith consistency, participation,
and clone-proofness, which are all failed by Maximin.
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Proposition 7 The following table shows which properties are satisfied by the corre-
spondences Dk and Dθ (the last two rows refer to the rules obtained by composing Dk

and Dθ with a tie-breaking mechanism). “Y” means that the property is satisfied by
Dk (respectively, Dθ ) for all values of k (respectively, θ ); “N” means that it is failed
for at least some values of k (respectively, θ ).

Dk Dθ

Monotonicity Y Y
Reinforcement N N
Condorcet-consistency k = 1 : Y θ = 1

2 : Y
k > 1 : N θ 	= 1

2 : N
Efficiency k = 1 : Y N

k > 1 : N

Proof Throughout the proof, we will use the following notation. Given a subset of
alternatives S and a profile P , let

θ(P, S) = sup{θ | S ∈ D(P, θ, |S|)} = sup{θ | S is a θ -winning set for P}.

– Monotonicity Recall that a voting correspondence R is said to be monotone if for
every profile P and every alternative x ∈ R(P) it holds that x ∈ R(P ′), where
P ′ is the profile obtained from P by moving x up in the preference ranking of
some voter without changing the relative order of the remaining alternatives. We
will argue that Dk and Dθ are monotone for all k ≥ 1 and all θ ∈ [0, 1]. Consider
a profile P , an alternative x ∈ Dk(P) and a profile P ′ constructed by moving
x up in one of the votes. As x ∈ Dk(P), x belongs to some θ ′(P, k)-winning
set S. We have θ(P ′, S) ≥ θ(P, S), and hence θ(P ′, k) ≥ θ(P, k). On the other
hand, for every S′ such that |S′| = k and x /∈ S′, we have θ(P ′, S′) ≤ θ(P, S′).
If θ(P ′, k) > θ(P, k), then all θ ′(P ′, k)-winning sets contain x , and therefore
x ∈ Dk(P ′). On the other hand, if θ(P ′, k) = θ(P, k) then S ∈ D(P ′, θ ′(P ′, k), k)

and hence x ∈ Dk(P ′). The proof for Dk is complete. The argument for Dθ is
similar. Suppose that x ∈ Dθ (P) and P ′ is defined as above. Then x belongs to
some θ -winning set S with |S| = k(P, θ). Let k′ = k(P ′, θ). If k′ < k(P, θ), then
every θ -winning set of size k′ contains x , so x ∈ Dθ (P ′). If k′ = k(P, θ), then
x ∈ S implies x ∈ Dθ (P ′).

– Reinforcement Recall that a voting correspondence R is said to satisfy reinforce-
ment if for every pair of profiles P1, P2 over the same set of alternatives such that
R(P1) ∩ R(P2) 	= ∅ it holds that R(P1) ∩ R(P2) ⊆ R(P1 + P2), where P1 + P2
is the profile obtained by concatenating P1 and P2. For k = 1, Dk coincides with
Maximin, which is known not to satisfy reinforcement. The respective counterex-
ample (P1, P2) can be extended to k > 1 by employing the following construction.
We extend the set of alternatives X by setting X ′ = X ∪ Z , where {z1, . . . , zk−1}.
We modify each vote in P1 and P2 by inserting the new candidates z1, . . . , zk−1
in the last k − 1 positions. Now, let vi , i = 1, . . . , k − 1, be an arbitrary vote over
X ′ that ranks zi first. For each i = 1, . . . , k − 1 and j = 1, 2, we add |Pj | copies
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of vi to Pj ; denote the resulting profiles by P ′
1 and P ′

2, respectively. Observe that

θ(P ′
j , k) = |Pj |θ(Pj , 1) + |Pj |(k − 1)

|Pj |k for j = 1, 2,

and therefore for j = 1, 2 we have {x} ∈ D(Pj , θ
′(P, 1), 1) if and only if {x}∪Z ∈

D(Pj , θ
′(P, k), k). It follows that Dk(P ′

1) = D1(P1)∪ Z , Dk(P ′
2) = D1(P2)∪ Z ,

and therefore (P ′
1, P ′

2) is a witness that Dk does not satisfy reinforcement.
For θ = 1

2 , the following example shows that Dθ does not satisfy reinforcement.
Let

P1 = 〈abc, abc, bca, bca, cab, cab〉
P2 = 〈acb, acb, bac, bac, cba, cba, cba〉.

Then {a, b} is a minimum-size Condorcet winning set for P1 and P2, but not
for P1 + P2, which has c as its Condorcet winner. Again, we can extend this
counterexample to many other values of θ by adding new candidates and voters.
For instance, we can introduce a new candidate d, modify P1 and P2 by placing
d last in each vote, and then add s votes that rank d first to P1 and s − 1 votes
that rank d first to P2; denote the resulting profiles by P ′

1 and P ′
2, respectively. We

have

θ(P ′
1, {a, b, d}) = s + 4

s + 6
, θ(P ′

2, {a, b, d}) = s + 3

s + 6
,

θ(P ′
1, {c, d}) = θ(P ′

2, {c, d}) = s + 2

s + 6
, θ(P ′

1 + P ′
2, {c, d}) = s + 3

s + 6
.

Consequently, for s ≥ 4 and s+2
s+6 ≤ θ < s+3

s+6 it holds that {a, b, d} is a minimum-
size θ -winning set for P ′

1 and P ′
2, but the unique minimum-size θ -winning set for

P ′
1 + P ′

2 is {c, d}. Since for every θ ≥ 3
5 we can find a positive integer s ≥ 4 such

that s+2
s+6 ≤ θ < s+3

s+6 , it follows that Dθ does not satisfy reinforcement for every

θ ≥ 3
5 .

– Condorcet consistency Recall that a voting correspondence R is said to be Con-
dorcet consistent if, given a profile P that has x as its Condorcet winner, it outputs
{x}. Since D1 coincides with Maximin, it is Condorcet-consistent. Also, if x is a
Condorcet winner for P then D

1
2 (P) = {x}, therefore D

1
2 is Condorcet-consistent.

However, for k > 1 and for θ ≥ 1
2 the mappings Dk(P) and Dθ are not neces-

sarily Condorcet-consistent. We give a counterexample that works for k = 2 and
also for many values of θ ; it extends straightforwardly to every even k ≥ 2. Let
P = 〈acb, acb, bca, bca, cab〉. While c in the Condorcet winner in P , we have
D2(P) = {a, b}. Also, Dθ (P) = {a, b, c} for θ ≥ 4

5 , and Dθ (P) = {a, b} for
3
5 ≤ θ < 4

5 . Note that the Condorcet winner is not even contained in the output of
D2(P) and Dθ (P) with 3

5 ≤ θ < 4
5 .

– Efficiency Recall that a voting correspondence R is said to be efficient if for every
profile P where each voter ranks a above b we have b 	∈ R(P). Maximin, i.e.,
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Table 1 Percentage of profiles with Condorcet dimension 1 and 2

dimC n = 10 n = 11 n = 20 n = 21 n = 100 n = 101

m = 15, r = 105 1 14.3 43.6 19.0 41.2 28.0 39.6

2 85.7 56.4 81.0 58.8 72.0 60.4

m = 50, r = 104 1 3.9 19.8 5.6 17.1 9.9 15.9

2 96.1 80.2 94.4 82.9 90.1 84.1

m = 100, r = 103 1 2.4 11.2 3.0 9.5 5.3 9.3

2 97.6 88.8 97.0 90.5 94.7 90.7

D1, is known to be efficient. However, Dk with k ≥ 2 is not efficient. To see this,
fix a k ≥ 2, consider a Condorcet cycle over alternatives X = {a1, . . . , ak+1},
and modify it by adding a new alternative b that is ranked right below a1 by every
voter. Denote the resulting profile by Pk . Let S = (X \ {a1, a2}) ∪ {b}. We have
θ(Pk, S) = k

k+1 , and, moreover, for every set of candidates S′ with |S′| = k we

have θ(Pk, S) ≤ k
k+1 . Therefore, θ(Pk, k) = k

k+1 and hence b ∈ Dk(Pk), even
though b is dominated by a1.
For k = 2 we obtain

P2 = 〈a1ba2a3, a2a3a1b, a3a1ba2〉,

and one can check that {b, a3} ∈ D(P2, θ, k(P2, θ)) for θ ∈ [ 1
2 , 2

3 ). This shows
that Dθ is not efficient for θ ∈ [ 1

2 , 2
3 ). By considering Pk with k > 2, we can

extend this result to other values of θ .

��
Note that, even though Dk and Dθ do not satisfy reinforcement, the mapping that,

given a profile P , outputs a θ -winning set for P (for a fixed θ ), satisfies a weak form
of reinforcement: If P1 and P2 are two profiles over a set of candidates X , and Y is a
θ -winning set for both P1 and P2, then it is also a θ -winning set for P1 + P2.

6 Empirical analysis

In this section, we provide an empirical analysis of Condorcet winning sets as well as
θ -winning sets under the impartial culture assumption. Our code is available through
Bitbucket (https://bitbucket.org/Abdallah/winning-sets/).

In our first experiment, we generate r preference profiles with m voters and n
candidates, for various values of r , m, and n, and compute the Condorcet dimension
of each profile. In all of our experiments, the Condorcet dimension was either 1 or 2.
While this is consistent with Proposition 1, it is remarkable that not even a single
profile of a higher dimension has been discovered. The results of our experiments are
summarized in Table 1. Note that the probability that the Condorcet dimension of a
given profile exceeds 1 is simply the probability of the Condorcet paradox, which has
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Table 2 Percentage of profiles with various DS-dimensions

dimDS n = 10 n = 11 n = 20 n = 21 n = 100 n = 101

m = 15, r = 105 1 14.3 43.6 19.0 41.2 28.0 39.6

2 58.3 56.4 67.2 58.8 69.8 60.4

3 25.8 < .01 13.6 < .01 2.1 < .01

4 or 5 1.6 0 .16 0 < 0.1 0

m = 50, r = 104 1 3.9 19.8 5.6 17.1 9.9 15.9

2 39.4 79.6 56.1 82.0 76.9 83.0

3 50.5 .6 37.9 .9 13.2 1.1

4 or 5 6.2 0 .4 0 0 0

m = 100, r = 103 1 2.4 11.2 3.0 9.5 5.3 9.3

2 27.5 86.2 42.5 86.2 70.3 86.0

3 58.5 2.6 53.0 4.3 24.4 4.7

4 11.6 0 1.5 0 0 0

been extensively studied in the social choice literature (see, e.g., Jones et al. 1995). Our
results are consistent with those of Jones et al., lending credence to our implementation.
Observe also the drastic difference between the columns that correspond to odd and
even values of n, which is especially pronounced for larger values of m.

For comparison, we have also computed the size of the smallest dominating set
(in what follows, we will refer to it as the DS-dimension) for each of the generated
profiles (Table 2). For m = 15 and m = 50, we have found a small number of profiles
of DS-dimension 5 for n = 10 and n = 11; however, for n ≥ 20 the DS-dimension
of all generated profiles was at most 4. For m = 100 we have found no profiles of
DS-dimension 5; while this may appear surprising, note that we considered fewer
samples than for m = 15 or m = 50.

We note that the distribution of the Condorcet dimension is quite different from that
of the DS-dimension: for instance, for m = 50, n = 100, and r = 104, we obtain that
for 989 profiles the smallest dominating set has size 1 (these are exactly the profiles
with a Condorcet winner), for 7688 profiles the smallest dominating set has size 2, and
for the remaining 1323 profiles the smallest dominating set has size 3. That is, in this
experiment, for about 13.2% of the profiles the DS-dimension exceeds the Condorcet
dimension. Interestingly, this result seems to indicate that the DS-dimension of a
tournament generated under the impartial culture assumption is distributed differently
from the DS-dimension a uniformly random tournament, i.e., one where the direction
of each edge is chosen uniformly at random. Indeed, for the latter model, it is known
that with probability approaching 1 the DS-dimension exceeds 1

2 log2 m (which is
≈ 2.82 for m = 50), see, e.g., Lemma 3 in (Scott and Fey 2012). However, comparing
these two models in more detail is beyond the scope of our work.

Figure 1 maps the probability that an arbitrary set of candidates of size k, k =
1, 2, 3, 4, is a Condorcet winning set for a 30-candidate election, as a function of the
number of voters. We see that for k > 1 this probability quickly reaches 1.
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Fig. 1 Probability that a fixed set of size k is a Condorcet winning set as a function of n, for m = 30
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Fig. 2 Empirical distribution of θ(P, k) for m = 30 and n = 100

Figure 2 plots the empirical distribution of θ(P, k) for m = 30, n = 100 and
k = 1, 2, 3, 4. Our results agree with Corollary 2: the values of θ(P, k) are clustered
around k

k+1 .

Figure 3 shows the empirical distribution of the number of 2
3 -winning sets of size

2 for 20 candidates and a varying number of voters. We see that out of (19 · 20)/2
pairs of candidates, with a high probability, only a few of them are 2

3 -winning sets; in
fact, quite often there is just one such set. Recall that we have argued that it is likely
that almost all sets of size 2 are Condorcet winning sets; this means that raising the
threshold from 1

2 to 2
3 is a powerful method to narrow down the set of winners.

However, Fig. 3 shows that there is a non-trivial fraction of profiles with no 2
3 -

winning sets of size 2, i.e., D(P, 2
3 , 2) may be empty. In contrast, D(P, θ ′(P, k), k)

is guaranteed to be non-empty for every k ≥ 1, so our next experiment investigates
whether the associated voting correspondence, i.e., Dk , is likely to output a small num-
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Fig. 3 Empirical distribution of the number of 2
3 -winning sets of size 2 for m = 20
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Fig. 4 Empirical distribution of the number of θ ′(P, k)-winning sets, k = 2, 3, 4

ber of candidates. It turns out that this is indeed the case for k = 2, 3, 4. Specifically,
we plot the empirical distribution of the number of θ ′(P, k)-winning sets of size k for
k = 2, 3, 4, for m = 5, m = 20 and n = 50, n = 500, n = 5, 000 (see the histograms
in Fig. 4). For each value of k we sample 10,000 profiles. It turns out that the number
of θ ′(P, k)-winning sets is quite small: typically, there are only one or two such sets.

7 Related work

There are three streams of research that are closely related to the problems we consider.
The first stream deals with the problem of proportional representation, where each
voter indicates how well each candidate would represent her, and the goal is to build
a committee of a given cardinality that represents every voter. There are approaches
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to this problem that select a subset of candidates in a disjunctive manner. Specifically,
Chamberlin and Courant (1983) propose a method where each voter evaluates a subset
of alternatives based on the Borda score of the highest-ranking alternative in this subset:
a set Y receives maxy∈Y sB(y, i) points from a voter i , where sB(y, i) is the number of
candidates that i ranks below y, and the winning committee of size k is the k-element set
of candidates with the highest score. Note that, unlike in our work, the committee size
k is determined exogenously. Chamberlin and Courant’s method can be generalized to
use scoring functions other than Borda’s, and there is a number of papers that explore
the computational complexity of finding an optimal committee of a given size, for
various scoring functions (Procaccia et al. 2008; Lu and Boutilier 2011; Betzler et al.
2013; Cornaz et al. 2012; Skowron et al. 2013a, b; Yu et al. 2013; Skowron et al. 2013c).
Lu and Boutilier also propose a relaxation of Chamberlin and Courant’s approach
that allows for tradeoffs between committee size and quality of representation, and
show experimental results on real-world data sets. We remark, however, that another
classic approach to proportional representation, namely, that of Monroe (1995), is
more difficult to interpret disjunctively, as it is based on establishing a many-to-one
balanced matching between voters and candidates (for details, see Monroe 1995).
Recently, Elkind et al. (2014) identified a number of desirable properties for committee
selection rules; an interesting research direction, which we leave for future work, is to
verify which of these properties are satisfied by the mapping that, for a given profile
P and parameter k, outputs a set from D(P, θ ′(P, k), k) using some tie-breaking rule.

A second stream of research has the same starting point as we do, namely, finding a
generalization of the notion of a Condorcet winner to sets of alternatives. For instance,
Gehrlein (1985) assumes, like us, that individual preferences are given by rankings
of the alternatives, and defines a Condorcet committee as a set of alternatives Y ⊆ X
such that every alternative in Y beats every alternative in X \ Y . This method has a
conjunctive interpretation, as opposed to the disjunctive interpretation of Condorcet
winning sets: Y is a Condorcet committee if for every pair of alternatives x ∈ X \Y and
y ∈ Y a majority of voters prefers y to x . Thus, a Condorcet committee is a Condorcet
winning set, but the converse is not necessarily true. As Condorcet committees of size
k do not always exist, except for the trivial case k = m, Ratliff (2003) suggests to
generalize the Dodgson and Kemeny voting rules to sets of alternatives. For instance,
the extension of the Dodgson rule computes, for a given subset Y , the minimal number
of elementary swaps in the votes needed to make Y a Condorcet committee. A differ-
ent approach is pursued by Fishburn (1981), who proceeds by defining a preference
relation on sets of alternatives and looking for a subset that beats any other subset
in a pairwise election. These two lines of work are bridged by Kaymak and Sanver
(2003), who examine under which condition a Condorcet committee in the sense of
Fishburn can be derived from preferences over alternatives. Ratliff (2003) gives further
discussion on committee selection. It is not immediately clear whether a Condorcet
committee in the sense of Fishburn (1981) and Kaymak and Sanver (2003) is also a
Condorcet winning set: the answer depends on the extension function used for lifting
the preference relation from alternatives to subsets; for standard extension functions
(e.g., ones that compare the sets lexicographically or according to their best element)
this is not the case.
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The third stream of research concerns dominating sets in tournaments, and, in
particular, in tournaments constructed from voters’ preferences (these are known as
n-majority tournaments): as discussed in Sect. 4.3, for such tournaments the size of
the smallest dominating set (and hence the Condorcet dimension of the underlying
election) can be bounded in terms of the number of voters. However, the current
best upper bound on the DS-dimension of an n-voter election is C2n log n for some
positive constant C2 (Alon et al. 2006), whereas we have argued that the Condorcet
dimension of any such election does not exceed n

2 + 1. Thus, the existing results
for n-majority tournaments are too weak to provide non-trivial upper bounds on the
Condorcet dimension. On the other hand, the current best lower bound on the DS-
dimension is sublinear (C1n/ log n for a positive constant C1), so it does not rule
out the possibility of obtaining a sublinear upper bound on the DS-dimension of n-
majority tournaments; any such result would also provide a better upper bound on the
Condorcet dimension.

8 Conclusions

We have defined a framework for defining collectively preferred sets of alternatives
that is based on generalizing the Condorcet principle. Such a framework is useful
whenever it makes sense to output several alternatives, such as committee elections,
multiple recommendations to groups of users (as in Lu and Boutilier 2011), choices
of time slots for regular events, etc. A number of questions remain open for future
work; perhaps the most pressing of them is whether there exist profiles of Condorcet
dimension 4 or higher.
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