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Abstract We study mechanism design in quasi-linear private values environments
when there are two alternatives. We show that under a mild range condition,
every implementable allocation rule is a generalized utility function maximizer. In
unbounded domains, if we replace our range condition by an independence condition,
then every implementable allocation rule is an affine maximizer. Our results extend
Roberts’ affine maximizer theorem (Roberts, In: Laffont J-J (ed) The characterization
of implementable choice rules, 1979) to the case of two alternatives.

1 Introduction

This paper considers dominant strategy implementation of deterministic (no random-
ization) allocation rules in quasi-linear environments with two alternatives, e.g. bilat-
eral trading, provision of a public good, choosing one out of two locations for locating
a facility or any situation with a status-quo alternative and a new alternative. The
private information of each agent is a two dimensional vector, representing the val-
uation (a real number) for each alternative. Given the reported valuations of agents,
an allocation rule chooses an alternative and a payment rule determines the payments
of each agent. The net utility of each agent is quasi-linear in the payment he makes.
An allocation rule is implementable (in dominant strategies) if there is a payment rule
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which makes truth-telling a weakly dominant strategy for each agent. We answer the
following fundamental question in our model.

Which allocation rules are implementable?

We offer two main results.1 Under a mild range condition, we show that an allocation
rule is implementable if and only if it is a generalized utility function (GUF) maximizer.
At every valuation profile, a GUF of an agent translates his valuation vector to a pair of
real numbers, which we call his generalized utilities for these two alternatives at this
valuation profile. At every valuation profile, a GUF maximizer allocation rule chooses
an alternative that maximizes the sum of generalized utilities of agents.

Our second result shows that an implementable allocation rule satisfying an inde-
pendence condition is an affine maximizer. Affine maximizer allocation rules, intro-
duced in Roberts (1979), are generalizations of the efficient allocation rule. They can
be thought of as linearized GUF maximizer allocation rules. Conversely, every affine
maximizer satisfies our independence condition. It is well known that under a mild
condition, an affine maximizer is implementable.

To prove the latter result, we prove another result, which is of independent interest.
We show that if an implementable allocation rule satisfies unanimity and transitivity 2

in our model, then it must be a weighted efficient allocation rule. Weighted efficient
allocation rules are a special class of affine maximizer allocation rules. Conversely,
every weighted efficient allocation rule satisfies unanimity and transitivity.

Though a mechanism design problem with two alternatives seems far-fetched, many
well-studied problems fall into this category. First, the bilateral trading problem has two
agents (a buyer and a seller) and two alternatives—trade or no trade. Second, the non-
excludable public good provision problem is a problem with two alternatives—whether
to provide the public good or not. Since the valuation for the status-quo alternative (no
trade in the case of bilateral trading problem and not providing the public good in case
of public good provision problem) is zero in these problems, the private information
of each agent is uni-dimensional here. However, there are two-dimensional problems
where our results can be applied. For instance, consider the problem of locating a
facility in one of two locations. Each agent has a two-dimensional valuation vector
representing his valuation for each location. All our results can be applied to this
problem to identify the set of implementable allocation rules. Our results can also
be applied to some extensions of classical bilateral trading problem and public good
provision problem. The classical versions of these problems assume that the status-
quo alternative has zero valuation for all the agents. Our model of two alternatives can
allow agents to have non-zero private valuation for such a status-quo alternative.

A characterization of implementable allocation rules in the two-alternatives model
is also an important step to achieving similar characterization for models with more
than two alternatives. This is shown in Carbajal et al. (2013), who show that in a specific

1 Most of our results require some richness of the domain. We discuss these specifics of the domain
restrictions later in the paper.
2 Unanimity requires that if valuation of every agent for an alternative is larger than the other alternative,
then the higher valuation alternative must be the outcome of the allocation rule. Transitivity requires that
outcomes at three valuation profiles which are linked in a certain way must be transitive in some sense.
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model (discussed later) with arbitrary number of alternatives, the set of implementable
allocation rules can be defined recursively with the starting point being the two alter-
natives case. They refer to our characterizations for the two alternatives case.

1.1 Relation to the literature

The pursuit of identifying the set of implementable allocation rules in voting models
goes back to the seminal work of Gibbard (1973) and Satterthwaite (1975), who
establish that dictatorship is the only implementable allocation rule under a mild
range condition with unrestricted domain, when there are at least three alternatives.
In quasi-linear environments, the analogue of the Gibbard–Satterthwaite theorem is
due to Roberts (1979). In a remarkable result, Roberts (1979) showed that under a
mild range condition, every implementable allocation rule is an affine maximizer if
there are at least three alternatives and the domain of valuations for each alternative
is unrestricted. It is well known that an affine maximizer is implementable using
generalized Groves payment rules (Vickrey 1961; Clarke 1971; Groves 1973) if it
satisfies a mild tie-breaking condition.

When the domain of valuations is restricted or the number of alternatives is two,
Roberts’ affine maximizer theorem is no longer true, and the set of implementable
allocation rules is significantly enlarged. However, there has been very little progress
in understanding the extensions of Roberts’ theorem in restricted domains of valuations
or in problems with two alternatives. We note some exceptions. Jehiel et al. (2008) show
that Roberts’ theorem extends to certain environments with interdependent valuations.
Mishra and Sen (2012) show that in multidimensional open interval domains, every
neutral and implementable allocation rule is a weighted efficient allocation rule if the
number of alternatives is at least three.

Carbajal et al. (2013) show that if the domain of valuation profiles is restricted
to the space of continuous functions defined on a topological space, or the space of
piecewise linear functions defined on an affine space, or the space of smooth functions
defined on a compact differentiable manifold, then an allocation rule is implementable
if and only if it is a lexicographic affine maximizer. Their results do not require the
set of alternatives to be finite. Lexicographic affine maximizers, which are defined
recursively, are generalizations of affine maximizer allocation rules. Thus, they gen-
eralize Roberts’ theorem to a restricted environment. Lexicographic affine maximiza-
tion does not require the number of alternatives to be at least three. However, when
the number of alternatives is two, lexicographic affine maximization in Carbajal et
al. (2013) is a monotonicity condition (or equivalently a cutoff in differences condi-
tion). This monotonicity is similar to the monotonicity condition used to characterize
implementability in the single object auction setting (Myerson 1981). Further, this is
equivalent to the 2-cycle monotonicity condition widely used in the multidimensional
mechanism design literature (Bikhchandani et al. 2006; Saks and Yu 2005; Ashlagi et
al. 2010).

The difference between the “monotonicity” characterizations and the “maximiza-
tion” characterizations (a la Roberts 1979 and our GUF maximization) is significant.
A monotonicity characterization will say that for every agent and for every valua-
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tion vector of other agents, the allocation rule must be “monotone” in some sense
when the valuation vector of this agent is changed. On the other hand, a maximization
characterization is more explicit. It tells you the exact parameters that define an imple-
mentable allocation rule. Thus, it is a direct prescription for designing a dominant
strategy mechanism.

Because of this reason, there have been several attempts at simplifying the proof
in Roberts’ theorem—Lavi et al. (2009), Dobzinski and Nisan (2009), Vohra (2011).
Dobzinski and Nisan (2011) show that in combinatorial auction domains (a restricted
domain) involving two agents, there are non-affine maximizer allocation rules which
give good approximation to efficiency. However, they do not provide any general
characterization result (except for a specific case of auction of two goods among two
agents).

Another related paper is Mishra and Quadir (2014). They characterize the set of
implementable allocation rules in the model of single object auctions. Like the current
paper, their characterization captures a larger class of allocation rules than affine
maximizers. However, since single object auctions is a very different domain, their
results cannot be applied in our model of two alternatives.

Some specific models with two alternatives have been studied extensively in the
literature. We review them below.

• One such model is the bilateral trading model, where there is one buyer and one
seller who want to trade a good (owned by the seller). Myerson and Satterthwaite
(1983) showed that Bayes–Nash implementation, budget-balance, efficiency, and
individual rationality are incompatible in bilateral trading. Hagerty and Rogerson
(1987) showed that the only mechanisms which are dominant strategy incentive
compatible, budget-balanced, and individually rational are posted-price mecha-
nisms.
Our GUF maximizer result applies to the bilateral trading model. Indeed, our results
can be applied to the bilateral trading models where the no-trade alternative (outside
option) also has some non-zero value (which can be a private information of the
agents). Further, our characterizations are of implementable allocation rules and not
of mechanisms (allocation rule and payments). Thus, we do not impose additional
properties like budget-balance and individual rationality, which are all properties
of payments.

• Another model with two alternatives is the public good provision problem, where
a planner is deciding whether to provide the public good or not. An excellent treat-
ment of this problem is given in Borgers (2010)—see also Güth and Hellwig (1986).
Like in the bilateral trading problem, our results can be applied to this problem. Our
results are applicable even if agents have private valuation for the status quo alter-
native. Unlike the literature, where the focus has been to find incentive compatible
mechanisms satisfying additional properties like budget-balance, individual ratio-
nality etc., our results characterize implementable allocation rules.

We will like to note that in the voting model of Gibbard (1973) and Satterthwaite
(1975), the implications of having only two alternatives on strategy-proofness is well
known (Fishburn and Gehrlein 1977)—see also the surveys of Moulin (1983) and
Barbera (2011). The strategy-proof rules identified in this voting model continue to be
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implementable in our model. However, these allocation rules are ordinal rules—the
ordinal ranking of alternatives, and not their cardinal valuations, matter. The range
condition we use in our main characterization and the independence condition we use
in our affine maximizer characterization are not satisfied by such ordinal allocation
rules. Hence, the allocation rules we characterize in this paper do not capture the
ordinal strategy-proof allocation rules in the voting model.

Finally, though we characterize implementable allocation rules, we can use revenue
equivalence to pin down the class of payments in our model. This allows us to describe
the entire class of incentive compatible mechanisms.

2 The model and a preliminary result

The set of agents is N := {1, . . . , n}. There are exactly two alternatives: a1 and a2. The
set of alternatives is denoted by A := {a1, a2}. Each agent i ∈ N has a valuation for
each alternative, and this is denoted as vi (a j ) for every j ∈ {1, 2}. A valuation vector
for agent i is denoted as vi . For any agent i ∈ N , let Vi denote the set of all valuation
vectors for agent i . A valuation profile is denoted as v := (v1, . . . , vn) and the set of
all valuation profiles is V := V1 × · · · × Vn . We will use the standard notations v−i

to denote a valuation profile of agents other than agent i and V−i to denote the set of
all such valuation profiles.

An allocation rule is a mapping f : V → A. Note that we focus on deterministic
allocation rules. A payment rule of agent i is a mapping pi : V → R.

An allocation rule f is (dominant strategy) implementable if there exists payment
rules p1, . . . , pn such that for every agent i ∈ N and for every v−i ∈ V−i the following
inequality holds for every vi , v

′
i ∈ Vi ,

vi ( f (vi , v−i )) − pi (vi , v−i ) ≥ vi ( f (v′
i , v−i )) − pi (v

′
i , v−i ).

In this case, we say that the payment rules p1, . . . , pn implement f . A mechanism is an
allocation rule f and payment rules (p1, . . . , pn). A mechanism M ≡ ( f, p1, . . . , pn)

is incentive compatible if (p1, . . . , pn) implement f .
For every agent i ∈ N and for any valuation vector vi ∈ Vi , define ∂vi := vi (a1)−

vi (a2).

Definition 1 An allocation rule f is monotone if for every i ∈ N , for every v−i ∈ V−i ,
and for every vi , v

′
i ∈ Vi , if ∂vi > ∂v′

i and f (v′
i , v−i ) = a1, then f (vi , v−i ) = a1.

The following preliminary result, due to Carbajal et al. (2013), characterizes imple-
mentable allocation rules. We use this result to prove our main results.

Proposition 1 (Carbajal et al. 2013) An allocation rule is implementable if and only
if it is monotone.

The monotonicity condition we use to characterize implementability in Propo-
sition 1 is equivalent to the well-known 2-cycle monotonicity. It is well known that
such monotonicity is necessary and sufficient for implementability in one-dimensional
value models such as single object auctions (Myerson 1981). Though agents have two-
dimensional values in our model, what matters for implementability is their difference
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of value between the two alternatives. This ensures that monotonicity is still necessary
and sufficient in our model.

3 Complete characterization

We present our main result in this section. We give a characterization of implementable
allocation rules under a mild condition. Before presenting this characterization, we
discuss Roberts’ affine maximizer theorem (Roberts 1979).

3.1 Roberts’ affine maximizers

In this subsection we let A to be any finite set of alternatives, and do not put the
restriction that |A| = 2. An allocation rule f is an affine maximizer if there exist
non-negative real numbers λ1, . . . , λn and a mapping γ : A → R such that at every
valuation profile v, we have

f (v) ∈ arg max
a∈A

[ ∑

i∈N

λivi (a) + γ (a)
]

An affine maximizer allocation rule f with weights λ1, . . . , λn ≥ 0 and γ : A → R

satisfies unresponsiveness to irrelevant agents (UIA) if for every i ∈ N such that
λi = 0, we have f (vi , v−i ) = f (v′

i , v−i ) for everyv−i ∈ V−i and for everyvi , v
′
i ∈ Vi .

It is well known that an affine maximizer that satisfies UIA can be implemented using
generalized Groves (1973) payment rules—see for instance Mishra and Sen (2012).

Note that in the definition of an affine maximizer, we can choose, without loss of
generality, λi for all i ∈ N such that

∑
i∈N λi = 1 if λi > 0 for some i ∈ N . We call

such an affine maximizer a responsive affine maximizer. Roberts (1979) showed that
if |A| ≥ 3 and Vi = R

|A| for all i ∈ N , then every onto implementable allocation rule
is a responsive affine maximizer. To remind, an allocation rule f is onto if for every
a ∈ A, there exists a valuation profile v ∈ V such that f (v) = a.

Hence, Roberts (1979) almost characterizes the set of implementable allocation
rules in unrestricted domains (i.e., when Vi = R

|A| for all i ∈ N ) and when |A| ≥ 3.

Example 1 Roberts’ affine maximizer theorem is no longer true if |A| = 2. For
instance, consider the following allocation rule f̄ with two agents {1, 2} and V1 =
V2 = R

2. For every v ∈ V ,

f̄ (v) =
{

a1 if (∂v1)
3 + ∂v2 ≥ 0

a2 if (∂v1)
3 + ∂v2 < 0.

It is easy to verify that f̄ is monotone, and hence, implementable by Proposition 1. But
f̄ is not an affine maximizer. Next, we provide a characterization of implementable
allocation rules extending Roberts’ affine maximizer theorem. Our characterization
covers allocation rules of the form f̄ .
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3.2 Generalized utility function maximizers

The main tool of our characterization is the notion of a generalized utility function.

Definition 2 A generalized utility function (GUF) is a mapping u : A × V → R

for all v ∈ V .

We associate a GUF with every agent. The GUF associated with agent i is denoted by
ui . At any v ∈ V , let

∂ui (v) = ui (a1, v) − ui (a2, v).

In other words, ∂ui (v) denotes the difference in “generalized utility” of agent i at
valuation profile v. We concentrate on a particular class of GUFs.

Definition 3 A GUF ui of agent i is strictly monotone if

(1) for every v−i ∈ V−i , for every vi , v
′
i ∈ Vi with ∂vi > ∂v′

i , we have

∂ui (vi , v−i ) > ∂ui (v
′
i , v−i ).

(2) for every j �= i , for every v− j ∈ V− j , and every v j , v
′
j ∈ Vj with ∂v j > ∂v′

j , we
have

∂ui (v j , v− j ) ≥ ∂ui (v
′
j , v− j ).

Using the notion of GUFs, we define a broad class of allocation rules.

Definition 4 An allocation rule f is a GUF maximizer if there exist strictly monotone
GUFs (u1, . . . , un) such that for all v ∈ V , we have

f (v) ∈ arg max
a∈A

∑

i∈N

ui (a, v).

In this case, we say that f is representable by (u1, . . . , un).

We now show that every GUF maximizer is implementable.

Lemma 1 Every GUF maximizer allocation rule is implementable.

Proof Consider a GUF maximizer allocation rule f , and suppose f is representable by
(u1, . . . , un). Fix an agent i and v−i ∈ V−i . Consider vi , v

′
i ∈ Vi such that ∂vi > ∂v′

i .
Suppose f (v′

i , v−i ) = a1. Then, by definition of f , we have

∑

j∈N

u j (a1, v
′
i , v−i ) ≥

∑

j∈N

u j (a2, v
′
i , v−i ).

Hence, we get that

∑

j∈N

∂u j (v
′
i , v−i ) ≥ 0.
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By strict monotonicity, ∂ui (vi , v−i )>∂ui (v
′
i , v−i ) and ∂u j (vi , v−i )≥∂u j (v

′
i , v−i )

for all j �= i . Hence, we get

∑

j∈N

∂u j (vi , v−i ) > 0.

This implies that

∑

j∈N

u j (a1, vi , v−i ) >
∑

j∈N

u j (a2, vi , v−i ).

By the definition of GUF maximizer, f (vi , v−i ) = a1. Hence, f is monotone, and by
Proposition 1, f is implementable. �	

A GUF maximizer can be quite involved. In particular, GUF of an agent may depend
on the valuations of all the agents. We illustrate this with an example.

Example 2 Consider an example with N = {1, 2}, V1 = V2 = R
2 and the generalized

utility function of agent 1 as

u1(a1, v1, v2) = [v1(a1) − v1(a2)]2 + [v2(a1) − v2(a2)]
u1(a2, v1, v2) = 0,

where v1 and v2 are valuation functions of agents 1 and 2 respectively. It is clear that
u1 strictly monotone. Hence, u1 is a valid GUF maximizer. Notice that u1 depends on
the valuations of both the agents.

Our main result shows that under a mild range condition, GUF maximizers are the
only implementable allocation rules.

Definition 5 An allocation rule f satisfies agent sovereignty if for every agent i ∈ N ,
every v−i ∈ V−i , and every a ∈ A, there is a vi ∈ Vi such that f (vi , v−i ) = a. An
allocation rule f satisfies weak agent sovereignty if for every agent i ∈ N , every
v−i ∈ V−i , there is a vi ∈ Vi such that f (vi , v−i ) = a1.

Agent sovereignty requires every agent to have some decisive power irrespective
of the values of other agents. It has been used extensively in public good provision
problems (Moulin 1999; Moulin and Shenker 2001). Lavi et al. (2009) use agent
sovereignty3 to give a clean proof of Roberts’ affine maximizer theorem (Roberts
1979).

For every i ∈ N , define Di := {∂vi : vi ∈ Vi }. Note that Di ⊆ R.

Theorem 1 Let f be an allocation rule. Suppose one of the following conditions
holds:

Ca f satisfies agent sovereignty and for every i ∈ N, Di is an interval.

3 What we call agent sovereignty, Lavi et al. (2009) refer to it as player decisiveness.
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Cb f satisfies weak agent sovereignty and for every i ∈ N, Di is an interval bounded
from below.

Then, f is implementable if and only if it is a GUF maximizer.

The natural domains where condition Ca and Cb can be satisfied are product interval
domains. Denote by V a

i the set of possible valuations on alternative a ∈ A for agent
i ∈ N . Let Vi = V a1

i × V a2
i . Condition Ca holds if f satisfies agent sovereignty

and V a
i is an interval for every a ∈ A. Condition Cb holds if f satisfies weak agent

sovereignty and V a1
i and V a2

i are intervals, and V a1
i is bounded from below (for instance

R+) and V a2
i is bounded from above (for instance any compact interval). These domain

restrictions cover the classical problems of bilateral trading, public good provision,
and their extensions.

In the Appendix, we give examples that illustrate that the conditions used in The-
orem 1 are required.

3.3 Proof of Theorem 1

Before proving Theorem 1, we establish some claims. Suppose f is an implementable
allocation rule. Then, for every i ∈ N and every v−i ∈ V−i , define d f

i (v−i ) as follows:

d f
i (v−i ) = inf{∂vi ∈ Di : f (vi , v−i ) = a1}.

We prove a series of claims. In each claim, we assume that f is an implementable
allocation rule. Further, f satisfies agent sovereignty and for every i ∈ N , Di is an
interval.

The first claim shows when d f
i (v−i ) is well defined for every i ∈ N and for every

v−i ∈ V−i .

Claim 1 For every i ∈ N and for every v−i ∈ V−i , d f
i (v−i ) exists.

Proof Fix agent i and v−i ∈ V−i . Under conditions (Ca) or (Cb), there is some value
vi ∈ Vi such that f (vi , v−i ) = a1.

If condition (Ca) holds, then for some v′
i , f (v′

i , v−i ) = a2. Since f is imple-
mentable, it is monotone (Proposition 1). Hence, ∂v′

i ≤ ∂vi . Since Di is an interval,
we get that inf{∂vi ∈ Di : f (vi , v−i ) = a1} is a real number.

If condition (Cb) holds, then since Di is an interval bounded below, inf{∂vi ∈ Di :
f (vi , v−i ) = a1} is a real number. �	

We now define a payment rule. For every agent i ∈ N , define p f
i as follows:

p f
i (vi , v−i ) =

{
0 if f (vi , v−i ) = a2

d f
i (v−i ) if f (vi , v−i ) = a1.

These payments are counterparts of Myerson’s cutoff-based payments for single object
auction (Myerson 1981).
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Claim 2 The payment rule (p f
1 , . . . , p f

n ) implements f .

Proof Fix an agent i ∈ N and v−i ∈ V−i . Consider vi , v
′
i ∈ Vi . We will show that

vi ( f (vi , v−i ) − p f
i (vi , v−i ) ≥ vi ( f (v′

i , v−i )) − p f
i (v′

i , v−i ).

If f (vi , v−i ) = f (v′
i , v−i ), we are done. So, assume that f (vi , v−i ) �= f (v′

i , v−i ).
We consider two cases.
Case 1. Suppose f (vi , v−i ) = a1 and f (v′

i , v−i ) = a2. Then, vi ( f (vi , v−i )) −
p f

i (vi , v−i ) = vi (a1)−d f
i (v−i ). Since d f

i (v−i ) ≤ ∂vi , we get that vi (a1)−d f
i (v−i ) ≥

vi (a2) = vi ( f (v′
i , v−i )) − p f

i (v′
i , v−i ), where we used the fact that p f

i (v′
i , v−i ) = 0

since f (v′
i , v−i ) = a2.

Case 2. Suppose f (vi , v−i ) = a2 and f (v′
i , v−i ) = a1. We argue that ∂vi ≤ d f

i (v−i ).

Assume for contradiction that ∂vi > d f
i (v−i ). By definition of d f

i (v−i ), there is v′′
i

such that f (v′′
i , v−i ) = a1 and ∂v′′

i is arbitrarily close to d f
i (v−i ). Hence, ∂vi > ∂v′′

i .
Then, since f is monotone, f (vi , v−i ) = a1, which is a contradiction.

Hence, vi (a2) ≥ vi (a1) − d f
i (v−i ). Using the fact that p f

i (vi , v−i ) = 0 since

f (vi , v−i ) = a2 and p f
i (v′

i , v−i ) = d f
i (v−i ) since f (v′

i , v−i ) = a1, we get that

vi ( f (vi , v−i )) − p f
i (vi , v−i ) = vi (a2) ≥ vi (a1) − d f

i (v−i ) = vi ( f (v′
i , v−i )) −

p f
i (v′

i , v−i ). �	
Claim 2 has other implications. If Vi is connected for each i ∈ N , then by well-

known results on revenue equivalence (Heydenreich et al. 2009), we can conclude that
any other payment rule pi of agent i must look as follows: pi (v) = p f

i (v) + hi (v−i )

for all v ∈ V , where hi : V−i → R is any function.
The next claim shows a monotonicity property of d f

i (·) for every i ∈ N .

Claim 3 For every i , for every j �= i , for every v j , v
′
j ∈ Vj such that ∂v j < ∂v′

j , we

have that d f
i (v j , v−i j ) ≥ d f

i (v′
j , v−i j ) for all v−i j ∈ V−i j .

Proof Fix agents i and j �= i , and consider v j , v
′
j ∈ Vj such that ∂v j < ∂v′

j . Assume

for contradiction that d f
i (v j , v−i j ) < d f

i (v′
j , v−i j ) for some v−i j ∈ V−i j . Let vi be

such that ∂vi = d f
i (v j , v−i j ) + ε < d f

i (v′
j , v−i j ) for some sufficiently small ε > 0.

Since Di is an interval, such a vi exists. By definition, f (vi , v j , v−i j ) = a1 and
f (vi , v

′
j , v−i j ) = a2. But ∂v j < ∂v′

j means f (vi , v
′
j , v−i j ) = a1 by monotonicity.

This is a contradiction. �	
This leads us to the proof of Theorem 1.

Proof Lemma 1 shows that every GUF maximizer is implementable. We prove the
converse. Let f be an implementable allocation rule, and suppose (sc Ca) or (Cb)
holds. For every i ∈ N , define the GUF of agent i as follows: for every (vi , v−i ) ∈ V
let

ui (a, vi , v−i ) =
{

0 if a = a2

∂vi − d f
i (v−i ) if a = a1.
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By Claim 1, GUFs are well-defined. We show that for any i ∈ N , ui is strictly
monotone. By definition, for every v−i , ui (a1, v) = ∂vi − d f

i (v−i ) > ∂v′
i − d f

i (v−i )

if ∂vi > ∂v′
i . Now, fix any j �= i and consider v j , v

′
j such that ∂v j > ∂v′

j . By Claim

3, ui (a1, v j , v− j ) = ∂vi − d f
i (v j , v−i j ) ≥ ∂vi − d f

i (v′
j , v−i j ) = ui (a1, v

′
j , v− j ).

Now, consider any v ∈ V and suppose f (v) = a1. Then, by definition, for
every i ∈ N , d f

i (v−i ) ≤ ∂vi . Hence, ui (a1, v) ≥ ui (a2, v), which implies that∑
j∈N u j (a1, v) ≥ ∑

j∈N u j (a2, v). Similarly, suppose f (v) = a2. Then, for every
i ∈ N , since f satisfies agent sovereignty, there is a v′

i such that f (v′
i , v−i ) = a1.

But, by Claim 2, vi (a2)−0 ≥ vi (a1)−d f
i (v−i ). Hence, ui (a2, v) ≥ ui (a1, v), which

implies that
∑

j∈N u j (a2, v) ≥ ∑
j∈N u j (a1, v). This shows that f is representable

by GUFs (u1, . . . , un). �	

4 An axiomatization of affine maximizers

Theorem 1 shows the rich class of “maximizers” that can be implemented when there
are two alternatives. However, when we have more than two alternatives, we only
get affine maximizers in unrestricted domains. Then, a natural question to ask is:
what extra condition(s) besides implementability are needed to pin down the affine
maximizers when there are two alternatives? This will help us understand the case of
two alternatives even further.

The aim of this section is to axiomatize the affine maximizers for the case of |A| = 2
using implementability and some additional condition(s). It turns out, we only need
one new condition besides implementability. To introduce the new condition, we will
need some notation.

We will assume that the set of possible valuations of each for each alternative is an
open interval. Hence, throughout this section, we will assume that for every i ∈ N ,
Vi = Li × Li , where Li is an open interval. We will call this the open interval
domain. Notice that the valuation for every alternative lies in the same interval.

Given a profile of valuations (v1, . . . , vn), we will often be interested in the vector of
valuations associated with each alternative. In particular, for j ∈ {1, 2}, let v(a j ) ∈ R

n

denote the valuation vector associated with alternative a j . Let U be the set of all
valuation vectors for alternatives given our open interval domain assumption. Note that
U is an open rectangle in R

n . A profile of valuations contains exactly two valuation
vectors from U , one denoting the valuations for alternative a1 and the other denoting the
valuations for alternative a2. For convenience, we will denote the profile of valuations
as (v(a1), v(a2)) instead of (v1, . . . , vn). Further, for every a ∈ A, we will sometimes
write (v(a), v(−a)) to denote the profile of valuations (v(a1), v(a2)).

We are now ready to state our new condition.

Definition 6 An allocation rule f satisfies independence if for every a ∈ A, for every
pair of valuation profiles v, v′, and for every ε ∈ R

n++, we have

f (v(a), v(−a)) = a
and

f (v′(a), v′(−a)) = a

⎫
⎬

⎭
⇒

⎧
⎨

⎩

f (v′(a) + ε, v(−a)) = a
or

f (v(a) + ε, v′(−a)) = a.
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Suppose there are two valuation profiles v, v′, an alternative a ∈ A and ε ∈ R
n++

such that f (v(a), v(−a)) = a and f (v′(a) + ε, v(−a)) �= a. From this, we can infer
that the support provided to a by v(a) is stronger than the support provided to a by
v′(a). Suppose now that f (v′(a), v′(−a)) = a. If we replace v′(a) by v(a) + ε in the
profile (v′(a), v′(−a)), the support in favor of a must increase. Since a was chosen at
(v′(a), v′(−a)), it must be chosen at (v(a)+ε, v′(−a)). Hence, f (v(a)+ε, v′(−a)) =
a. This is what independence says.

A similar condition is used in Debreu’s theorem on the additive representation of a
binary relation over a Cartesian product (see Theorem 3 in Debreu 1960). The central
idea behind an independence condition is the ability to compare a pair of valuation
vectors independent of other valuation vectors. With three or more alternatives, the
natural notion of independence is binary independence, which requires comparison
of valuation vectors of any pair of alternatives independent of the valuation vectors
of other alternatives. This condition is implied by implementability and neutrality if
there are three or more alternatives (Mishra and Sen 2012).

However, with two alternatives, binary independence cannot be defined. The inde-
pendence we use is natural with two alternatives: if we take any two valuation vectors
of an alternative, the social choice function must evaluate them independent of the
valuation vector of the other alternative. Allocation rules satisfying independence are
clearly less complicated than those that do not satisfy independence. As it turns out,
such implementable allocation rules are affine maximizers. Hence, it rules out “non-
linear” allocation rules that are implementable.

First, we show that an affine maximizer allocation rule satisfies independence.

Lemma 2 Every affine maximizer allocation rule satisfies independence.

Proof Let f be an affine maximizer allocation rule with weights λ1, . . . , λn ≥ 0 and
γ : A → R. Consider a pair of valuation profiles v, v′ such that f (v) = f (v′) = a1
(the other case where f (v) = f (v′) = a2 can be dealt with similarly). Then, affine
maximization gives us

∑

i∈N

λivi (a1) + γ (a1) ≥
∑

i∈N

λivi (a2) + γ (a2)

∑

i∈N

λiv
′
i (a1) + γ (a1) ≥

∑

i∈N

λiv
′
i (a2) + γ (a2).

Adding these two inequalities gives us

∑

i∈N

λi
[
vi (a1) + v′

i (a1)
] + 2γ (a1) ≥

∑

i∈N

λi
[
vi (a2) + v′

i (a2)
] + 2γ (a2). (1)

Now, assume for contradiction f (v(a1)+ε, v′(a2)) = a2 and f (v′(a1)+ε′, v(a2)) =
a2 for some ε, ε′ ∈ R

n++. Then, f is a non-constant affine maximizer. Since ε, ε′ ∈
R

n++, this implies that
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∑

i∈N

λiv
′
i (a2) + γ (a2) >

∑

i∈N

λivi (a1) + γ (a1)

∑

i∈N

λivi (a2) + γ (a2) >
∑

i∈N

λiv
′
i (a1) + γ (a1).

Adding these two inequalities gives a contradiction to Inequality 1. �	
There are non-affine maximizer allocation rules which are implementable but do

not satisfy independence. For instance, consider the implementable allocation rule f̄ in
Example 1. Suppose v is the valuation profile where v1(a1) = 2, v1(a2) = 0, v2(a1) =
1, v2(a2) = 4 and v′ is the valuation profile where v′

1(a1) = 0, v′
1(a2) = 1, v′

2(a1) =
v′

2(a2) = 3. By definition, f̄ (v) = f̄ (v′) = a1. Now, for sufficiently small ε ∈ R
2++,

it is easily verified that f̄ (v(a1) + ε, v′(a2)) = f̄ (v′(a1) + ε, v(a2)) = a2. Hence,
f̄ does not satisfy independence.

Under some domain assumption, we show that amongst the implementable alloca-
tion rules, only affine maximizers satisfy independence.

Theorem 2 Suppose for every i ∈ N, Li is an open interval unbounded from above.
If an allocation rule is implementable and satisfies independence, then it is an affine
maximizer. Conversely, if f is an affine maximizer, then it satisfies independence, and
further, if it satisfies UIA, then it is implementable.

The proof of Theorem 2 is in the Appendix. The proof uses another interesting result
on axiomatizing weighted efficiency, which we state next.

4.1 An axiomatization of weighted efficiency

Weighted efficiency is a particular form of affine maximizer. An allocation rule f
is a weighted efficient allocation rule if there exists weights λ1, . . . , λn ≥ 0 with
λi > 0 for some i ∈ N , such that for every valuation profile v ∈ V , we have
f (v) ∈ arg maxa∈A

∑
i∈N λivi (a).

Among the class of affine maximizer allocation rules, weighted efficient allocation
rules do not discriminate between alternatives. We will show that under some additional
conditions, implementability will imply weighted efficiency. To define the additional
conditions, we need some preparation. First, we introduce a well known monotonicity
condition due to Roberts (1979).

Definition 7 An allocation rule f satisfies positive association of differences (PAD)
if for every pair of profile of valuations v, v′ ∈ V such that ∂vi > ∂v′

i for every i ∈ N
and f (v′) = a1 we have f (v) = a1.

Consider a pair of profile of valuations v, v′ ∈ V such that ∂vi < ∂v′
i for every i ∈ N

and f (v′) = a2. Note that PAD implies that f (v) = a2. To see this, assume for
contradiction f (v) = a1. Then, applying PAD (interchanging the role of v and v′ in
above definition), we get that f (v′) = a1, a contradiction.

Roberts (1979) showed that PAD is a necessary condition for implementability.
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Lemma 3 (Roberts 1979) If an allocation rule is implementable, then it satisfies PAD.

It can be shown that monotonicity implies PAD, and hence, Lemma 3 is a direct
consequence of Proposition 1.

Given an allocation rule f , define the choice set at a profile of valuations v as

C f (v) = {a ∈ A : f (v(a) + ε, v(−a)) = a ∀ ε ∈ R
n++}.

Since U is open, C f (v) is well defined for every profile of valuations v. Using PAD,
one notices that if f is implementable, then f (v) ∈ C f (v) for every valuation profile
v ∈ V . Hence, the choice set is non-empty. The choice set allows us to look at potential
“candidates” other than f (v) which could have been selected by the allocation rule f
at valuation profile v.

We now introduce two new conditions on allocation rules. The first one is a transi-
tivity requirement.

Definition 8 An allocation rule f is transitive if for every x, y, z ∈ U , and every
v, v′, v′′ ∈ V such that v(a1) = x = v′′(a1), v(a2) = y = v′(a1), and v′(a2) = z =
v′′(a2), we have,

• if C f (v) = {a1} and C f (v′) = {a1}, then f (v′′) = a1 and
• if C f (v) = {a2} and C f (v′) = {a2}, then f (v′′) = a2.

The next condition is unanimity, which is very similar in flavor to the unanimity
axiom used in the social choice theory literature.

Definition 9 An allocation rule f is unanimous if ∂vi > 0 for all i ∈ N implies
f (v) = a1 and ∂vi < 0 for all i ∈ N implies f (v) = a2.

Theorem 3 Suppose for every i ∈ N, Li is an open interval. If f is an implementable
allocation rule that is unanimous and transitive, then it is a weighted efficient alloca-
tion rule. Conversely, a weighted efficient allocation rule f is unanimous and transi-
tive, and further, if it satisfies UIA, then it is implementable.

The proof of Theorem 3 is in the Appendix. In Mishra and Sen (2012), it was shown that
if the number of alternatives is at least three, then in open interval domains, every neu-
tral and implementable allocation rule is a weighted efficient allocation rule. Neutrality
requires that the allocation rule does not discriminate between alternatives. Theorem
3 is the counterpart of this result for the two alternatives case. The proof of Theorem
3 reveals that in the presence of transitivity, unanimity is equivalent to neutrality in
our model. Hence, compared to Mishra and Sen (2012), the extra axiom required to
characterize weighted efficiency in our two alternatives model is transitivity.

5 Conclusion

In quasi-linear private values environment, Roberts’ affine maximizer theorem is a
seminal contribution. Two crucial assumptions of this theorem are (a) there are at
least three alternatives and (b) the domain of valuations is unrestricted. We extend
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this theorem by considering the case of two alternatives. Unlike the three or more
alternatives result of Roberts (1979), which requires the domain of valuations to be
unrestricted, our results for two alternatives hold in various restricted domains of
valuations. An interesting future research direction will be to apply these results to
specific problems with two alternatives, and do some optimization—for instance,
revenue maximization or budget-balancing with minimal efficiency loss etc.

Finally, the notion of a GUF maximizer can be extended to environments with more
than two alternatives also. With suitable restrictions on GUFs, one can make a GUF
maximizer implementable in such environments. However, an open question remains
whether such GUF maximizers are the only implementable allocation rules (under
some additional mild conditions) in such environments.

Acknowledgments We are extremely grateful to Marc Fleurbaey, Benny Moldovanu, Anup Pramanik,
Souvik Roy, Arunava Sen, and Dries Vermulen, and two anonymous referees for useful comments and
discussions.

Appendix

Proofs of Theorems 2 and 3

We prove Theorems 2 and 3 in this section. Before we do so, we comment on the
methodology of the proof. The proof methodology is based on an ordering based
approach of Mishra and Sen (2012) (M&S from now on). M&S provide an alternate
proof of Roberts’ theorem when there are at least three alternatives. The general idea of
their proof is to characterize weighted efficiency using neutrality and implementability.
In the unrestricted domain, for every implementable allocation rule, there is another
implementable allocation rule that satisfies neutrality. This new allocation rule can
be obtained by translating the original allocation rule. One can then leverage the
weighted efficiency characterization to get a characterization of affine maximization
in the unrestricted domain.

Although, we employ this methodology, our proof is different in many aspects
from M&S. This is mainly because we have two alternatives. Our characterization of
weighted efficiency requires stronger condition than the neutrality condition of M&S.
Further, our affine maximization characterization requires implementability and a new
condition called independence, which M&S do not require if there are more than two
alternatives.

Proof of Theorem 3

Like in M&S, we start by proving the characterization of weighted efficiency first, and
then use this result to prove the affine maximizer characterization.

Fix an implementable allocation rule f . Consider the binary relation R f over U
defined by x R f y iff a1 ∈ C f (v), with v(a1) = x and v(a2) = y. Let P f and I f

respectively denote the asymmetric and symmetric part of R f . They are well-behaved
(in a sense made precise in Lemma 4) if f satisfies a neutrality condition.
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Definition 10 An allocation rule f is neutral if for every pair of valuations v, v′ ∈ V
such that v(a1) = v′(a2) and v(a2) = v′(a1) we have

C f (v) =
{

C f (v′) if C f (v) = A
A \ C f (v) otherwise.

The usual definition of neutrality will require that for every pair of valuations
v, v′ ∈ V such that v(a) = v′(−a) and v(−a) = v′(a) with v �= v′ we have
{ f (v′)} = A\{ f (v)}. One can verify that this version of neutrality implies our version
of neutrality if the allocation rule is implementable—see Mishra and Sen (2012) for a
proof.

Lemma 4 Suppose f is neutral and implementable. Then R f is reflexive and com-
plete. Further, if v(a1) = x and v(a2) = y, then

• C f (v) = {a1} implies x P f y and C f (v) = {a2} implies y P f x, and
• C f (v) = A implies x I f y.

Proof R f is reflexive. For any x ∈ U , consider the valuation profile v where v(a1) =
v(a2) = x . Since C f (v) is non-empty and f is neutral, C f (v) = A. Hence, x R f x .

R f is complete. For every x, y ∈ U , we can construct a valuation profile v with
v(a1) = x and v(a2) = y. If a1 ∈ C f (v), then x R f y. If a1 /∈ C f (v), then a2 ∈ C f (v).
Then, by neutrality, a1 ∈ C f (v′), with v′(a1) = y and v′(a2) = x . Therefore, y R f x .

We now show that C f (v) = {a1} implies x P f y. Suppose C f (v) = {a1}. This
clearly implies x R f y. Assume for contradiction that we also have y R f x . This implies
that a1 ∈ C f (v′), with v′(a1) = y and v′(a2) = x . Then, by neutrality, a2 ∈ C f (v),
which gives us a contradiction.

A similar reasoning ensures that C f (v) = {a2} implies y P f x .
Finally, we show that C f (v) = A implies x I f y. Suppose C f (v) = A. This clearly

implies x R f y. Neutrality implies that C f (v′) = A, with v′(a1) = y and v′(a2) = x .
So, y R f x , and hence, x I f y. �	
Lemma 5 Suppose f is an implementable and transitive allocation rule. Then, f is
unanimous if and only if it is neutral.

Proof Suppose f is neutral and implementable. Consider x, y ∈ U such that xi > yi

for all i ∈ N . Then, due to neutrality, C f (v) = A if v(a) = y for all a ∈ A. By PAD,
C f (v′) = {a} if v′(a) = x and v′(−a) = y. Hence, f is unanimous.

Now, suppose f is unanimous and transitive. Assume for contradiction that f is not
neutral. Then, for some x, y ∈ U , we consider v and v′ such that v(a1) = x = v′(a2)

and v(a2) = y = v′(a1). We consider two cases.
Case 1. Assume for contradiction C f (v) = A but C f (v′) = {a1} (the argument does
not change if C f (v′) = {a2}). Since a2 /∈ C f (v′), there is some ε ∈ R

n++ such
that f (v′(a1), v

′(a2) + 2ε) = a1. This implies that C f (v′(a1), v
′(a2) + ε) = {a1}.

Choose ε′ ∈ R
n++ such that ε′

i < εi for all i ∈ N . Since C f (v) = A, by PAD,
f (v(a1)+ ε, v(a2)+ ε′) = a1. Moreover, by PAD, C f (v(a1)+ ε, v(a2)+ ε′) = {a1}.
Now, consider the valuation profile v′′ such that v′′(a1) = v′(a1) = y and v′′(a2) =
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v(a2) + ε′ = y + ε′. By transitivity, f (v′′) = a1. But this contradicts the fact that f
is unanimous.
Case 2. Assume for contradiction C f (v) = {a1} but C f (v′) �= {a2} (the argument
is unchanged if C f (v) = {a2}). If C f (v′) = A, then we can apply the argument in
Case 1 to reach a contradiction (by interchanging the roles of v and v′). Now, assume
for contradiction C f (v′) = {a1}. Since a2 /∈ C f (v), there is some sufficiently small
ε ∈ R

n++ such that C f (v(a1), v(a2) + ε) = {a1}. Also, there is some ε′ such that
ε′

i < εi for all i ∈ N such that f (v′(a1) + ε, v′(a2) + ε′) = a1. Moreover, by
PAD, C f (v′(a1) + ε, v′(a2) + ε′) = {a1}. Consider a valuation profile v′′ such that
v′′(a1) = v(a1) = x and v′′(a2) = v′(a2) + ε′ = x + ε. By transitivity, f (v′′) = a1.
But this contradicts the fact that f is unanimous. �	

Finally, we show that if f is implementable, transitive, and unanimous, then R f is
transitive.

Lemma 6 If an implementable allocation rule f is transitive and unanimous, then
R f is an ordering.

Proof By Lemmas 4 and 5, if f is an implementable allocation rule that is transitive
and unanimous, then R f is a well-behaved binary relation. We need to show that R f

is transitive. We will show that P f and I f are each transitive, and this in turn will
imply that R f is transitive.

P f is transitive. Consider x, y, z ∈ U such that x P f y and y P f z. Fix any ε ∈ R
n++.

By definition, if v(a1) = x and v(a2) = y, then f (v(a1) + 2ε, v(a2) + ε) = a1.
Moreover, by PAD, C f (v(a1) + 2ε, v(a2) + ε) = {a1}. Similarly, if v′(a1) = y and
v′(a2) = z, then C f (v′(a1) + ε, v′(a2)) = {a1}. Consider the valuation profile v′′
such that v′′(a1) = x and v′′(a2) = z. By transitivity, f (v′′(a1) + 2ε, v′′(a2)) = a1.
Hence, a1 ∈ C f (v′′).

Also, for some ε ∈ R
n++, we have C f (v(a1), v(a2) + ε) = {a1} and for some

ε′ ∈ R
n++, we have C f (v′(a1) + ε, v′(a2) + ε′) = {a1}. Again, by transitivity,

f (v′′(a1), v
′′(a2) + ε′) = a1. Hence, a2 /∈ C f (v′′). This shows that x P f z.

I f is transitive. Consider x, y, z ∈ U such that x I f y and y I f z. Fix some ε ∈ R
n++.

By definition, if v(a1) = x and v(a2) = y, then C f (v(a1) + 2ε, v(a2) + ε) =
{a1}. Similarly, if v′(a1) = y and v′(a2) = z, then C f (v′(a1) + ε, v′(a2)) = {a1}.
Consider the valuation profile v′′ such that v′′(a1) = x and v′′(a2) = z. By transitivity,
f (v′′(a1) + 2ε, v′′(a2)) = a1. Hence, a1 ∈ C f (v′′). A similar argument shows a2 ∈
C f (v′′). Hence, x I f z. �	

An ordering R on U satisfies weak Pareto if for any x, y ∈ U if xi > yi for all
i ∈ N , then x Py.

An ordering R on U satisfies translation invariance (tr-invariance) if for any
x, y ∈ U and z ∈ R

n such that x +z, y+z ∈ U , we have x Py implies (x +z)P(y+z)
and x I y implies (x + z)I (y + z).

An ordering R on U satisfies continuity if for every x ∈ U , the sets {y ∈ U : x Ry}
and {y ∈ U : y Rx} are closed in U .
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Lemma 7 If f is an implementable allocation rule such that R f is an ordering, then
R f satisfies weak Pareto, tr-invariance, and continuity.

Proof Since f is unanimous, it is clear that R f satisfies weak Pareto.
Further, since f satisfies PAD (by Lemma 3), R f satisfies tr-invariance. To see

this, pick x, y ∈ U and z ∈ R
n such that x + z, y + z ∈ U . Suppose x P f y. Then,

if v(a1) = x and v(a2) = y for every ε ∈ R
n++, f (v(a1) + ε, v(a2)) = a1. Choose

such an ε. By PAD, for every ε′ ∈ R
n++ such that ε′

i > εi for all i ∈ N , we have
f (v(a1) + z + ε′, v(a2) + z) = a1. Hence, a1 ∈ C f (v(a1) + z, v(a2) + z). We
also know that for some ε ∈ R

n++, we have f (v(a1), v(a2) + 2ε) = a1. By PAD,
f (v(a1)+ z, v(a2)+ z + ε) = a1. Hence, a2 /∈ C f (v(a1)+ z, v(a2)+ z). This shows
that (x + z)P f (y + z). A similar argument shows that x I f y implies (x + z)I f (y + z).
Hence, R f satisfies tr-invariance.

We now show that R f satisfies continuity. To see this consider x ∈ U . We will
first show that {y ∈ U : y R f x} is closed. Consider a sequence of points {xk}k such
that xk R f x and the limit of this sequence is z ∈ U . Assume for contradiction that
x P f z. Hence, if v(a1) = x and v(a2) = z, then f (v(a1), v(a2) + ε) = a1 for some
ε ∈ R

n++. Hence, x R f (z + ε). Since the sequence converges to z, there is a point z′
in the sequence arbitrarily close to z such that z′ R f x . Since z′ is arbitrarily close to
z, we know that (z + ε)P f z′. Hence, by transitivity of R f , (z + ε)P f x . This is a
contradiction.

Next, we show that {y ∈ U : x R f y} is closed. Consider a sequence of points {xk}k

such that x R f xk and the limit of this sequence is z ∈ U . Assume for contradiction
that z P f x . Interchanging the role of x and z in the previous argument, we get that
z R f (x + ε) for some ε ∈ R

n++. Since the sequence converges to z, there is a point in
the sequence z′ arbitrarily close to z such that x R f z′. Since z′ is arbitrarily close to z,
by weak Pareto, (x + ε)P f z′. This is a contradiction. �	
Proof of Theorem 3

Proof Suppose f is an implementable allocation rule that is unanimous and transitive.
By Lemmas 6 and 7, the relation R f is an ordering on U satisfying weak Pareto, tr-
invariance, and continuity. Since U is open and convex, by Mishra and Sen (2012),
there exists λ1, . . . , λn ≥ 0 with λi > 0 for some i ∈ N , such that for every x, y ∈ U ,
x R f y if and only if

∑
i∈N λi xi ≥ ∑

i∈N λi yi .
Now, consider any valuation profile v. Since f (v) ∈ C f (v), we know that

v( f (v))R f v(a) for all a ∈ A. Hence,
∑

i∈N λivi ( f (v)) ≥ ∑
i∈N λivi (a). So,

f is a weighted efficient allocation rule.
Clearly, a weighted efficient allocation rule is transitive and unanimous. It is well

known that if a weighted efficient allocation rule satisfies UIA, then it is imple-
mentable (Mishra and Sen 2012). �	

Proof of Theorem 2

We now use Theorem 3 to give a proof of Theorem 2. Before, we go into the details
of the proof, we highlight the richness assumption of our domain. We assume that for
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every i ∈ N , the range of values for every alternative lies in an open interval Li , which
is unbounded from above. This implies that for every i ∈ N , Di = R,4 a fact which
we will use extensively in our proofs. Denote by D = D1 × · · · × Dn , and note that
D = R

n .
We will use the standard range condition of Roberts (1979) for the proof.

Definition 11 An allocation rule f satisfies non-imposition if for every a ∈ A, there
exists v ∈ V such that f (v) = a.

Fix an implementable allocation rule f . Suppose f satisfies independence. We first
observe that the choice set only depends on differences of valuations.

Lemma 8 Suppose f is implementable. Then, for every pair of valuation profiles,
v, v′ such that ∂vi = ∂v′

i for all i ∈ N, we have C f (v) = C f (v′).

Proof Choose v, v′ such that ∂vi = ∂v′
i for all i ∈ N . Pick a ∈ C f (v) and ε ∈ R

n++.
By definition, f (v(a) + ε

2 , v(−a)) = a. By PAD and using the fact that ∂vi = ∂v′
i

for all i ∈ N , we have f (v′(a) + ε, v′(−a)) = a. Hence, a ∈ C f (v′). Switching
the role of v and v′, we can show that if a ∈ C f (v′), then a ∈ C f (v). As a result,
C f (v) = C f (v′). �	

As a consequence of Lemma 8, we will define a mapping c f : D → {S ⊆ A : S �=
∅}, such that for every x ∈ D, c f (x) = C f (v), where v is such that ∂vi = xi for all
i ∈ N .

Now, define κ f as follows. For every α ∈ R, denote by 1α the vector in R
n such that

each component of 1α has value α. By our assumption on D, 10 ∈ D. If a1 ∈ c f (10),
then let

κ f = − sup{α ∈ R+ : a1 ∈ c f (1−α)}.

If a1 /∈ c f (10), then let

κ f = inf{α ∈ R+ : a1 ∈ c f (1α)}.

Lemma 9 If f is an implementable allocation rule satisfying non-imposition, then
κ f is a well defined real number.

Proof Suppose a1 ∈ c f (10). By non-imposition (and using Lemma 8), we get that
there is some β ∈ R such that a2 ∈ c f (1−β). Since a1 ∈ c f (10), by PAD, β >

sup{α ∈ R+ : a1 ∈ c f (1−α)} ≥ 0. This shows that κ f exists since the set {α ∈
R+ : a1 ∈ c f (1−α)} is bounded. So, κ f is a real number. A similar proof works if
a1 /∈ c f (10). �	

The next lemma proves another property of c f .

Lemma 10 If f is an implementable allocation rule satisfying non-imposition, then
c f (1κ f ) = A.

4 To remind, Di = {∂vi : vi ∈ Vi }.
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Proof By our assumption on D, 1κ f ∈ D. First, we show that a1 ∈ c f (1κ f ). Assume
for contradiction that a1 /∈ c f (1κ f ). In that case, for all v ∈ V with ∂vi = κ f , we
have a1 /∈ C f (v). This implies that there is some ε ∈ R

n++ such that f (v(a1) +
ε, v(a2)) �= a1. Hence, a1 /∈ c f (1κ f + ε

2 ). But, by definition of κ f , for any ε′ ∈ R
n++,

a1 ∈ c f (1κ f + ε′), and this is a contradiction.
Next, we show that a2 ∈ c f (1κ f ). Again, assume for contradiction that a2 /∈

c f (1κ f ). As in the previous case, there is some ε ∈ R
n++ and v ∈ V such that

∂vi = κ f − ε and f (v) �= a2. Hence, a2 /∈ c f (1κ f − ε
2 ). But, by definition of κ f , for

any ε′ ∈ R
n++, a1 /∈ c f (1κ f −ε′). Since for any ε′ ∈ R

n++, c f (1κ f −ε′) is non-empty,
a2 ∈ c f (1κ f − ε′). This is a contradiction. �	

Now, let f be an implementable allocation rule satisfying non-imposition. Define
a new allocation rule f̄ as follows. For every v ∈ V , define the valuation profile vtr as
follows: ∂vtr

i = ∂vi + κ f for all i ∈ N . Note that by our assumption of D, vtr ∈ V .
Now, the allocation rule f̄ is defined as:

f̄ (v) = f (vtr ).

We now establish an important lemma.

Lemma 11 If f is an implementable allocation rule satisfying independence and
non-imposition, then f̄ is implementable, unanimous, and transitive.

Proof Suppose f is an implementable allocation rule satisfying independence and
non-imposition. Let (p1, . . . , pn) be the payments that implement f . For every i ∈ N
and for every v−i , let p̄i (vi , v−i ) = pi (v

tr
i , vtr

−i ) − κ f if f (vi , v−i ) = a1 and
p̄i (vi , v−i ) = pi (v

tr
i , vtr

−i ) if f (vi , v−i ) = a2. We will show that ( p̄1, . . . , p̄n)

implement f̄ . To see this, consider i ∈ N and v−i . Also, consider vi , v
′
i such that

f̄ (vi , v−i ) = a1 and f̄ (v′
i , v−i ) = a2 (a similar proof works if f̄ (vi , v−i ) = a2 and

f̄ (v′
i , v−i ) = a1). Now,

vi (a1) − p̄i (vi , v−i ) = vtr
i ( f (vtr

i , vtr
−i )) − pi (v

tr
i , vtr

−i )

≥ vtr
i ( f (v′tr

i , vtr
−i )) − pi (v

′tr
i , vtr

−i )

= vi ( f̄ (v′
i , v−i )) − p̄i (v

′
i , v−i ).

Hence, ( p̄1, . . . , p̄n) implement f̄ .
We show that f̄ is unanimous. Consider a valuation profile v such that v(a1) = x ,

v(a2) = y, and xi > yi for all i ∈ N . We need to show that f̄ (v) = a1. To see
this, consider the valuation profile v′ such that v′(a1) = y = v′(a2). But c f̄ (10) =
c f (1κ f ) = A. Hence, C f̄ (v′) = A, and using PAD, we get that f̄ (v) = a1.

Finally, we show that f̄ is transitive. For this, we consider x, y, z ∈ D and v, v′, v′′
such that v(a1) = x = v′′(a1), v(a2) = y = v′(a1), and v′(a2) = z = v′′(a2).

Suppose C f̄ (v) = {a1} and C f̄ (v′) = {a1}. We will show that f̄ (v′′) = a1. Note
that since C f̄ (v′) = {a1}, there is some ε ∈ R

n++ such that f̄ (v′(a1)−ε, v′(a2)) = a1.
To see this, suppose for all ε ∈ R

n++, we have f̄ (v′(a1) − ε, v′(a2)) = a2. We know
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that for some ε′ ∈ R
n++, we have f̄ (v′(a1), v

′(a2) + ε′) = a1 (since a2 /∈ C f̄ (v′)).
By PAD, f̄ (v′(a1) − ε′

2 , v′(a2)) = a1. This is a contradiction. Similarly, there is an
ε′ ∈ R

n++ such that f (v(a1) − ε′, v(a2)) = a1.
Now, choose an ε′′ ∈ R

n++ such that f̄ (v′(a1) − ε′′, v′(a2)) = a1 and f̄ (v(a1) −
ε′′
2 , v(a2)) = a1—note that such an ε′′ can be chosen. In that case, by independence,

either f̄ (v(a1), v
′(a2)) = a1 or f̄ (v′(a1)− ε′′

2 , v(a2)) = a1. Since v′(a1) = v(a2) = y
and f̄ is unanimous, the latter is not possible. Hence, f̄ (v′′) = f̄ (v(a1), v

′(a2)) = a1.
A similar argument shows if C f̄ (v) = {a2} and C f̄ (v′) = {a2}, then f̄ (v′′) = a2.

�	
This leads to the proof of Theorem 2.

Proof of Theorem 2

Proof Suppose f is an implementable allocation rule. If f does not satisfy non-
imposition, then clearly it is an affine maximizer. Now, suppose f satisfies non-
imposition and independence. Then, by Lemma 11, f̄ is an implementable alloca-
tion rule which is unanimous and transitive. By Theorem 3, there exists non-negative
weights λ1, . . . , λn such that for all v, if

∑
i∈N λi∂vi > 0, then f̄ (v) = a1 and

if
∑

i∈N λi∂vi < 0, then f̄ (v) = a2. Furthermore, we can choose these weights,
without loss of generality, such that

∑
i∈N λi = 1.

Now, using the definition of f̄ , we get that if
∑

i∈N λi∂vi > κ f , then f (v) = a1
and if

∑
i∈N λi∂vi < κ f , then f (v) = a2. Setting γ (a1) = κ f and γ (a2) = 0, we

get that f is an affine maximizer.
For the converse, Lemma 2 shows that an affine maximizer satisfies independence.

It is well known that an affine maximizer is implementable by generalized Groves
payments if it satisfies UIA. �	

Independence of Axioms used in Theorem 1

We give three examples below to illustrate the requirement of the conditions in The-
orem 1. The three examples below refer to the version of Theorem 1 with condition
Ca, but can be easily adapted for the version with condition Cb.

Example 3 This example illustrates that there are implementable affine maximizers
when Di s are interval which violate agent sovereignty. Hence, the agent sovereignty
condition is necessary for our characterization.

Let Di = [0, 1] ∀i ∈ N with n > 2 and f (v) = arg maxa∈A
∑

i∈N vi (a), with ties
broken in favor of a1. This allocation rule violates agent sovereignty. Indeed, fix i ∈ N
and note that if v j (a1) = 0, v j (a2) = 1 for all j �= i , then � vi : f (vi , v−i ) = a1.
However, f is clearly monotone and, hence, implementable.

Example 4 This example illustrates that there are implementable allocation rules sat-
isfying agent sovereignty when Di s are not intervals. Hence, the requirement that Di s
are intervals is necessary for our characterization.
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Let Di = N ∀i ∈ N with n > 2, where N is the set of non-negative integers. Let
f (v) = arg maxa∈A

∑
i∈N vi (a), with ties broken in favor of a1. This allocation rule

is clearly monotone, and hence, implementable. It also satisfies agent sovereignty. But
the domain is not an interval.

Example 5 The following example illustrates that there are non-implementable allo-
cation rules satisfying agent sovereignty in domains where Di s are intervals. Hence,
agent sovereignty does not imply implementability in such domains.

Let Di = (0,∞) ∀i ∈ N with n > 2 and f (v) = arg maxa∈A 	i∈N vi (a), with ties
broken in favor of a1. Allocation rule f satisfies agent sovereignty because the domain
is unbounded above. Monotonicity (and hence Implementability) is violated. Indeed,
suppose n = 2. Fix v2(a1) = 9, v2(a2) = 1. Consider v1(a1) = 0.1, v1(a2) = 1 and
v′

1(a1) = 1, v′
1(a2) = 2. Note that f (v1, v2) = a2 and v1(a2) − v1(a1) = 0.9 < 1 =

v′
1(a2) − v′

1(a1). However, f (v′
1, v2) = a2, violating monotonicity.
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