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Abstract We provide several characterizations of unanimity decision rules, in a pub-
lic choice model where preferences are constrained by attributes possessed by the
alternatives (Nehring and Puppe, Games Econ Behavior 59:132–153, 2007a; Nehring
and Puppe, J Econ Theory 135:269–305, 2007b). Solidarity conditions require that
when some parameters of the economy change, the agents whose parameters are kept
fixed either all weakly lose or they all weakly win. Population-monotonicity (Thom-
son, Math Oper Res 8:319–326, 1983a; Thomson, J Econ Theory 31:211–226, 1983b)
applies to the arrival and departure of agents, while replacement-domination (Moulin,
Q J Econ 102:769–783, 1987) applies to changes in preferences. We show that either
solidarity property is compatible with voter-sovereignty and strategy-proofness if and
only if the attribute space is quasi-median (Nehring, Social aggregation without veto,
Mimeo, 2004), and with Pareto-efficiency if and only if the attribute space is a tree.
Each of these combinations characterizes unanimity.
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14 S. Gordon

1 Introduction

Unanimity decision rules are used in many political institutions, such as the United
Nations Security Council, the ratification procedure for treaties in the European Union,
and criminal law juries. Surprisingly few justifications for such rules are available
(Berga et al. 2004; Ju 2005). We provide several characterizations of unanimity in a
general public choice problem. Decision rules prescribe an outcome as a function of the
preferences submitted by individuals. The set of admissible preferences is constrained
by a set of objective attributes possessed by the alternatives: we consider the class
of attribute-based domains, introduced by Nehring and Puppe (2007a, 2007b, 2005,
2010). Solidarity conditions are the key element in all of our characterizations.

Solidarity is a principle of justice with respect to changes in circumstances. It
says that all agents not responsible for these changes should be affected in the same
direction. Possible changes include the arrival or departure of individuals, as well
as changes in their preferences. “Replacement-domination” is introduced by Moulin
(1987) in the context of quasi-linear binary public decision. It applies to a model with
a fixed population of agents and requires that the replacement of the preferences of one
agent causes the other agents to either all weakly win or all weakly lose. “Population-
monotonicity” is introduced by Thomson (1983a, 1983b) in the context of bargaining.
It applies to a model with a variable population of agents and requires that when one
agent joins the population, the other agents whose preferences are kept fixed either all
weakly win or they all weakly lose.1

In the context of public choice, solidarity conditions are first studied in location
models. Thomson (1995) considers a continuous line over which agents have single-
peaked preferences. For any preference profile, a target rule selects the Pareto-efficient
alternative that is closest to some exogenously fixed alternative on the line. Thom-
son (1995) shows that the target rules are the only Pareto-efficient rules that satisfy
replacement-domination. Ching and Thomson (1997) show that these rules are also the
only Pareto-efficient rules that satisfy population-monotonicity. Ching and Thomson
(1997), Vohra (1999) and Klaus (1999, 2001) extend these results for single-peaked
preferences on a tree network. Klaus (1999, 2001) further shows that the target rules
are the only ones that satisfy unanimity (if all agents’ preferred alternative is the same,
it should be selected), strategy-proofness (reporting true preferences is a weakly dom-
inant strategy for all agents) and either condition of solidarity, on a tree network.
Finally Klaus (1999, 2001) extends this second result to Euclidean spaces, when
agents’ preferences are separable across dimensions and quadratic, and characterizes
coordinatewise target rules on this domain. Gordon (2007b) obtains an impossibil-
ity result for single-peaked preferences on a circle, except on small discrete domains
(less than five alternatives) of symmetric preferences.2

1 For surveys on these two conditions, see Thomson (1995, 1999).
2 Solidarity conditions were also studied in the problem of locating multiple public goods by Miyagawa
(1998, 2001), Ehlers (2002, 2003), and Umezawa (2012) and in the problem of selecting a probabilitic
location by Ehlers and Klaus (2001). These models differ from ours in that they include some alternatives
which are not considered best by any preference in the domain.
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Unanimity in domains 15

In this paper, we extend the analysis to a larger class of models in which the
set of admissible preferences is constrained by a set of objective attributes pos-
sessed by the alternatives. This class of domains generalizes discrete versions of
all of the locations models listed in the last paragraph. One difference is that
these models assume a continuum of alternatives, while we assume a discrete set.
This difference is however not fundamental. The real novelty of our work is that
the class of attribute-based domains is larger than the class of domains structured
around a location model. For example, the unrestricted domain, the domain of sep-
arable preferences over sets of objects (Barberà et al. 1991) and models of vot-
ing under constraints (Barberà et al. 1997, 2005) can be viewed as attribute-based
domains.

Our starting point, in Sect. 3, is a characterization by Nehring and Puppe
(2007b), which mirrors results by Barberà, Massó and Neme (1997, 2005) in the
closely related model of voting under constraints These authors show that the
rules that satisfy voter-sovereignty (any alternative is selected for some profile)
and strategy-proofness in any attribute-based domain form a class of “voting by
issues” rules which make separate decisions between each attribute and its comple-
ment.

In Sect. 4, we show that in any attribute-based domain, the rules satisfying voter-
sovereignty, strategy-proofness and solidarity, when they exist, are unanimity rules,
in which each of the attributes of some prespecified “target” alternative can only be
defeated by an unanimous vote. This result can be viewed as a generalization of a
discrete counterpart of the similar characterizations by Klaus (1999, 2001) on trees
and Euclidean spaces. Nehring and Puppe (2007b) have characterized the class of
attribute spaces in which unanimity voting by issues rules exist, the “quasi-median”
spaces (Nehring 2004). It follows that the quasi-median domains are exactly the ones
where these three conditions are compatible. We provide examples to illustrate how
this class of domains extends the discrete counterparts of the domains studied by Klaus
(1999, 2001).

In Sect. 5, we study the compatibility of Pareto-efficiency and solidarity in attribute-
based domains. Here, we do not assume strategy-proofness and hence cannot restrict
attention to “voting by issues” rules from the outset, but this last condition turns out
to be implied by the other two.3 Unfortunately, our result is negative. “Trees”, which
are precisely the discrete counterpart of the domains studied by Ching and Thomson
(1997), Vohra (1999) and Klaus (1999, 2001) in continuous location models are the
only attribute-based domains where the two conditions are compatible. Finally, we
provide a characterization on discrete trees, that mirrors the results obtained by these
authors in the continuum case. Our proof differs from theirs, in that we rely on the
theory of voting by issues.

3 In a companion paper, Gordon (2007a) studies Pareto-efficiency and solidarity in a general public choice
problem and establishes several of these conditions’ general implications. We defer the discussion of the
relation between the two papers to the end of Sect. 5.
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16 S. Gordon

2 The model

In this section, we present the class of attribute-based domains (Nehring and Puppe
2007a, b). Then we present the fixed and variable population models and the conditions
we are interested in.

Let A be a nonempty finite set of alternatives. Let H ⊆ 2A be a non-empty family
of subsets of A, with typical element H ⊆ A. The elements of H are called attributes.
We can think of each of them as a descriptive characteristic relevant for the choice
and defined by the set of alternatives that possess it. For example, if the set A is a set
of possible constitutions for a nation, the attributes could be “federal”, “non-federal”,
“presidential”, “parliamentary” and the attribute “presidential” is defined as the subset
of constitutions in A that are presidential. Suppose that H satisfies the following three
conditions. Non-triviality: for all H ∈ H, H �= ∅. Closedness under negation: for all
H ∈ H, Hc ∈ H. Separation: for all x �= y ∈ A, there is H ∈ H such that x ∈ H
and y /∈ H . A family H that satisfies these three conditions is called an attribute
space.4 Following Nehring (1999), an attribute space enables us to define a notion of
betweenness of alternatives as follows. Let a, b, c ∈ A. We say that b is between a
and c, denoted by b ∈ [a, c] if b possesses all attributes that are common to a and c.
For all a, b, c ∈ A,

b ∈ [a, c] :⇔ for all H ∈ H, {a, c} ⊆ H ⇒ b ∈ H.

Here are some simple examples. It is important to realize that an attribute space could
be much more intricate than the ones shown here.

Example 1 (Lines and Trees). Suppose that the alternatives can be ordered from left
to right by some linear ordering ≤ on X . The family H of all sets of the form H≤x :=
{a ∈ A : a ≤ x} or H≥x := {a ∈ A : a ≥ x} for all x ∈ A define an attribute space.
Each attribute is thus of the form “greater than or equal to x” or “lesser than or equal
to x”. The induced line betweenness is given, for all a, b, c ∈ A, by b ∈ [a, c] :⇔
[a ≤ b ≤ c or c ≤ b ≤ a]. More generally, an attribute space can be defined on a tree,
defined as a graph (set of undirected edges) on A without cycles. For each x ∈ A, the
set A \ {x} can be uniquely represented as the union of two connected components
H+

x and H−
x whose intersection is the singleton {x}. The family H of all sets of the

form H+
x and H−

x for all x ∈ A define an attribute space.

Example 2 (Hypercubes). Let A = {0, 1}K . An alternative is represented by a
sequence a = (

a1, ..., aK
)

with ak ∈ {0, 1}. For all k, let Hk
0 := {a : ak = 0}

and Hk
1 := {a : ak = 1} and consider the family H of all such subsets. The

induced hypercube betweenness is given, for all a, b, c ∈ A, by b ∈ [a, c] :⇔[
for all k : ak = ck ⇒ bk = ak = ck

]
. Geometrically, b is between a and c if and

only if b is contained in the subcube spanned by a and c.

Example 3 (Cycles). Let A = {a1, ..., ak} and consider the k-cycle on A, i.e. the graph
with the edges (al , al+1) with the convention al+k = al . If k is odd, define H as the

4 Note that the set A can be recovered from an attribute space H since A = ⋃

H∈H
H
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Unanimity in domains 17

family of sets of the form
{

al , ..., al−1+ k±1
2

}
. If k is even, define H as the family of

sets of the form
{

al , ..., al−1+ k
2

}
.

A subset S ⊆ A is convex if it is the intersection of attributes. By convention
∩∅ = A, hence A is also convex. For all B ⊆ A, the convex hull of B, denoted by
Co (B) is the smallest convex set that contains it. For all a, b ∈ A, the segment [a, b]
is the convex hull of {a, b}. The elements of [a, b] are exactly the alternatives that are
between a and b.

A binary relation Ri is called a preference if it is reflexive, transitive and complete,
i.e. a weak ordering.5 Let Pi and Ii be the associated strict preference and indifference
relations. Let H be an attribute space. A preference Ri is adapted to H if there exists
p (Ri ) ∈ A such that for all a �= b ∈ A, a ∈ [p (Ri ) , b] ⇒ a Pi b. This means
that p (Ri ) is the “single peak” of preference Ri , i.e. its most preferred alternative.
Moreover if a has more attributes (in an inclusion sense) in common with p (Ri ) than
b does, preference Ri prefers a to b.

Let R be the set of preferences, which are adapted to H. In this paper, we focus on
domains of preferences, which are adapted to some attribute space.

The line attribute space in Example 1 generates a discrete version of the clas-
sic single-peaked domain on a line studied by Moulin (1980), Thomson (1993) and
Ching and Thomson (1997). The tree attribute space in Example 1 generates a dis-
crete version of the domain of single-peaked preferences on a tree studied by Ching
and Thomson (1997), Vohra (1999), Klaus (1999, 2001) and Schummer and Vohra
(2002). The attribute space in Example 2 generates the separable domain over subsets
of objects, introduced by Barberà, Sonnenschein and Zhou (1991). The attribute space
in Example 3 generates a discrete version of the domain of single-peaked preferences
on a circle studied by Gordon (2007a) and Schummer and Vohra (2002). The unre-
stricted domain, the domain of separable and single-peaked domains on product of
lines are also special cases.

We consider problems with a fixed population and problems with a variable popu-
lation. For each, we define the relevant solidarity condition.
Fixed Population: Let N be a fixed nonempty finite set of agents with generic agent
denoted by i . A fixed population problem is defined by an attribute space H and a fixed
population N . Each agent i is equipped with a preference Ri ∈ R. A preference profile
is a list RN = (Ri )i∈N ∈ RN . A rule is a mapping f : RN → A. We are interested
in solutions such that when the preference of one agent changes, the other agents are
all affected in the same direction: either they all weakly win or the all weakly lose.

A solution f satisfies replacement-domination if for all RN ∈ RN , all i ∈ N , all
R′

i ∈ R, either for all j ∈ N \ {i} , f
(
R′

i , RN\{i}
)

R j f (RN ) , or for all j ∈ N \ {i},
f (RN ) R j f

(
R′

i , RN\{i}
)
.

We assume that |N | ≥ 3, which is the minimal cardinality for which replacement-
domination has bite.
Variable population: Let N be a finite set of potential agents with generic agent
denoted by i . A variable population problem is defined by an attribute space H and a

5 Nehring and Puppe work with linear orderings (2007a, b). Here we consider weak orderings. Either
domain is rich enough for our results to hold.
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18 S. Gordon

set of potential agents N . It consists of the collection of problems with fixed population
(H, N ) for all nonempty N ⊆ N . A preference profile is given by a set N and a list
RN ∈ RN . A (variable population) rule is a mapping f : ∪N RN → A. For all
N ⊂ N finite, the restriction of f to RN is denoted by fN . We are interested in
solutions such that when one agent joins the economy and the preferences of the
agents already present in the economy are kept fixed, these agents who were present
before the change are all affected in the same direction: either they all weakly win or
they all weakly lose.

A solution f satisfies population-monotonicity if for all N ⊂ N , RN ∈ RN , all
i ∈ N \ N , all R′

i ∈ R, either for all j ∈ N , f
(
R′

i , RN
)

R j f (RN ) , or for all j ∈ N ,

f (RN ) R j f
(
R′

i , RN
)
.

We assume that |N | ≥ 3, which is the minimal cardinality for which population-
monotonicity has bite.

In either model, we study the compatibility of the relevant solidarity condition
with the following additional requirements. A fixed population rule satisfies voter-
sovereignty if it is onto, i.e. if every alternative is selected by the rule for some profile
in its domain. Next, a rule is strategy-proof if revealing their true preferences is a
weakly dominant strategy for all agents: for all RN ∈ RN , all i ∈ N and all R′

i ∈ R,
we have f (RN ) Ri f

(
R′

i , RN\{i}
)
. Last, a rule satisfies Pareto-efficiency, if at any

profile, there is no alternative that is weakly preferred by all agents in the economy
and strictly preferred by at least one agent to the alternative selected by the choice
function: for all RN ∈ RN , there exists no a ∈ A such that for all i ∈ N , a Ri f (RN )

and for some j ∈ N , a Pj f (RN ). A variable population rule f satisfies either of
these three properties if for all N , the restriction fN satisfies it. We are interested
in rules that satisfy solidarity and either voter-sovereignty and strategy-proofness, or
Pareto-efficiency.

3 Voting by issues

In this Section, we present a classic result in the literature, on which our results are
based. It characterizes the class of rules that satisfy voter-sovereignty and strategy-
proofness as “voting by issues.” The results in this section were obtained by Nehring
and Puppe (2007b) in the attribute-based framework. Similar results were previously
obtained by Barberà, Massó and Neme (1997, 2005) in the related model of voting
under constraints.

An issue is defined as the pair formed by an attribute and its complement. Under
“voting by issues,” the agents vote separately on each issue, over the two corresponding
competing attributes, using an issue-specific voting rule for each of the issues. The
alternative that is selected is the one that possesses all of the adopted attributes. Of
course, such a procedure is well defined only if the issue-specific voting rules satisfy
certain joint restrictions.

More precisely, consider a fixed population problem (H, N ). A family of winning
coalitions is a non-empty family W of subsets of N satisfying

[
W ∈ W and W ⊆ W ′]

⇒ W ′ ∈ W . For example, for any q ∈ (0, 1) , the quota q family consists of the
coalitions W ⊆ N such that |W | > q |N |. A structure of winning coalitions is a list
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Unanimity in domains 19

(WH )H∈H of families of winning coalitions indexed by the attributes of H such that
for each W ⊆ N and each attribute H, we have

W ∈ WH ⇔ N \ W /∈ WHc . (1)

Let W = (WH )H∈H be a structure of winning coalitions. Voting by issues associ-
ated with W is the rule f : RN → A such that for all RN ∈ RN ,

a = f (RN ) :⇔ for all H ∈ H such that a ∈ H we have {i : p (Ri ) ∈ H} ∈ WH .

In general, the rule f need not be well-defined.6 Nehring and Puppe (2007b) provide
the following important characterization.

Proposition 1 (Nehring and Puppe 2007b) A rule f satisfies voter-sovereignty and
strategy-proofness if and only if it is voting by issues and well-defined.

Obviously, this result extends to variable population problems in the following way.

Corollary 1 A variable population rule satisfies voter-sovereignty and strategy-
proofness if for each nonempty N ⊆ N , the rule fN is voting by issues and well-
defined.

An important feature of voting by issues is that the rules in this class always select
an alternative that lies in the convex hull of the peaks of the agents: for all RN ∈ RN ,

f (RN ) ∈ Co ({p (Ri ) : i ∈ N }). In particular, for all preference profile with exactly
two distinct peaks, the choice function selects an alternative that lies between the two
peaks: for all RN such that there is a �= b ∈ A such that {p (Ri )}i∈N = {a, b} , we
have f (RN ) ∈ [a, b].

4 Strategy-proofness and Solidarity

In this section, we study the compatibility of voter-sovereignty, strategy-proofness and
either solidarity condition.

In the last section, we introduced voting by issues. A rule in this class is a unanimity
rule if there exists a “ target” â ∈ A whose attributes can only be defeated by unanimity,
i.e. such that WH = 2N \{∅} for all H such that â ∈ H and WH = {N } for all H such
that â /∈ H . Such a rule is denoted by f â . As Nehring and Puppe (2005) note, it follows
directly from this definition that for any RN ∈ RN , f â (RN ) is well-defined if and only
if there exists an alternative that is both in Co ({p (R1) , ..., p (Rn)}) and in [̂a, p (Ri )]
for all i ∈ N . If there is such an alternative, it is necessarily unique and it is precisely
f â (RN ). The condition f â (RN ) ∈ Co ({p (R1) , ..., p (Rn)}) expresses the fact that
any attribute that is unanimously supported gets approved. The condition f â (RN ) ∈

6 Nehring and Puppe (2007b) provide a necessary and sufficient condition on the structure of winning
coalitions under which voting by issues is well-defined: the “intersection property.” Barberà, Massó and
Neme (1997) provide a different necessary and sufficient condition, also labelled “intersection property”
under which separable voting under constraints is well-defined.
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20 S. Gordon

[̂a, p (Ri )] expresses the fact that any attribute possessed by â and supported by at
least one agent gets approved. Similarly, in a variable population model, a rule f is
a unanimity rule if there exists â ∈ A, such that for all N , the restriction fN is the
unanimity rule f â .

We now show that unanimity rules are the only rules that satisfy voter-sovereignty,
strategy-proofness and the relevant solidarity condition.

Proposition 2 (i) A rule f satisfies voter-sovereignty, strategy-proofness and
replacement-domination if and only if it is a unanimity rule. (i i) A variable-population
rule f satisfies voter-sovereignty, strategy-proofness and population-monotonicity if
and only if it is a unanimity rule.

Proof It is clear that a unanimity rule satisfies the conditions. We prove the converse
implications.

(i) From Proposition 1, we know that f is voting by issues and well-defined,
characterized by a winning coalition structure (WH )H .

First, we show that for all H ∈ H, either WH = 2N \ {∅} or WH = {N }. Suppose
by contradiction that this is not the case. Then let H ∈ H, W ∈ WH and i ∈ W, such
that W �= N and W \ {i} �= ∅ and W \ {i} /∈ WH . Let a ∈ H and b /∈ H . Let Ra ∈ R
be a preference such that p (Ra) = a and for all x ∈ H and all y /∈ H, x Pa y.
Similarly, let Rb ∈ R be such that p

(
Rb

) = b and for all x /∈ H and all y ∈ H, x Pb

y. Let RN ∈ RN such that for all j ∈ W, R j := Ra and for all j ∈ N \ W, R j := Rb.
Next, let R′

i := Rb. By definition of voting by issues, this implies that f (RN ) ∈ H
but f

(
R′

i , RN\{i}
)

/∈ H . Therefore the replacement of Ri by R′
i hurts all agents in

W \ {i} and benefits all agents in N \ W, which contradicts replacement-domination.
Thus, for all H ∈ H, either WH = 2N \ {∅} or WH = {N }.

Next, let H f := {
H ∈ H : WH = 2N \ {∅}}. We now show that

⋂
H∈H f

H �= ∅.
Suppose by contradiction that this set is empty. Then there is H1, ..., Hl ∈ H f , where
l � 2, such that

⋂l−1
k=1 Hk �= ∅ and

⋂l
k=1 Hk = ∅. Let Let Ra, Rb ∈ R be such that

p (Ra) ∈ ⋂l−1
k=1 Hk and p (Rb) ∈ Hl . Let R be the profile (Ra, Rb, ..., Rb) where

Rb is repeated |N | − 1 times. Since all the Hk for k = 1, ..., l are in H f , we have
f (R) ∈ ⋂l

k=1 Hk = ∅, which is a contradiction. Therefore
⋂

H∈H f
H �= ∅.

Last, we show that this intersection has exactly one element â. Suppose that a �= b ∈⋂
H∈H f

H . Let H ∈ H such that a ∈ H and b /∈ H . If H ∈ H f , then b ∈ ⋂
H∈H f

H

is contradicted. If instead H /∈ H f , then by (1), Hc ∈ H f and a ∈ ⋂
H∈H f

H is
contradicted. Therefore there is â ∈ A such that {̂a} = ⋂

H∈H f
H . Moreover, for all

RN ∈ RN , we have f (RN ) ∈ Co ({p (Ri ) : i ∈ N }) and f (RN ) ∈ [ f (Ri ) , â] for
all i ∈ N . Therefore f is a unanimity rule with parameter â.

(i i) First, we show that for each H ∈ H, each population N ⊆ N with |N | ≥ 3,

each W � N such that |W | ≥ 2, and each i ∈ W, we have W ∈ WH,N �⇒ W \{i} ∈
WH,N\{i}. Let H, N , W and i satisfy these conditions and suppose that W ∈ WH,N .
Let a ∈ H and b /∈ H . Let Ra ∈ R be a preference such that p (Ra) = a and for all
x ∈ H and all y /∈ H, x Pa y. Similarly, let Rb ∈ R be such that p

(
Rb

) = b and for
all x /∈ H and all y ∈ H, x Pb y. Let RN ∈ RN such that for all j ∈ W, R j := Ra

and for all j ∈ N \W, R j := Rb. By definition of voting by issues, since W ∈ WH,N ,
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Unanimity in domains 21

we have f (RN ) ∈ H . Next, consider the profile RN\{i}, where agent i has left. By
population-monotonicity, we have f

(
RN\{i}

) ∈ H . By definition of voting by issues,
this implies that W \ {i} ∈ WH,N\{i}.

Second, we show that for each H ∈ H, each population N � N with |N | ≥ 2,

each W � N such that |W | ≥ 1, and each i /∈ N , we have W ∈ WH,N �⇒ W ∈
WH,N∪{i}. Let H, N , W and i satisfy these conditions and suppose that W ∈ WH,N .
Let a ∈ H and b /∈ H . Let Ra ∈ R be a preference such that p (Ra) = a and for
all x ∈ H and all y /∈ H, x Pa y. Similarly, let Rb ∈ R be such that p

(
Rb

) = b
and for all x /∈ H and all y ∈ H, x Pb y. Let RN ∈ RN such that for all j ∈ W,

R j := Ra and for all j ∈ N \ W, R j := Rb. By definition of voting by issues, we
have f (RN ) ∈ H . Next, consider the profile

(
R′

i , RN
)
, where agent i is added, with

the preference R′
i := Rb. By population-monotonicity, we have f

(
R′

i , RN
) ∈ H . By

definition of voting by issues, this implies that W ∈ WH,N∪{i}.
The implications proved in the last two paragraphs, together with the implication

for all H, N , W,
[
W ∈ WN ,H and W ⊆ W ′] ⇒ W ′ ∈ WN ,H imply that for all H,

either WH,N = 2N \ {∅} for all N or WH,N = {N } for all N .
Last, we define the family H f := {

H ∈ H : WH = 2N \ {∅}} , which as we saw
does not depend on N , and â = ⋂

H∈H f
H exactly like in (i). Thus for all N , the rule

fN is the unanimity rule with parameter â. ��
For all (a, b, c) ∈ A, if the set [a, b] ∩ [b, c] ∩ [a, c] is not empty, it necessarily

contains a single element called the median of (a, b, c) , denoted by med (a, b, c). An
alternative a ∈ A is called a median alternative for H if and only if for all b, c ∈ A the
triple (a, b, c) has a median. Nehring and Puppe (2005, 2010) obtained the following
result.

Proposition 3 (Nehring and Puppe 2005, 2010) For all â ∈ A, and all N such that
|N | ≥ 2, the unanimity rule f â is well-defined on RN , if and only if â is a median
alternative for H.

It is easy to see that the direct implication is true. If f â is well-defined at some
profile with peaks located at b and c, it is necessarily a median of â, b and c. The
fact that when â is a median point, the rule f â is well-defined is less clear. Nehring
and Puppe (2005, 2010) provide an abstract proof of this fact. For completeness, we
provide here a constructive proof of this result, which we believe is more transparent.

Proof First, suppose that the rule f â is well-defined on RN , with |N | ≥ 2. Let b, c
be arbitrary alternatives in A. Consider a profile RN such that all agents have their
peaks in {b, c} and not all agents have the same peak. Then by definition, f â (RN ) is
an element of [̂a, b] ∩ [̂a, c] ∩ [b, c]. Therefore this set is not empty. Since this is true
for all b, c ∈ A, then â is a median alternative.

Conversely, suppose that â is a median alternative. Let |N | ≥ 2. Without loss of
generality, let 1, ..., n be the agents in N . Define the sequence x1 := p1 and for all
i ∈ {2, ..., n} , let xi := med (̂a, xi−1, pi ). Since â is a median point, the sequence
is well-defined. By construction, xn ∈ Co ({xn−1, pn}) ⊆ Co ({xn−2, pn−1, pn}) ⊆
... ⊆ Co ({x1, ..., pn}). Again by construction, we know that xn ∈ [̂a, pn]; xn ∈[
â, xn−1

] ⊆ [
â, pn−1

] ; ... and xn ∈ [
â, xn−1

] ⊆ ... ⊆ [̂a, x2] ⊆ [̂a, p1]. Therefore
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xn is an element in Co ({p1, ..., pn}) and is also an element in the interval [̂a, pi ] for
all i = 1, ..., n. Therefore f â (RN ) is well-defined and f â (RN ) = xn . Since this
construction is feasible for all RN ∈ RN , the rule f â is well-defined. ��

An attribute space is called quasi-median (Nehring 2004) if it contains at least
one median alternative and it is called median if all alternatives in A are median.
From these definitions and Proposition 3, it follows that the attribute-structures that
admit a unanimity rule are exactly the quasi-median spaces. From this observation
and Proposition 2, we obtain the following characterization.

Corollary 2 The following three statements are equivalent.

(i) The attribute space H admits a rule that satisfies voter-sovereignty, strategy-
proofness and replacement-domination.

(ii) The attribute space H admits a variable population rule that satisfies voter-
sovereignty, strategy-proofness and population-monotonicity.

(iii) H is quasi-median.

Nehring and Puppe (2005) provide several interesting characterizations of quasi-
median spaces. We end this section by two examples of such spaces, whose associated
domains are not discrete counterparts of the domains considered by Klaus (1999,
2001).

Example 4 A subset of at most L out of K public projects, with 1 ≤ L < K , has to be
selected. An alternative specifies which of the projects will be carried out. Attributes
are the sets of alternatives of the form “yes to project k” and “no to project k” for all
k = 1, ..., K . This attribute space has exactly K + 1 median alternatives. These are
all the alternatives of the form“ only project k is carried out” for all k = 1, ..., K and
“no project is carried out”. Consequently, exactly K + 1 rules satisfy the conditions
of Proposition 2. In any rule in this class, each of the projects, except perhaps one,
requires unanimous support in order to be carried out. If a project does not require
unanimous support in order to be carried out, a single vote in its favour suffices to
have it carried out.

Example 5 Let A := {a, b, c, d, e}. The attributes are the sets {a, b, c} , {b, c, d} ,

{c, d, e} , {a, e} , {a, b} and {d, e}. This attribute space has two median points b and d.
Therefore the two rules that satisfy the conditions of Proposition 2 are the unanimity
rules with parameter either b or d.

5 Pareto-efficiency and Solidarity

In this section, we study the compatibility of Pareto-efficiency with either sol-
idarity condition. Ching and Thomson (1997), Vohra (1999) and Klaus (1999,
2001) have shown that Pareto-efficiency is compatible with either replacement-
domination or population-monotonicity on domains of single-peaked preferences
defined on trees.7 Both the set of alternatives and the preference domain these

7 Other properties are studied on these domains by Demange (1982), Danilov (1994) and Schummer and
Vohra (2002).
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authors consider are continua. Their discrete counterpart in our setting is the class of
domains of single-peaked preferences on discrete trees, such as the ones presented in
Example 1.

In the light of the results by Ching and Thomson (1997), Vohra (1999) and Klaus
(1999, 2001), it is natural to ask the following question: Are these properties compatible
in other attribute-based preference domains? Unfortunately, we find that the answer to
this question is negative: tree structures are the only attribute-based domains on which
Pareto-efficiency and solidarity properties are compatible.

To establish this result, we first provide an abstract characterization of the attribute
spaces that generate domains in the class presented in Example 1. It is well known
and easily verified that the attribute spaces H constructed in Example 1 are median
and in addition satisfy the following condition.

Condition (T ): For all H, H ′ ∈ H, at least one of the sets H ∩ H ′, H ∩ H ′c, Hc ∩ H ′,
Hc ∩ H ′c is empty.

Conversely, we establish that these two conditions, the median condition and (T ),
characterize tree structures, a result we believe is of independent interest.8 From any
median attribute space H that satisfies (T ), one can recover a discrete graph-theoretic
tree, that is a graph (a finite set of vertices and edges) that is connected (any two
vertices are connected through some path) and has no cycles.

Proposition 4 Let H be a median attribute space that satisfies (T ). Then the graph on
A = ⋃

H∈H
H whose edges are the pairs (a, b) such that there exists a unique attribute

Ha ∈ H such that a ∈ Ha and b ∈ Hc
a is a tree, i.e. it is connected and has no cycles.

Proof Throughout the proof, let H be a tree attribute space.

Step 1: The graph defined in the Proposition is connected.
For any two alternatives a, b let a ∼ b if [a, b] = {a, b}. We will show that (a, b)

is an edge if and only if a ∼ b. Let a, b be alternatives such that a ∼ b. Let H and H ′
be any two attributes such that a ∈ H ∩ H ′ and b ∈ Hc ∩ H ′c. We need to prove that
H = H ′. By contradiction, suppose that this is not the case. For example H ′ � H .
Then there exists c ∈ H ′ \H . Then by condition (T ) it must be that H ⊂ H ′. Moreover
b and c are in Hc and b is in H ′c. Then the median of a, b and c is an element of
[a, b] , but it is neither a nor b, since it is an element of Hc (ruling out a) and it is
also an element of H (ruling out b). This contradicts that [a, b] = {a, b}. Therefore
necessarily H = H ′, which proves that (a, b) is an edge.

It follows immediately from the previous paragraph that the graph defined in the
Proposition is connected.

8 Buneman (1971) and Bandelt and Dress 1986 provide related constructions, without assuming a median
space. Their construction, however, allows introducing “latent alternatives”, i.e. additional alternatives
outisde of the set A in order to construct a tree consistent with an attribute structure that satisfies (T ). Our
result shows that when the space is median, latent alternatives are not needed. In addition, our construction
relies on elementary arguments.
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Step 2: Monotonicity of attributes along a path.
Let a and b be arbitrary alternatives. Consider a path a0, ..., an with a0 = a and

an = b connecting a and b. For all i, since (ai , ai+1) is an edge, there exists exactly
one attribute, let it be denoted Hi , such that ai ∈ Hi and ai+1 /∈ Hi . We will show
that for all i, we have Hi−i ⊂ Hi . Since (ai−1, ai ) form an edge, and ai−1 and ai are
already separated by Hi−1 and Hc

i−1, then they are not separated by Hi and Hc
i . Since

ai ∈ Hi , then ai−1 ∈ Hi .
Similarly, since (ai , ai+1) form an edge, and ai and ai+1 are already separated by

Hi and Hc
i , then they are not separated by Hi−1 and Hc

i−1. Since ai ∈ Hc
i−1, then

ai+1 ∈ Hc
i−1.

Thus Hi ∩ Hi−1 contains ai−1, Hi ∩ Hc
i−1 contains ai and Hc

i ∩ Hc
i−1 contains

ai+1, therefore (T ) implies that Hi−1 ⊆ Hi . The inclusion is strict because ai ∈ Hi∩
Hc

i−1.

Step 3: The graph does not contain any cycles. Suppose by contradiction that there
exists a path a0, ..., an with an = a0. By Step 2, we find that H0 ⊂ ... ⊂ Hn ⊂ H0, a
contradiction. We conclude that the graph does not contain any cycles, i.e. it is a tree
in a graph theoretic sense. ��

From now on, a tree attribute space is a median attribute space that satisfies (T ).
We are now ready to show that Pareto-efficiency and solidarity are only compatible on
tree attribute spaces. Note that we do not assume strategy-proofness, thus we cannot
restrict attention to voting by issues from the outset, as we did in the previous section.

Proposition 5 Let H be an attribute space. (i) Let |N | ≥ 3. Let f be a rule. If
f satisfies Pareto-efficiency and replacement-domination, then H is a tree attribute
space. (i i) Let |N | ≥ 3. Let f be a variable-population rule. If f satisfies Pareto-
efficiency and population-monotonicity, then H is a tree attribute space.

The idea of proof is the following. We associate to any rule satisfying the con-
ditions a two agents rule, which turns out to be a Pareto-efficient unanimity rule
(Steps 1 and 2). Then in Steps 3 and 4, we show that this implies that H is a tree.

Proof Throughout the proof, let H be an attribute space.
(i) Let |N | ≥ 3. Let f be a rule that satisfies Pareto-efficiency and replacement-

domination.
Let M := {1, 2} and g : RM → A, such that for all (R1, R2) ∈ RM , we have

g (R1, R2) := f
(
R′

N

)
, where R′

N ∈ RN is such that R′
1 = R1 and R′

i = R2, for all
i ≥ 2.
Step 1: The rule g satisfies anonymity, strategy-proofness and Pareto-efficiency.

First, it is obvious that the rule g satisfies Pareto-efficiency.
Next, we prove that for all (R1, R2) , we have g (R1, R2) Ii g (R2, R1) for all

i ∈ {1, 2}. Let (R1, R2) ∈ RM . Then g (R1, R2) = f
(
R′

N

)
, where R′

N ∈ RN is
such that R′

1 = R1 and R′
i = R2, for all i ≥ 2. Consider the transformation of R′

N =
(R1, R2, ..., R2) into R′′

N = (R2, R1, ..., R1) where for each agent i ∈ {3, ..., n} ,

the preference R′
i = R2 is replaced by the preference R′′

i = R1 in decreasing index
order. Then the preference R′

1 = R1 is replaced by the preference R′′
1 = R2 and last

the preference R′
2 = R2 is replaced by the preference R′′

2 = R1. At each step in
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the transformation, the Pareto-set for the preference subprofile of the agents whose
preferences are kept fixed is the same at the Pareto-set for the entire profiles (of any
profile along the path). By Pareto-efficiency and replacement-domination, this implies
that the preferences R1 and R2 remain indifferent between the images by f along the
path. Therefore g (R1, R2) = f (R1, R2, ..., R2) Ii f (R2, R1, ..., R1) = g (R2, R1) ,

for all i ∈ {1, 2}.
Last, we prove that g satisfies strategy-proofness. By anonymity, it suffices to prove

that for all (R1, R2) ∈ RM and all R′
2 ∈ R, we have g (R1, R2) R2 g

(
R1, R′

2

)
.

We have g (R1, R2) = f (R1, R2, ..., R2). Consider the sequence of transforma-
tions where the preference Ri = R2 is replaced by the preference R′

i = R′
2, for

each i ∈ {2, ..., n} in increasing order. When replacing the preference of an agent
whose label is in {3, ..., n − 1} , the image by f remains unchanged by the same
argument as in the last paragraph. In the first replacement, agent 2 cannot strictly
benefit, since this would imply agent 3 strictly benefits, which would imply that
f
(
R′

2, RN\{2}
)

Pareto-dominates f (R1, R2, ..., R2) for (R1, R2) , i.e. for RN . Sim-
ilarly, in the last replacement, agent n cannot strictly benefit. If this were the case,
since all agents 1, ..., n − 1 are affected in the same direction, these agents must
weakly lose (at least one of them strictly), otherwise f

(
R1, R′

2, ..., R′
2, R2

)
is not

Pareto-efficient for
(
R1, R′

2, ..., R′
2, R2

)
. But this in turns contradicts the Pareto-

efficiency of f
(
R1, R′

2, ..., R′
2

)
for

(
R1, R′

2, ..., R′
2

)
. Therefore agent n weakly loses.

Last f
(
R1, R′

2, ..., R′
2

) = g
(
R1, R′

2

)
. In summary, we obtain that g (R1, R2) R2

g
(
R1, R′

2

)
, i.e. g satisfies strategy-proofness.

Last, since g satisfies strategy-proofness and voter-sovereignty, it only depends on
the agents’ peaks. Therefore, the property established in the second paragraph of Step
1 implies that g satisfies anonymity.

Step 2: The rule g is a unanimity rule. Let â be the unique alternative such that for all
(R1, R2) , g (R1, R2) = med (̂a, p (R1) , p (R2)).

Step 3: The attribute space H satisfies condition (T ) .9

Suppose by contradiction that H violates condition (T ). If this is the case, then
there are alternatives a1, ..., a4 ∈ A and attributes H and H ′, such that a1 ∈ H ∩ H ′,
a2 ∈ H∩H ′c, a3 ∈ Hc∩H ′c, and a4 ∈ Hc∩H ′. Then â is an element of exactly one of
these four sets. Suppose for example that â ∈ H ∩ H ′. Consider now a profile (R1, R2)

such that p (R1) = a2 and p (R2) = a4, and moreover for all a ∈ H ∩ H ′, we have
a3 P1 a and a3 P2 a. Therefore none of the alternatives in H ∩ H ′ is Pareto-efficient.
However, g (R1, R2) = med (̂a, p (R1) , p (R2)), which is an element of H ∩ H ′,
contradicting Pareto-efficiency. Therefore the attribute space H satisfies condition
(T ).

Step 4: The space H is a median space.
Suppose, by contradiction that H is not a median space. Then, we know from

Nehring and Puppe (2007b, Proposition 4.1) that there is a family of attributes

9 Steps 3 and 4 in the proof can be deduced from the main result in Nehring and Puppe (2007a), more
precisely from Claim (a) in their Theorem. For the sake of completeness, we provide a direct proof that
exploits the special structure of this model to avoid the complexities of their analysis
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H1, ..., Hk, with k ≥ 3, such that
⋂k

l=1 Hl = ∅ and for each h ∈ {1, ..., k} ,⋂
l �=h Hl �= ∅.For each h = 1, ..., k, let a j ∈ ⋂

l �=h Hl . For each pair l, l ′, l �= l ′, the
sets Hl ∩ Hl ′ , Hc

l ∩ Hl ′ and Hl ∩ Hc
l ′ are non-empty. Therefore, by Step 3, it must be

that, for each pair l, l ′, l �= l ′, Hc
l ∩ Hc

l ′ = ∅. Therefore any alternative a ∈ A is an ele-
ment of exactly k − 1 sets Hl and one set Hl ′ . Without loss of generality, let’s suppose
that â ∈ H1 ∩ ...∩ Hk−1 ∩ Hc

k . Consider now a profile (R1, R2) such that p (R1) = a1
and p (R2) = a2. Then g (R1, R2) = med (̂a, p (R1) , p (R2)) , which is an element
of [p (R1) , p (R2)] ⊆ ⋂k

l=3 Hl , of [̂a, p (R1)] ⊆ H2 and of [̂a, p (R2)] ⊆ H1. Since
⋂k

l=1 Hl = ∅, this is a contradiction. Therefore H is a median space.
Therefore H is a tree attribute space.
(i i) The proof follows exactly the same steps, therefore we only provide a sketch.

Let |N | ≥ 3. Let f be a variable-population rule that satisfies Pareto-efficiency and
population-monotonicity. Let g be the restriction of f to RM with M := {1, 2}.
Each preference replacement in the proof of (i) is achieved in two steps by first
withdrawing the agent whose preference is replaced and then adding him back with
the new preference. At the end, all agents with labels other than 1 and 2 are removed.
The remaining steps are identical to those in (i). ��

To end this section, we provide the discrete counterparts of the characterizations
obtained by Ching and Thomson (1997), Vohra (1999) and Klaus (1999, 2001) on
trees.10 Our proof differs from theirs, as it relies on the theory of voting by issues and
does not require an infinite set of alternatives.

Proposition 6 Let H be a tree attribute space. (i) Let |N | ≥ 3 Let f be a rule.
Then f satisfies Pareto-efficiency and replacement-domination if and only if f is a
unanimity rule. (i i) Let |N | ≥ 3. Let f be a variable population rule. Then f satisfies
Pareto-efficiency and population-monotonicity if and only if f is a unanimity rule.

Proof It is clear that a unanimity rules satisfies the conditions. We prove the converse
implication. Throughout the proof, let H be a tree.

(i) Let |N | ≥ 3. Let f be a rule that satisfies Pareto-efficiency and replacement-
domination. Let M := {1, 2} and g : RM → A, such that for all (R1, R2) ∈ RM , we
have g (R1, R2) := f

(
R′

N

)
, where R′

N ∈ RN is such that R′
1 = R1 and R′

i = R2,

for all i ≥ 2. From Step 1 in the proof of Proposition 5, we know that g satisfies
Pareto-efficiency and strategy-proofness and that it is a unanimity rule with target â.
Let f â be the unanimity rule with target â on RN . We will prove here that f = f â .

Let RN ∈ RN . Let a∗ := f â (RN ) and b∗ := f (RN ). Since a∗ and b∗ are
in the Pareto-set for RN , there are two distinct agents i, j ∈ N such that a∗ ∈[

p (Ri ) , p
(
R j

)]
and b∗ ∈ [

p (Ri ) , p
(
R j

)]
. We will transform the profile RN into

the profile R′
N such that R′

1 = Ri and R′
2 = ... = R′

n = R j .
Step 1: First, let L := N \ {i, j}. Let R′

l := R j . Replace one by one the preference
Rl of each agent l ∈ L by R′

l := R2. Once this is done, we obtain the profile R′
N

such that R′
i = Ri and R′

l = R j for all l �= i . If i = 1, the transformation ends

10 The proofs in Vohra (1999) and Klaus (1999, 2001) require infinitely many alternatives. This assumption
is implicitly used, for example, in Vohra’s Lemma 3.
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here. If not, then 1 �= i, so that R′
1 = R j . In this case, let R′′

1 := Ri and R′′
i := R j .

Replace first the preference R′
1 = R j by R′′

1 = Ri and then the preference R′
i = R1

by the preference R′′
i = R2. The transformation ends and we obtain the profile R′′

N
such that R′′

1 = Ri and R′′
2 = ... = R′′

n = R j . At each elementary step in this
transformation, there are always at least two agents whose preferences are kept fixed
and are Ri and R j . We will show that the image by f remains b∗ along the path.
Along the path, the set of preferences represented in the profile decreases or remains
constant at each step. By Pareto-efficiency and replacement-domination, this implies
that the change weakly benefits preferences Ri and R j . Since this is true at each step,
and by transitivity, it must be that f

(
R′′

N

)
Ri f (RN ) and f

(
R′′

N

)
R j f (RN ). But

since f (RN ) = b∗ ∈ [
p (Ri ) , p

(
R j

)]
, this implies that f

(
R′′

N

) = b∗.
But f

(
R′′

N

) = g
(
R′′

1 , R′′
2

) = g
(
Ri , R j

) = med
(
â, p (Ri ) , p

(
R j

))
. By defini-

tion of a∗, we know that a∗ ∈ [
a∗, p

(
R j

)] ∩ [
a∗, p (Ri )

]
. By definition of i and j ,

we know that a∗ ∈ [
p (Ri ) , p

(
R j

)]
. Therefore med

(
â, p (Ri ) , p

(
R j

)) = a∗, i.e.
f (RN ) = f â (RN ). Since this is true for all RN ∈ RN , we conclude that f is the
unanimity rule with status quo â.

(i i) The proof follows exactly the same steps, therefore we only provide a sketch.
In this case the rule g is the restriction of the variable-population rule f to R{1,2}.
Each preference replacement in the proof of (i) is achieved in two steps by first
withdrawing the agent whose preference is replaced and then adding him back with
the new preference. Last all agents with labels other than 1 and 2 are removed. ��

Vohra (1999) and Klaus (2001) both point out that their characterization on trees
is valid even in the subdomain of symmetric preferences. This is not the case in the
discrete setting, as shown in the following example.

Example 6 Let A := {0, 1, x} , with x ≥ 2. Consider the domain of preferences
represented by the utility functions u0 (a) = − |a| , u1 (a) = − |a − 1| and ux (a) =
− |a − x | for all a ∈ A. Then the rule, which for any preference profile maximizes
the linear ordering x � 0 � 1 on the set of Pareto-efficient alternatives satisfies the
conditions of Proposition 6 and is not the restriction to this domain of any voting by
issues rule.

We end this section by discussing the relation between the results by Gordon (2007a)
and the ones in this paper. Gordon (2007a) considers a general variable population
public choice problem, without assumptions on the preference domain, other than
symmetry (all agents have the same set of possible preferences) and that the set of
alternatives does not depend on the population. In this very general framework, Gor-
don (2007a) does not provide a characterization, but establishes that under Pareto-
efficiency, both population-monotonicity, and replacement-domination together with
replication-indifference (the decision change that follows the cloning replication of
the entire population leaves all agents indifferent) have the following strong impli-
cations. First, either combination implies strategy-proofness and even the stronger
requirement of group-strategy-proofness (no group of agents can jointly benefit from
misrepresenting the preferences of its members). Second, they imply anonymity (up
to Pareto-indifference). Third, they imply that there is a “status-quo alternative” that
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is always Pareto-dominated by the choice of the rule. These results are obtained under
the assumption that the population is variable and that the set N is infinite.11

In contrast, we do not assume an infinite variable population and focus on a more
restricted class of models. Our results confirm that, in this more specific context, the
above implications remain true as long as there are has at least three agents in the fixed
population model, or as long as there are at least three potential agents in the variable
population model, and without the assumption of replication-indifference. The status
quo alternative of a unanimity rule on a tree is its target â. Moreover, both anonymity
and the existence of a status quo alternative are also shown to be implications of the
weaker conditions of voter-sovereignty, strategy-proofness and solidarity.
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