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Abstract Electing a committee introduces constraints beyond excellence, such as
ensuring a balance of gender, tenure, talent, and other characteristics. The difficulties
are captured by an actual example where every voter desired gender diversity on a
committee and voted accordingly, but only men were elected. After developing the
properties of certain methods that avoid these problems, other needs in this area are
described.

1 Complexity of selecting committees

Considerable progress has been made in understanding what causes standard voting
paradoxes and how to select rules that avoid many of these difficulties. But a topic
that remains essentially untouched involves the common experience of selecting com-
mittees. New types of fascinating complexities (accompanied with different kinds of
strategic actions, paradoxical outcomes, likelihood computations, and so forth) reflect
the reality that such elections involve a combination of voter priorities.

By this we mean that while each voter’s personal ranking of the candidates may
suffice for traditional settings, when selecting committees, individual preferences can
be accompanied with tacit expectations that an elected committee will satisfy still
other constraints. To ensure needed diversity, for instance, everyone may want an
academic committee consisting of both tenured and untenured faculty, or of both
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men and women. Other conditions might involve mixtures of talents; e.g., because of
personal skills, voters might want to have either Bob or Sue on the committee, but not
both because they would offer similar perspectives.

This mixture of priorities affects other choice settings. In electing new members for
the US National Academy of Sciences, each of the six NAS classes selects and ranks
their quota of candidates. This ranking is placed on the election ballot that is then sent
to the general membership. The ranking matters; this is because it serves as the class’
recommendation to the general membership, so a higher ranked candidate is more
likely to be elected. To use specific numbers, each year class 5 (consisting of the four
sections of Anthropology, Psychology, Social and Political Science, and Economic
Sciences) places a ranked list of 14 names on this ballot from which nine will be
elected to the NAS (in 2012, the numbers to be elected and listed on the ballot were
increased). A Class Membership Committee (CMC) has the responsibility of selecting
and ranking the class’ candidates from lists proposed by each section. Accompanying
each CMC member’s ranking of the relative merits of the candidates, then, is the need
for a balanced representation over the four sections. The ideal situation is to elect at
least two members from each section.

While it is easy to create hypothetical examples to illustrate various kinds of diffi-
culties that can arise in these settings, actual paradoxical and strategic behaviors are
more informative. An interesting case described by Ratliff (2006) is where everyone
voting in a Wheaton College election wanted to have a committee of women and men,
but only men were elected. The way in which this occurred and how it was avoided
in a subsequent election is described in Ratliff (2006), but the source of the problem
is indicated below in Sect. 2.

A related concern is how certain voting rules, when combined with this diversity
intent, create strategic incentives for voters who normally may not want to vote strate-
gically. This happens in the class 5 CMC example where each CMC member votes
for nine candidates (from around 20 choices) to determine the class’ ranked list of 14
for the NAS ballot. While each voter ranks the candidates according to distinction, the
voter also wants to ensure that at least two candidates from his or her section will be in
the top nine. But the voting rule fails to address both needs, so it introduces incentives
to vote strategically.

The feature encouraging strategic behavior is that a CMC ballot cannot distinguish
top-ranked from secondary choices. To circumvent this weakness, a CMC member
representing Section A may vote in a way to protect at least two Section A candidates
(the diversity constraint). The obvious strategy is to vote for the top two or three
candidates from area A, three or four other top candidates (who represent excellence
and will be elected anyway), and then strategically “protect” Section A candidates by
“wasting” the remaining votes by voting for candidates who probably would not win.1

A danger associated with this (and any strategic action) is a final outcome that need
not reflect the voters’ intent. An indicator as to whether several CMC voters voted in
this strategic manner is if a lower ranked candidate from some section is ranked over a

1 This is not hypothetical; when one of us (DGS) tallied CMC ballots for two different years, it was clear
that some voters had adopted this strategic voting behavior.

123



Complexities of electing diverse committees 57

clearly preferred one. That such an outcome is not unusual is manifested by the NAS
rule allowing members from an affected section to appeal to the CMC to reverse the
positioning of these two candidates.

Returning to the choice problem, the number of reasonable conditions that can
accompany committee selections probably is without limit, so it is premature to try
to examine the full problem. Thus our contributions are targeted toward those special
but common settings where the universal intent is to elect a committee that satisfies a
specified diversity characteristic such as including both women and men, or (motivated
by the CMC example) a balanced representation from each section of a group. A second
contribution is to identify unexpected problems and issues that are involved in selecting
committees.

As an example, our analysis introduces a novel twist on strategic voting. While
strategic voting cannot be avoided, we should avoid voting rules that encourage strate-
gic voting just to achieve a universally accepted diversity constraint. With the analogy
that “a padlock is intended to encourage honest people to remain honest,” a criterion
for selecting a voting rule should be that it does not encourage voters who wish to
vote sincerely to vote strategically. With our emphasis on sincere voting, this means
that sincere voting should not lead to outcomes that everyone in the group finds to be
obviously inferior.

As motivated by the examples above, our analysis assumes that the voters have a
preference for the overall composition of the committee that cannot be decomposed
into preferences on the individual candidates. This perspective differs from that found
in much of the literature on committee elections. A common view is consistent with
the idea of proportional representation as nicely expressed by Chamberlin and Courant
(1983), where each voter has a representative on the deliberative body to reflect their
views and interests. There has also been work exploring barriers to diverse representa-
tion in legislatures with single-member districts [e.g. see Fréchette et al. (2008) for a
discussion of the impact of a gender parity law in the French Assembly]. We are inter-
ested, instead, in situations where the voters’ preferences are for the composition of
the entire selected group, which is a distinct concern from proportional representation
or single-member districts.

Another approach is taken by Barberà et al. (1991, 2005) where it is assumed that the
voters’ preferences are separable into preferences on individual candidates. However,
the Wheaton election described in Ratliff (2006) demonstrates that this is not always
possible. Voters ranked the eight possible committees, and for over half of the voters,
their top-ranked and bottom-ranked committees had at least one candidate in common.
This demonstrates the complexity of these issues in that it may be incorrect to assume
that voters’ preferences are separable into preferences on individual candidates.

This reality about the complicated nature of voters’ preferences suggests the rem-
edy of requiring each voter to rank all possible committees. Unfortunately, such
an approach quickly becomes impractical as the number of possibilities becomes
extremely large for even moderately sized committees. Selecting a four-person com-
mittee from eight candidates, for example, requires ranking 70 different possibilities.
In our approach, voters need only specify their top-ranked committee.

Our contributions identify wide classes of easily used rules that achieve the specified
objectives in electing committees. The wealth of emerging voting methods puts forth
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several new questions, such as developing ways to identify strengths and weaknesses
of these different possibilities.

The paper is organized as follows. Section 2 states the main results. Section 3
introduces a geometric framework and includes the proofs of Theorems 1, 2 and 4.
Section 4 outlines unsolved issues with larger and unconstrained committees. Section 3
contains the proof of Theorem 3.

2 Committees of three

It is trivial to design a ballot to guarantee representation from different parts of an
organization. Within a university, for instance, a ballot may require each voter to vote
for one person from each division or school. To see what can happen, the following
example lists the candidates for a three-person university committee where each voter
must select one candidate from each of the three listed categories.

Social sciences Natural sciences Humanities
Ann Carole Ellen
Bob David Fred

(1)

A majority vote determines who is elected from each section. With an added, univer-
sally accepted diversity intent, such as to have a mixed gender outcome, each voter
would vote for at least one man and one woman.

But even should each voter’s vote reflect this objective, the outcome can violate the
intent. To see this with an example, each voter in the three-voter profile

Voter1 Voter2 Voter3
Ann, David, Fred Bob, Carole, Fred Bob, David, Ellen

(2)

adheres to this goal, but the Bob, David, Fred outcome (each receives a 2:1 vote)
does not. This particular form of election that splits a voter’s preference for the over-
all composition into preferences on individual candidates illustrates what caused the
problems with the above referenced Wheaton College election.

It is reasonable to wonder whether this phenomenon, which violates the universal
intent of all voters, is rare enough to be safely ignored. It cannot; expect this unintended
behavior to arise around once in every 15–30 elections. So, while not ubiquitous, this
difficulty arises frequently enough to cause concern.

Theorem 1 In electing a three-person committee from among candidates who are
slotted in three divisions, suppose each division has two candidates where each repre-
sents one of two different categories (e.g., tenured and untenured faculty). Determine
the selected candidate from each division by a majority vote; each voter votes in
all three elections. To reflect a universal intent of electing a diverse committee, an
admissible ballot must include at least one candidate from each category.

If each profile is considered to be equally likely (Impartial Anonymous Culture, or
IAC), the likelihood of electing a homogeneous committee consisting of candidates
from only one category, given by Prob(H), ranges from approximately 0.036 with
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three voters to over 0.061 with 25 voters, and approaches 1
16 = 0.0625 as the number

of voters increases to infinity.
If each voter is equally likely to choose each committee (Impartial Culture, or IC),

then Prob(H) ranges from approximately 0.0556 with three voters to over 0.0837
with 25 voters, and approaches 0.0877 as the number of voters increases to infinity.

The way in which Theorem 1 is proved (Sect. 3) makes it clear that the likelihood
of this bothersome behavior increases with the number of slotted divisions and candi-
dates. Precise probability values, of course, are not of practical interest; the important
message is that this behavior cannot be ignored. Combining Theorem 1 with the
Wheaton College and CMC experiences underscores the importance of analyzing this
concern.

2.1 A class of solutions

As the Eqs. 1, 2 example suggests, a way to achieve such a universally accepted
objective is to tally ballots so that an added premium is given to each voter’s diversity
candidate. Staying with this example, if the premium assigned to a ballot’s diversity
candidate is λ > 1 points, then, with the Eq. 2 profile, choosing λ < 2 results in an
all male committee; selecting λ > 2 creates an all female committee. This calculation
suggests that it is necessary to assign λ = 2 points to the “diversity” candidate and
one point to each of the other two candidates.

Surprisingly, this (2, 1, 1) choice is a general solution (the reason, as explained
in Sect. 3, is that the Eq. 2 profile plays a central role in creating these problems).
But beyond the (2, 1, 1) rule, there is a continuum of other possibilities. The wealth
of choices permits selecting a rule that can make other subtle distinctions among the
candidates. One choice, for example, is (3, 2, 1) where the diversity candidate receives
3 points, and a distinction is made between the two non-diversity choices.

In what follows, our rules are impartial with respect to the two categories. That is,
the rule makes no distinction about which category the diversity candidate represents.
Thus, if the rule assigns weights (2, 1, 1) to the committee {Ann, David, Fred}, it will
assign weights (2, 1, 1) to the committee {Bob, Carole, Ellen}.

Theorem 2 In electing a three-person committee from among candidates who are
slotted in three divisions, suppose each division has two candidates representing two
different categories (e.g., tenured and untenured faculty, or men and women, or Nordics
and non-Nordics). To reflect a universal intent shared by all voters to elect a committee
with representation coming from each of these two categories, an admissible ballot
must have at least one candidate from each category (so, two candidates are from one
category and the “diversity” candidate is from the second category). The diversity
objective always can be achieved by assigning weights if and only if the weight w1
assigned to the diversity candidate equals the sum of the weights w2 and w3 assigned
to the other two candidates.

To illustrate with a tenured, untenured setting, suppose a twelve-voter profile has
three preferring (t, u, u), three preferring (u, t, u), five preferring (u, u, t) and one prefer-
ring (t, t, u). The majority vote over each section creates the homogeneous untenured
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committee (u, u, u). By using the (2, 1, 1) method, the tenured representative, “t,” is the
diversity candidate for the first eleven ballots, and the untenured “u” is the diversity
choice for the last ballot. A count shows that the tenured representative receives 7 points
in the first two sections, while the untenured choice receives 8 points. In the final sec-
tion, the tenured beats the untenured candidate by 10:8 to elect the (u, u, t) committee.

Both positive and bothersome properties of these rules can be extracted by using the
simple geometry (Sect. 3) that is developed to prove Theorem 2. Possible resolutions
for a potentially troubling property also follow from this geometry.

2.2 Other weights

When tallying ballots, a premium is assigned to each ballot’s diversity candidate.
While the (2, 1, 1) choice satisfies Theorem 2, so does (3, 2, 1) where three points are
assigned to a diversity candidate and a ranking distinction is made between the other
two candidates. This continuum of choices characterized by

(w1, w2, w3) where w1 = w2 + w3, wj > 0, (3)

either creates a need to further filter the possibilities, or introduces an opportunity to
select the weights to achieve other objectives such as allowing voters to record finer
differences among candidates. Our (2, 1, 1) choice reflects a natural neutrality where
further distinctions are not considered.

If the adopted weights do not satisfy Eq. 3, the outcome could be homogeneous
even if each voter casts a diversity ballot (Theorem 2). On the other hand, if the weights
provide some advantage for each ballot’s diversity choice, they mitigate the Theorem 1
conclusion by making these undesired behaviors less likely to occur.

A group, for example, may find the (2, 1, 1) tallying approach to be overly extreme;
perhaps the best they can accept are the weights (3, 2, 2)

[
equivalently,

( 3
2 , 1, 1

)]
.

While this choice allows negative conclusions, it significantly reduces the likelihood
that they can occur. In fact, the closer (λ, 1, 1) is to (2, 1, 1), the smaller the likelihood
of paradoxical outcomes.

Theorem 3 With the probability measures and assumptions of Theorem 1, the like-
lihood of electing a homogeneous committee with (λ, 1, 1), 1 ≤ λ ≤ 2 is bounded
by g(2 − λ)Pr(H) where the continuous function g(x) depends on the probability
measure (IAC or IC), and satisfies g(1) = 1, g(0) = 0, and g(2 − λ) → 0 as λ → 2.

While we have not computed the form of g, there are strong reasons to believe
(described below in Sect. 5) that, at least for IAC, g(2 − λ) eventually behaves like
a multiple of (2 − λ)2. This would mean that by using (3, 2, 2) (so λ = 1.5), the
probability of incurring problems is approximately one-fourth as likely as reported in
Theorem 1; i.e., expect problems to arise only in about one out of 60–120 elections.
Problems can occur, but they can be expected to take a long while before happening.

Theorem 2 extends in a natural fashion to k ≥ 3 divisions where a candidate is to be
selected from each division. While we have not addressed the likelihood issue should
a method not satisfying Theorem 4 be used, a version of Theorem 3 most surely holds.
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Theorem 4 In electing a k person committee from among candidates who are slotted
in k divisions, suppose each division has two candidates representing two different
categories. To reflect a universal intent shared by all voters to elect a committee with
representatives from each of these two categories, an admissible ballot must have at
least one candidate from each category. The diversity objective always can be achieved
if and only if individual weights assigned to diversity candidates are greater than or
equal to the weights assigned to non-diversity candidates and the sum of weights
assigned to the candidates of each category are equal.

With k = 5 and the groups of athletes (A) and non-athletes (N ), a way to tally a
(A, N , N , A, N ) ballot is to assign (3, 2, 2, 3, 2) points. But, once k ≥ 5, problems
can arise if ballots have different numbers of diversity candidates. For instance, if the
total number of points on a ballot is fixed (with the above, the point total would be
12), then a (N , A, A, A, A) ballot would be tallied using (6, 1.5, 1.5, 1.5, 1.5). The
doubled weight, from 3 to 6, provides an incentive for a voter to strategically vote for
only one diversity candidate. A way to eliminate this problem is to require each voter
to vote for a fixed number of diversity candidates.

3 Using geometry to find properties

It is interesting how Theorem 2 is related to the “least-squares” approach commonly
used in statistics. To explain the connection, because data cannot be expected to pre-
cisely satisfy a desired expression, such as lying on a line y = ax + b, the selected
line (i.e., the choice of “a” and “b”) is the one that comes the closest to satisfying the
data. To determine this line, the least square’s approach orthogonally projects the data
into an appropriate subspace; the projection is intended to filter out errors.

With the committee problem, if majority vote outcomes satisfy the desired diversity
condition, they may be accepted. But should the tallies fail to satisfy the desired
condition, then, as with “least-squares,” a way to filter out errors is to orthogonally
project the tallies into an appropriate subspace where these conditions are satisfied; the
projected outcome is what is used. As developed below, this projection is equivalent
to using the (2, 1, 1) rule.

To illustrate with the Theorem 2 conditions, assume that the diversity requirement is
a mixed gender requirement. To list the eight possible committees, specify the gender
of each candidate from each division; e.g., (m, w,w) means that a man represents the
first division, and women represent the other two. This representation can be converted
into a voting scheme in the three-dimensional R

3 by replacing the gender with +1
for a man and −1 for a woman; e.g., this transforms (m, w,w) to (1,−1,−1). The
six admissible ballots have differences in signs, while the two inadmissible ballots are
(1, 1, 1) and (−1,−1,−1) representing, respectively, an all man and an all woman
committee.

Following the geometric analysis of pairwise voting developed in Saari (1995), the
eight vectors (representing six admissible and two inadmissible ballots) define the
vertices of the Fig. 1a cube. The v j vertices represent ballots supporting the following
committees:
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(a) (b)

Fig. 1 Cube and rankings

Vertex Committee Vertex Committee
v1 (1, 1,−1)or(m, m, w) v4 (−1,−1, 1)or(w, w, m)

v2 (1,−1,−1)or(m, w, w) v5 (−1, 1, 1)or(w, m, m)

v3 (1,−1, 1)or(m, w, m) v6 (−1, 1,−1)or(w, m, w)

v7 (1, 1, 1)or(m, m, m) v8 (−1,−1,−1)or(w, w, w)

(4)

If p j represents the proportion of all voters who prefer committee j , j = 1, . . . , 6,
then a profile becomes p = (p1, . . . , p6) where

∑6
j=1 p j = 1. The election outcome

V is

V =
6∑

j=1

p j v j . (5)

Because the summation for each slot involves +1 and −1 terms, the outcomes describe
the difference of standard tallies for each pair of candidates. Namely, a (x, y, z) point in
the cube represents normalized differences in tallies for candidates from each section.

Illustrating with Eq. 1,

x = (Number of votes for Bob − Number of votes for Ann)/Number of votes

y = (Number of votes for David − Number of votes for Carole)/Number of votes

z = (Number of votes for Fred − Number of votes for Ellen)/Number of votes

(6)

Thus, with the Eq. 2 preferences, the three listed committees are v1, v3, and v5,
corresponding to the preferences of Voters 3, 2, and 1, respectively. Then p =( 1

3 , 0, 1
3 , 0, 1

3 , 0
)
, and by using Eq. 5, the normalized difference in tallies is

V = 1

3
(1, 1,−1) + 1

3
(1,−1, 1) + 1

3
(−1, 1, 1) =

(
1

3
,

1

3
,

1

3

)
.

Notice how these V values agree with the previously determined 2:1 tallies. This
particular election outcome (with an all male committee) is in the cube’s positive
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orthant, which is defined by the positive x , y, and z axes; it is the small Fig. 1a cube
designated by dotted lines.

It follows from Eq. 5 that the set of all possible tallies is the convex hull of the six
admissible vertices as given in Fig. 1b [A template to create a physical example of
this hull is given in Saari (1995, p. 100). Conversely, any point in this Fig. 1b region
with rational coefficients is attainable with a profile. As such, points in the positive
and negative orthants of this figure (and only these points) correspond to outcomes
that violate the diversity condition, even though all ballots respect this condition. The
portion of the positive orthant in this convex hull is the tetrahedron indicated by the
dotted lines in Fig. 1b and defined by the vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1).

3.1 Connection with majority voting and the proof of Theorem 1

The above construction differs from what is in Saari (1995) in that the vertices in
Saari (1995) represent rankings of alternatives. This similarity allows each profile
over committees to be identified in a one-to-one manner with a profile over three
candidates. The representation from Saari (1995) [also see Saari (2008, Chap. 2)
where this translation is used to explain cyclic behavior] follows:

Vertex Ranking Vertex Ranking Vertex Ranking
v1 A � B � C v2 A � C � B v3 C � A � B
v4 C � B � A v5 B � C � A v6 B � A � C

(7)

The remaining vertices, (1, 1, 1) and (−1,−1,−1), represent, respectively, the cyclic
rankings A � B, B � C, C � A and B � A, C � B, A � C . In this manner,
a mixed gender committee is identified with a transitive ranking while a common
gender committee corresponds to a cyclic ranking. This connection also explains the
centrality of the Eq. 2 profile by identifying it with the Condorcet triplet A � B �
C, B � C � A, C � A � B, which now is known to be completely responsible for
all possible majority vote paired comparisons difficulties Saari (2008).

This one-to-one linear translation (i.e., a “name-change”) immediately proves The-
orem 1. Namely, any result about cyclic behavior in the traditional paired comparison
voting setting transfers immediately to the same result about electing a homogeneous
committee. Thus Theorem 1 follows directly from a result in Gehrlein (2002) that the
probability of a pairwise majority winner with three candidates and n voters, assum-

ing IAC and n odd, is given by 15(n+3)2

16(n+2)(n+4)
; in the limit as n becomes very large, the

likelihood of a cycle (or, in our setting, a homogeneous committee) is 1
16 . The results

for IC also follow directly from calculations given in Table IV of Gehrlein (2002) for
the probability of a pairwise majority winner with three candidates assuming IC.

3.2 Geometry and the proofs of Theorem 2 and 4

The Fig. 1a, b cubes have a special “transitivity plane” Saari (1995, 2008) defined by

x + y + z = 0. (8)
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This plane removes from profiles all traces of what can cause cyclic election effects.
In terms of committee selections, profiles in this plane are stripped of all Eq. 2 type
components that contribute to an undesired homogeneous outcome. Thus projecting an
outcome, or a profile, into this plane removes all traces of what creates the committee
problem.

The meaning of Eq. 8 can be illustrated with the integer profile p = (1, 0, 3, 0, 2, 6)

(one voter prefers the committee (u, u, t), three prefer (u, t, u), two prefer (t, u, u), and
six prefer (t, u, t)). Using the Eq. 6 formulation, where each section’s male candidate
is replaced with u, the normalized tally differences are

x = 4 − 8

12
= − 4

12
, y = 9 − 3

12
= 6

12
, z = 5 − 7

12
= − 2

12
, (9)

which elect the (t, u, t) committee and satisfy Eq. 8. This Eq. 8 expression, then,
means that the sum of tally-differences between tenured and untenured candidates
over the three sections is equal to zero. But Eq. 8 requires some terms to be positive
and others negative, so it ensures a diversity outcome (the differences in tallies over
the three sections are, respectively, 4 − 8 = −4, 9 − 3 = 6, and 5 − 7 = −2, but the
differences in (2, 1, 1) tallies are, respectively, −6, 9, and −3. The reason for the 3

2
multiple is explained below).

The importance of this plane can be further illustrated with the (λ, 1, 1) rule, where
the ballots become

(1, 1,−λ) for v1, (λ,−1,−1) for v2, (1,−λ, 1) for v3, (−1,−1, λ) for
v4, (−λ, 1, 1) for v5, and (−1, λ,−1) for v6.

As it is easy to show for λ �= 2, the convex hull of these points (i.e., the space of
admissible election outcomes) meets both the positive and negative orthants (to show
this for 1 ≤ λ < 2, the outcome for profile p1 = ( 1

3 , 0, 1
3 , 0, 1

3 , 0
)

is in the positive
orthant while the outcome for p2 = (

0, 1
3 , 0, 1

3 , 0, 1
3

)
is in the negative orthant. If

λ > 2, then the outcome for each of these two profiles now resides in the opposite
orthant. This means that for each λ �= 2, the associated convex hull meets one of these
orthants to ensure undesired outcomes). Thus, with any (λ, 1, 1) rule where λ �= 2,
there exist election outcomes that violate the diversity condition.

The same argument and assertion hold for (w1, w2, w3) ballots that do not satisfy
Eq. 3. But if the Eq. 3 equality is satisfied, then all ballots must lie on the transitivity
plane (Eq. 8), so their convex hull (the set of all possible election outcomes) misses
the positive and the negative orthants. As all possible election outcomes satisfy the
diversity condition, this completes the proof of Theorem 2.

A similar geometric argument easily extends to prove Theorem 4 for k person
committees with candidates slotted in k divisions where each division has two can-
didates representing two different categories. Call the candidates from one category
u1, u2, . . . , uk and the candidates from the second category t1, t2, . . . , tk where we
have ui versus ti in the i th slot. Similar to Eq. 9, we can create a point in k dimensions
where the i th coordinate corresponds to the normalized tally differences between ui

and ti . If the sign of the i th component is positive, this indicates that ui is elected to
the committee and if the sign is negative then ti is elected.
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So, an outcome with all positive coordinates corresponds to the homogeneous com-
mittee {u1, u2, . . . , uk} whereas an outcome with all negative coordinates corresponds
to the homogeneous committee {t1, t2, . . . , tk}. Any outcome with both positive and
negative coordinates corresponds to a diverse committee. Thus, for any rule, the admis-
sible ballots determine vertices v1, v2, . . ., v2k−2 that contain both positive and negative
coordinates; the convex hull of these points determines the space of admissible election
outcomes.

First, assume that the sums of the weights assigned to the candidates of each category
are equal. This means that the sum of the coordinates for each vertex vi is equal to
zero, which implies that each vertex lies in the hyperplane in R

k through the origin that
is orthogonal to the vector (1, 1, 1, . . . , 1) ∈ R

k . Thus, the {vi } convex hull also lies in
this hyperplane, implying that every admissible outcome corresponds to a vector that is
orthogonal to (1, 1, 1, . . . , 1). Therefore, every admissible outcome must contain both
positive and negative components, and, because any convex combination of vectors
orthogonal to (1, 1, 1, . . . , 1) also is orthogonal to this vector, the diversity objective
will always be achieved.

Now suppose the sums of the weights assigned to the candidates in the two cate-
gories are not equal for some particular admissible committee. This defines a vertex
v1 = (x1, x2, . . . , xk) where x1 + x2 + · · · + xk �= 0. Because we have assumed that
our rules are impartial with respect to the two categories, we know that the rule also
allows the following vertices:

v2 = (x2, x3, . . . , xk−1, xk, x1)

v3 = (x3, x4, . . . , xk, x1, x2)

...

vk = (xk, x1, . . . , xk−2, xk−1)

The point determined by the ballots v1, v2, . . . , vk is

(
x1 + x2 + · · · + xk

k
,

x1 + x2 + · · · + xk

k
, . . . ,

x1 + x2 + · · · + xk

k

)

We know each coordinate is non-zero, and therefore all must have the same sign. Thus,
the outcome is a homogeneous committee, and the diversity criterion is not met. This
completes the proof of Theorem 4.

3.3 Properties and alternatives of the (2, 1, 1) rule

To connect (2, 1, 1) with least-squares, the orthogonal projection of a point v in R
3 to

the Eq. 8 transitivity plane is equivalent to finding the unique q satisfying Eq. 3 and
the unique α value so that

v = α(1, 1, 1) + q. (10)
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To illustrate, because v1 = (1, 1,−1) = 1
3 (1, 1, 1) + ( 2

3 , 2
3 ,− 4

3 ), the orthogonal
projection of v1 is q = ( 2

3 , 2
3 ,− 4

3

)
. Normalizing q to eliminate fractions yields

(1, 1,−2), or the (2, 1, 1) rule (the 3
2 q normalization explains the 3

2 multiple that
arose with the Eq. 9 example). As a similar computation holds for all v j , it follows
that the (2, 1, 1) rule is equivalent to using majority votes over pairs, and then, to ensure
that the desired diversity requirement is satisfied, to use the orthogonal projection of
this outcome. In this manner, (2, 1, 1) is similar to the familiar least-squares rule.

3.3.1 A first difference

The (2, 1, 1) vote projects majority vote tallies, so there will be differences between
the majority vote and (2, 1, 1) outcomes. Of importance, all possible differences are
found by using Eq. 10, which defines a line passing through q [which represents the
(2, 1, 1) election outcome on the transitivity plane] that is perpendicular to the plane
[so, in direction (1, 1, 1)]. All majority vote paired comparisons that project to q are on
this line. So, to discover all possible ways the outcomes between the rules can differ,
move the line in a physical model and note when it passes through different regions
(different orthants defining difference committees).

An equivalent, simpler way to find all possible differences is to take any profile
and modify it by adding multiples of what corresponds to Eq. 2. That is, add to
the original profile either multiples of the {(u, t, t), (t, u, t), (t, t, u)} type or of the
{(t, u, u), (u, t, u), (u, u, t)} type. Whatever choice is added, and no matter how large
the multiple, the new profile will have the same (2, 1, 1) outcome as the original profile
(using the above vector notation, add multiples of either p1 = ( 1

3 , 0, 1
3 , 0, 1

3 , 0
)

or
p2 = (

0, 1
3 , 0, 1

3 , 0, 1
3

)
to the original profile). The reason outcomes remain the same

is that the (2, 1, 1) rule is a projection that treats these added components as a complete
tie.

To illustrate, profile P1 with {six voters preferring (t, u, u), six preferring (u, t, u),
six preferring (u, u, t)} and one preferring (u, t, t) has the same (2, 1, 1) out-
come as profile P2 with {six voters preferring (u, t, t), six preferring (t, u, t), six
preferring (t, t, u)} and one preferring (u, t, t). These two profiles differ only by
what is in the brackets, which are multiples of either p1 = ( 1

3 , 0, 1
3 , 0, 1

3 , 0
)

or
p2 = (

0, 1
3 , 0, 1

3 , 0, 1
3

)
. The common (2, 1, 1) outcome for both profiles is (u, t, t)

with the respective tallies 14:12, 12:13, 12:13 (as required by Eq. 8, the sum of the
differences in u − t tallies over the three sections equals zero).

A feature illustrated by P1 is that a vast majority of the voters (18 out of 19) appear
to want a committee with two untenured faculty, but the elected committee consists
of two tenured and one untenured faculty. On the other hand, this (u, t, t) outcome is
fully consistent with P2 where all ballots list a committee with two tenured faculty.
What creates this phenomenon is that the votes of the first 18 voters in both profiles
(in brackets) cancel resulting in a tie; the tie is broken by the last voter.

To further explain this behavior, Theorem 2 ensures diversity, but it does not ensure
that other, new kinds of conditions also will be satisfied. If the goal is to ensure a
diverse committee, the feature illustrated by P1 and P2 is not troubling. If the goal
is to elect a diverse committee that satisfies still another constraint, such as where
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the committee’s composition (e.g., the number of men vs. women, or the number of
untenured vs. tenured) reflects, in some manner, the majority opinion, then something
different is required.

A natural resolution comes from the Fig. 1 geometry. In either Fig. 1a, b, the region
of undesired homogeneous outcomes (given by the dotted lines) has three faces; they
are portions of the x − y plane, the y − z plane, and the x − z plane, where each
serves as a boundary for a region with a diverse committee. An alternative approach,
then, is to project a profile’s (x, y, z) point to the nearest face [this approach resembles
Dodgson’s method; see Dodgson and Abeles (2001) and the series of papers by Ratliff
(2001, 2002, 2003)]. From a computational perspective, this is easy to accomplish;
with a homogeneous majority vote outcome, merely reverse the outcome for the section
with the smallest tally-difference.

To illustrate with P2, the majority vote tallies (in a u − t form) over the three
sections are, respectively, 7 − 12 = −5, 6 − 13 = −7, 6 − 13 = −7 elect-
ing a majority vote (t, t, t) committee. To achieve diversity, notice that the clos-
est contest (the smallest tally-difference) is in the first section (with −5), revers-
ing this section’s conclusion leads to the committee (u, t, t), which agrees with the
(2, 1, 1, ) outcome (from a practical perspective, one must expect reversing the out-
come of this election would create more voter resistance than announcing a (2, 1, 1)

conclusion).
The outcome radically changes with P1 where the u − t outcomes over sections are,

respectively, 13 − 6 = 7, 12 − 7 = 5, 12 − 7 = 5 leading to a majority vote (u, u, u)

outcome. The adjustment to create a diverse committee would require reversing the
outcome for either section two or section three leading to either the (u, t, u) or the
(u, u, t) committee. Either choice differs from the (2, 1, 1) conclusion of (u, t, t) by
having two untenured faculty members.

3.3.2 A second difference

The first difference between the majority vote and (2, 1, 1) outcomes reflects properties
of the described line passing through q [the (2, 1, 1) outcome on the transitivity plane].
As illustrated, profiles that lie on one side of the line might cause concern about the
(2, 1, 1) outcome.

The only remaining setting is where the base of the line (the q point) is in a region
with a diverse outcome, and the line passes through a different non-homogeneous
region defining a different outcome. That this phenomenon must occur follows from
the geometry of the transitivity plane, which is tilted with respect to the coordinate
system (it is midway between and parallel to the two triangular faces in Fig. 1b). This
tilt forces settings where both the majority vote and (2, 1, 1) outcomes elect diverse
committees, but they differ. But, while the line can hit another region, it does so only
for a small region. This is because the line moves into a region with a homogeneous
outcome.

To illustrate with an example, start with where five prefer v1 and three prefer v6; that
is, five prefer (u, u, t) and three prefer (t, u, t,). Add nine voters where three each prefer
v2, v4, and v6. That is, {three prefer four (u, t, t), three prefer (t, t, u), and three prefer
(t, u, t)}. The majority vote outcome is (t, u, t), but the (2, 1, 1) outcome is (u, u, t).
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The explanation for this difference is essentially the same as the earlier comments.
With the original profile, where five prefer (u, u, t) and three prefer (t, u, t,), both the
majority vote and (2, 1, 1) methods agree on the (u, u, t) conclusion. The term in the
brackets causes the difference; it is of the Eq. 2 type introducing a sub-population
setting where the majority vote outcome violates the diversity intent of these nine
voters. The majority vote cannot handle and dismiss these terms, but the (2, 1, 1)
method can and does so.

4 Unsolved issues: larger and unconstrained committees

While the above constitutes our contributions to the committee problem, for complete-
ness and to provide insight about how to at least mitigate the CMC problem (Sect. 1),
we close by outlining other committee selection problems. To review, in the above, a
first level of diversity was ensured by separating candidates into sections. Next, ways
were found to ensure that a second diversity level, such as mixed tenure or gender con-
dition, would be satisfied. Even a third level of diversity can be handled, as captured
by the above discussion about how many members of a committee should be of one
type or the other. But it is easy to prove that by imposing too many extra conditions, it
becomes impossible to solve this problem. The analysis is similar to solving an alge-
braic problem with more equations than variables; in general, it cannot be done. In a
non-technical manner, the issue is similar to asking students to line up alphabetically
(with their last names) and according to height.

The above analysis is possible because each section has two candidates; one from
each category. Problems caused by the majority vote reflect an unintended “divide-and-
conquer” phenomenon as captured by the Eq. 2 example; while these voters basically
agreed on which men candidates should be elected, they divided their voting strength
over the women candidates. A similar problem arises if there are more than two
candidates in each section.

To see this, change Eq. 1 so that the candidates from each division are three women
and one man. Let the women be, respectively, Ann1, Ann2, Ann3; Carole1, Carole2,
Carole3; Ellen1, Ellen2, Ellen3. Next modify Eq. 2 to have nine voters: the first three
vote in the indicated manner but for the woman with subscript “1,” the second three
vote in the indicated manner but for the woman with subscript “2,” and the last three
vote for the woman with subscript “3.” With both the majority vote and the (2, 1, 1)

method, the outcome is the homogeneous committee of {Bob, David, Fred}. It is not
difficult to show that in these kinds of settings, no (λ, 1, 1) will guarantee a diverse
committee. Something different, such as using positional voting schemes involving
added weights assigned to diversity candidates, probably is required.

The above analysis provides insight about how to handle the concerns motivated
by the CMC example where it is reasonable to believe that most voters wish to be
nonstrategic and fair. A way to reduce the strong push to be strategic is to allow each
voter to designate special consideration for two candidates. With these assumptions,
for success and to avoid the “divide-and-conquer” reality, a section should put forth
no more than three candidates. To avoid the temptation for strategic voting, the rule
should assign weights to the two diversity candidates (i.e., from the voter’s section) that
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agree with the sum of weights given to the other candidates. With the CMC, the ballot
would allow each voter to designate two candidates to receive 3.5 points each, while
each of the remaining seven on the ballot would receive a point each. In this way and
with these assumptions, it is easy to show that the diversity condition will be satisfied.

While such a proposal probably assigns too heavy of a weight for the designated
candidate to be accepted, it also follows from an analysis similar to the proof of
Theorem 3 that assigning a larger weight for a voter’s two top-ranked candidates
would reduce the incentives to vote strategically and the likelihood of an unbalanced
outcome. In this spirit, a (unsuccessful) proposal put forth to class 5 Saari (2006) to
accomplish this objective stated:

Each voter votes for the number of candidates allotted for the formal ballot
(currently nine), and designates which two are top-ranked. The ballots are tallied
with two points assigned to each top-ranked candidate and one to each of the
remaining candidates. The candidates are ranked according to the number of
votes received.

As a closing comment, problems associated with the common experience of electing
a committee are far more complex than previously realized. This is an area deserving
and requiring much more analysis.

5 Proof of Theorem 3

To prove Theorem 3, the probability of a homogeneous outcome must be related to the
relative size of the portion of the truncated cube in the positive and negative orthants.
Indeed, the Theorem 1 Prob(H) value would be (in the limit) the relative volume
of these two regions to that of the truncated cube if each rational point in the cube
represented a unique profile. Instead, each point is represented by a two-dimensional
manifold. The other profiles in this surface (leading to the same differences in paired
election outcomes) differ from each other in terms of combinations of pairs of the
A � B � C, C � B � A type (or, with committees, (m, w,w), (w, m, m)) called
“reversal configurations” Saari (2008, Chap. 4). It is not difficult to show that the
number of profiles in this surface increases as the paired election outcome point moves
away from either the x + y + z = 1 or x + y + z = −1 face (on each face, each
point represents a unique normalized profile). Therefore, a measure of changes in the
likelihood of a homogeneous committee is given by the shrinkage of relative size of
these regions relative to the full region as λ → 2. Notice, this assertion hold for any
reasonable choice of a probability measure, which means that it includes IAC and IC.
This ratio is computed next.

Whenλ represents the premium for the diversity candidate, the Fig. 1a cube becomes
a parallelepiped (a three dimensional figure formed by six parallelograms). With this
transformation, the vertices change: Originally one coordinate had a sign that differed
from the other two; replace the “1” with λ; e.g., v1 = (1, 1,−λ). The two remaining
vertices are v7 = (2 − λ, 2 − λ, 2 − λ) and v8 = −v7.

The volume of this parallelepiped is the value of the determinant with rows defined
by v1 − v2, v3 − v2, and v8 − v2, or 8 − {2(λ − 1)3 + 6(λ − 1)2}. This expression
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has the required values of eight for λ = 1 (a cube of side length 2) and zero for λ = 2.
The volume of each truncated tetrahedron (the removed part where none of the points
can result from admissible preferences) is 1

3 (1 + λ)2(2 − λ). As there are two such
tetrahedrons, the volume of the truncated parallelepiped is

V ol(λ) = 8 −
{

2(λ − 1)3 + 6(λ − 1)2 + 2(1 + λ)2(2 − λ)

3

}
(11)

The vertices of one tetrahedron in the truncated parallelepiped that permit homo-
geneous committees are (2 − λ, 0, 0), (0, 2 − λ, 0) and (0, 0, 2 − λ). As this region

has volume (2−λ)3

6 , the total volume of such points is (2−λ)3

3 . Thus, the ratio of the
volume of these two regions to that of the truncated parallelepiped is

R(λ) = (2 − λ)3

24 − [6(λ − 1)3 + 18(λ − 1)2 + 2(1 + λ)2(2 − λ)] . (12)

This R(λ) value provides a crude estimate of the likelihood of a homogeneous com-
mittee (or, in transitive preferences, a cycle). The statements about g(λ) in Theorem 3
now follow.

Notice how the R(1) = 1
16 value is the upper limit for the Prob(H) value. In

comparison, R( 3
2 ) = 1

100 is about one-sixth the λ = 1 value. Rewriting R(λ) =
F(λ)(2−λ)2, both the numerator and denominator of F(λ) approach 0 as λ → 2. So,
to find the limit (e.g., use l’Hopital’s rule), it follows that F(λ) → 1

36 , which provides
a bound on g(λ) in Theorem 3. More precisely,

R(λ) ∼ (2 − λ)2

36
→ 0 as λ → 2. (13)

The geometry proves that as λ → 2, all possible profiles that could cause difficul-
ties with the diversity objective are being squeezed out of the domain. From this it
follows that with IAC, IC, or other reasonable measures, the likelihood of difficulties
approaches zero as λ → 2. The relative size of the problematic profiles, as reflected
by Eq. 12, provides a bound on a measure of this behavior.
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