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Abstract This paper introduces a new class of judgment aggregation rules, to be
called ‘scoring rules’ after their famous counterparts in preference aggregation the-
ory. A scoring rule generates the collective judgment set which reaches the highest
total ‘score’ across the individuals, subject to the judgment set having to be rational.
Depending on how we define ‘scores’, we obtain several (old and new) solutions to
the judgment aggregation problem, such as distance-based aggregation, premise- and
conclusion-based aggregation, truth-tracking rules, and a generalization of the Borda
rule to judgment aggregation theory. Scoring rules are shown to generalize the classical
scoring rules of preference aggregation theory.

1 Introduction

The judgment aggregation problem consists in merging many individuals’ yes/no judg-
ments on some interconnected propositions into collective yes/no judgments on these
propositions. The classical example, born in legal theory, is that three jurors in a court
trial disagree on which of the following three propositions are true: the defendant has
broken the contract (p); the contract is legally valid (q); the defendant is liable (r).
According to a universally accepted legal doctrine, r (the ‘conclusion’) is true if and
only if p and q (the two ‘premises’) are both true. So, r is logically equivalent to
p ∧ q. The simplest rule to aggregate the jurors’ judgments—namely proposition-
wise majority voting—may generate logically inconsistent collective judgments, as
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874 F. Dietrich

Table 1 The classical example of logically inconsistent majority judgments

Premise p Premise q Conclusion r(⇔ p ∧ q)

Individual 1 Yes Yes Yes

Individual 2 Yes No No

Individual 3 No Yes No

Majority Yes Yes No

Table 1 illustrates. There are of course numerous other possible ‘agendas’, i.e., kinds
of interconnected propositions a group might face. Preference aggregation is a special
case with propositions of the form ‘x is better than y’ (for many alternatives x and y),
where these propositions are interconnected through standard conditions such as tran-
sitivity. In this context, Condorcet’s classical voting paradox about cyclical majority
preferences is nothing but another example of inconsistent majority judgments. Start-
ing with List and Pettit’s (2002) seminal paper, a whole series of contributions have
explored which judgment aggregation rules can be used, depending on, firstly, the
agenda in question, and, secondly, the requirements placed on aggregation, such as
anonymity, and of course the consistency of collective judgments. Some theorems
generalize Arrow’s Theorem from preference to judgment aggregation (Dietrich and
List 2007a; Dokow and Holzman 2010; both build on Nehring and Puppe 2010a and
strengthen Wilson 1975). Other theorems have no immediate counterparts in classical
social choice theory (e.g., List 2004; Dietrich 2006a, 2010; Nehring and Puppe 2010b;
Dietrich and Mongin 2010).

It is fair to say that judgment aggregation theory has until recently been dominated
by ‘impossibility’ findings, as is evident from the Symposium on Judgment Aggre-
gation in Journal of Economic Theory (List and Polak 2010). The recent conference
‘Judgment aggregation and voting’ in Freudenstadt in 2011 however marks a visible
shift of attention towards constructing concrete aggregation rules and finding ‘second
best’ solutions in the face of impossibility results. The new proposals range from a
first Borda-type aggregation rule (Zwicker 2011) to, among others, new distance-based
rules (Duddy and Piggins 2012) and rules which approximate the majority judgments
when these are inconsistent (Nehring et al. 2011). The more traditional proposals
include premise- and conclusion-based rules (e.g., Kornhauser and Sager 1986; Pettit
2001; List and Pettit 2002; Dietrich 2006a; Dietrich and Mongin 2010), sequential
rules (e.g., List 2004; Dietrich and List 2007b), distance-based rules (e.g., Konieczny
and Pino-Perez 2002; Pigozzi 2006; Miller and Osherson 2008; Eckert and Klamler
2009; Hartmann et al. 2010; Lang et al. 2011), and quota rules with well-calibrated
acceptance thresholds and various degrees of collective rationality (e.g., Dietrich and
List 2007b; see also Nehring and Puppe 2010a).

The present paper contributes to the theory’s current ‘constructive’ effort by inves-
tigating a class of aggregation rules to be called scoring rules. The inspiration comes
from classical scoring rules in preference aggregation theory. These rules generate
collective preferences which rank each alternative according to the sum-total ‘score’
it receives from the group members, where the ‘score’ could be defined in different
ways, leading to different classical scoring rules such as the Borda rule (see Smith
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1973; Young 1975; Zwicker 1991, and for abstract generalizations Myerson 1995;
Zwicker 2008; Conitzer et al. 2009; Pivato 2011b). In a general judgment aggregation
framework, however, there are no ‘alternatives’; so our scoring rules are based on
assigning scores to propositions, not alternatives. Nonetheless, our scoring rules are
related to classical scoring rules, and generalize them, as will be shown.

The paradigm underlying our scoring rules—i.e., the maximization of total score
of collective judgments—differs from standard paradigms in judgment aggregation,
such as the premise-, conclusion- or distance-based paradigms. Nonetheless, it will
turn out that several existing rules can be re-modelled as scoring rules, and can thus be
‘rationalized’ in terms of the maximization of total scores. Of course, the way scores
are being assigned to propositions—the ‘scoring’—differs strongly across rules; for
instance, the Kemeny rule and the premise-based rule can each be viewed as a scoring
rule, but with respect to two very different scorings. This paper explores various plau-
sible scorings. It uncovers the scorings which implicitly underlie several well-known
aggregation rules, and suggests other scorings which generate novel aggregation rules.
For instance, a particularly natural scoring, to be called reversal scoring, will lead to a
new generalization of the Borda rule from preference aggregation to judgment aggre-
gation. The problem of how to generalize the Borda rule has been a long-lasting open
question in judgment aggregation theory. Recently, an interesting (so far incomplete)
proposal was made by Zwicker (2011). Surprisingly, his and the present Borda gen-
eralizations are somewhat different, as detailed below.1

Though large, the class of scoring rules is far from universal: some important
aggregation rules fall outside this class (notably the mentioned rule approximating the
majority judgments, proposed by Nehring et al. 2011). I will also investigate a natural
generalization of scoring rules, to be called set scoring rules, which are based on
assigning scores to entire judgment sets rather than single propositions (judgments).
Such rules are examples of Zwicker’s (2008) ‘generalized scoring rules’ for an abstract
aggregation problem whose inputs and outputs are arbitrary objects rather than judg-
ment sets (see also Myerson 1995; Pivato 2011a).2

After this introduction, Sect. 2 defines the general framework, Sect. 3 analyses vari-
ous scoring rules, Sect. 4 goes on to analyse several set scoring rules, and Sect. 5 draws
some conclusions about where we stand in terms of concrete aggregation procedures.

2 The framework, examples and interpretations

I now introduce the framework, following List and Pettit (2002) and Dietrich (2007).3

We consider a set of n (≥2) individuals, denoted N = {1, . . . , n}. They need to decide
which of certain interconnected propositions to ‘believe’ or ‘accept’.

1 Conal Duddy and Ashley Piggins also have independent work in progress on ‘generalizing Borda’, and
I learned from Klaus Nehring that he had ideas similar to those in the present paper.
2 If the inputs and outputs of that aggregation problem are taken to be judgment sets, then Zwicker’s
‘generalized scoring rules’ become our set scoring rules (suitably translated into Zwicker’s setting of an
anonymous variable population).
3 To be precise, I use a slimmer variant of their models, since the logic in which propositions are formed
is not explicitly part of the model.
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The agenda The set X of propositions under consideration is called the agenda. It
is subdivided into issues, i.e., pairs of a proposition and its negation, such as ‘it will
rain’ and ‘it won’t rain’. Rationally, an agent accepts a proposition from each issue
(‘completeness’), while respecting any logical interconnections between propositions
(‘consistency’). We write ‘¬p’ for the negation of a proposition ‘p’, so that the agenda
takes the form X = {p,¬p, q,¬q, . . .}, with issues {p,¬p}, {q,¬q}, etc. It is worth
defining the present notion of an agenda formally:

Definition 1 An agenda is a set X (of ‘propositions’) endowed with:

(a) binary ‘issues’ {p, p′} which partition X (where the members p and p′ of an issue
are the ‘negations’ of each other, written p = ¬p′ and p′ = ¬p),

(b) interconnections, i.e., a notion of which subsets of X are consistent, or formally,
a system C ≡ CX of (‘consistent’) subsets.4

A simple example is the agenda given by

X = {
p,¬p, q,¬q, p ∧ q,¬(p ∧ q)

}
, (1)

where p and q are two atomic sentences, for instance ‘it rains’ and ‘it is cold’,
and p ∧ q is their conjunction. The structure of the agenda—i.e., the issues and
interconnections—is obvious, as it is directly inherited from logic. For instance, the
set {p, p ∧ q} is consistent while the set {¬p, p ∧ q} is not.

Given an agenda X , an individual’s judgment set is the set J ⊆ X of propositions
he accepts. It is complete if it contains a member of each issue {p,¬p}, and (fully)
rational if it is complete and consistent. The set of all rational judgment sets is denoted
by J ≡ JX.

Under the above defnition of an agenda, the set C of consistent sets is a primitive,
while the set J is derived from it. One could proceed the over way round, by using
a slightly modified defnition of an agenda in which clause (b) is replaced by the
following clause:

(b) interconnections, i.e., a notion of which judgment sets are rational, or formally,
a system J ≡ JX �= ∅ of (‘rational’) judgment sets J ⊂ X , each containing
exactly one member from any issue.5

Here, J is the primitive, and the system of consistent sets is defined as C = CX =
{C ⊆ X : C ⊆ J for some J∈ J }. The main difference between the two ways
to define an agenda is that under the second way the agenda – more precisely, its
consistency notion — is automatically well-behaved, that is, satisfies the following
regularity conditions (see Dietrich 2007):

4 Algebraically, the agenda is thus the structure (X, I, C) (where I is the partition into issues), or alterna-
tively the structure (X,¬, C). To see why the issues and the negation operator are interdefinable, note that
we could alternatively start with an operator ¬ on X satisfying ¬p �= p = ¬¬p, and then define the issues
as the pairs {p, ¬p}.
5 So, algebraically speaking, the agenda is the structure (X,I, J ) instead of (X,I, C) (where I is the
partition of X into issues, replaceable by the negation operator ¬ on X ).
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C1: no set {p,¬p} is consistent (self-entailment);
C2: subsets of consistent sets are consistent (monotonicity);
C3: ∅ is consistent and each consistent set can be extended to a complete and con-

sistent set (completability).
Well-behavedness can be expressed equivalently by a single condition:

• C = {C ⊆ J : J ∈ J } �= ∅, i.e., the consistent sets are the subsets of the fully
rational sets.

An advantage of the second way to define an agenda is that well-behavedness – a
common assumption of the theory up to date – comes for free and thus need not be
added explicitly. An advantage of the first way is that it has no hidden assumptions,
and lends itself to future relaxations of well-behavedness (for instance when studying
judgment aggregation in non-monotonic logics).

Henceforth, let X be a given finite agenda with well-behaved interconnections (de-
fined in any of the two ways). Notationally, a judgment set J ⊆ X is often abbreviated
by concatenating its members in any order (so, p¬q¬r is short for {p,¬q,¬r}); and
the negation-closure of a set Y ⊆ X is denoted

Y ± ≡ {p,¬p : p ∈ Y }.

We now introduce the two lead examples of this paper, the first one being isomorphic
to the previous example (1).

Example 1 The ‘doctrinal paradox agenda’ This is the agenda

X = {p, q, r}±,

where p, q and r are atomic sentences and where the interconnections are defined
by classical logic relative to the external constraint r ↔ (p ∧ q). So, there are four
rational judgment sets:

J = {pqr, p¬q¬r,¬pq¬r,¬p¬q¬r}.

Example 2 The preference agenda For an arbitrary, finite set of alternatives A, the
preference agenda is defined as

X = X A = {x Py : x, y ∈ A, x �= y},

where the negation of a proposition x Py is of course ¬x Py = y Px , and where
logical interconnections are defined by the usual conditions of transitivity, asymmetry
and connectedness, which define a strict linear order. Formally, to each binary relation
� over A uniquely corresponds a judgment set, denoted J� = {x Py ∈ X : x � y},
and the set of all rational judgment sets is

J = {J� : � is a strict linear order over A}.
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Aggregation rules A (multi-valued) aggregation rule is a correspondence F which to
every profile of ‘individual’ judgment sets (J1, . . . , Jn) (from some domain, usually
J n) assigns a set F(J1, . . . , Jn) of ‘collective’ judgment sets. Typically, the output
F(J1, . . . , Jn) is a singleton set {C}, in which case we identify this set with C and write
F(J1, . . . , Jn) = C . If F(J1, . . . , Jn) contains more than one judgment set, there is a
‘tie’ between these judgment sets. An aggregation rule is called single-valued or tie-
free if it always generates a single judgment set. A standard (single-valued) aggregation
rule is majority rule; it is given by

F(J1, . . . , Jn) = {p ∈ X : p ∈ Ji for more than half of the individuals i}

and generates inconsistent collective judgment sets for many agendas and profiles. If
both individual and collective judgment sets are rational (i.e., in J ), the aggregation
rule defines a correspondence J n ⇒ J , and in the case of single-valuedness a function
J n → J .6

Some thoughts about the model As an excursion for interested readers, let me add
some considerations about the present model and its flexibility. Firstly, I mention
three salient ways of specifying an agenda in practice. All three approaches could
qualify broadly as ‘logical’:

• Under the syntactic approach, the propositions are sentences of formal logic. The
structure of the agenda—i.e., the issues {p,¬p} and the interconnections—need
not be specified explicitly, as it is directly inherited from the logic: it is given
by the logic’s negation symbol and consistency notion.7 The logic needs to have
the right expressive power to adequately render the group’s decision problem:
one might use standard propositional logic, or standard predicate logic, or various
modal or conditional logics (see Dietrich 2007). Many real-life agendas draw on
non-standard logics by involving for instance modal operators or non-material
conditionals. Fortunately, most relevant logics are well-behaved, i.e., satisfy the
conditions C1–C3 (now read as conditions on sentences of the logic), so that the
agenda is automatically well-behaved.

• Under the semantic approach, the propositions are subsets of some fixed underlying
set � of possibilities or worlds. The structure of the agenda (the issues {p,¬p}
and the interconnections) need again not be specified explicitly, as it is inherited
from set theory: the negation of a proposition p is the complement ¬p := �\p,
and a set of propositions is consistent just in case its intersection is non-empty.8

Such a semantic agenda is automatically well-behaved.9

6 More generally, dropping the requirement of collective rationality, we have a correspondence J n ⇒ 2X ,
where 2X is the set of all judgment sets, rational or not. As usual, I write ‘⇒’ instead of ‘→’ to indicate a
multi-function.
7 Formally, the agenda X is any set of logical sentences which is partitionable into pairs containing a
sentence and its negation. These pairs define the issues. (We have presupposed that the logic includes the
negation symbol, as all interesting logics do.)
8 Formally, the agenda X is any set of subsets of � such that p ∈ X ⇒ �\p ∈ X .
9 Nehring and Puppe’s (2010a) property spaces are essentially semantically defined agendas.
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• Under an algebraic (or abstract semantic) approach, the agenda is a subset of an
underlying Boolean algebra.10 The structure of the agenda (the issues {p,¬p}
and the interconnections) is once again automatically inherited, this time from the
Boolean algebra.11 The agenda is automatically well-behaved.

Secondly, I mention an interpretational point (orthogonal to the question of whether
one works with a syntactic, semantic, algebraic or other agenda). Under the stan-
dard interpretation, we are aggregating ‘judgments’, i.e., belief-type attitudes towards
propositions. But one may re-interpret the nature of the attitude, so that judgment
sets become desire sets, or hope sets, or normative approval sets, or intention sets,
and so on—which leads to desire aggregation, or hope aggregation, and so on. In this
case we still aggregate propositional attitudes, albeit not judgments. In a more radical
departure, we may consider the aggregation of arbitrary individual properties (charac-
teristics). Here the agenda contains not propositions which someone may or may not
believe (or desire, or hope etc.), but properties which someone may or may not have
or satisfy. For instance, the agenda might contain the properties of liking peace, being
successful, and so on. Each individual i has some set of properties Ji , and the goal is
to derive a collective property set. This is the general property aggregation problem,
distinct from the problem of aggregating propositional attitudes such as judgments.12

The mathematics built on the model does not ‘know’ which kind of interpretation
or application one has in mind. Nonetheless, interpretation and context matter, since
the question of how to best aggregate and which axioms to require depends on it.

3 Scoring rules

Scoring rules are particular judgment aggregation rules, defined on the basis of a
so-called scoring function. A scoring function—or simply a scoring—is a function

10 A Boolean algebra is a distributive lattice L (with its operations of join and meet) in which there exists
a top element ᵀ (tautology) and a bottom element ⊥ (contradiction) and in which every element p has a
negation/complement (i.e., an element whose join with p is ᵀ and whose meet with p is ⊥). An important
example is a concrete Boolean algebra L ⊆ 2� (for an underlying set of worlds �), in which the join is
given by the union, the meet by the intersection, the top by �, the bottom by ∅, and the negation by the
set-theoretic complement. In this case, the algebraic approach reduces to the standard semantic approach.
Another example is the Boolean algebra generated from a logic, i.e., the set of sentences modulo logical
equivalence (where the logic includes classical negation and conjunction, which induce the algebra’s join,
meet and complement operations).
11 Formally, the agenda X is any subset of the Boolean algebra which is closed under Boolean-algebraic
negation/complementation (see footnote 10).
12 Property aggregation raises the question of what it means for the collective to ‘have’ a property. Pre-
sumably, collective properties are something quite different from individual properties, just as collective
judgments (or desires, hopes, . . .) do not have the same status as individual ones. More generally, one may
of course doubt the meaningfulness and relevance of group attributes. From a behaviourist perspective,
the two ‘Humean’ collective attitudes—group beliefs (judgments) and group desires (preferences)—can
be given meaning based on group behaviour, at least in principle. From my own (non-behaviourist) per-
spective, all sorts of non-standard group attributes can be meaningful and relevant, despite possibly being
underdetermined by group action. But even if such group attributes are deemed meaningless or irrelevant,
one may re-interpret them as being no more than summaries of the group members’ attributes (rather than
attributes of any separate group agent).
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s : X × J → R which to each proposition p and rational judgment set J assigns a
number sJ (p), called the score of p given J and measuring how p performs (‘scores’)
from the perspective of holding judgment set J . As an elementary example, so-called
simple scoring is given by:

sJ (p) =
{

1 if p ∈ J
0 if p �∈ J,

(2)

so that all accepted propositions score 1, whereas all rejected propositions score 0.
This and many other scorings will be analysed. Let us think of the score of a set of
propositions as the sum of the scores of its members. So, the scoring s is extended to
a function which (given the agent’s judgment set J ∈ J ) assigns to each set C ⊆ X
the score

sJ (C) ≡
∑

p∈C

sJ (p).

(In Sect. 4, we move to a generalized approach in which the score of a set C is a
primitive and need not be additively derivable from scores of single propositions.)

A scoring s gives rise to an aggregation rule, called the scoring rule w.r.t. s and
denoted Fs . Given a profile (J1, . . . , Jn) ∈ J n , this rule determines the collective
judgments by selecting the rational judgment set(s) with the highest sum-total score
across all judgments and all individuals:

Fs(J1, . . . , Jn) = judgment set(s) in J with highest total score

= argmaxC∈J
∑

p∈C,i∈N

sJi (p) = argmaxC∈J
∑

i∈N

sJi (C).

By a scoring rule simpliciter we of course mean an aggregation rule which is a scoring
rule w.r.t. some scoring. Different scorings s and s′ can generate the same scoring rule
Fs = Fs′ , in which case they are called equivalent. For instance, s is equivalent to
s′ = 2s.13

3.1 Simple scoring and the Kemeny rule

We first consider the most elementary definition of scoring, namely simple scoring
(2). Table 2 illustrates the corresponding scoring rule Fs for the case of the agenda and
profile of our doctrinal paradox example. The entries in Table 2 are derived as follows.
First, enter the score of each proposition (p,¬p, q, . . .) from each individual (1, 2 and
3). Second, enter each individual’s score of each judgment set by taking the row-wise
sum. For instance, individual 1’s score of pqr is 1 + 1 + 1 = 3, and his score of

13 More generally, certain increasing transformations have no effect. As one may show, scorings s and s′
are equivalent (i.e., Fs = Fs′ ) whenever there are coefficients a > 0 and bp ∈ R (p ∈ X) with bp = b¬p
for all p ∈ X such that s′ is given by s′

J (p) = asJ (p) + bp .
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Table 2 Simple scoring (2) for the doctrinal paradox agenda and profile

Score of

p ¬p q ¬q r ¬r pqr p¬q¬r ¬pq¬r ¬p¬q¬r

Indiv. 1 (pqr) 1 0 1 0 1 0 3 1 1 0

Indiv. 2 (p¬q¬r) 1 0 0 1 0 1 1 3 1 2

Indiv. 3 (¬pq¬r) 0 1 1 0 0 1 1 1 3 2

Group 2 1 2 1 1 2 5* 5* 5* 4

p¬q¬r is 1 + 0 + 0 = 1. Third, enter the group’s score of each proposition by taking
the column-wise sum. For instance, the group’s score of p is 1 + 1 + 0 = 2. Finally,
enter the group’s score of each judgment set, by taking either a vertical or a horizontal
sum (the two give the same result), and add a star ‘*’ in the field(s) with maximal
score to indicate the winning judgment set(s). For instance, the group’s score of pqr
using a vertical sum is 3 + 1 + 1 = 5, and using a horizontal sum it is 2 + 2 + 1 = 5.
Since the judgment sets pqr, p¬q¬r and ¬pq¬r all have maximal group score, the
scoring rule delivers a tie:

F(J1, J2, J3) = {pqr, p¬q¬r,¬pq¬r}.

This is a tie between the premise-based outcome pqr and the conclusion-based out-
comes p¬q¬r and ¬pq¬r . Were we to add more individuals, the tie would presum-
ably be broken in one way or the other. In large groups, ties are a rare coincidence.

To link simple scoring to distance-based aggregation, suppose we measure the
distance between two rational judgment sets by using some distance function (‘metric’)
d over J .14 The most common example is the Kemeny distance d = dKemeny, which
can also be attributed to the statistician Kendall. It is defined as follows (where by a
‘judgment reversal’ I mean the replacement of an accepted proposition by its negation):

dKemeny(J, K ) = number of judgment reversals needed to transform J into K

= |J\K | = |K\J | = 1

2
|J � K | .

For instance, the Kemeny-distance between pqr and p¬q¬r (for our doctrinal paradox
agenda) is 2.

Now the distance-based rule w.r.t. distance d is the aggregation rule Fd which for
any profile (J1, . . . , Jn) ∈ J n determines the collective judgment set(s) by minimizing

14 A distance function or metric over J is a function d : J × J → [0,∞) satisfying three conditions:
for all J, K , L ∈ J , (i) d(J, K ) = 0 ⇔ J = K , (ii) d(J, K ) = d(K , J ) (‘symmetry’), and (iii)
d(J, L) ≤ d(J, K ) + d(K , L) (‘triangle inequality’).
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the sum-total distance to the individual judgment sets:

Fd(J1, . . . , Jn) = judgment set(s) in J with minimal sum-distance to the profile

= argminC∈J
∑

i∈N

d(C, Ji ).

The most popular example, the Kemeny rule FdKemeny (also referred to as the Hamming
rule or the median rule), can be characterized as a scoring rule:

Proposition 1 The simple scoring rule is the Kemeny rule.

3.2 Classical scoring rules for preference aggregation

I now show that our scoring rules generalize the classical scoring rules of preference
aggregation theory. Consider the preference agenda X for a given set of alternatives A
of finite size k. Classical scoring rules (such as the Borda rule) are defined by assigning
scores to alternatives in A, not to propositions x Py in X . Given a strict linear order �
over A, each alternative x ∈ A is assigned a score SCO�(x) ∈ R. The most popular
example is of course Borda scoring, for which the highest ranked alternative in A
scores k, the second-highest k −1, the third-highest k −2, …, and the lowest 1. Given
a profile (�1, . . . ,�n) of individual preferences (strict linear orders), the collective
ranks the alternatives x ∈ X according to their sum-total score

∑
i∈N SCO�i (x). To

translate this into the judgment aggregation formalism, recall that each strict linear
order � over A uniquely corresponds to a rational judgment set J ∈ J (given by
x Py ∈ J ⇔ x � y); we may therefore write SCOJ (x) instead of SCO�(x), and
view the classical scoring SCO as a function of (x, J ) in A × J . Formally, I define a
classical scoring as an arbitrary function SCO : A×J → R, and the classical scoring
rule w.r.t. it as the judgment aggregation rule F ≡ FSCO for the preference agenda
which for every profile (J1, . . . , Jn) ∈ J n returns the rational judgment set(s) that
rank an alternative x over another y whenever x has a higher sum-total score than y:15

F(J1, . . . , Jn) = {C ∈ J : C contains all x Py ∈ X s.t.
∑

i∈N

SCOJi (x) >
∑

i∈N

SCOJi (y)}.

Now, any given classical scoring SCO induces a scoring s in our (proposition-based)
sense. In fact, there are two canonical (and, as we will see, equivalent) ways to define

15 A technical difference between the standard notion of a scoring rule in preference aggregation theory
and our judgment-theoretic rendition of it arises when there happen to exist distinct alternatives with
identical sum-total score. In such cases, the standard scoring rule returns collective indifferences, whereas
our FSCO returns a tie between strict preferences. From a formal perspective, however, the two definitions
are equivalent, since to any weak order corresponds the set (tie) of all strict linear orders which linearize the
weak order by breaking its indifferences (in any cycle-free way). The structural asymmetry between input
and output preferences of scoring rules as defined standardly (i.e., the possibility of indifferences at the
collective level) may have been one of the obstacles—albeit only a small, mainly psychological one—for
importing scoring rules and Borda aggregation into judgment aggregation theory.
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s: one might define s either by

sJ (x Py) = SCOJ (x) − SCOJ (y), (3)

or, if one would like the lowest achievable score to be zero, by

sJ (x Py)

= max{SCOJ (x) − SCOJ (y), 0}=
{

SCOJ (x) − SCOJ (y) if x Py ∈ J
0 if x Py �∈ J

(4)

(where the last equality assumes that SCOJ (x) > SCOJ (y) ⇔ x Py ∈ J for all x, y
and J , a property that is so natural that we might have built it into the definition of
a ‘classical scoring’ SCO). This allows us to characterize classical scoring rules in
terms of proposition-based rather than alternative-based scoring:

Proposition 2 In the case of the preference agenda (for any finite set of alternatives),
every classical scoring rule is a scoring rule, namely one with respect to a scoring s
derived from the classical scoring SCO via (3) or via (4).

3.3 Reversal scoring and a Borda rule for judgment aggregation

Given the agent’s judgment set J , let us think of the score of a proposition p ∈ X as
a measure of how ‘distant’ the negation ¬p is from J ; so, p scores high if ¬p is far
from J , and low if ¬p is contained in J . More precisely, let the score of a proposition
p given J ∈ J be the number of judgment reversals needed to reject p, i.e., the
number of propositions in J that must (minimally) be negated in order to obtain a
consistent judgment set containing ¬p. So, denoting the judgment set arising from J
by negating the propositions in a subset R ⊆ J by J¬R = (J\R) ∪ {¬r : r ∈ R},
so-called reversal scoring is defined by

sJ (p) = number of judgment reversals needed to reject p (5)

= min
R⊆J :J¬R∈J &p �∈J¬R

|R| = min
J ′∈J :p �∈J ′

∣
∣J\J ′∣∣ = min

J ′∈J :p �∈J ′ dKemeny(J, J ′).

For instance, a rejected proposition p �∈ J scores zero, since J itself contains ¬p
so that it suffices to negate zero propositions (R = ∅). An accepted proposition
p ∈ J scores 1 if J remains consistent by negating p (R = {p}), and scores more
than 1 otherwise (R � {p}). Table 3 illustrates reversal scoring for our doctrinal
paradox example. For instance, individual 1’s judgment set pqr leads to a score of
2 for proposition p, since in order for him to reject p he needs to negate not just p
(as ¬pqr is inconsistent), but also r (where ¬pq¬r is consistent). The scoring rule
delivers a tie between the judgment sets p¬q¬r and ¬pq¬r . This is a tie between
two conclusion-based outcomes; the premise-based outcome pqr is rejected (unlike
for simple scoring in Sect. 3.1).
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Table 3 Reversal scoring (5) for the doctrinal paradox agenda and profile

Score of

p ¬p q ¬q r ¬r pqr p¬q¬r ¬pq¬r ¬p¬q¬r

Indiv. 1 (pqr) 2 0 2 0 2 0 6 2 2 0

Indiv. 2 (p¬q¬r) 1 0 0 2 0 2 1 5 2 4

Indiv. 3 (¬pq¬r) 0 2 1 0 0 2 1 2 5 4

Group 3 2 3 2 2 4 8 9* 9* 8

The remarkable feature of reversal scoring rule is that it generalizes the Borda rule
from preference to judgment aggregation. The Borda rule is initially only defined for
the preference agenda X (for a given finite set of alternatives), namely as the classical
scoring rule w.r.t. Borda scoring; see the last subsection. The key observation is that
reversal scoring is intimately linked to Borda scoring:

Remark 1 In the case of the preference agenda (for any finite set of alternatives),
reversal scoring s is given by (4) with SCO defined as classical Borda scoring.

Let me sketch the simple argument—it should sound familiar to social choice
theorists. Let s be reversal scoring, X the preference agenda for a set of alternatives A
of size k < ∞, and SCO classical Borda scoring. Consider any x Py ∈ X and J ∈ J .
If x Py ∈ X\J , then ¬x Py = y Px ∈ J , which implies sJ (x Py) = 0, as required by
(4). Now suppose x Py ∈ J . Clearly, SCOJ (x) > SCOJ (y). Consider the alternatives
in the order � established by J :

xk � xk−1 � · · · � x � · · · � y � · · · � x1,

where x j is the alternative with SCOJ (x j ) = j . Step by step, we now move y up in
the ranking, where each step consists in raising the position (score) of y by one. Each
step corresponds to negating one proposition in J , namely the proposition z Py where
z is the alternative that is currently being ‘overtaken’ by y. After exactly SCOJ (x) −
SCOJ (y) steps, y has ‘overtaken’ x , i.e., x Py has been negated. So, sJ (x Py) is at
most SCOJ (x) − SCOJ (y). It is exactly SCOJ (x) − SCOJ (y), since, as the reader
may check, no smaller number of judgment reversals allows y to ‘overtake’ x in the
ranking.

Remark 1 and Proposition 2 imply that reversal scoring allows us to extend the
Borda rule to arbitrary judgment aggregation problems:

Proposition 3 The reversal scoring rule generalizes the Borda rule, i.e., matches it
in the case of the preference agenda (for any finite set of alternatives).

I note that one could use a perfectly equivalent variant of reversal scoring s which,
in the case of the preference agenda, is related to classical Borda scoring SCO via (3)
instead of (4):
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Remark 2 Reversal scoring s is equivalent (in terms of the resulting scoring rule) to
the scoring s′ given by

s′
J (p) = sJ (p) − sJ (¬p) =

{
sJ (p) if p ∈ J
−sJ (¬p) if p �∈ J,

and in the case of the preference agenda (for any finite set of alternatives) this scoring
is given by

s′
J (x Py) = SCOJ (x) − SCOJ (y)

with SCO defined as classical Borda scoring.

For comparison, I now sketch Zwicker (2011) interesting approach to extending
the Borda rule to judgment aggregation—let me call such an extension a ‘Borda-
Zwicker’ rule. The motivation derives from a geometric characterization of Borda
preference aggregation obtained by Zwicker (1991). Let me write the agenda as X =
{p1,¬p1, p2,¬p2, . . . , pm,¬pm}, where m is the number of ‘issues’. Each profile
gives rise to a vector v ≡ (v1, . . . , vm) in R

m whose jth entry v j is the net support
for p j , i.e., the number of individuals accepting p j minus the same number for ¬p j .
Now if X is the preference agenda for any finite set of alternatives A, then each p j

takes the form x Py for certain alternatives x, y ∈ A. Each preference cycle can be
mapped to a vector in R

m ; for instance, if p1 = x Py, p2 = y Pz and p3 = x Pz,
then the cycle x � y � z � x becomes the vector (1, 1,−1, 0, . . . , 0) ∈ R

m .
The linear span of all vectors corresponding to preference cycles defines the so-called
‘cycle space’ Vcycle ⊆ R

m , and its orthogonal complement defines the ‘cocycle space’
Vcocycle ⊆ R

m . Let vcocycle be the orthogonal projection of v on the cocycle space
Vcocycle. Intuitively, vcocycle contains the ‘consistent’ or ‘acyclic’ part of v. The upshot
is that the Borda outcome can be read off from vcocycle: for each p j = x Py, the
Borda group preference ranks x above (below) y if the jth entry of vcocycle is positive
(negative). Zwicker’s strategy for extending the Borda rule to judgment aggregation is
to define a subspace Vcycle analogously for agendas other than the preference agenda;
one can then again project v on the orthogonal complement of Vcycle and determine
collective ‘Borda’ judgments according to the signs of the entries of this projection.
This approach has proved successful for simple agendas, in which there is a natural
way to define Vcycle. Whether the approach is viable for general agendas (i.e., whether
Vcycle has a useful general definition) seems to be open so far.16

A Borda-Zwicker rule is not just constructed differently from a scoring rule in our
sense, but, as I conjecture, it also cannot generally be remodelled as a scoring rule,
since most interesting scoring rules use information that goes beyond the information
contained in the profile’s ‘net support vector’ v ∈ R

m . (Even more does the required
information go beyond the projection of v on the orthogonal complement of Vcycle.)

16 One might at first be tempted to generally define Vcycle as the linear span of those vectors which
correspond to the agenda’s minimal inconsistent subsets. Unfortunately, this span is often the entire space
R

m , an example for this being our doctrinal paradox agenda.
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In summary, there seem to exist two quite different approaches to generalizing
Borda aggregation. One approach, taken by Zwicker, seeks to filter out the profile’s
‘inconsistent component’ along the lines of the just-described geometric technique.
The other approach, taken here, seeks to retain the principle of score-maximization
inherent in Borda aggregation (with scoring now defined at the level of propositions,
not alternatives, as these do not exist outside the world of preferences). One might
view the normative core of the scoring approach as being the use of the strength of
someone’s judgments, i.e., the strength of acceptance of propositions, as measured by
the score—just as Borda preference aggregation is sometimes interpreted as a way
to incorporate the strength of someone’s preference between alternatives x and y, as
measured by the score of x Py, i.e., the difference between x’s and y’s score.17

3.4 A generalization of reversal scoring

Recall that the reversal score of a proposition p can be characterized as the distance
by which one must deviate from the current judgment set in order to reject p—where
‘distance’ is understood as Kemeny-distance. It is natural to also consider other kinds
of a distance. Relative to any given distance function d over J , one may define a
corresponding scoring by

sJ (p) = distance by which one must depart from J to reject p (6)

= min
J ′∈J :p �∈J ′ d(J, J ′).

This provides us with a whole class of scoring rules, all of which are variants of our
judgment-theoretic Borda rule. In the special case of the preference agenda, we thus
obtain new variants of the classical Borda rule.

For instance, we could adopt Duddy and Piggins’ 2012 distance function, i.e., we
could define d(J, J ′) as the number of minimal consistent modifications needed to
transform J into J ′.18 So, while Duddy and Piggins had introduced their distance in
the context of distance-based aggregation to develop an alternative to the Kemeny rule,
their distance can also be used in our context of (reversal) scoring rules to develop an
alternative to Borda aggregation.

17 By contrast, Condorcet’s rule of pairwise majority voting only cares about whether or not someone
prefers an alternative over another, without attempting to extract strength-of-preference information from
the person’s full preference relation. It is of course notoriously controversial whether strength or intensity
of preference is a permissible concept—and even if it is, whether the score of x Py is an adequate proxy of
the strength to which x is preferred to y. The ordinalist approach takes a sceptical stance here. Note however
that Borda aggregation can be defended for reasons unrelated to strength of preference. For instance, its
axiomatic characterizations offer possible normative defences.
18 Judgment sets J, J ′ ∈ J are minimal consistent modifications of each other if the set S = J\J ′ of
propositions in J which need to be negated to transform J into J ′ is non-empty and minimal (i.e., J
couldn’t have been transformed into a consistent set by negating only a strict non-empty subset of S). For
our doctrinal paradox agenda, the judgment sets pqr and p¬q¬r are minimal consistent modifications of
each other, and hence have Duddy–Piggins-distance of 1.
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3.5 Scoring based on logical entrenchment

We now consider scoring rules which explicitly exploit the logical structure of the
agenda. Let us think of the score of a proposition p (∈X) given the judgment set J
(∈ J ) as the degree to which p is logically entrenched in the belief system J , i.e., as
the ‘strength’ with which J entails p. We measure this strength by the number of ways
in which p is entailed by J , where each ‘way’ is given by a particular judgment subset
S ⊆ J which entails p, i.e., for which S ∪ {¬p} is inconsistent. If J does not contain
p, then no judgment subset—not even the full set J—can entail p; so the strength of
entailment (score) of p is zero. If J contains p, then p is entailed by the judgment
subset {p}, and perhaps also by very different judgment subsets; so the strength of
entailment (score) of p is positive and more or less high.

There are different ways to formalise this idea, depending on precisely which of the
judgment subsets that entail p are deemed relevant. I now propose four formalizations.
Two of them will once again allow us to generalize the Borda rule from preference to
judgment aggregation. These generalizations differ from that based on reversal scoring
in Sect. 3.3.

Our first, naive approach is to count each judgment subset which entails p as a
separate, full-fledged ‘way’ in which p is entailed. This leads to so-called entailment
scoring, defined by:

sJ (p) = number of judgment subsets which entail p (7)

= |{S ⊆ J : S entails p}| .

If p �∈ J then sJ (p) = 0, while if p ∈ J then sJ (p) ≥ 2|X |/2−1 since p is entailed
by at least all sets S ⊆ J which contain p, i.e., by at least 2|J |−1 = 2|X |/2−1 sets.
One might object that this definition of scoring involves redundancies, i.e., ‘multiple
counting’. Suppose for instance p belongs to J and is logically independent of all other
propositions in J . Then p is entailed by several subsets S of J—all S ⊆ J which
contain p—and yet these entailments are essentially identical since all premises in S
other than p are irrelevant.

I now present three refinements of scoring (7), each of which responds differently to
the mentioned redundancy objection. In the first refinement, we count two entailments
of p as different only if they have no premise in common. This leads to what I call
disjoint-entailment scoring, formally defined by:

sJ (p) = number of pairwise disjoint judgment subsets entailing p (8)

= max{m : J has m pairwise disjoint subsets each entailing p}.

In the mentioned case where p (∈ J ) is logically independent of all other propositions
in J , we now avoid ‘multiple counting’: sJ (p) is only 1, as one cannot find different
pairwise disjoint judgment subsets entailing p. For our doctrinal paradox agenda and
profile, the scoring rule delivers a tie between the two conclusion-based outcomes
p¬q¬r and ¬pq¬r , as illustrated in Table 4. For instance, individual 2 has judgment
set p¬q¬r , so that p scores 1 (it is entailed by {p} but by no other disjoint judgment

123



888 F. Dietrich

Table 4 Disjoint-entailment scoring (8) for the doctrinal paradox agenda and profile

Score of

p ¬p q ¬q r ¬r pqr p¬q¬r ¬pq¬r ¬p¬q¬r

Indiv. 1 (pqr) 2 0 2 0 2 0 6 2 2 0

Indiv. 2 (p¬q¬r) 1 0 0 2 0 2 1 5 2 4

Indiv. 3 (¬pq¬r) 0 2 1 0 0 2 1 2 5 4

Group 3 2 3 2 2 4 8 9* 9* 8

subset), ¬q scores 2 (it is disjointly entailed by {¬q} and {p,¬r}), ¬r scores 2 (it is
disjointly entailed by {¬r} and {¬q}), and all rejected propositions score zero (they
are not entailed by any judgment subsets).

Disjoint-entailment scoring turns out to match reversal scoring for our doctrinal
paradox agenda (check that Tables 3, 4 coincide), as well as for the preference agenda
(as shown later). Is this pure coincidence? The general relationship is that the disjoint-
entailment score of a proposition p is always at most the reversal score, as one may
show.19

While this refinement of naive entailment scoring (7) avoids ‘multiple counting’
by only counting entailments with pairwise disjoint sets of premises, the next two
refinements use a different strategy to avoid ‘multiple counting’. The new strategy is
to count only those entailments whose sets of premises are minimal—with minimality
understood either in the sense that no premises can be removed, or in the sense that
no premises can be logically weakened. To begin with the first sense of minimality, I
say that a set minimally entails p (∈ X ) if it entails p but no strict subset of it entails
p, and I define minimal-entailment scoring by

sJ (p) = number of judgment subsets which minimally entailp (9)

= |{S ⊆ J : S minimally entails p}| .

If for instance p is contained in J , then {p} minimally entails p,20 but strict supersets
of {p} do not and are therefore not counted. For our doctrinal paradox agenda, this
scoring happens to coincide with reversal scoring and disjoint-entailment scoring.
Indeed, Table 3 resp. 4 still applies; e.g., for individual 2 with judgment set p¬q¬r, p
still scores 1 (it is minimally entailed only by {p}), ¬q still scores 2 (it is minimally
entailed by {¬q} and by {p,¬r}), ¬r still scores 2 (it is minimally entailed by {¬r}
and by {¬q}), and all rejected propositions still score zero (they are not minimally
entailed by any judgment subsets).

Scoring (9) is certainly appealing. Nonetheless, one might complain that it still
allows for certain redundancies, albeit of a different kind. Consider the prefer-

19 The reason is that, given m mutually disjoint judgment subsets which each entail p, the reversal score
of p is at least m since one must negate at least one proposition from each of these m sets in order to
consistently reject p.
20 Assuming that p is not a tautology, i.e., that {¬p} is consistent. (Otherwise, ∅ minimally entails p.)
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ence agenda with set of alternatives A = {x, y, z, w}, and the judgment set J =
{x Py, y Pz, z Pw, x Pz, y Pw, x Pw} (∈ J ). The proposition x Pw is minimally
entailed by the subset S = {x Py, y Pz, z Pw}. While this entailment is minimal in the
(set-theoretic) sense that we cannot remove premises, it is non-minimal in the (logical)
sense that we can weaken some of its premises: if we replace x Py and y Pz in S by their
logical implication x Pz, then we obtain a weaker set of premises S′ = {x Pz, z Pw}
which still entails x Pw. We shall say that S fails to ‘irreducibly’ entail x Pw, in spite
of minimally entailing it. In general, a set of propositions is called weaker than another
one (which is called stronger) if the second set entails each member of the first set,
but not vice versa. A set S (⊆ X) is defined to irreducibly (or logically minimally)
entail p if S entails p and no subset of premises Y � S can be weakened in this
entailment (i.e., for no subset Y � S there exists a weaker set Y ′ ⊆ X such that
(S\Y ) ∪ Y ′ still entails p). Each irreducible entailment is a minimal entailment, as is
seen by taking Y ′ = ∅.21 In the previous example, the set {x Py, y Pz, z Pw} min-
imally, but not irreducibly entails x Pw, and the set {x Pz, z Pw} irreducibly entails
x Pw. Irreducible-entailment scoring is naturally defined by

sJ (p) = number of judgment subsets which irreducibly entailp (10)

= |{S ⊆ J : S irreducibly entails p}| .

This scoring matches reversal scoring and both previous scorings in the case of our
doctrinal paradox example: Table 3 resp. 4 still applies. But for many other agendas
these scorings all deviate from one another, resulting in different collective judgments.
As for the preference agenda, we have already announced the following result:

Proposition 4 Disjoint-entailment scoring (8) and irreducible-entailment scoring
(10) match reversal scoring (5) in the case of the preference agenda (for any finite set
of alternatives).

Propositions 3 and 4 jointly have an immediate corollary.

Corollary 1 The scoring rules w.r.t. scorings (8) and (10) both generalize the Borda
rule, i.e., match it in the case of the preference agenda (for any finite set of alternatives).

3.6 Propositionwise scoring and a way to repair quota rules with non-rational outputs

We now consider a special class of scorings: propositionwise scorings. This will allow
us to relate scoring rules to the well-known judgment aggregation rules called quota
rules (Dietrich and List 2007b)—in fact, to ‘repair’ these rules by rendering their
outcomes rational across all profiles.

I call scoring s propositionwise if the score of a proposition p ∈ X only depends on
whether p is accepted, i.e., if sJ (p) = sK (p) whenever J and K (in J ) both contain
p or both do not contain p. Equivalently, scoring is propositionwise just in case for

21 Assuming X contains no tautology, i.e., no p such that {¬p} is inconsistent.
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each p ∈ X there is a pair of real numbers s+(p), s−(p) such that

sJ (p) =
{

s+(p) for all J ∈ J containing p
s−(p) for all J ∈ J not containing p.

(11)

Intuitively, s+(p) is the score of an accepted proposition p, and s−(p) is the score of
a rejected proposition p. Typically, of course, s+(p) > s−(p). An example is simple
scoring: there, s+(p) = 1 and s−(p) = 0.

How do propositionwise scoring rules behave? They derive a proposition p’s sum-
total score ‘locally’, i.e., based only on people’s judgments about p. This property
stands in obvious analogy to a well-studied axiom on aggregation rules, namely the
axiom of propositionwise or independent aggregation, which prescribes that the col-
lective judgment about any given proposition p is derived ‘locally’, i.e., again based
only on people’s judgments about p. Can we therefore relate propositionwise scoring
to independent aggregation? The paradigmatic independent aggregation rules are the
quota rules.22 A quota rule is a (single-valued) aggregation rule which is given by
an acceptance threshold m p ∈ {1, . . . , n} for each proposition p ∈ X . The quota
rule corresponding to the so-called threshold family (m p)p∈X is denoted F(m p)p∈X and
accepts those propositions p which are supported by at least m p individuals: for each
profile (J1, . . . , Jn) ∈ J n ,

F(m p)p∈X (J1, . . . , Jn) = {
p ∈ X : |{i : p ∈ Ji }| ≥ m p

}
.

Special cases are unanimity rule (given by m p = n for all p), majority rule (given
by the majority threshold m p = �(n + 1)/2� for all p), and more generally, uniform
quota rules (given by a uniform threshold m p ≡ m for all p). A uniform quota rules
is also referred to as a supermajority rule if m exceeds the majority threshold, and a
submajority rule if m is below the majority threshold. Note that supermajority rules
may generate incomplete collective judgment sets, while submajority rule may accept
both members of a pair p,¬p ∈ X , a drastic form of inconsistency. If one wishes that
exactly one member of each pair p,¬p ∈ X is accepted, the thresholds of p and ¬p
should be ‘complements’ of each other: m p = n + 1 − m¬p.

A non-trivial question is how the acceptance thresholds would have to be set to
ensure that the collective judgment set satisfies some given degree of rationality, such
as to be (i) consistent, or (ii) deductively closed, or (iii) consistent and deductively
closed, or even (iv) fully rational, i.e., in J . These questions have been settled [see
Nehring and Puppe 2010a for (iv), and, subsequently, Dietrich and List 2007b for
(i)–(iv)]. Unfortunately, for many agendas the thresholds would have to be set at
‘extreme’ and normatively unattractive levels. Worse, often no thresholds achieve (iv)
(see Nehring and Puppe 2010a). For our doctrinal paradox agenda X = {p, q, r}± only
the extreme thresholds m p = mq = mr = n and m¬p = m¬q = m¬r = 1 achieve
(iv), and for the preference agenda (with more than two alternatives) no thresholds
achieve (iv).

22 They are the only independent rules which are anonymous, monotonic and unanimity-preserving.
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Given that quota rules with ‘reasonable’ thresholds typically violate many of the
conditions (i)–(iv), one may want to depart from ordinary quota rules by modifying
(‘repairing’) them so that they always generate rational outputs. This can be done
by using propositionwise scoring rules. Given an arbitrary quota rule with threshold
family (m p)p∈X , one can specify a propositionwise scoring such that the scoring
rule replicates the quota rule whenever the quota rule generates a rational output,
while ‘repairing’ the output otherwise. How must we calibrate s+(p) and s−(p) in
order to achieve this? The idea is that individuals who accept p should contribute a
positive score s+(p) > 0, while those who reject p should contribute a negative score
s−(p) < 0. The absolute sizes of s+(p) and s−(p) should be calibrated such that the
sum-total score of p becomes positive (helping the scoring rule to accept p) exactly
when the quota rule accepts p, i.e., when at least m p individuals accept p. Specifically,
we set:

sJ (p) =
{

s+(p) = n + 1 − m p for all J ∈ J containing p
s−(p) = −m p for all J ∈ J not containing p.

(12)

Intuitively, the higher the acceptance threshold m p is, the smaller the positive contri-
bution s+(p) is and the larger the negative contribution s−(p) is (in absolute value);
hence, the more individuals accepting p are needed for p’s sum-total score to get
positive, and the harder it becomes for the scoring rule to accept p. This scoring does
the intended job:

Proposition 5 For every threshold family (m p)p∈X , the scoring rule w.r.t. scoring
(12) matches the quota rule F(m p)p∈X at all profiles where the quota rule generates
rational outputs (and still generates rational outputs at all other profiles).

As an example, consider our doctrinal paradox agenda X = {p, q, r}± with n = 3
individuals, and suppose the quota rule departs only slightly from propositionwise
majority voting: all propositions t in X\{¬r} keep a majority threshold of mt = 2,
but ¬r receives a unanimity threshold m¬r = 3. This quota rule manages to never
generate logically inconsistent collective judgment sets,23 but does so at the expense
of allowing collective incompleteness. Indeed, for our example profile, the quota rule
returns the collective judgment set pq, which is silent on the choice between r and
¬r . As illustrated in Table 5, the scoring rule w.r.t. (12) restores collective rationality
by leading to the premise-based outcome pqr . To read the table, note that scoring
(12) is given by s+(t) = 2 and s−(t) = −2 for all t in X\{¬r}, s+(¬r) = 1 and
s−(¬r) = −3.

How does our scoring rule ‘repair’ those special quota rules which use a uniform
threshold m ≡ m p (p ∈ X), such as majority rule?

Remark 3 For a uniform threshold m ≡ m p, the scoring rule w.r.t. scoring (12) is the
Kemeny rule, or equivalently, the simple scoring rule.

23 This follows from Nehring and Puppe’s (2010) intersection property, generalized to possibly incomplete
collective judgment sets (Dietrich and List 2007b).
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Table 5 Scoring (12) for the doctrinal paradox agenda and profile

Score of

p ¬p q ¬q r ¬r pqr p¬q¬r ¬pq¬r ¬p¬q¬r

Indiv. 1 (pqr) 2 −2 2 −2 2 −3 6 −3 −3 −7

Indiv. 2 (p¬q¬r) 2 −2 −2 2 −2 1 −2 5 −3 1

Indiv. 3 (¬pq¬r) −2 2 2 −2 −2 1 −2 −3 5 1

Group 2 −2 2 −2 −2 −1 2* −1 −1 −5

This remark follows from Proposition 1 and the fact that, for a uniform threshold
m ≡ m p, scoring (12) is equivalent to simple scoring by footnote 13.

Finally, I note that the scoring rule w.r.t. (12) is not the only scoring rule which can
‘repair’ the quota rule F(m p)p∈X —though it might be the most plausible one, as long
as we do not wish to introduce additional parameters. If, however, we are prepared to
introduce additional parameters, scoring (12) can be generalized: for each p ∈ X let
αp > 0 be a coefficient measuring how important it is that the scoring rule is faithful
to the quota rule’s collective judgment on p; and let scoring be defined by

sJ (p) =
{

s+(p) = αp(n + 1 − m p) if p ∈ J
s−(p) = −αpm p if p �∈ J.

(13)

The earlier scoring (12) is obviously a special case in which all αp are 1. Proposition
5 still holds for this generalized kind of propositionwise scoring. The scoring rule will
tend to match the quota rule on propositions p with high importance coefficient αp,
while modifying (‘repairing’) the quota rule at propositions p with low αp.

3.7 Premise- and conclusion-based aggregation

I have just mentioned the possibility of a differential treatment of propositions when
‘repairing’ a quota rule. This possibility is particularly salient in the popular context
of premise- or conclusion-based aggregation.24 One may indeed view the classical
premise- and conclusion-based rules as two (rival) ways of repairing the simplest of
all quota rules—majority rule—by privileging certain propositions over others, namely
premise propositions or conclusion propositions, respectively.

Let me put this precisely. Consider majority voting, i.e., the quota rule with a uni-
form majority threshold m ≡ m p (the smallest integer above n/2). To restore collective
rationality, we again endow each proposition p ∈ X with a ‘coefficient of importance’,
but now let this coefficient be determined by whether p has a ‘premise’ or ‘conclusion’
status. Formally, suppose the agenda is partitioned into two negation-closed sets, the
set P of ‘premise propositions’ and the set X\P of ‘conclusion propositions’. In the
case of our doctrinal paradox agenda X = {p, q, r}±, we have P = {p, q}±. Each
premise proposition p ∈ P has the importance coefficient αp ≡ αpremise, and each

24 See for instance List (2004), Dietrich and Mongin (2010) and Nehring and Puppe (2010b).
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conclusion proposition p ∈ X\P has the importance coefficient αp ≡ αconclusion, for
fixed parameters αpremise, αconclusion ≥ 0. In this scenario, the scoring (13) becomes
equivalent (by footnote 13) to the scoring given by

sJ (p) =
⎧
⎨

⎩

αpremise for accepted premise propositions p ∈ J ∩ P
αconclusion for accepted conclusion propositions p ∈ J\P
0 for rejected propositions p �∈ J.

(14)

By calibrating the two importance coefficients, we can influence the relative weights
of premises and conclusions. If we give far more importance to premise propositions
(αpremise � αconclusion) or to conclusion propositions (αconclusion � αpremise), the scor-
ing rule reduces to the premise- or conclusion-based rule, respectively. To substantiate
this claim, one needs to define both rules. For simplicity, I restrict attention to our
doctrinal paradox agenda X = {p, q, r}± with P = {p, q}± (though more general X
and P could be considered25). In this case, assuming for simplicity that the group size
n is odd,

• the premise-based rule is the aggregation rule which for each profile in J n delivers
the (unique) judgment set in J containing each premise proposition accepted by
a majority;

• the conclusion-based rule is the aggregation rule which for each profile in J n

delivers the judgment set (or sets) in J containing the conclusion proposition
accepted by a majority.26

These two rules have the following characterizations as scoring rules:

Remark 4 For our doctrinal paradox agenda X = {p, q, r}± with set of premise
propositions P = {p, q}±, and for an odd group size, the scoring rule w.r.t. scoring
(14) is

• the premise-based rule if and only if αpremise > (n − 2)αconclusion,
• the conclusion-based rule if and only if αconclusion > αpremise = 0.

This result lets premise- and conclusion-based aggregation appear in a rather
extreme light: each rule is based on somewhat unequal importance coefficients αpremise
and αconclusion, deeming one type of proposition to be overwhelmingly more important
than the other. It might therefore be interesting to consider more equilibrated values
of the importance coefficients, so as to achieve a compromise between democracy at
the premise level and democracy at the conclusion level.

25 Our analysis generalizes easily to any X and P such that (i) the premise propositions in P are logically
independent, and (ii) complete judgments across the premise propositions in P uniquely determine the
judgments on the conclusion propositions in X\P .
26 In the literature, the conclusion-based procedure is usually taken to be silent on the premises, i.e., to
return an incomplete judgment set not in J . I have replaced this silence by a tie between all compatible
judgments on the premise propositions.
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4 Set scoring rules: assigning scores to entire judgment sets

An interesting generalization of scoring rules is obtained by assigning scores directly
to entire judgment sets rather than single propositions. A set scoring function—or
simply set scoring—is a function σ which to every pair of rational judgment sets C
and J assigns a real number σJ (C), the score of C given J , which measures how well
C performs (‘scores’) from the perspective of holding the judgment set J . Formally,
σ : J × J → R. The most elementary example, to be called naive set scoring, is
given by

σJ (C) =
{

1 if C = J
0 if C �= J.

(15)

Any set scoring σ gives rise to an aggregation rule Fσ , the set scoring rule (or gen-
eralized scoring rule) w.r.t. σ , which for each profile (J1, . . . , Jn) ∈ J n selects the
collective judgment set(s) C in J having maximal sum-total score across individuals:

Fσ (J1, . . . , Jn) = argmaxC∈J
∑

i∈N

σJi (C).

An aggregation rule is a set scoring rule simpliciter if it is the set scoring rule w.r.t.
some set scoring σ . Set scoring rules generalize ordinary scoring rules, since to any
ordinary scoring s corresponds a set scoring σ , given by

σJ (C) ≡
∑

p∈C

sJ (p),

and the ordinary scoring rule w.r.t. s coincides with the set scoring rule w.r.t. σ .

4.1 Naive set scoring and plurality voting

The plurality rule is the aggregation rule F which for every profile (J1, . . . , Jn) ∈ J n

declares the most often submitted judgment set(s) as the collective judgment set(s):

F(J1, . . . , Jn) = most frequently submitted judgment set(s)

= argmaxC∈J |{i : Ji = C}| .

This rule is of course normatively questionable;27 but it deserves our attention, if only
because of its simplicity and the recognized importance of plurality voting in social
choice theory more broadly. The plurality rule can be construed as a set scoring rule:

Remark 5 The naive set scoring rule is the plurality rule.

27 It ignores the internal structure of judgment sets, hence ‘throws away’ much information.
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4.2 Distance-based set scoring

Set scoring rules generalize distance-based aggregation. Given an arbitrary distance
function d over J (not necessarily the Kemeny-distance), all that is needed is to
consider what I call distance-based set scoring, defined by

σJ (C) = −d(C, J ). (16)

So, C scores high if it is close to the judgment set held, J . This renders sum-score-
maximization equivalent to sum-distance-minimization:

Remark 6 For every given distance function over J , the distance-based set scoring
rule is the distance-based rule.

So, all distance-based rules can be modelled as set scoring rules (but not vice
versa28). As an example, consider the so-called discrete distance,29 defined by

d(J, K ) =
{

0 if J = K
1 if J �= K .

Here, distance-based set scoring (16) is equivalent to naive set scoring (15), since the
two differ only by a constant (of one). So, joining Remarks 5 and 6, we may view the
plurality rule either as the naive set scoring rule or as the discrete-distance-based rule.

4.3 Averaging rules

Given an ordinary scoring s, we have so far aimed for collective judgments with a
high total score. But this is not the only plausible aim or approach. We now turn to
an altogether different approach. Rather than using s to assign scores only from each
individual’s perspective, we now care about how propositions score under the collec-
tive judgment set. Instead of wanting the collective judgments to achieve the highest
total score from individuals, we now want them to resemble the ‘average individual
judgments’ in the sense that the collective judgments should lead (approximately) to
the same scores of propositions as the individual judgments do on average. In short,
any proposition p’s collective score should be (approximately) p’s average individual
score. This approach has its own, rather different intuitive appeal. But is it really totally
different? As will turn out, aggregation rules which follow this approach—I call them
‘averaging rules’ as opposed to ‘scoring rules’—can be viewed as a particular kind of
set scoring rules. This result is essentially a special case of a powerful precursor result

28 In trying to re-model an arbitrary set scoring rule Fσ as a distance-based rule, one might be tempted
to define the ‘distance’ between J and J ′ as dσ (J, J ′) := σJ (J ) − σJ (J ′). If dσ turns out to define a
proper distance function (see fn. 14), then we obtain a distance-based rule Fdσ , which coincides with the
set scoring rule Fσ . But for many plausible set scorings σ, dσ has little in common with a distance function,
violating up to all three axioms, notably symmetry and the triangle inequality.
29 This metric derives its name from the fact that it induces the discrete topology on whatever set it is
defined on (such as R instead of J ).
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Table 6 The averaging rule (w.r.t. reversal scoring) for the doctrinal paradox agenda and profile

p ¬p q ¬q r ¬r Distance to group’s average

pqr (indiv. 1) 2 0 2 0 2 0
√

58/3 ≈ 2.54

p¬q¬r (indiv. 2) 1 0 0 2 0 2
√

37/3 ≈ 2.03

¬pq¬r (indiv. 3) 0 2 1 0 0 2
√

37/3 ≈ 2.03

¬p¬q¬r (no indiv.) 0 1 0 1 0 3 7/3 ≈ 2.33

Group’s average 1 2
3 1 2

3
2
3

4
3 0

by Zwicker (2008), as Marcus Pivato kindly pointed out to me. A comparison with
Zwicker (2008) is given at the end of this subsection.

Given an ordinary scoring s, we can represent judgment sets in J as vectors in
R

X , by identifying each judgment set J in J with its score vector, i.e., the vector in
R

X whose pth component is the score of p, sJ (p).30 The score vector corresponding
to J ∈ J is denoted J s ≡ (sJ (p))p∈X ∈ R

X . Having represented judgment sets as
vectors of numbers, we can apply standard algebraic and geometric operations, such
as adding judgment sets, taking their average, or measuring their distance—where, of
course, sums or averages of (score vectors of) judgment sets in J may be ‘infeasible’,
i.e., not correspond to any judgment set in J .

The averaging rule w.r.t. scoring s is defined as the aggregation rule F which for
every profile (J1, . . . , Jn) ∈ J n chooses the collective judgment set(s) whose score
vector comes closest to the group’s average score vector 1

n

∑
i∈N J s

i in the sense of
Euclidean distance in R

X :

F(J1, . . . , Jn) = j.s. closest to the average individual j.s. in score vector terms

= argminC∈J

∥
∥
∥
∥
∥

Cs − 1

n

∑

i∈N

J s
i

∥
∥
∥
∥
∥

.

Viewed geometrically as an operation in R
X , the collective score vector is the projec-

tion of the average score vector 1
n

∑
i J s

i on the set J s ≡ {J s : J ∈ J } ⊆ R
X of

feasible score vectors.31

As an illustration, consider once again reversal scoring for our doctrinal paradox
example. Table 6 reports the score vector of each judgment set (including the one
not submitted by any individual), and its distance to the group’s average score vector.
By minimizing this distance, the rule delivers a tie between the two conclusion-based
outcomes p¬q¬r and ¬pq¬r . The premise-based outcome pqr looks worse than
ever: it is even farther from the average than the never-submitted outcome ¬p¬q¬r .

30 This identification is one-to-one as long as the scoring has the (very plausible) property that sJ (p) >

sJ (¬p) whenever p ∈ J .
31 Formally, F(J1, . . . , Jn)s = PROJJ s ( 1

n
∑

i J s
i ), where the projection of x ∈ R

X on Y ⊆ R
X is

defined as PROJY (x) := argminy∈Y ‖y − x‖.
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Note that we now have two rival ways of aggregating based on a scoring s: the
scoring rule and the averaging rule. Can any connection be established? In fact, the
averaging rule can be construed as a set scoring rule, namely in virtue of the set scoring
given by

σJ (C) = − ∥
∥Cs − J s

∥
∥2

. (17)

Here, C is taken to score high if it is close to J in terms of the squared Euclidean
distance of score vectors.

Proposition 6 For any scoring s, the averaging rule w.r.t. s is the set scoring rule
w.r.t. set scoring (17).

As an application, let s be simple scoring (2). Here, the set scoring (17) is express-
ible as an increasing affine transformation of the set scoring corresponding to simple
scoring, i.e., of the set scoring σ ′ given by32

σ ′
J (C) =

∑

p∈C

sJ (p) = |C ∩ J | .

So, the set scoring rule Fσ coincides with the simple scoring rule Fs , and hence with
the Kemeny rule FdKemeny by Proposition 1. Thus, as a corollary of Propositions 1
and 6, the Kemeny rule can be characterized not just as a scoring rule but also as an
averaging rule, both times using the same scoring:

Corollary 2 The Kemeny rule is both the scoring rule and the averaging rule w.r.t.
simple scoring.

Our averaging rules are special cases of Zwicker’s (2008) mean proximity rules.
Like an averaging rule, a mean proximity rule represents each possible vote as well
as each possible output as a vector of characteristics (real numbers), and determines
the winning output(s) by minimizing the distance—in that vector representation—to
the average vote. In our case, this vector is |X |-dimensional and contains the support
(score) given to each proposition in X . In Zwicker’s more general case, the vector could
have any dimensionality and could contain any sorts of characteristics. Moreover, the
votes need not be judgment sets, but could for instance be political candidates, char-
acterized, say, by a three-dimensional vector containing age, number of pre-election
speeches, and political orientation on a left-right spectrum. One may therefore view
our averaging rules as a concrete way to implement Zwicker’s general approach inside
judgment aggregation theory: we offer a concrete method of choosing the vector rep-
resentation of votes, which is left open in Zwicker’s approach.33 Alternative vector
representations are of course also imaginable.

32 SinceσJ (C) = − (√|C � J |)2 = − |C � J | = −2 |C\J | = −2 (|C | − |C ∩ J |) = − |X |+2 |C ∩ J |.
33 Zwicker’s Theorem 4.2.1 (more precisely, its proof) essentially implies our Proposition 6 after some
translation work.
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4.4 Probability-based set scoring

I close the analysis by taking a brief (skippable) excursion into an important, but
different approach to judgment aggregation: the epistemic or truth-tracking approach.
In this approach, each proposition p ∈ X is taken to have an objective, but unknown
truth value (‘true’ or ‘false’), and the goal of aggregation is to track the truth, i.e.,
to generate true collective judgments.34 The truth-tracking perspective has a long
history elsewhere in social choice theory (e.g., Condorcet 1785; Grofman et al. 1983;
Austen-Smith and Banks 1996; Dietrich 2006b; Pivato 2011a); but within judgment
aggregation theory specifically, rather little work has been done on the epistemic side
(e.g., Bovens and Rabinowicz 2006; List 2005; Bozbay et al. 2011).

The epistemic approach warrants the use of particular set scoring rules. To show
this, I import standard statistical estimation techniques (such as maximum-likelihood
estimation), following the path taken by other authors in the context of preference
aggregation (e.g., Young 1995) and other aggregation problems (e.g., Dietrich 2006b;
Pivato 2011a). My goal is to give no more than a brief introduction to what could
be done. The results given below are essentially variants of existing results; see in
particular Pivato (2011a).35

For each combination (J1, . . . , Jn, T ) ∈ J n × J of n + 1 judgment sets,
let Pr(J1, . . . , Jn, T ) > 0 measure the probability that people submit the profile
(J1, . . . , Jn) and the set of true propositions is T , where of course

∑
(J1,...,Jn ,T )∈J n×J

Pr(J1, . . . , Jn, T ) = 1. From this joint probability function we can, as usual, derive
various marginal and conditional probabilities, such as the probability that the truth is
T ∈ J , Pr(T ) = ∑

(J1,...,Jn)∈J n Pr(J1, . . . , Jn, T ), the probability that the profile is
(J1, . . . , Jn), Pr(J1, . . . , Jn) = ∑

T ∈J Pr(J1, . . . , Jn, T ), the conditional probabil-

ity Pr(T |J1, . . . , Jn) = Pr(J1,...,Jn ,T )
Pr(J1,...,Jn)

(called the posterior probability of T given the

‘data’ J1, . . . , Jn), and the conditional probability Pr(J1, . . . , Jn|T ) = Pr(J1,...,Jn ,T )
Pr(T )

(called the likelihood of the ‘data’ J1, . . . , Jn given T ).
The maximum-likelihood rule is the aggregation rule F : J n ⇒ J which for each

profile (J1, . . . , Jn) ∈ J n defines the collective judgments such that their truth would
make the observed profile (‘data’) maximally likely:

F(J1, . . . , Jn) = argmaxT ∈J Pr(J1, . . . , Jn|T ).

The maximum-posterior rule is the aggregation rule F : J n ⇒ J which for each pro-
file (J1, . . . , Jn) ∈ J n defines the collective judgments such that they have maximal

34 The epistemic perspective is usually contrasted with the procedural perspective, which takes the goal of
aggregation to be to generate collective judgments which reflect the individuals’ judgments in a procedurally
fair way. To illustrate the contrast between the two perspectives, suppose that all individuals hold the same
judgment set J . Then J is clearly the right collective judgment set from the perspective of procedural
fairness. But from an epistemic perspective, all depends on whether people’s unanimous endorsement of J
is sufficient evidence for J being true.
35 Proposition 7 follows from proofs in Pivato (2011a), and is also related to Dietrich (2006b).
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posterior probability of truth conditional on the observed profile (‘data’):

F(J1, . . . , Jn) = argmaxT ∈J Pr(T |J1, . . . , Jn).

Both of these rules correspond to well-established statistical estimation procedures.
Let us now make two standard, but restrictive assumptions on probabilities. We

assume that voters are ‘independent’ and ‘equally competent’ (in analogy to the
assumptions of Condorcet’s classical jury theorem36). Formally, for every T ∈ J ,

(IND) the individual judgment sets are independent conditional on T being the
true judgment set, i.e., Pr(J1, . . . , Jn|T ) = Pr(J1|T ) · · · Pr(Jn|T ) for all
J1, . . . , Jn ∈ J (‘independence’)

(COM) for each J ∈ J , each individual has the same probability, denoted Pr(J |T ),
of submitting the judgment set J conditional on T being the true judgment
set (‘equal competence’).

Condition (COM) in particular implies that individuals have the same (conditional)
probability of holding the true judgment set; but nothing is assumed about the size
of this probability of ‘getting it right’. The just-defined aggregation rules turn out
to be set scoring rules in virtue of defining the score of T ∈ J given J ∈ J by,
respectively,

σJ (T ) = log Pr(J |T ) (18)

σJ (T ) = log Pr(J |T ) + 1

n
log Pr(T ). (19)

Proposition 7 If voters are independent (IND) and equally competent (COM), then

• the maximum-likelihood rule is the set scoring rule w.r.t. set scoring (18),
• the maximum-posterior rule is the set scoring rule w.r.t. set scoring (19).

5 Concluding remarks

I hope to have convinced the reader that scoring rules, and more generally set scor-
ing rules, form interesting positive solutions to the judgment aggregation problem.
They for instance allow us to generalize Borda aggregation to judgment aggre-
gation (the simplest method being to use reversal scoring). Figure 1 summarizes
where we stand, by depicting different classes of rules (scoring rules, set scoring
rules, and distance-based rules) and positioning several concrete rules (such as the
Kemeny rule).

While the positions of most rules in Fig. 1 have been established above or follow
easily, a few positions are of the order of conjectures. This is so for the placement of
our Borda generalization outside the class of distance-based rules.37

36 The classical Condorcet jury theorem is essentially concerned with a simple judgment aggregation
problem with a binary agenda X = {p,¬p}.
37 For technical correctness, I also note two details about how to read Fig. 1. First, for trivial agendas, such
as a single-issue agenda X = {p, ¬p}, several rules of course become equivalent, and distinctions drawn in
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Fig. 1 A map of judgment aggregation possibilities

Though several old and new aggregation rules are scoring rules (or at least set
scoring rules), there are important counterexamples. One counterexample is the men-
tioned rule introduced by Nehring et al. (2011) (the so-called Condorcet-admissibility
rule, which generates rational judgment set(s) that ‘approximate’ the majority judg-
ment set). Other counterexamples are non-anonymous rules (such as rules prioritizing
experts), and rules that return boundedly rational collective judgments (such as rules
returning incomplete but still consistent and deductively closed judgments). The last
two kinds of counterexamples suggest two generalizations of the notion of a scoring
rule. Firstly, scoring might be allowed to depend on the individual; this leads to ‘non-
anonymous scoring rules’. Secondly, the search for a collective judgment set with
maximal total score might be done within a larger set than the set J of fully rational
judgment sets (such as the set of consistent but possibly incomplete judgment sets);
this leads to ‘boundedly rational scoring rules’. The same generalizations could of
course be made for set scoring rules.

Many challenges lie ahead of us. For instance, it would be interesting to characterize
scoring rules and set scoring rules by some salient axiomatic properties.38 And, in the
epistemic context of searching for objectively ‘true’ or ‘correct’ judgments, one might
give a maximum-likelihood rationalization of (set) scoring rules, by proving that they
are precisely the aggregation rules which generate maximum-likelihood estimators of
the truth relative to some probability model from a suitable class. Clearly, the paper
raises more questions than it answers.

Footnote 37 continued
Fig. 1 disappear. More precisely, by positioning a rule outside a class of rules (e.g., by positioning plurality
rule outside the class of scoring rules), I am of course not implying that for all agendas the rule does not
belong to the class, but that for some (in fact, most) agendas this is so. Second, in placing propositionwise
scoring rules among the distance-based rules, I made a very plausible restriction: s+(p) > s−(p) for each
p ∈ X .
38 To this end, one might re-cast these rules in a setup with anonymous variable-population profiles, in
which it turns out that these rules satisfy analogues of the classical axioms of ‘consistency’ (also called
‘reinforcement’) and ‘continuity’ (see Smith 1973; Young 1975; Myerson 1995).
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Appendix: proofs

Throughout, the complement of a set J ⊆ X is denoted by J := X\J .

Proof of Proposition 1 The Kemeny-distance between J, C ∈ J can be written as

dKemeny(J, C) = 1

2
|J � C | = 1

2

(
|X | − ( |J ∩ C | + ∣

∣J ∩ C
∣
∣ )

)
.

Now, since J and C each contains exactly one member of each pair {p,¬p} ⊆ X ,
we have p ∈ J ∩ C ⇔ ¬p ∈ J ∩ C , and so, |J ∩ C | = ∣

∣J ∩ C
∣
∣. Hence,

dKemeny(J, C) = 1
2 |X | − |J ∩ C |. So, for each profile (J1, . . . , Jn) ∈ J n , min-

imizing
∑

i∈N dKemeny(Ji , C) is equivalent to maximizing
∑

i∈N |Ji ∩ C |. Hence,
rewriting each |Ji ∩ C | as

∑
p∈C sJi (p) where s is simple scoring (2), it follows that

FdKemeny(J1, . . . , Jn) = Fs(J1, . . . , Jn). ��
Before proving Proposition 2, I start with a lemma.

Lemma 1 Consider the preference agenda (for any finite set of alternatives A), any
classical scoring SCO, and the scoring s given by (4). For all distinct x, y ∈ A and
all J ∈ J ,

SCOJ (x) − SCOJ (y) = sJ (x Py) − sJ (y Px). (20)

Proof This follows easily from (4). ��
Two elements of a set of alternatives A are called neighbours w.r.t. a strict linear

order � over A if they differ and no alternative in A is ranked strictly between them.
In the case of the preference agenda (for a set of alternatives A), the strict linear order
over A corresponding to any J ∈ J is denoted �J .

Proof of Proposition 2 Consider the preference agenda X for a set of alternatives A
of finite size k, and let SCO be any classical scoring. I show that FSCO = Fs for
each scoring s satisfying (20), and hence for the scoring (4) (since it satisfies (20) by
Lemma 1) and the scoring (3) (since a half times it satisfies (20)).

Consider any scoring s satisfying (20). Fix a profile (J1, . . . , Jn) ∈ J n ; I show
Fs(J1, . . . , Jn) = FSCO(J1, . . . , Jn). The proof is in three claims.

Claim 1 For all a, b ∈ A and C, C ′ ∈ J , if C\C ′ = {a Pb}, then

∑

i∈N

SCOJi (a) −
∑

i∈N

SCOJi (b) =
∑

i∈N ,p∈C

sJi (p) −
∑

i∈N ,p∈C ′
sJi (p).
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Consider a, b ∈ A and C, C ′ ∈ J such that C\C ′ = {a Pb}. For each individual
i ∈ N , we by (20) have

SCOJi (a) − SCOJi (b) = sJi (a Pb) − sJi (bPa),

which, noting that C ′ = (C\{a Pb}) ∪ {bPa}, implies that

SCOJi (a) − SCOJi (b) =
∑

p∈C

sJi (p) −
∑

p∈C ′
sJi (p).

Summing over all individuals, the claim follows. ��
Claim 2 Fs(J1, . . . , Jn) ⊆ FSCO(J1, . . . , Jn).

Consider any C ∈ Fs(J1, . . . , Jn). We have to show that C ∈ FSCO(J1, . . . , Jn),
i.e., that for all distinct x, y ∈ A,

∑

i∈N

SCOJi (x) >
∑

i∈N

SCOJi (y) ⇒ x Py ∈ C,

or equivalently,

y Px ∈ C ⇒
∑

i∈N

SCOJi (y) ≥
∑

i∈N

SCOJi (x).

Said in yet another way, we have to show that

∑

i∈N

SCOJi (xk) ≥
∑

i∈N

SCOJi (xk−1) ≥ · · · ≥
∑

i∈N

SCOJi (x1),

where I have labelled the alternatives x1, x2, . . . , xk such that xk �C xk−1 �C · · · �C

x1. Consider any t ∈ {1, . . . , k − 1}, and write a for xt+1 and b for xt . Let C ′ be the
judgment set arising from C by replacing a Pb with its negation bPa. Now C ′ ∈ J ;
this is because a and b are neighbours w.r.t. �C , which guarantees that C ′ corresponds
to a strict linear order (namely to the same one as for C except that b now ranks above
a). Since C ∈ Fs(J1, . . . , Jn), C has maximal sum-total score within J ; in particular,

∑

i∈N ,p∈C

sJi (p) ≥
∑

i∈N ,p∈C ′
sJi (p),

which by Claim 1 implies the desired inequality,

∑

i∈N

SCOJi (a) ≥
∑

i∈N

SCOJi (b).

��
Claim 3 FSCO(J1, . . . , Jn) ⊆ Fs(J1, . . . , Jn).
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Consider any C ∈ FSC O(J1, . . . , Jn). To show that C ∈ Fs(J1, . . . , Jn), we con-
sider an arbitrary C ′ ∈ J \{C} and have to show that C has an at least as high sum-total
score as C ′:

∑

i∈N ,p∈C

sJi (p) ≥
∑

i∈N ,p∈C ′
sJi (p). (21)

To prove this, we first transform C gradually into C ′ in m ≡ |C ′\C | steps, where
each step consists in a single judgment reversal, i.e., in the replacement of a single
proposition x Py (∈ C\C ′) by its negation y Px (∈ C ′\C). This defines a sequence
of judgment sets C0, . . . , Cm , where C0 = C and Cm = C ′, and where for each step
t ∈ {1, . . . , m} there is a proposition xt Pyt such that Ct = (Ct−1\{xt Pyt })∪{yt Pxt }.
Note that {xt Pyt : t = 1, . . . , m} = C\C ′. By a standard relation-theoretic argument,
we may assume that in each step t the judgment reversal consists in switching the
relative order of two neighbouring alternatives; i.e., xt , yt are neighbours w.r.t. the old
and new relations �Ct−1 and �Ct . This guarantees that each step t generates a set Ct

such that �Ct is still a strict linear order, i.e., such that Ct ∈ J .
Now for each step t , by Claim 1 we have

∑

i∈N

SCOJi (xt ) −
∑

i∈N

SCOJi (yt ) =
∑

i∈N ,p∈Ct−1

sJi (p) −
∑

i∈N ,p∈Ct

sJi (p),

and also, since yt Pxt �∈ C and C ∈ FSCO(J1, . . . , Jn), we have

∑

i∈N

SCOJi (yt ) ≤
∑

i∈N

SCOJi (xt );

using Claim 1, it follows that

∑

i∈N ,p∈Ct−1

sJi (p) −
∑

i∈N ,p∈Ct

sJi (p) ≥ 0.

Summing this inequality over all steps t ∈ {1, . . . , m}, we obtain

∑

i∈N ,p∈C0

sJi (p) −
∑

i∈N ,p∈Cm

sJi (p) ≥ 0,

which is equivalent to the desired inequality (21) since C0 = C and Cm = C ′. ��
Proof of Remark 2 Let s′ be defined from reversal scoring s in the specified way.

Claim 1 s′ and s are equivalent.
Consider any profile (J1, . . . , Jn) ∈ J n . I show for all C, D ∈ J that

∑

i∈N ,p∈C

sJi (p) ≥
∑

i∈N ,p∈D

sJi (p) ⇔
∑

i∈N ,p∈C

s′
Ji
(p) ≥

∑

i∈N ,p∈D

s′
Ji
(p).
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904 F. Dietrich

Consider any C, D ∈ J . I prove that � ≥ 0 ⇔ �′ ≥ 0, where

� ≡
∑

i∈N ,p∈C

sJi (p) −
∑

i∈N ,p∈D

sJi (p) ≥ 0,

�′ ≡
∑

i∈N ,p∈C

s′
Ji
(p) −

∑

i∈N ,p∈D

s′
Ji
(p) ≥ 0.

We have

� =
∑

i∈N

⎧
⎨

⎩

∑

p∈C

sJi (p) −
∑

p∈D

sJi (p)

⎫
⎬

⎭
=

∑

i∈N

⎧
⎨

⎩

∑

p∈C\D

sJi (p) −
∑

p∈D\C

sJi (p)

⎫
⎬

⎭
.

So, noting that D\C = {¬p : p ∈ C\D}, we obtain

� =
∑

i∈N

∑

p∈C\D

(
sJi (p) − sJi (¬p)

)
.

By an analogous reasoning,

�′ =
∑

i∈N

∑

p∈C\D

(
s′

Ji
(p) − s′

Ji
(¬p)

)
.

Hence, using the definition of s′,

�′ =
∑

i∈N

∑

p∈C\D

([
sJi (p) − sJi (¬p)

] − [
sJi (¬p) − sJi (p)

])

= 2
∑

i∈N

∑

p∈C\D

(
sJi (p) − sJi (¬p)

)

= 2�.

So, � ≥ 0 ⇔ �′ ≥ 0. ��
Claim 2 If X is the preference agenda, SCO is classical Borda scoring, J ∈ J , and
x Py ∈ X , then s′

J (x Py) = SCOJ (x) − SCOJ (y).
Let X, SCO, J and x Py be as specified. If x Py ∈ J , then

s′(x Py) = s(x Py) by definition ofs′

= SCOJ (x) − SCOJ (y) by Remark 1, asx Py ∈ J.

If x Py �∈ J , i.e., y Px ∈ J , then

s′(x Py) = −s(y Px) by definition of s′

= −(SCOJ (y) − SCOJ (x)) by Remark 1, as y Px ∈ J

= SCOJ (x) − SCOJ (y). ��
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Scoring rules for judgment aggregation 905

Proof of Proposition 4 Let X be the preference agenda for some set of alternatives A
of size k < ∞. Let srev, sdis and sirr be reversal, disjoint-entailment, and irreducible-
entailment scoring, respectively. Consider any J ∈ J , denote the corresponding strict
linear order by �, let x1, . . . , xk be the alternatives in the order given by xk � xk−1 �
· · · � x1, and consider any p ∈ X , say p = xi Pxi ′ ∈ X .

Claim 1 srev
J (p) = sdis

J (p).
By the argument given in footnote 19, srev

J (p) ≥ sdis
J (p). I now show that sdis

J (p) ≥
srev

J (p). This inequality is trivial if p �∈ J , since then srev
J (p) = 0 (as ¬p ∈ J ). Now

suppose p ∈ J . By Remark 1, srev
J (p) = i−i ′. So we need to show that sdis

J (p) ≥ i−i ′.
Consider the i − i ′ judgment subsets S1, . . . , Si−i ′ ⊆ J defined as follows: for each
j ∈ {1, . . . , i − i ′},

S j ≡ {xi Pxi− j , xi− j Pxi ′ } ⊆ J,

where Si−i ′ is interpreted as the set {xi Pxi ′ } (rather than the set {xi Pxi ′ , xi ′ Pxi ′ },
which is not well-defined since xi ′ Pxi ′ is not a proposition in X ). Since these judgment
subsets are pairwise disjoint and each of them entails p(= xi Pxi ′), we have sdis

J (p) ≥
i − i ′. ��
Claim 2 srev

J (p) = sirr
J (p).

If p �∈ J , then srev
J (p) = sirr

J (p) since srev
J (p) = 0 (as ¬p ∈ J ) and sirr

J (p) = 0 (as
J does not entail p). Now suppose p ∈ J . Then, as already mentioned, srev

J (p) = i −i ′
by Remark 1. So we need to show that sirr

J (p) = i − i ′. As one may show, each of
the just-defined sets S1, . . . , Si−i ′ irreducibly entails p(= xi Pxi ′). So it remains to
show that no other judgment subset irreducibly entails p. Suppose S ⊆ J irreducibly
entails p. I have to show that S ∈ {S1, . . . , Si−i ′ }. As is easily checked, the set
S ∪ {¬p}(= S ∪ {xi ′ Pxi }) is minimal inconsistent. Hence, this set is cyclic, i.e., of
the form S ∪ {¬p} = {y1 Py2, y2 Py3, . . . , ym−1 Pym, ym Py1} for some m ≥ 2 and
some distinct alternatives y1, . . . , ym ∈ A (see Dietrich and List 2010). Without loss
of generality, assume y1 = xi and ym = xi ′ , so that ym Py1 = xi ′ Pxi and

S = {y1 Py2, y2 Py3, . . . , ym−1 Pym}.

If m = 2, then S = {y1 Py2} = {xi Pxi ′ }, which equals Si−i ′ , and we are done.
If m = 3, then S = {y1 Py2, y2 Py3} = {xi Py2, y2 Pxi ′ }. Since S is by assump-
tion included in J , it follows that J ranks y2 between xi and xi ′ . So there is a
j ∈ {1, . . . , i − i ′−1} such that y2 = xi− j . Hence, S is the set {xi Pxi− j , xi− j Pxi ′ } =
S j , and we are done again. Finally, m cannot exceed 3, since otherwise the set
S(= {xi Py2, y2 Py3, . . . , ym−1 Pxi ′ }) would entail p(= xi Pxi ′) non-irreducibly,
since the set arising from S by replacing xi Py2 and y2 Py3 with their implication
xi Py3 still entails p. ��
Proof of Proposition 5 Consider any threshold family (m p)p∈X (∈ {1, . . . , n}X ), and
define scoring s by (12). Consider a profile (J1, . . . , Jn) ∈ J n for which C∗ ≡
F(m p)p∈X (J1, . . . , Jn) belongs to J . We have to show that Fs(J1, . . . , Jn) = C∗. For
each proposition p ∈ X , writing the number of individuals accepting p as n p ≡ |{i :
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p ∈ Ji }|, the sum-total score of p is given by

∑

i∈N

sJi (p) =
∑

i∈N :p∈Ji

(n + 1 − m p) +
∑

i∈N :p �∈Ji

(−m p)

= n p(n + 1 − m p) + (n − n p)(−m p)

= nn p + n p − nm p.

= n(n p − m p) + n p;

and so,

∑

i∈N

sJi (p)

{
> 0 if n p ≥ m p, i.e., if p ∈ C∗
< 0 if n p < m p, i.e., if p �∈ C∗. (22)

Now we have {C∗} = argmaxC∈J
∑

p∈C,i∈N sJi (p), because for each C ∈ J \{C∗},
∑

p∈C∗,i∈N

sJi (p) −
∑

p∈C,i∈N

sJi (p) =
∑

p∈C∗\C

∑

i∈N

sJi (p)

︸ ︷︷ ︸
>0 by(22)

−
∑

p∈C\C∗

∑

i∈N

sJi (p)

︸ ︷︷ ︸
<0 by(22)

> 0.

So, Fs(J1, . . . , Jn) = {C∗} ≡ C∗. ��
Proof of Remark 4 Consider this X and P , let n be odd, and let s be scoring (14). I write
αpr for αpremise and αco for αconclusion. Whenever I consider a profile (J1, . . . , Jn) ∈
J n , I write Nt := {i : t ∈ Ji } for all t ∈ X , and I write MAJ ,PRE, CON and
SCO for the outcome of the majority rule, premise-based rule, conclusion-based rule,
and the scoring rule w.r.t. (14), respectively. Note that for all (J1, . . . , Jn) ∈ J n the
sum-total score of a C = {p′, q ′, r ′} ∈ J (where p′ ∈ {p,¬p}, q ′ ∈ {q,¬q} and
r ′ ∈ {r,¬r}) is given by

∑

i∈N ,t∈C

sJi (t) =
( ∣

∣Np′
∣
∣ + ∣

∣Nq ′
∣
∣
)
αpr + |Nr | αco. (23)

Claim 1 [PRE = SCO for all profiles in J n] if and only if αpr > (n − 2)αco.
First, assume PRE = SCO for all profile in J n . As one may check, there is a profile

such that
∣
∣Np

∣
∣ = ∣

∣Nq
∣
∣ = n+1

2 and |Nr | = 1. For this profile, PRE = {p, q, r}. So,
SCO = {p, q, r}. Hence, the sum-total score of {p, q, r} exceeds that of {¬p, q,¬r}.
By (23), these two sum-total scores can be written, respectively, as

∑

i∈N ,t∈{p,q,r}
sJi (t) = n + 1

2
αpr + n + 1

2
αpr + αco = (n + 1)αpr + αco

∑

i∈N ,t∈{¬p,q,¬r}
sJi (t) = n − 1

2
αpr + n + 1

2
αpr + (n − 1)αco = nαpr + (n − 1)αco.
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Hence,

(n + 1)αpr + αco > nαpr + (n − 1)αco,

or equivalently, αpr > (n − 2)αco.
Conversely, assume αpr > (n − 2)αco. Consider any profile. We have to show that

PRE = SCO.
Case 1 MAJ ∈ J . Check that it follows that PRE = MAJ , and also that SCO =
MAJ . So, PRE = SCO.
Case 2 MAJ �∈ J . Check that it follows that MAJ = {p, q,¬r}. Hence PRE =
{p, q, r}. We thus have to show that SCO = {p, q, r}, i.e., that

�1 ≡
∑

i∈N ,t∈{p,q,r}
sJi (t) −

∑

i∈N ,t∈{¬p,q,¬r}
sJi (t) > 0,

�2 ≡
∑

i∈N ,t∈{p,q,r}
sJi (t) −

∑

i∈N ,t∈{p,¬q,¬r}
sJi (t) > 0,

�3 ≡
∑

i∈N ,t∈{p,q,r}
sJi (t) −

∑

i∈N ,t∈{¬p,¬q,¬r}
sJi (t) > 0.

By (23),

�1 =
( ∣

∣Np
∣
∣ − ∣

∣N¬p
∣
∣
)
αpr +

(
|Nr | − |N¬r |

)
αco =

(
2

∣
∣Np

∣
∣ − n

)
αpr

+
(

2 |Nr | − n
)
αco. (24)

In this, as p ∈ MAJ we have
∣
∣Np

∣
∣ ≥ (n + 1)/2; and further, as p, q ∈ MAJ

the sets Np and Nq each contain a majority, so that Np ∩ Nq �= ∅, which (since
Np ∩ Nq ⊆ Nr ) implies |Nr | ≥ 1. Using these lower bounds for

∣
∣Np

∣
∣ and |Nr |, we

obtain

�1 ≥ ((n + 1) − n)αpr + (2 − n)αco = αpr + (2 − n)αco > 0.

The proof that �2 > 0 is analogous. Finally, by (23),

�3 =
( ∣

∣Np
∣
∣ − ∣

∣N¬p
∣
∣
)
αpr +

( ∣
∣Nq

∣
∣ − ∣

∣N¬q
∣
∣
)
αpr +

(
|Nr | − |N¬r |

)
αco.

Since
∣
∣Nq

∣
∣ >

∣
∣N¬q

∣
∣ (as q ∈ MAJ ), it follows using (24) that �3 > �1, and hence,

that �3 > 0. ��
Claim 2 [CON = SCO for all profiles in J n] if and only if αco > αpr = 0.

Unlike in the proof of the Claim, there may be ties, and so we treat CON and
SCO as subsets of J , not elements. First, if αco > αpr = 0, then it is easy to
show that CON = SCO for each profile. Conversely, suppose it is not the case that
αco > αpr = 0. Then either αco = αpr = 0 or αpr > 0. In the first case, clearly
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CON �= SCO for some profiles, since SCO is always J . In the second case, again
CON �= SCO for some profiles: for instance, if each individual submits ¬pq¬r then
SCO = {¬pq¬r} while CON = {¬pq¬r, p¬q¬r,¬p¬q¬r}. ��

Proof of Proposition 6 It will sometimes be convenient to write a vector D =
(D1, . . . , Dn) ∈ R

n as 〈Di 〉. The mean and variance of this vector D are denoted
and defined by, respectively,

D ≡ 1

n

∑

i∈N

Di and V ar(D) ≡ 1

n

∑

i∈N

(Di − D)2.

In this notation, the average square deviation of a constant c ∈ R from the components

in D is
〈
(c − Di )2

〉
and satisfies

〈
(c − Di )2

〉 = (c − D)2 + V ar(D), (25)

by the following argument borrowed from statistics:

〈
(c − Di )2

〉 = 〈
(c − D + D − Di )2

〉

= 〈
(c − D)2 + 2(c − D)(D − Di ) + (D − Di )2

〉

= (c − D)2 + 2(c − D)
〈
D − Di

〉 + 〈
(D − Di )2

〉

= (c − D)2 + 0 + V ar(D).

Now consider any scoring s and let the set scoring σ be defined by (17). Consider any
profile (J1, . . . , Jn) ∈ J n and any C ∈ J . Under σ , the sum-total score of C can be
written as

∑

i∈N

σJi (C) = −
∑

i∈N

∥
∥Cs − J s

i

∥
∥2

= −
∑

i∈N

∑

p∈X

(Cs
p − J s

ip)
2

= −n
∑

p∈X

1

n

∑

i∈N

(Cs
p − J s

ip)
2.

Here, the inner expression can be re-expressed as

1

n

∑

i∈N

(Cs
p − J s

ip)
2 =

〈
(Cs

p − J s
ip)

2
〉
=

(
Cs

p −
〈
J s

ip

〉)2 + V ar
( 〈

J s
ip

〉 )
,

123



Scoring rules for judgment aggregation 909

where the last equality applies (25) with c = Cs
p and D =

〈
J s

ip

〉
. It follows that

∑

i∈N

σJi (C) = −n
∑

p∈X

{(
Cs

p −
〈
J s

ip

〉)2 + V ar
( 〈

J s
ip

〉 )}

= −n
∑

p∈X

(
Cs

p −
〈
J s

ip

〉)2 + d (for some d independent of C)

= −n
∥
∥
∥C − 〈

J s
i

〉∥∥
∥

2 + d.

Maximizing this expression w.r.t. C ∈ J is equivalent to minimizing its strictly

decreasing transformation
∥
∥
∥C − 〈

J s
i

〉∥∥
∥ w.r.t. C ∈ J . So, the set scoring rule w.r.t. σ

delivers the same collective judgment set(s) C as the averaging rule w.r.t. s. ��
Proof of Proposition 7 Assume (IND) and (COM) and consider a profile (J1, . . . , Jn)

∈ J n .
Firstly, using (IND), the likelihood of the profile given C ∈ J can be written as

Pr(J1, . . . , Jn|T ) =
∏

i∈N

Pr(Ji |T ).

Maximizing this expression (w.r.t. T ∈ J ) is equivalent to maximizing its logarithm,

∑

i∈N

log Pr(Ji |T ),

which is precisely the sum-total score of T under set scoring (18).
Secondly, writing π for the profile’s probability Pr(J1, . . . , Jn), the posterior prob-

ability of T ∈ J given the profile can be written as

Pr(T |J1, . . . , Jn) = 1

π
Pr(T ) Pr(J1, . . . , Jn|T ) = 1

π
Pr(T )

∏

i∈N

Pr(Ji |T ).

Maximizing this expression (w.r.t. T ∈ J ) is equivalent to maximizing its logarithm,
and hence, to maximizing

log Pr(T ) +
∑

i∈N

log Pr(Ji |T ) =
∑

i∈N

(
log Pr(Ji |T ) + 1

n
log Pr(T )

)
,

which is the sum-total score of T under set scoring (19). ��
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