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Abstract We characterize single-crossing preference profiles in terms of two forbid-
den substructures, one of which contains three voters and six (not necessarily distinct)
alternatives, and one of which contains four voters and four (not necessarily distinct)
alternatives. We also provide an efficient way to decide whether a preference profile
is single-crossing.

1 Introduction

Single-peaked and single-crossing preferences have become standard domain restric-
tions in many economic models. Preferences are single-peaked if there exists a linear
ordering of the alternatives such that any voter’s preference relation along this ordering
is either always strictly increasing, always strictly decreasing, or first strictly increas-
ing and then strictly decreasing. Preferences are single-crossing if there exists a linear
ordering of the voters such that for any pair of alternatives along this ordering, there is
a single spot where the voters switch from preferring one alternative above the other
one. In many situations, these assumptions guarantee the existence of a strategy-proof
collective choice rule, or the existence of a Condorcet winner, or the existence of an
equilibrium.
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990 R. Bredereck et al.

Single-peaked preferences go back to the work of Black (1948) and have been
studied extensively over the years. Single-peakedness implies a number of nice prop-
erties, as for instance non-manipulability (Moulin 1980) and transitivity of the majority
rule (Inada 1969). Single-crossing preferences go back to the seminal paper of Roberts
(1977) on income taxation. Grandmont (1978), Rothstein (1990), and Gans and Smart
(1996) analyze various aspects of the majority rule under single-crossing preferences.
Furthermore, single-crossing preferences play a role in the areas of income redistrib-
ution (Meltzer and Richard 1981), coalition formation (Demange 1994; Kung 2006),
local public goods and stratification (Westhoff 1977; Epple and Platt 1998), and in
the choice of constitutional voting rules (Barberà and Jackson 2004). Saporiti and
Tohmé (2006) study single-crossing preferences in the context of strategic voting and
the median choice rule, and Saporiti (2009) investigates them in the context of strat-
egy proof social choice functions. Barberà and Moreno (2011) develop the concept
of top monotonicity as a common generalization of single-peakedness and single-
crossingness (and of several other domain restrictions).

1.1 Forbidden substructures

Sometimes mathematical structures allow characterizations through forbidden sub-
structures. For example, Kuratowski’s theorem (Kuratowski 1930) characterizes pla-
nar graphs in terms of forbidden subgraphs: a graph is planar if and only if it does not
contain a subdivision of K5 or K3,3. For another example, Hoffman et al. (1985) char-
acterize totally-balanced 0-1-matrices in terms of certain forbidden submatrices. In a
similar spirit, Lekkerkerker and Boland (1962) characterize interval-graphs through
five (infinite) families of forbidden induced subgraphs.

In the area of social choice, a beautiful result by Ballester and Haeringer (2011) char-
acterizes single-peaked preference profiles in terms of two forbidden substructures.
The first forbidden substructure concerns three voters and three alternatives, where
each of the voter ranks another one of the alternatives worst. The second forbidden
substructure concerns two voters and four alternatives, where (sloppily speaking) both
voters rank the first three alternatives in opposite ways with the second alternative in
the middle, but prefer the fourth alternative to the second one.

1.2 Contribution of this paper

Inspired by the approach and by the results of Ballester and Haeringer (2011), we
present a forbidden substructure characterization of single-crossing preference pro-
files. One of our forbidden substructures consists of three voters and six alternatives (as
described in Example 4) and the other one consists of four voters and four alternatives
(as described in Example 5). We stress that the (six respectively four) alternatives
in these forbidden substructures are not necessarily distinct: the substructures only
partially specify the preferences of the involved voters; hence by identifying and col-
lapsing some of the involved alternatives we can easily generate a number of smaller
forbidden substructures (which of course are just special cases of our larger forbidden
substructures). Finally, we will discuss the close relation of single-crossing preference
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profiles to consecutive ones matrices. A 0-1-matrix has the consecutive ones property
if its columns can be permuted such that the 1-values in each row are consecutive.
We hope that our results will turn out useful for future research on single-crossing
profiles.

In Sect. 2 we summarize the basic definitions and provide some examples. In Sect. 3
we formulate and prove our main result (Theorem 6). In Sect. 4 we discuss the tightness
of our characterization, and we argue that there does not exist a characterization that
works with smaller forbidden substructures. Finally, in Sect. 5 we briefly discuss
simple approaches to finding a single-crossing ordering of the voters in polynomial
time.

2 Definitions, notations, and examples

Let a1, . . . , am be m alternatives and let V1, . . . , Vn be n voters. A preference profile
specifies the preference orderings of the voters, where voter Vi ranks the alternatives
according to a strict linear order �i . For alternatives a and b, the relation a �i b
means that voter Vi strictly prefers a to b.

An unordered pair of two distinct alternatives is called a couple. A subset V of the
voters is mixed with respect to couple {a, b}, if V contains two voters one of which
ranks a above b, whereas the other one ranks a below b. If V is not mixed with respect
to {a, b}, then it is said to be pure with respect to {a, b}. Hence, an empty set of voters
is pure with respect to any pair of alternatives. A couple {a, b} separates two sets V1
and V2 of voters from each other, if no voter in V1 agrees with any voter in V2 on the
relative ranking of a and b; in other words, sets V1 and V2 must both be pure with
respect to {a, b}, and if both are non-empty then their union V1 ∪ V2 is mixed.

An ordering of the voters is single-crossing with respect to couple {a, b}, if the
ordered list of voters can be split into an initial piece and a final piece that are separated
by {a, b}. An ordering of the voters is single-crossing, if it is single-crossing with
respect to every possible couple. Finally a preference profile is single-crossing, if it
allows a single-crossing ordering of the voters. It is easy to see that single-crossing is
a monotone property of preference profiles:

Lemma 1 Let P be a preference profile, and let P ′ result from P by removing some
alternatives and/or voters. If P is single-crossing, then also P ′ is single-crossing. ��

In the remaining part of this section we present several instructive examples of
preference profiles that are single-crossing (Sect. 2.1) respectively that are not single-
crossing (Sect. 2.2).

2.1 Profiles from weak Bruhat orders

Let Sm denote the set of permutations of 1, . . . , m. We specify permutations π ∈ Sm

by listing the entries as π = 〈π(1), π(2), . . . , π(n)〉. The identity permutation
〈1, 2, . . . , m〉 arranges the integers in increasing order, and the order reversing per-
mutation 〈m, m − 1, . . . , 2, 1〉 arranges them in decreasing order. A descent in π is a
pair (π(i), π(i + 1)) of consecutive entries with π(i) > π(i + 1). We write π � ρ,
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Fig. 1 A single-crossing preference profile with 11 voters and 5 alternatives.

if permutation π can be obtained from permutation ρ by a series of swaps, each of
which interchanges the two elements of a descent.

The partially ordered set (Sm,�) is known as weak Bruhat order; see for instance
Bóna (2004). The weak Bruhat order has the identity permutation as minimum element
and the order reversing permutation as maximum element. Every maximal chain (that
is: every maximal subset of pairwise comparable permutations) in the weak Bruhat
order has length 1

2 m(m − 1) + 1 and contains the identity permutation and the order
reversing permutation.

The following example illustrates the well-known connection between weak Bruhat
orders and single-crossing preference profiles; we refer the reader to Abello (1991)
or Galambos and Reiner (2008) for more information.

Example 2 Let C = (π1 � π2 � · · · � πn) be a maximal chain with n = 1
2 m(m −

1) + 1 permutations in the weak Bruhat order (Sm,�). We construct a profile by
using 1, . . . , m as alternatives, and by interpreting every permutation π as preference
ordering π(1) � π(2) � . . . � π(n) over the alternatives. Voter Vi has preference
ordering πi . See Fig. 1 for an illustration with m = 5 alternatives and n = 11 voters.

The resulting profile is single-crossing: any two alternatives a and b start off in
the right order in the identity permutation π1, eventually are swapped into the wrong
order, and then can never be swapped back again at later steps. Furthermore, the profile
contains n = 1

2 m(m − 1) + 1 voters with pairwise distinct preference orderings. ��

If one starts the construction in Example 2 from arbitrary (not necessarily maxi-
mal!) chains in the weak Bruhat order, then one can generate this way every possible
single-crossing preference profile (up to isomorphism). This is another well-known
connection, which follows from the fact that π � ρ if and only if every inversion of
permutation π also is an inversion of permutation ρ.

2.2 Some profiles that are not single-crossing

We next present three examples of profiles that are not single-crossing. The first exam-
ple is due to Saporiti and Tohmé (2006) and shows a profile that is single-peaked but
fails to be single-crossing. The other two examples introduce two principal actors of
this paper.
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Example 3 Consider four alternatives 1, 2, 3, 4 and three voters V1, V2, V3 with the
following preference orders:

Voter V1 : 2 �1 3 �1 4 �1 1

Voter V2 : 4 �2 3 �2 2 �2 1

Voter V3 : 3 �3 2 �3 1 �3 4

It can be verified that this profile is not single-crossing but single-peaked (with respect
to the ordering 1 < 2 < 3 < 4 of alternatives, for instance). ��
Example 4 (γ -Configuration)
A profile with three voters V1, V2, V3 and six (not necessarily distinct) alternatives
a, b, c, d, e, f is a γ -configuration, if it satisfies the following:

Voter V1 : b �1 a and c �1 d and e �1 f

Voter V2 : a �2 b and d �2 c and e �2 f

Voter V3 : a �3 b and c �3 d and f �3 e

This profile represents a situation where each voter disagrees with the other two
voters on exactly one couple. The profile is not single-crossing, as none of the three
voters can be put between the other two: the couple {a, b} prevents us from putting V1
into the middle, the couple {c, d} forbids voter V2 in the middle, and the couple {e, f }
forbids V3 in the middle. ��

Example 4 provides an easy proof that the profile in Example 3 is not single-
crossing, as this profile contains a γ -configuration with a = 3, b = c = 2, d = e =
4, and f = 1.

Example 5 (δ-Configuration)
A profile with four voters V1, V2, V3, V4 and four (not necessarily distinct) alterna-
tives a, b, c, d is a δ-configuration, if it satisfies the following:

Voter V1 : a �1 b and c �1 d

Voter V2 : a �2 b and d �2 c

Voter V3 : b �3 a and c �3 d

Voter V4 : b �4 a and d �4 c

This profile shows a different kind of voter behavior: two voters disagree with
the other two voters on one couple, but also disagree between each other on another
couple. As before, this profile is not single-crossing, as couple {a, b} forces us to place
V1 and V2 next to each other, and to put V3 and V4 next to each other; couple {c, d}
forces us to place V1 and V3 next to each other, and to put V2 and V4 next to each
other. This means that no voter can be put into the first position. ��
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3 A characterization through forbidden configurations

Examples 4 and 5 demonstrate that preference profiles that contain a γ -configuration
or a δ-configuration cannot be single-crossing. It turns out that these two configurations
are the only obstructions for the single-crossing property.

Theorem 6 A preference profile P is single-crossing, if and only if P contains neither
a γ -configuration nor a δ-configuration.

The rest of this section is dedicated to the proof of Theorem 6. The (only if) part
immediately follows from the monotonicity of the single-crossing property (Lemma 1)
and from the observations stated in Examples 4 and 5.

For the (if) part, we first introduce some additional definitions and notations. An
ordered partition 〈X1, . . . , X p〉 of the voters V1, . . . , Vn satisfies the following prop-
erties: every part Xi is non-empty, distinct parts are disjoint, the union of all parts is
the set of all voters, and the arrangement of the parts Xi s is crucial. The trivial ordered
partition has p = 1 and hence consists of a single part {V1, . . . , Vn}. We let {ak, bk}
with 1 ≤ k ≤ 1

2 m(m −1) be an enumeration of all the possible couples, and we define
Ck as the set containing the first k couples in this enumeration.

Now let us prove the (if) part of the theorem. We consider some arbitrary preference
profile P that neither contains a γ -configuration nor a δ-configuration. Our argument
is algorithmic in nature. We start from the trivial partition X (0) of the voters, and then
step by step refine this partition while working through 1

2 m(m − 1) phases. The kth
such phase generates an ordered partition X (k) = 〈X (k)

1 , . . . , X (k)
p 〉 of the voters that

satisfies the following two properties.

(i) For 1 ≤ j ≤ p − 1, the union of parts X (k)

1 , . . . , X (k)

j is separated from the union

of parts X (k)

j+1, . . . , X (k)
p by one of the couples in Ck .

(ii) For every couple in Ck, there is a j with 1 ≤ j ≤ p − 1 such that the couple
separates the union of X (k)

1 , . . . , X (k)

j from the union of X (k)

j+1, . . . , X (k)
p .

Note that property (ii) implies that every part X (k)

j is pure with respect to every couple
in Ck . The following four lemmas summarize some useful combinatorial observations
on the ordered partition X (k) and how it relates to couple {ak+1, bk+1}.
Lemma 7 At most one part in the ordered partition X (k) is mixed with respect to
couple {ak+1, bk+1}.
Proof Suppose for the sake of contradiction that the parts X (k)

s and X (k)

t with 1 ≤ s <

t ≤ p both are mixed with respect to couple {ak+1, bk+1}. In other words, part X (k)
s

contains a voter V ′
1 with ak+1 � bk+1 and another voter V ′

2 with bk+1 � ak+1, and part
X (k)

t contains a voter V ′
3 with ak+1 � bk+1 and another voter V ′

4 with bk+1 � ak+1.

Property (i) yields the existence of a couple {x, y} ∈ Ck that separates the union
of parts X (k)

1 , . . . , X (k)
s from the union of the parts X (k)

s+1, . . . , X (k)
p . In particular, this

couple separates X (k)
s from X (k)

t . This implies that voters V ′
1 and V ′

2 agree on couple
{x, y} (say, with x � y), whereas voters V ′

3 and V ′
4 have the opposite ranking (say

y � x). Then the four voters V ′
1, V ′

2, V ′
3, and V ′

4 together with the four alternatives
ak+1, bk+1, x, and y form a δ-configuration; this yields the desired contradiction. ��
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Lemma 8 Consider s and t with 2 ≤ s < t ≤ p. If some voter V ′
1 in part X (k)

1 ranks
ak+1 � bk+1 and if some voter V ′

2 in part X (k)
s ranks bk+1 � ak+1, then every voter

V ′
3 in part X (k)

t ranks bk+1 � ak+1.

Proof Suppose for the sake of contradiction that voter V ′
3 ranks ak+1 � bk+1. Then

couple {ak+1, bk+1} separates V ′
2 from V ′

1 and V ′
3. Property (i) yields a couple {x, y} ∈

Ck that separates X (k)

1 from X (k)
s ∪X (k)

t ; this couple separates V ′
1 from V ′

2 and V ′
3.Property

(i) yields also a couple {u, v} ∈ Ck that separates X (k)

t from X (k)

1 ∪ X (k)
s ; this couple

separates V ′
3 from V ′

1 and V ′
2.

Then the three voters V ′
1, V ′

2, and V ′
3 together with the six alternatives ak+1,

bk+1, x, y, u, and v form a γ -configuration; a contradiction. ��
The statement of the following lemma is symmetric to the statement of Lemma 8,

and it can be proved by symmetric arguments.

Lemma 9 Consider s and t with 1 ≤ s < t ≤ p − 1. If some voter V ′
2 in part X (k)

t

ranks ak+1 � bk+1 and some voter V ′
3 in part X (k)

p ranks bk+1 � ak+1, then every
voter V ′

1 in part X (k)
s ranks ak+1 � bk+1. ��

Lemma 10 There exists an index � with 1 ≤ � ≤ p such that the couple {ak+1, bk+1}
separates the union of parts X (k)

1 , . . . , X (k)

�−1 from the union of parts X (k)

�+1, . . . , X (k)
p .

Proof If p = 1 or if all voters in the profile agree on the relative ranking of ak+1 and
bk+1, the choice � = 1 works. Hence we assume that p ≥ 2 and that there are two
voters who disagree on the ranking of ak+1 and bk+1. By Lemma 7 the parts X (k)

1 and
X (k)

p cannot both be mixed with respect to {ak+1, bk+1}.
If the first part X (k)

1 is pure with respect to {ak+1, bk+1}, we pick an arbitrary voter
V ′

1 from X (k)

1 . We choose � as the smallest index for which X (k)

� contains some voter
V ′

2 who ranks ak+1 versus bk+1 differently from voter V ′
1. Then Lemma 8 yields that

every voter V ′
3 in the parts X (k)

�+1, . . . , X (k)
p must rank ak+1 versus bk+1 differently

from voter V ′
1. Hence the chosen index � has all the desired properties, and this case

is closed. In the remaining case the last part X (k)
p is pure with respect to {ak+1, bk+1};

this case can be settled in a symmetric fashion while using Lemma 9. ��
Now let us finally describe how to construct the ordered partition X (k+1) in the

(k + 1)th phase. Our starting point is the ordered partition X (k), and we determine an
index � as defined in Lemma 10. If part X (k)

� is pure with respect to {ak+1, bk+1}, then
we make the new partition X (k+1) coincide with the old partition X (k); properties (i)
and (ii) are satisfied in X (k+1). If part X (k)

� is mixed with respect to {ak+1, bk+1}, then
we subdivide it into two parts Y and Z so that {ak+1, bk+1} separates the union of
parts X (k)

1 , . . . , X (k)

�−1, Y from the union of parts Z , X (k)

�+1, . . . , X (k)
p . Then the resulting

partition

X (k+1) = 〈X (k)

1 , . . . , X (k)

�−1, Y, Z , X (k)

�+1, . . . , X (k)

p 〉

satisfies properties (i) and (ii) by construction.
We keep working like this and complete phase after phase. After the very last phase

k = 1
2 m(m − 1) we generate the final ordered partition X ∗ = 〈X∗

1, . . . , X∗
q〉. We
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construct an ordering π∗ of the voters that lists the voters in every part X∗
j before all

the voters in part X∗
j+1 (1 ≤ j ≤ q − 1). Property (ii) guarantees that every couple

separates an initial piece of partition X ∗ from the complementary final piece, which
implies that the ordering π∗ for the voters in P is single-crossing. This completes the
proof of Theorem 6.

We conclude this section with two comments on this proof. If P is a single-crossing
profile where all voters have distinct preference orderings, then there are exactly two
single-crossing orderings of the voters which are mirror images of each other. This
follows directly from the last part of the proof of Theorem 6.

By property (i), every two consecutive parts X∗
j and X∗

j+1 must be separated by

one of the couples. Since there are 1
2 m(m − 1) distinct couples, there are at most

1
2 m(m−1)+1 parts in the final partition. This implies that a single-crossing preference
profile contains at most 1

2 m(m − 1) + 1 voters with distinct preference orderings. Of
course, this bound is already known from the connection between single-crossing
profiles and weak Bruhat orders as indicated in Sect. 2.1.

4 The size of forbidden configurations

Throughout this short section, we speak of preference profiles with m alternatives and
n voters as m × n configurations. Theorem 6 characterizes single-crossing preference
profiles through certain forbidden 6 × 3 and 4 × 4 configurations. Are there perhaps
other characterizations that work with smaller forbidden configurations? The following
lemma shows that this is not the case, and hence our characterization uses the smallest
possible forbidden configurations.

Lemma 11 Every characterization of single-crossing preference profiles through for-
bidden configurations must forbid

(a) some m × n configuration with m ≥ 6 and n ≥ 3 and
(b) some m × n configuration with m ≥ 4 and n ≥ 4.

Proof Consider an arbitrary characterization of single-crossing profiles with forbidden
configurations F1, . . . , Fk . Consider the following 6 × 3 configuration C.

Voter V1 : b �1 a �1 c �1 d �1 e �1 f

Voter V2 : a �2 b �2 d �2 c �2 e �2 f

Voter V3 : a �3 b �3 c �3 d �3 f �3 e

This profile contains a γ -configuration and thus is not single-crossing. If we remove
any alternative from C, the resulting 5×3 configuration is single-crossing and cannot
be forbidden. And if we remove any voter from C, the resulting 6 × 2 configuration
is again single-crossing and again cannot be forbidden. Hence the only possibility for
correctly recognizing C as not single-crossing is by either forbidding C itself or by
forbidding appropriate larger configurations that contain C. This proves (a). The proof
of (b) is based on the following 4×4 configuration C ′ which contains a δ-configuration.
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Voter V1 : a �1 b �1 c �1 d

Voter V2 : a �2 b �2 d �2 c

Voter V3 : b �3 a �3 c �3 d

Voter V4 : b �4 a �4 d �4 c

Since the argument is analogous to the one in (a), we omit the details. ��

5 Conclusions

In this final section, we briefly discuss the algorithmic problem of recognizing single-
crossing profiles with n voters and m alternatives. Elkind et al. (2012) showed that
this problem is polynomial-time solvable. A straightforward implementation of their
algorithm works in O(n2m2) time.

The arguments in Sect. 3 implicitly give an O(nm2) algorithm which decides
whether a given voter profile is single-crossing and, if so, computes a single-crossing
ordering. To show an extremely simple connection between single-crossing order-
ings and the so-called consecutive ones matrix property, we sketch an alternative way
of recognizing single-crossing profiles by utilizing the PQ-tree algorithm of Booth
and Lueker (1976). The algorithm was designed to recognize, inter alia, consecutive
ones matrices. A 0-1-matrix has the consecutive ones property, if its columns can be
permuted such that the ones in each row are consecutive (and hence form an interval).

Consider an arbitrary preference profile P and transform it into a corresponding
0-1-matrix M(P) in the following way. For each voter, the matrix M(P) contains
a corresponding column. For each ordered pair 〈a, b〉 of alternatives, matrix M(P)

has a corresponding row with value 1 at column j if voter j prefers alternative a to
alternative b and value 0 otherwise. In total, M(P) has n columns and m(m −1) rows.
As one can easily verify, each consecutive ones ordering of columns corresponds to a
single-crossing ordering of the voters in the original profile.

The PQ-tree algorithm by Booth and Lueker (1976) solves the consecutive ones
matrix problem in O(x + y + z) time, where x and y are the number of columns and
rows, and z is the total number of 1s in the matrix. Hence, single-crossing profiles can
be recognized in O(m2 + n + nm2) = O(nm2) time.
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