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Abstract We consider the problem of assigning indivisible goods among a group
of agents with lotteries when the preference profile is single-peaked. Unfortunately,
even on this restricted domain of preferences, equal treatment of equals, stochastic
dominance efficiency, and stochastic dominance strategy-proofness are incompatible.

1 Introduction

We consider the problem of allocating indivisible goods, or “objects,” among a group
of agents when each agent is supposed to receive exactly one of them. Each agent has
a complete, transitive, and strict binary relation, or “preference relation,” over objects.
Examples of such situations are abundant: assigning offices in a university to its fac-
ulty, allocating time slots for access to a facility to potential users, placing students in
public schools, and assigning organs to patients.

Not surprisingly, the indivisibility of objects causes serious difficulties in achieving
fairness. For instance, suppose there are two desirable objects to be allocated to two
agents, and that they prefer the same object. It is clear that each of the two possi-
ble allocations will violate any reasonable notion of fairness. One may want to use
monetary transfers to restore fairness. However, as in the examples mentioned above,
monetary transfers are often not possible or desirable. They may even be illegal (think
of organs). In this paper, in an attempt to restore fairness, we resort to lotteries over
allocations. Thus, we aim to achieve fairness in a probabilistic sense.

The analysis of this problem is initiated by Hylland and Zeckhauser (1979). A
“probabilistic allocation,” or simply an “allocation,” is a matrix with columns indexed
by agents and rows indexed by objects, each entry representing the probability with
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204 Y. Kasajima

which the corresponding agent receives the corresponding object. We refer to what
each agent receives, i.e., her column, as her “assignment.” For each problem, a rule
recommends an allocation.

We require rules to satisfy some efficiency and fairness requirements. An allocation
is stochastic dominance efficient (henceforth sd-efficient) (Bogomolnaia and Moulin
2001) if it is not (first order) stochastically dominated for all agents by any other
allocation. (This property is commonly referred to as “ordinal efficiency.”1) Next is a
minimal requirement of fairness. A rule satisfies equal treatment of equals if agents
with the same preferences receive the same assignment.

Since preferences are generally unknown, we require of a rule that it should give
agents the incentive to announce their true preferences. A rule is stochastic dominance
strategy-proof (henceforth sd-strategy-proof) (Bogomolnaia and Moulin 2001) if for
each agent and each false announcement that she could make about her preference, her
assignment when she tells the truth either stochastically dominates (according to her
true preference) her assignment when she lies, or the two assignments are the same.2

Two rules, the “random priority rule” (Abdulkadiroğlu and Sönmez 1998) and
the “serial rule” (Bogomolnaia and Moulin 2001), are central in the literature.3 The
random priority rule is described as follows: (i) for each order on the set of agents, let
each agent choose her best object among the remaining ones when her turn comes;
and (ii) assume all orders to be equally likely and take the average of the allocations
associated with all orders. For the serial rule, each object is considered as an infinitely
divisible good whose supply is 1. Agents “consume” objects progressively and at equal
“speeds.” Each agent starts with her most preferred object, and when the supply of that
object is exhausted, moves on to her next most preferred object among those that are
still available, until the supply of that object is exhausted, at which point she turns to
her most preferred object among those that are still available, and so on. (The precise
description of this rule is in Sect. 2.)

The random priority rule behaves well from the strategic view point (it is sd-strat-
egy-proof), but it is not sd-efficient. On the other hand, the serial rule behaves well
from the view point of efficiency (it is sd-efficient) but it is not sd-strategy-proof. Both
rules satisfy equal treatment of equals, however.4

There are good reasons why the above two rules do not simultaneously satisfy
equal treatment of equals, sd-efficiency, and sd-strategy-proofness. Indeed, for more
than three agents, no rule satisfies all three together (Bogomolnaia and Moulin 2001).

Axioms have less force when the domain of problems under consideration is
restricted. Crès and Moulin (2001) and Bogomolnaia and Moulin (2002) consider
the case when the rankings over the objects are the same for all agents, but the

1 The other axioms involving comparisons by means of stochastic dominance are also prefixed by the
abbreviation “sd” (this terminology is suggested by Thomson 2008).
2 One can also consider a weak form of sd-strategy-proofness: for each agent and each false announcement
that she could make, her assignment when she lies does not stochastically dominate (according to her true
preference) her assignment when she tells the truth. We discuss this property in Sect. 4.
3 They are referred to as the “random serial dictatorship” and the “probabilistic serial rule” in Abdulka-
diroğlu and Sönmez (1998) and Bogomolnaia and Moulin (2001), respectively.
4 For the proofs of these statements, see Bogomolnaia and Moulin (2001).
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ranking of the “null object” (interpreted as receiving no object) may differ from agent
to agent.5 An example is when the objects are time slots in which to obtain a service,
each agent prefers being served earlier but faces a deadline beyond which the service
is useless. In that case, the axioms are compatible; however, the serial rule is the only
rule to satisfy them (Bogomolnaia and Moulin 2002).

Returning to the original unrestricted domain, the above result raises the question
of how much one has to restrict the domain so that the axioms become compatible.
Obviously, the domain just described is very narrow. We then consider a slightly
more general domain: when each agent has single-peaked preferences, i.e., there is
an order on the object set such that each agent has a single most preferred object and
becomes monotonically worse off when moving away from her most preferred object.
For instance, returning to the example when the objects are time slots in which to
receive a service, one can think of a situation where each agent has a most preferred
time to be served and becomes progressively worse off as she is served further and
further away from her most preferred time. We show that, unfortunately, even on this
restricted domain, equal treatment of equals, sd-efficiency, and sd-strategy-proofness
are incompatible.6

Our paper belongs to the growing literature on “probabilistic assignment” (e.g.,
Hylland and Zeckhauser 1979; Bogomolnaia and Moulin 2001; Katta and Sethuraman
2006; Kojima 2009; Che and Kojima 2010; Kojima and Manea 2010; Heo 2011).7

Several variations of the problem have been considered. Of particular interest is when
objects are identical, each agent may receive several copies of the object, and each
agent’s preference is single-peaked over the number of copies he consumes (Sasaki
1997; Ehlers and Klaus 2003; Kureishi and Mizukami 2007; Hatsumi and Serizawa
2009). The remainder of the paper is organized as follows. Section 2 presents the
model. Section 3 presents the result. Section 4 discusses the result.

2 The model

Let N ≡ {1, 2, . . . , n} be a set of agents. A typical agent is denoted by i ∈ N .
Let O ≡ {o1, o2, . . . , om} be a finite set of distinct indivisible goods, or objects. A
typical object is denoted by k ∈ O . Each agent is supposed to receive exactly one
object. We assume that |O| = |N |.8 Each agent i ∈ N has a complete, transitive, and
strict binary relation Ri over objects. We refer to Ri as agent i’s preference relation.
Let R be a domain of preferences. Let R ≡ (Ri )i∈N be a preference profile. Let RN

be a domain of preference profiles. Since we vary neither N nor O , we simply write
a problem as a list R ∈ RN .

5 This domain cannot be seen as a restriction of the domain considered by Bogomolnaia and Moulin (2001)
because the null object is included in the model.
6 Our model in Sect. 2 does not include a null object. However, our result holds when there are copies of a
null object. This fact is discussed in Sect. 4.
7 These problems are commonly referred to as “random assignment problems.”
8 The case |O| �= |N | is discussed in Sect. 4.
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We consider the following restriction on preferences. Let �O be the set of strict
orders on O . Let ≺∈ �O . Without loss of generality, let O be ordered in such a way
that

o1 ≺ o2 · · · ≺ om .

For each i ∈ N , Ri ∈ R is single-peaked on O (with respect to ≺) if and only if one
of the following three conditions holds:

(i) there is t ∈ {2, . . . , m − 1} such that

ot Ri ot−1 Ri ot−2 . . . Ri o1 and ot Ri ot+1 Ri ot+2 . . . Ri om,

(i i) om Ri om−1 Ri om−2 . . . Ri o1,
(i i i) o1 Ri o2 Ri o3 . . . Ri om .

A preference profile R ∈ RN is single-peaked on O if and only if for each i ∈ N , Ri

is single-peaked on O . Let RN
sp be a domain of single-peaked preference profiles.

Working with a restricted class of preferences should increase our chance of obtain-
ing positive results, and one could hope that the strong restriction of single-peakedness
would help, as it has in a variety of other contexts. Unfortunately, in our case, it does
not (Theorem 1).

We represent a “deterministic” allocation as a matrix of 0’s and 1’s, with columns
indexed by agents and rows indexed by objects: a 0 entry in a cell means that the agent
indexing the column does not receive the object indexing the row, and a 1 means that
she does. Formally, a deterministic allocation is a matrix M ≡ [Mik]i∈N , k∈O such
that

(i) for each i ∈ N and each k ∈ O, Mik ∈ {0, 1},
(i i) for each i ∈ N ,

∑
k∈O Mik = 1, and

(i i i) for each k ∈ O,
∑

i∈N Mik = 1.

We consider probabilistic distributions over deterministic allocations. Such an allo-
cation is also represented as a matrix, but this time each entry is a number between 0
and 1, interpreted as the probability with which the agent indexing the column receives
the object indexing the row. A probabilistic allocation is a matrix M ≡ [Mik]i∈N , k∈O

such that

(i) for each i ∈ N and each k ∈ O, 0 ≤ Mik ≤ 1,
(i i) for each i ∈ N ,

∑
k∈O Mik = 1, and

(i i i) for each k ∈ O,
∑

i∈N Mik = 1.

Every probabilistic allocation can be written as a convex combination of deterministic
allocations (this combination may not be unique) (Birkhoff 1946; von Neumann 1953).
Let M be the set of all probabilistic allocations. For each i ∈ N , her probabilistic
assignment in M ∈ M is a vector Mi ≡ [Mik]k∈O , i.e., the i th column of M . A
rule is a function that associates with each problem a matrix in M. A generic rule is
denoted ϕ.

From here, we simplify the expressions “a probabilistic allocation” to “an alloca-
tion” and “a probabilistic assignment” to “an assignment.”
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Probabilistic assignment of indivisible goods 207

The following are three examples of rules. Let �N be the set of strict orders on N .
Priority rule associated with ≺∈ �N Pri≺: For each R ∈ RN , each agent chooses
her best object among the remaining ones according to the order ≺.
Random priority rule, RP (Abdulkadiroğlu and Sönmez 1998): For each R ∈ RN ,
R P(R) ≡ 1

|N |!
∑

≺∈�N Pri≺(R).
Serial rule, Sr (Bogomolnaia and Moulin 2001): Consider each object as an infi-
nitely divisible good, whose supply is 1. Let R ∈ RN . Agents consume objects at the
same rate, each starting with her most preferred object. The object(s) whose supply
is exhausted first is (are) the object(s) that is (are) ranked first by the greatest number
of agents. When the supply of an object is exhausted, each agent who ranked this
object first turns to her second most preferred object (joining those agents who rank
that object first), or to her third most preferred object if the supply of her second most
preferred object happens to reach exhaustion at the same time, and so on. Consump-
tion goes on until the supply of some other object is exhausted, and so. The process
continues until the supplies of all objects are exhausted. In the end, the fractions of
the various objects that each agent has consumed, interpreted as probabilities that she
will receive these objects, determine her assignment.9

We consider three requirements on rules. Again, let ϕ be an arbitrary rule.

• If two agents have the same preference, their assignments should be the same.

Equal treatment of equals: For each R ∈ RN and each pair i, j ∈ N , if Ri = R j ,
then ϕi (R) = ϕ j (R).

The next definition requires specifying how an agent compares two assignments.
An assignment M i ≡ [Mik]k∈O for i ∈ N stochastically dominates another

assignment M ′
i ≡ [M ′

ik]k∈O for i ∈ N at Ri (or Mi is at least as sd-desirable as M ′
i

at Ri ), which we write M i Rsd
i

M ′
i , if for each k ∈ O ,

∑
Mix

{x∈O:x Ri k}
≥

∑
M ′

i x
{x∈O:x Ri k}

.

If strict inequality holds for some k, then we write M i P sd
i

M ′
i .

Note that two different assignments Mi and M ′
i may not be comparable in the stochastic

dominance sense.
Given the stochastic comparison described above, we define a notion of Pareto

domination.
An allocation M ≡ [Mik]i∈N ,k∈O stochastically Pareto dominates another allo-

cation M ′ ≡ [M ′
ik]i∈N ,k∈O at R if

(i) for each i ∈ N , Mi Rsd
i M ′

i , and
(i i) for some i ∈ N , Mi Psd

i M ′
i .

• The rule should select an allocation that is not stochastically Pareto dominated by
any other allocation. For each R ∈ RN , let Eff sd(R) ≡ {M ∈ M| there is no
M ′ ∈ M such that M ′ stochastically Pareto dominates M at R}.10

9 For a formal statement, see Bogomolnaia and Moulin (2001).
10 See Bogomolnaia and Moulin (2001) for detailed discussion of this axiom.
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Stochastic dominance efficiency, (simply, sd-efficiency): For each R ∈ RN , ϕ(R) ∈
Eff sd(R).

• Let i ∈ N and fix the other agents’ preferences. The rule should select an allocation
such that, according to agent i’s true preference, she finds her assignment when
she tells the truth at least as sd-desirable as her assignment when she lies. Note that
this requires the two assignments to be comparable in the stochastic dominance
sense.11

Stochastic dominance strategy-proofness, (simply, sd-strategy-proofness): For
each R ∈ RN , each i ∈ N , and each R′

i ∈ R, ϕi (R) Rsd
i ϕi (R′

i , R−i ).12

3 Result

We consider the case when the preference profile is single-peaked. We provide two
such examples.

Example 1 Consider the problem of allocating time slots for access to a facility to its
potential users. Each user has a most preferred time to use the facility and becomes
progressively worse off as she uses it further and further away from her most preferred
time. One could think that too early may not be good because she may not be ready
for the service, but having to wait too long is costly for her.

Example 2 Consider the problem of assigning parking spaces (e.g., parking at a uni-
versity) that are arranged linearly. Each agent prefers her space to be closer to the
building she accesses most frequently (e.g., main library, coffee shop, and building
where she works).

For three agents, equal treatment of equals, sd-efficiency, and sd-strategy-proofness
are compatible (Bogomolnaia and Moulin 2001).13 However, for four or more agents,
they are not.

Theorem 1 Domain: single-peaked preferences. Let n ≥ 4. No rule satisfies the
following three requirements: equal treatment of equals, sd-efficiency, and sd-strat-
egy-proofness.

Proof We divide the proof into two cases.

Case 1: n = 4. Let N = {1, 2, 3, 4} and O = {a, b, c, d}. Suppose, by way of
contradiction, that there is a rule ϕ that satisfies the three requirements.
We consider the following 9 profiles in RN

sp. Notice that the profiles are all
single-peaked on O .14 Figure 1 illustrates the proof.

11 Gibbard (1977) considers strategy-proofness in the context of probabilistic choice of a public good when
each agent has von-Neumann Morgenstern preferences.
12 R−i ≡ RN\{i}, i.e., the restriction of R to N\{i}.
13 The random priority rule satisfies them.
14 Recall that according to our convention, O is ordered by a ≺ b ≺ c ≺ d.
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Fig. 1 Illustrating the proof of Theorem 1, Case 1. Each arrow represents how sd-strategy-proofness is
applied in the proof. A number next to an arrow represents the identity of the agent whose preference is
changed

Profile 1: For each i ∈ N , a Ri b Ri c Ri d. Then, by equal treatment of
equals, for each i ∈ N and each k ∈ O, ϕik(R) = 1

4 .
Profile 2: For each i ∈ {1, 2, 3}, a Ri b Ri c Ri d, and b R4 a R4 c R4 d.

First, we claim that ϕ4c(R) = ϕ4d(R) = 1
4 . Let R′

4 be such that a R′
4 b R′

4 c R′
4 d.

Then, by sd-strategy-proofness,

ϕ4(R) Rsd
4 ϕ4(R{1,2,3}, R′

4) and ϕ4(R{1,2,3}, R′
4) R′sd

4 ϕ4(R).
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210 Y. Kasajima

Thus, ϕ4c(R) = ϕ4c(R{1,2,3}, R′
4) and ϕ4d(R) = ϕ4d(R{1,2,3}, R′

4). Invoking our
conclusion for Profile 1, ϕ4c(R) = ϕ4d(R) = 1

4 .
Next, we claim that ϕ4a(R) = 0. Suppose by way of contradiction that ϕ4a(R) > 0.

Since ϕ4b(R) < 1
2 , there is i ∈ {1, 2, 3} such that ϕib(R) > 0. Let δ ≡

min{ϕ4a(R), ϕib(R)}. Let M ∈ M be such that M4a = ϕ4a(R) − δ, M4b =
ϕ4b(R) + δ, Mia = ϕia(R) + δ, Mib = ϕib(R) − δ, and the other entries are the
same as the entries at ϕ(R). Then, it is easy to see that M stochastically Pareto domi-
nates ϕ(R) at R, in violation of sd-efficiency. Thus, ϕ4a(R) = 0.

Then, by equal treatment of equals,

ϕ(R) =

⎛

⎜
⎜
⎜
⎝

1
3

1
3

1
3 0

1
6

1
6

1
6

1
2

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

⎞

⎟
⎟
⎟
⎠

.

Profile 3: For each i ∈ {1, 2}, a Ri b Ri c Ri d, and for each j ∈
{3, 4}, b R j a R j c R j d. Then, invoking our conclusion for Profile 2 and
sd-strategy-proofness, ϕ3c(R) = ϕ3d(R) = 1

4 .
We claim that ϕ3a(R) = 0. Suppose by way of contradiction that ϕ3a(R) > 0. Then,

ϕ3b(R) < 1
2 . By equal treatment of equals, ϕ4b(R) < 1

2 . Then, there is i ∈ {1, 2} such
that ϕib(R) > 0. As the argument in the previous profile, it is easy to construct M ∈ M
such that M stochastically Pareto dominates ϕ(R) at R, in violation of sd-efficiency.
Thus, ϕ3a(R) = 0.

Then, by equal treatment of equals,

ϕ(R) =

⎛

⎜
⎜
⎜
⎝

1
2

1
2 0 0

0 0 1
2

1
2

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

⎞

⎟
⎟
⎟
⎠

.

Profile 4: a R1 b R1 c R1 d and for each i ∈ {2, 3, 4}, b Ri a Ri c Ri d.
Then, invoking our conclusion for Profile 3 and sd-strategy-proofness, ϕ2c(R) =
ϕ2d(R) = 1

4 .
We claim that ϕ1b(R) = 0. Suppose by way of contradiction that ϕ1b(R) > 0.

Then, ϕ1a(R) < 1. Then there is i ∈ {2, 3, 4} such that ϕia(R) > 0. Then, we con-
struct M ∈ M such that M stochastically Pareto dominates ϕ(R) at R, in violation of
sd-efficiency. Thus, ϕ1b(R) = 0.

Then, by equal treatment of equals,

ϕ(R) =

⎛

⎜
⎜
⎜
⎝

1
2

1
6

1
6

1
6

0 1
3

1
3

1
3

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

⎞

⎟
⎟
⎟
⎠

.
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Profile 5: For each i ∈ N , b Ri a Ri c Ri d. Then, by equal treatment of
equals, for each i ∈ N and each k ∈ O, ϕik(R) = 1

4 .
Profile 6: For each i ∈ {1, 2, 3}, b Ri a Ri c Ri d, and b R4 c R4 a R4 d.

Then, invoking our conclusion for Profile 5 and sd-strategy-proofness, ϕ4b(R) =
ϕ4d(R) = 1

4 . By sd-efficiency, ϕ4a(R) = 0. Then, by equal treatment of equals,

ϕ(R) =

⎛

⎜
⎜
⎜
⎝

1
3

1
3

1
3 0

1
4

1
4

1
4

1
4

1
6

1
6

1
6

1
2

1
4

1
4

1
4

1
4

⎞

⎟
⎟
⎟
⎠

.

Profile 7: a R1 b R1 c R1 d, for each i ∈ {2, 3}, b Ri a Ri c Ri d,
and b R4 c R4 a R4 d. Then, invoking our conclusion for Profile 4 and sd-
strategy-proofness, ϕ4b(R) = 1

3 and ϕ4d(R) = 1
4 . By sd-efficiency, ϕ4a(R) = 0

and ϕ1b(R) = 0. Invoking our conclusion for Profile 6 and sd-strategy-proofness,
ϕ1c(R) = 1

6 and ϕ1d(R) = 1
4 . Then, by equal treatment of equals,

ϕ(R) =

⎛

⎜
⎜
⎜
⎝

7
12

5
24

5
24 0

0 1
3

1
3

1
3

1
6

5
24

5
24

5
12

1
4

1
4

1
4

1
4

⎞

⎟
⎟
⎟
⎠

.

Profile 8: For each i ∈ {1, 2, 3}, a Ri b Ri c Ri d, and b R4 c R4 a R4 d.
Then, invoking our conclusion for Profile 2 and sd-strategy-proofness, ϕ4b(R) = 1

2
and ϕ4d(R) = 1

4 . By sd-efficiency, ϕ4a(R) = 0. Then, by equal treatment of equals,

ϕ(R) =

⎛

⎜
⎜
⎜
⎝

1
3

1
3

1
3 0

1
6

1
6

1
6

1
2

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

⎞

⎟
⎟
⎟
⎠

.

Profile 9: For each i ∈ {1, 2}, a Ri b Ri c Ri d, b R3 a R3 c R3 d,
and b R4 c R4 a R4 d. Then, invoking our conclusion for Profile 3 and sd-
strategy-proofness, ϕ4b(R) = 1

2 and ϕ4d(R) = 1
4 . By sd-efficiency, ϕ4a(R) = 0.

Thus, ϕ4c(R) = 1
4 . Invoking our conclusion for Profile 7 and sd-strategy-proofness,

ϕ2c(R) = 5
24 . Then, by equal treatment of equals, ϕ1c(R) = 5

24 . Invoking our conclu-
sion for Profile 8 and sd-strategy-proofness, ϕ3c(R) = 1

4 . However,

ϕ1c(R) + ϕ2c(R) + ϕ3c(R) + ϕ4c(R) = 5

24
+ 5

24
+ 1

4
+ 1

4
< 1,
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a contradiction with ϕ(R) ∈ M.15

Case 2: n > 4. Let h ∈ N and n = 4 + h. Let N = {1, 2, 3, 4, 5, . . . , 4 + h} and
O = {a, b, c, d, o1, . . . , oh}. Suppose, by way of contradiction, that there is
a rule ϕ that satisfies the three requirements. For each Profile l ∈ {1, . . . , 9}
in Case 1, we construct a preference Profile Rl ∈ RN

sp as the following three
conditions are satisfied:

(i) for each i ∈ {1, . . . , 4}, the preference ordering on {a, b, c, d} is the same as
in Profile l ∈ {1, . . . , 9} and those objects are her best four objects,

(i i) for each j ∈ {5, . . . , 4 + h}, her best object is o j−4, and
(i i i) all profiles are single-peaked on O .16

For instance, let for each i ∈ {1, . . . , 4}, the preference ordering on {a, b, c, d} be
the same as in Profile l ∈ {1, . . . , 9} and for each k ∈ {a, b, c, d},

k Rl
i o1 Rl

i o2 Rl
i · · · Rl

i oh .

Let for each j ∈ {5, . . . , 4 + h},

o j−4 Rl
j o j−5 Rl

j · · · Rl
j o1 Rl

j d Rl
j c Rl

j b Rl
j a Rl

j o j−3 Rl
j

o j−2 · · · Rl
j oh .

Thus, for each l ∈ {1, . . . , 9}, we have the following preference profile.
Rl

1 Rl
2 Rl

3 Rl
4 Rl

5 Rl
6 · · · Rl

j · · · Rl
3+h Rl

4+h

o1 o2 o j−4 oh−1 oh

Profile l in Case 1 d o1 o j−5 oh−2 oh−1
l ∈ {1, . . . , 9} c d : : :

b c o1 : :
o1 o1 o1 o1 a b d : :
o2 o2 o2 o2 o2 a c : :
o3 o3 o3 o3 o3 o3 b o1 :
o4 o4 o4 o4 o4 o4 a d o1
: : : : : : o j−3 c d
: : : : : : o j−2 b c
: : : : : : : a b

oh oh oh oh oh oh oh oh a
Notice that the profiles we consider are all single-peaked on O . It is straight-

forward to see that by sd-efficiency, for each Profile l ∈ {1, . . . , 9} and each j ∈
{5, . . . , 4 + h}, ϕ jo j−4(Rl) = 1. Then, a similar argument as in Case 1 leads to a
contradiction. 	


15 The assignments we obtain at Profiles 1–9 coincide with those made by the serial rule except for Profiles
7 and 9.
16 Again, recall that according to our convention, O is ordered by a ≺ b ≺ c ≺ d ≺ o1 ≺ o2 ≺ · · · ≺ oh .

123



Probabilistic assignment of indivisible goods 213

Note that the above result strengthens the results by Bogomolnaia and Moulin
(2001) [p. 310 Theorem 2] since the impossibility holds on a smaller domain of pref-
erences than the one they consider.

Theorem 1 is tight. The serial rule satisfies all the properties but sd-strategy-proof-
ness. The random priority rule satisfies all the properties but sd-efficiency. For each
≺∈ �N , the priority rule associated with ≺ satisfies all the properties but equal treat-
ment of equals.

4 Discussion

We discuss three variations of our probabilistic assignment problems with single-
peaked preferences.

(1) More objects than agents

Suppose that |O| > |N |. An allocation here is a |O| × |N | matrix such that each
entry is non-negative, the entries in each row sum to at most one, and the entries in
each column sum to one. Then, equal treatment of equals, sd-efficiency, and sd-strat-
egy-proofness should be restated in the obvious way. In this case, a similar result to
Theorem 1 holds, i.e., for four or more agents, the three axioms are incompatible
even when preferences are single-peaked. The proof is as follows. For four agents,
add an object “e” that each agent ranks below “d.” For more than four agents, each
agent ranks “e” between “d” and “o1.” Notice that preferences are single-peaked with
respect to the order a ≺ b ≺ c ≺ d ≺ e for the four-agent case and a ≺ b ≺ c ≺ d ≺
e ≺ o1 ≺ o2 ≺ · · · ≺ oh for more than four agents. The reader can check that a rule
assigns zero probability to “e” for each profile, and that a similar argument as in the
proof of Theorem 1 leads to a contradiction.

(2) More agents than objects

Suppose that |O| < |N |. Suppose also that there exist infinitely many copies of the
“null object” (interpreted as receiving no object), denoted ∅. Here, some agent has to
receive a null object. Each agent has a complete, transitive, and strict binary relation
over O ∪∅. An allocation here is a (|O|+1)×|N | matrix M ≡ [Mik]i∈N , k∈O∪∅ such
that each entry is non-negative, the entries in each row except the row corresponding
to the null object sum to at most one, and the entries in each column sum to one. Then,
the three axioms should be restated in the obvious way. Here again, a similar result to
Theorem 1 holds. The proof consists of replacing “d” with a null object.

(3) Indifference over objects

Suppose that each agent has a complete and transitive (not necessarily strict) binary
relation over O . Let RN be a domain of such preference profiles. For each agent i ∈ N ,
the strict preference relation associated with Ri ∈ RN is denoted by Pi and the cor-
responding indifference relation by Ii . The axioms we studied should be restated in
the obvious way. It is well known that introducing indifference changes the nature of
the probabilistic assignment problems significantly, and even more, it may change the
positive results to negative (Katta and Sethuraman 2006). Now consider the following
two requirements on rules.
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• Each agent should find her assignment at least as sd-desirable as anybody else’s
assignment. For each R ∈ RN , let Fsd(R) ≡ {M ∈ M|for each pair i, j ∈
N , Mi Rsd

i M j }.
Stochastic dominance envy-freeness, (simply, sd-envy-freeness): For each R ∈ RN

ϕ(R) ∈ Fsd(R).
Notice that the above axiom is stronger than equal treatment of equals.

• Let i ∈ N and fix the other agents’ preferences. The rule should select an allocation
such that, according to agent i’s true preference, she never finds her assignment
when she lies, to be sd-better than her assignment when she tells the truth.

Weak stochastic dominance strategy-proofness, (simply, weak sd-strategy-
proofness): For each R ∈ RN , each i ∈ N , and each R′

i ∈ R, it is not the case
that ϕi (R′

i , R−i ) Psd
i ϕi (R).

Obviously, the above axiom is weaker than sd-strategy-proofness.
When preferences are strict, sd-envy-freeness, sd-efficiency and weak sd-strategy-

proofness are compatible (Bogomolnaia and Moulin 2001).17 However, if indifference
is allowed, these three axioms become incompatible (Katta and Sethuraman 2006). A
similar result holds even if we restrict the domain to “weakly” single-peaked prefer-
ences (for each agent, there is a single most preferred object; no two objects on the
left of her peak can be indifferent; the same for the right of her peak; but objects on
the left and the right of her peak can be indifferent): for four or more agents, sd-envy-
freeness, sd-efficiency, and weak sd-strategy-proofness are incompatible. The proof is
as follows. For four agents, let N = {1, 2, 3, 4} and O = {a, b, c, d}. Consider the
following two profiles.

Profile 1: b P1 a I1 c P1 d, for each i ∈ {2, 3}, b Pi c Pi a Pi d, and
b P4 c P4 d P4 a.

Profile 2: b P ′
1 c P ′

1 a P ′
1 d, for each i ∈ {2, 3}, b Pi c Pi a Pi d, and

b P4 c P4 d P4 a.
Both profiles are weakly single-peaked on O .18 Suppose, by way of contradic-

tion, that there is a rule ϕ that satisfies the three requirements. For Profile 1, by
sd-envy-freeness, for each i ∈ N , ϕib(R) = 1

4 , ϕ2c(R) = ϕ3c(R) = ϕ4c(R),
and ϕ1a(R) + ϕ1c(R) = ϕ2a(R) + ϕ2c(R) = ϕ3a(R) + ϕ3c(R). By sd-efficiency,

ϕ4a(R) = 0 and ϕ1c(R) = 0.19 Then, tϕ1(R) =
(

5
9 , 1

4 , 0, 7
36

)
.20 For Profile

2, by sd-envy-freeness, for each i ∈ N , ϕib(R′
1, R−1) = ϕic(R′

1, R−1) = 1
4 and

ϕ1a(R′
1, R−1) = ϕ2a(R′

1, R−1) = ϕ3a(R′
1, R−1). By sd-efficiency, ϕ4a(R′

1, R−1) =
0. Then, tϕ1(R′

1, R−1) = ( 1
3 , 1

4 , 1
4 , 1

6

)
. However, ϕ1(R′

1, R−1) Psd
1 ϕ1(R), a con-

tradiction to ϕ being weakly sd-strategy-proof. For more than four agents, a similar
construction as in the proof of Theorem 1 Case 2 leads to a contradiction.

17 The serial rule satisfies them.
18 Following our convention, O is ordered by a ≺ b ≺ c ≺ d.
19 If ϕ4a(R) > 0, then ϕ4d (R) < 1. Then there is i ∈ {1, 2, 3} such that ϕid (R) > 0. Notice that for each
i ∈ {1, 2, 3}, a Pi d. Then, it is easy to construct M ∈ M such that M stochastically Pareto dominates
ϕ(R) at R, in violation of sd-efficiency. Similar argument holds when ϕ1c(R) > 0.
20 For each vector x, tx represents the transpose of x .
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