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Abstract A large amount of literature in social choice theory deals with quantifying
the probability of certain election outcomes. One way of computing the probability
of a specific voting situation under the Impartial Anonymous Culture assumption is
via counting integral points in polyhedra. Here, Ehrhart theory can help, but unfortu-
nately the dimension and complexity of the involved polyhedra grows rapidly with the
number of candidates. However, if we exploit available polyhedral symmetries, some
computations become possible that previously were infeasible. We show this in three
well known examples: Condorcet’s paradox, Condorcet efficiency of plurality voting
and in Plurality voting vs Plurality Runoff.

1 Introduction

In social choice theory, a vast amount of literature deals with quantifying the proba-
bility of certain election outcomes. This is in particular the case for so-called “voting
paradoxes” that are known to be unavoidable since the famous Impossibility Theorem
of Arrow 1951 (see Taylor and Pacelli (2008) for a popular exposition). Under the
Impartial Anonymous Culture (IAC) assumption, the probability for such an event can
be computed by counting integral solutions to a system of linear inequalities, asso-
ciated to the specific voting event of interest (see for example Gehrlein and Lepelley
(2011)). There exists a rich mathematical theory going back to works of Ehrhart 1967
in the 1960s that helps to deal with such problems. We refer to Beck and Robins
(2007) and Barvinok (2008) for an introduction. The connection to Social Choice
Theory was recently discovered by Lepelley et al. (2008) and Wilson and Pritchard
(2007). A few years earlier a similar theory had been described specifically for the
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1098 A. Schürmann

social choice context by Huang et al. (2000) (see also Gehrlein (2002)). Based on
Barvinok’s algorithm Barvinok (1994) there now exists specialized mathematical soft-
ware for performing previously cumbersome or practically impossible computations.
The first available program was LattE, with its newest version LattE integ-
rale (see De Loera et al. (2011a)); an alternative implementation of Barvinok’s
algorithm is available throughbarvinok (see Verdoolaege and Bruynooghe (2008)),
which is also usable within the polymake framework (see Gawrilow and Joswig
(2000)).

The purpose of this note is to shed some light on the possibilities for social choice
computations that arise through the use of Ehrhart theory and weighted generaliza-
tions of it (see Baldoni et al. (2010)). We in particular show how symmetry of lin-
ear systems characterizing certain voting events, can be used to obtain new results.
As examples, we consider three well studied voting situations with four candidates:
Condorcet’s paradox, the Condorcet efficiency of plurality voting and different out-
comes in Plurality vs Plurality Runoff.

In Sect. 2 we review some linear models for voting events and introduce some of
the used notation. In Sect. 3 we sketch how counting integral points in polyhedra and
Ehrhart’s theory can be used to compute probabilities for voting outcomes. In Sect. 4
we show how the complexity of computations can be reduced by using a symmetry
reduced, lower dimensional reformulation. We in particular show how to use integra-
tion to obtain exact values for the limiting probability of voting outcomes when the
number of voters tends to infinity. As examples, we obtain previously unknown, exact
values for election events with four candidates.

2 Linear systems describing voting situations

Notation

For the start we look at three candidate elections, as everything that will follow can
best be motivated and explained in smaller examples. Assume there are n voters, with
n ≥ 2, and each of them has a complete linear (strict) preference order on the three
candidates a, b, c. We subdivide the voters into six groups

(nab, nac, nba, nbc, nca, ncb) , (1)

according to their six possible preference orders:

abc(nab) acb(nac) bac(nba) bca(nbc) cab(nca) cba(ncb)

For example, there are nab voters that prefer a over b and b over c. We omit the last
preference in the index, as it is determined once we know the others. This type of
indexing will show to be useful when we reduce the number of variables in Sect. 4.

The tuple (1) is referred to as a voting situation. In an election with

n = nab + nac + nba + nbc + nca + ncb (2)
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Exploiting polyhedral symmetries in social choice 1099

voters, there are
(n+5

5

)
possible voting situations. We make the simplifying Impartial

Anonymous Culture (IAC) assumption that each of these voting situations is equally
likely to occur.

Condorcet’s paradox

Maybe the most famous voting paradox goes back to the Marquis de Condorcet (1743–
1793). He observed that in an election with three or more candidates, it is possible that
pairwise comparison of candidates can lead to an intransitive collective choice. For
instance, candidate a could be preferred over candidate b, b could be preferred over
candidate c and c could be preferred over candidate a. In this case there is no Condorcet
winner, that is, someone who beats every other candidate by pairwise comparison.

The condition that candidate a is a Condorcet winner can be described via two
linear constraints:

nab + nac + nca > nba + nbc + ncb ( a beats b ) (3)

nab + nac + nba > nca + nbc + ncb ( a beats c ) (4)

The probability of candidate a being a Condorcet winner in an election with n
voters can be expressed as the quotient

Prob(n) =
card

{
(nab, . . . , ncb) ∈ Z

6≥0 satisfying (2), (3), (4)
}

(n+5
5

) .

The denominator is a polynomial of degree 5 in n. It had been observed by Gehrlein
and Fishburn 1976 (cf. Berg and Bjurulf (1983)) that the numerator shows a similar
behavior: restricting to even or odd n it can be expressed as a degree 5 polynomial
in n. The leading coefficient of both polynomials is the same and we approach the
same probability for large elections (as n tends to infinity). This limiting probability
is known to be

lim
n→∞ Prob(n) = 5

16
.

Having the probability for candidate a being a Condorcet winner, we obtain the
probability for a Condorcet paradox (no Condorcet winner exists) as 1 − 3 · Prob(n)

with an exact limiting probability of 1
16 .

In a similar way we can determine probabilities for other voting events.

Condorcet efficiency of plurality voting

If there is a Condorcet winner, there is good reason to consider him to be the voter’s
choice. However, many common voting rules do not always choose the Condorcet
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winner even if one exists. This is in particular the case for the widely used plurality
voting, where the candidate with a majority of first preferences is elected.

The condition that candidate a is a Condorcet winner but candidate b is the plural-
ity winner can be expressed by the two inequalities (3) and (4), together with the two
additional inequalities

nba + nbc > nab + nac ( b wins plurality over a ) (5)

nba + nbc > nca + ncb ( b wins plurality over c ) (6)

The Condorcet efficiency of a voting rule is the conditional probability that a Con-
dorcet winner is elected if one exists. As there are 3 · 2 possibilities for choosing a
Condorcet winner and another plurality winner, we obtain

Prob(n) =
6 · card

{
(nab, . . . , ncb) ∈ Z

6≥0 satisfying (2), (3), (4), (5), (6)
}

3 · card
{
(nab, . . . , ncb) ∈ Z

6≥0 satisfying (2), (3), (4)
}

for the likelihood of a Condorcet winner being a plurality loser. Again, depending
on n being odd or even, one obtains polynomials in n in the denominator and the
numerator (see Gehrlein (1982)). The exact value of the limit limn→∞ Prob(n) is
16/135. Therefore, the Condorcet efficiency of plurality voting with three candidates
is 119/135 = 88.148 %.

Plurality versus Plurality Runoff

Plurality Runoff voting is a common practice to overcome some of these “problems”
of Plurality voting. It is used in many presidential elections, for example in France.
After a first round of plurality voting in which none of the candidates has achieved
more than 50 % of the votes, the first two candidates compete in a second runoff round.

The condition that candidate b is the plurality winner, but candidate a wins the
second round of Plurality Runoff can be expressed by the two inequalities (5) and

nab + nac > nca + ncb, ( a wins plurality over c ) (7)

together with the linear condition (3) that a beats b in a pairwise comparison. The
probability that another candidate is chosen in the second round as the number of
voters tends to infinity is known to be 71/576 = 12.32638 % (see Lepelley et al.
(2008)).

Four and more candidates

Having m candidates we can set up similar linear systems in m! variables. For exam-
ple, in an election with four candidates a, b, c, d we use the 24-dimensional vector
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Exploiting polyhedral symmetries in social choice 1101

xt = (nabc, . . . , ndcb). Here, indices are taken in lexicographical order. The condi-
tion that a is a Condorcet winner is described by the three inequalities that imply
a beats b, a beats c and a beats d in a pairwise comparison. As linear systems with
24 variables become hard to grasp, it is convenient to use matrices for their description.
We are interested in all non-negative integral (column) vectors x satisfying the matrix
inequality Ax > 0 for the matrix A ∈ Z

3×24 with entries

1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 -1
1 1 1 1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1
1 1 1 1 1 1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 (8)

3 Likelihood of voting situations and Ehrhart’s theory

Integral points in polyhedral cones

In order to deal with an arbitrary number of candidates, let us put the example above
in a slightly more general context. In any of the three voting examples, the voting
situations of interest lie in a polyhedral cone, that is, in a set P of points in R

d (with
d = 6 or d = 24 in case of three or four candidate elections) satisfying a finite num-
ber of homogeneous linear inequalities. In addition to the strict inequalities which are
different in each of the examples, the condition that the variables ni are non-negative
can be expressed by the homogeneous linear inequalities ni ≥ 0.

Let P,S ⊂ R
d denote two d-dimensional polyhedral cones, each defined by some

homogeneous linear (possibly strict) inequalities. We may assume that P is contained
in S and that both polyhedral cones are contained in the orthant R

d≥0. If we are inter-
ested in elections with n voters, we consider the voting situations (integral vectors) in
the intersection of P and S with the affine subspace

Ld
n =

{

(n1, . . . , nd) ∈ R
d |

d∑

i=1

ni = n

}

.

The expected frequency of voting situations being in P among voting situations in S
is then expressed by

Prob(n) = card
(P ∩ Ld

n ∩ Z
d
)

card
(S ∩ Ld

n ∩ Zd
) . (9)

When estimating the probability of candidate a being a Condorcet winner for instance,
the homogeneous polyhedral cone S is simply the non-negative orthant R

d≥0 described
by the linear inequalities ni ≥ 0. In that case the denominator is known to be equal to

(
n + d − 1

d − 1

)
.

This is a polynomial in n of degree d − 1 (the dimension of Ld
n ∩ S).
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1102 A. Schürmann

Ehrhart theory

By Ehrhart’s theory, the number of integral solutions in a polyhedral cone intersected
with Ld

n can be expressed by a quasi-polynomial in n. Roughly speaking, a quasi-
polynomial is simply a finite collection p1(n), . . . , pk(n) of polynomials, such that
the number of voting situations is given by pi (n) if i ≡ n mod k.

The degree of the polynomial is equal to the dimension of the polyhedral cone
intersected with Ld

n . In the voting events considered here this dimension is always
equal to d − 1. So in the examples with three candidates their degree is always 5.
The number k of different polynomials depends on the linear inequalities involved.
For the Condorcet paradox we have k = 2 polynomials p1(n) and p2(n), where
p1(n) gives the answer for odd n (1 ≡ n mod 2) and p2(n) gives the answer for
even n (0 ≡ 2 ≡ n mod 2). For Condorcet efficiency we have k = 6 (see Gehrlein
(2002)) and for Plurality versus Plurality Runoff we have k = 12 (see Lepelley et al.
(2008)).

Given a polyhedral cone P , the quasi-polynomial q(n) = card
(P ∩ Ld

n ∩ Z
d
)

can be explicitly computed using software packages like LattE integrale
DeLoera and Köppe (2011) or barvinok Verdoolaege (2011). The result for the
polyhedral cone P describing candidate a as the Condorcet winner could look
like.

1/384 * nˆ5
+ ( 1/64 * { 1/2 * n } + 1/32 ) * nˆ4
+ ( 17/96 * { 1/2 * n } + 13/96 ) * nˆ3
+ ( 23/32 * { 1/2 * n } + 1/4 ) * nˆ2
+ ( 233/192 * { 1/2 * n } + 1/6 ) * n
+ ( 45/64 * { 1/2 * n } + 0 )

The curly brackets {· · · } mean the fractional part of the enclosed number, allowing
to write the quasi-polynomial in a closed form. In this example we get different poly-
nomials for odd and even n. Note that the leading coefficient (the coefficient of n5)
is in both cases the same. By Ehrhart’s theory this is always the case, as it is equal to
the relative volume of the polyhedron P ∩ Ld

1 . That is, it is equal to a
√

d-multiple of
the standard Lebesgue measure on the affine space Ld

1 . The measure is normalized so
that the space contains one integral point per unit volume.

One technical obstacle using software like LattE integrale or barvinok
is the use of polyhedral cones described by a mixture of strict and non-strict inequali-
ties. As the software assumes the input to have only non-strict inequalities or equality
conditions, one has to avoid the use of strict inequalities. A simple way to achieve this
is the replacement of strict inequalities x > 0 by non-strict ones x ≥ 1, in case x is
known to be integral. For instance, if x is a linear expression with integer coefficients,
and if we are interested in integral solutions as in our examples, this is a possible
reformulation.

Altogether, by obtaining quasi-polynomials for numerator and denominator in (9)
we get an explicit formula for Prob(n) via Erhart’s theory.
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Exploiting polyhedral symmetries in social choice 1103

Limiting probabilities via integration

If we want to compute the exact value of limn→∞ Prob(n) as n tends to infinity, we
can use volume computations without using Ehrhart’s theory. As mentioned above, the
leading coefficients of denominator and numerator correspond to the relative volumes
of the sets P ∩ L1 and S ∩ L1:

lim
n→∞ Prob(n) = lim

n→∞
card

(P ∩ Ld
1 ∩ (Z/n)d

)

card
(S ∩ Ld

1 ∩ (Z/n)d
) = relvol

(P ∩ Ld
1

)

relvol
(S ∩ Ld

1

)

In fact, as long as we use the same measure to evaluate the numerator and the denom-
inator, it does not matter what multiple of the standard Lebesgue measure we use to
compute volume on the affine space Ld

1 . The exact relative volume can be computed
using LattE integrale. Alternatives are for example Normaliz (see Bruns
et al. (2011)) or vinci (see Büeler et al. (2000)). Exact computations can be quite
involved in higher dimensions (cf. Dyer and Frieze (1988)). In such cases it is some-
times only possible to compute an approximation, using Monte Carlo methods for
instance.

4 Reducing the dimension by exploiting polyhedral symmetries

In many models the involved linear systems and polyhedra are quite symmetric.
In particular, permutations of variables may lead to equivalent linear systems describ-
ing the same polyhedron. Such symmetries are often visible in smaller examples
and can automatically be determined for larger problems, for instance by our soft-
ware SymPol (see Rehn and Schürmann (2010)). In the three examples described in
Sect. 2, we can exploit such symmetries to reduce the complexity of computations.

Condorcet’s paradox

In case of a being a Condorcet winner in a three candidate election, the variables nab
and nac occur pairwise (as nac + nab) in inequalities (3), (4) and in equation (2).
The same is true for nbc and ncb. By introducing new variables na = nac + nab
and n∗a = nbc + ncb we can reduce the dimension of the linear system to only four
variables:

na + nca − n∗a − nba > 0

na + nba − n∗a − nca > 0

na + nca + n∗a + nba = n

na, n∗a, nba, nca ≥ 0.

The index a indicates that we group all variables which carry candidate a as their first
preference and index ∗a stands for grouping of all variables with candidate a ranked
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last. In the reduced linear system each four-tuple (na, n∗a, nba, nca) represents sev-
eral voting situations, previously described by six-tuples. For na we have (na + 1)

different possibilities of non-negative integral tuples (nac, nab). Similar is true for
n∗a. Together we have

(na + 1)(n∗a + 1)

voting situations with three candidates represented by each non-negative integral
vector (na, n∗a, nba, nca).

In the four candidate case it is possible to obtain a similar reformulation by group-
ing among 24 variables. We introduce a new variable for sets of variables having same
coefficients in the linear system. Having a matrix representation as in (8), this kind
of special symmetry in the linear system is easy to find by identifying equal columns.
Introducing a new variable for each set of equal columns we get

na − nba + nca + nda + n∗ab − n∗ac − n∗ad − n∗a > 0

na + nba − nca + nda − n∗ab + n∗ac − n∗ad − n∗a > 0 (10)

na + nba + nca − nda − n∗ab − n∗ac + n∗ad − n∗a > 0

These three inequalities describe voting situations in which candidate a beats can-
didates b, c and d each in a pairwise comparison. As in all of our examples, we
additionally have the condition that the involved variables add up to n and that all of
them are non-negative.

As before, the used indices of variables reflect which voter preferences are grouped.
As in the three candidate case, na and n∗a denote the number of voters with candidate
a being their first and last preference respectively. Similarly, xy and ∗yx in the index
indicate that voters with preference order starting with x, y and ending with y, x have
been combined.

Using our software SymPol Rehn and Schürmann (2011) one easily checks that
the original system with 24 variables has a symmetry group of order 199065600. The
new reduced system with eight variables, obtained through the above grouping of vari-
ables, turns out to have a symmetry group of order 6 only. So most of the symmetry in
the original system is of the simple form that is detectable through equal columns in
a matrix representation. The remaining sixfold symmetry comes from the possibility
to arbitrarily permute the variables nba, nca, nda when at the same time the variables
n∗ab, n∗ac, n∗ad are permuted accordingly. This symmetry is due to the fact that can-
didates b, c and d are equally treated in the linear system (10). The two new variables
na and n∗a each combine six of the former variables. The other six new variables each
combine two former ones.

Weighted counting

In general, if we group more than two variables, say if we substitute the sum of k
variables n1 + . . . + nk by a new variable N , we have to include a factor of
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(
N + k − 1

k − 1

)

when counting voting situations via N . If we substitute d variables (n1, . . . , nd) by
D new variables (N1, . . . , ND), say by setting Ni to be the sum of ki of the variables
n j , for i = 1, . . . , D, then we count for each D-tuple

p(N1, . . . , ND) =
D∏

i=1

(
Ni + ki − 1

ki − 1

)
(11)

many voting situations.
In the example above, with four candidates and candidate a being the Condorcet

winner, we have d = 24, D = 8 and we obtain a degree 16 polynomial

(
na + 5

5

)
(nba + 1)(nca + 1)(nda + 1)(n∗ab + 1)(n∗ac + 1)(n∗ad + 1)

(
n∗a + 5

5

)

to count voting situations for each eight-tuple

(na, nba, nca, nda, n∗ab, n∗ac, n∗ad, n∗a) .

Geometrically, the polyhedral cone P ⊂ R
d is replaced by a new polyhedral cone

P ′ ⊂ R
D in a lower dimension. As the counting is changed we obtain for the proba-

bility (9) of voting situations in P among those in S:

Prob(n) =

∑

x∈P∩Ld
n∩Zd

1

∑

x∈S∩Ld
n∩Zd

1
=

∑

y∈P ′∩L D
n ∩ZD

p(y)

∑

y∈S ′∩L D
n ∩ZD

p(y)
. (12)

Here, S ′ is equal to the corresponding homogeneous polyhedral cone obtained from
S ⊂ R

d , and p(y) is the polynomial (11) in D variables. In the example of Condorcet’s
paradox, S ′ is simply equal to the full orthant R

D≥0.
As seen in Sect. 3, we can use Ehrhart’s theory to determine an explicit formula for

Prob(n). The right hand side of the formula above suggests that we can do this also
via weighted lattice point counting in dimension D. A corresponding Ehrhart-type
theory has recently been considered (see Baldoni et al. (2010)). A first implementa-
tion is available in the packagebarvinok via the commandbarvinok_summate.
We successfully tested the software on some reformulations of three candidate elec-
tions, but so far barvinok seems not capable to do computations for the four
candidate case. However, there still seems quite some improvement possible in the cur-
rent implementation (personal communication with Sven Verdoolaege). It is expected
that future versions of LattE integrale will be capable of these computations
(personal communication with Matthias Köppe).
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Limiting probabilities via integration

If we want to compute the exact value of limn→∞ Prob(n) we may use integration.
Using (12) we get through substitution of y = nz:

lim
n→∞ Prob(n) = lim

n→∞

∑

y∈P ′∩L D
n ∩ZD

p(y)

∑

y∈S ′∩L D
n ∩ZD

p(y)
= lim

n→∞

∑

z∈P ′∩L D
1 ∩(Z/n)D

p(nz)

∑

z∈S ′∩L D
1 ∩(Z/n)D

p(nz)

= lim
n→∞

∑

z∈P ′∩L D
1 ∩(Z/n)D

p(nz)/ndeg p

∑

z∈S ′∩L D
1 ∩(Z/n)D

p(nz)/ndeg p
=

∫

P ′∩L D
1

lt(z) dz

∫

S ′∩L D
1

lt(z) dz
.

Here, the division of numerator and denominator by a degree of p (deg p) power
of n shows that the integrals on the right are taken over the leading term lt(z) of the
polynomial p(z) only. Thus determining the exact limiting probability is achieved
by integrating a degree d − D monomial over a bounded polyhedron (polytope) in
the (D − 1)-dimensional affine space L D

1 . We refer to De Loera et al. (2011b) for
background on efficient integration methods (cf. Baldoni et al. (2011) and Schechter
(1998)).

As in the case of relative volume computations in dimension d, the integral is taken
with respect to the relative Lebesgue measure – here on the affine space L D

1 . In fact, as
we are computing a quotient, any measure being a multiple of the standard Lebesgue
measure on L D

1 will give the same value.
For the example with candidate a being a Condorcet winner in a four candidate

election, the leading term to be integrated is

n5
a · nba · nca · nda · n∗ab · n∗ac · n∗ad · n5∗a,

which is much simpler than the full polynomial. Integrating this polynomial over the
reduced 8-dimensional polyhedron can be done using LattE integrale (called
with option valuation=integrate). In this way one obtains in a few seconds
an exact value of 1717/2048 for the probability that a Condorcet winner exists (as
n tends to infinity). This value corresponds to the one obtained by Gehrlein (2001)
and serves as a test case for our method. The corresponding volume computation with
LattE integrale (called with option valuation=volume) in 24 variables
did not finish after several weeks of computation. Bogdan Ichim reports (Novem-
ber 2011) that this volume computation is doable with his software Normaliz (see
Bruns et al. (2011)). Nevertheless, the volume computation is much slower than the
corresponding integration over the 8-dimensional polyhedron.

In a similar way we can deal with other voting situations as well.
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Condorcet efficiency of plurality voting

Assuming candidate a is a Condorcet winner, but candidate b wins a plurality voting,
we obtain a reduced system in the three candidate case with five variables:

na − nba − nbc − ncb + nca > 0

na + nba − nbc − ncb − nca > 0

−na + nba + nbc > 0

nba + nbc − ncb − nca > 0

Here the only reduction is the grouping na = nab + nac. The corresponding poly-
nomial weight is na + 1.

The four candidate case is more involved. The linear system with 24 variables has
a comparatively small symmetry group of order 92160. We can group six variables
into na. Taking the reduced system (10) of three inequalities with eight variables
(modeling that candidate a is a Condorcet winner) we have to add three inequalities
for the condition that candidate b wins plurality. These can be shortly described by
nb > na, nc, nd, but a grouping of variables in nb, nc and nd is incompatible with
the other three conditions. Instead we use new variables nb∗a, nc∗a and nd∗a (in (10)
combined in n∗a) for preferences in which a is ranked last. Additionally we have to
keep the variables where candidate a is ranked third (in (10) combined in n∗ab, n∗ac,
n∗ad).

In the three inequalities (10) we can simply substitute n∗a by nb∗a + nc∗a + nd∗a
and n∗ad, n∗ac and n∗ab by nbca + ncba, nbda + ndba and ncda + ndca. The additional
three linear inequalities for candidate b being a plurality winner are then:

nb∗a + nba + nbca + nbda − na > 0

nb∗a + nba + nbca + nbda − nc∗a − nca − ncba − ncda > 0

nb∗a + nba + nbca + nbda − nd∗a − nda − ndba − ndca > 0

This reduced linear system has six inequalities for 13 variables. It still has a sym-
metry of order 2 coming from an interchangeable role of candidates c and d. The
degree 11 polynomial used for integration is

n5
a · nba · nca · nda · nb∗a · nc∗a · nd∗a.

With it, using LattE integrale, we obtain an exact limit of

10658098255011916449318509

14352135440302080000000000
= 74.261410 . . . %

for the Condorcet efficiency of plurality voting with four candidates. To the best of
our knowledge this value has not been computed before.
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Plurality versus Plurality Runoff

The case of Plurality versus Plurality Runoff has a high degree of symmetry. For three
candidates we obtain a reduced four dimensional reformulation:

nb − na > 0

na − nca − ncb > 0

na + nca − nb − ncb > 0

Counting is done via the polynomial weight (na + 1)(nb + 1). Integration of nanb
over the corresponding 3-dimensional polyhedron yields the known limiting proba-
bility.

If we consider elections with m candidates, m ≥ 4, we can set up a linear system
with only 2(m − 1) variables and m inequalities. We denote the candidates by a, b
and ci for i = 1, . . . , m − 2:

nb − na > 0

For i = 1, . . . , m − 2 : na − nci·a·b − nci·b·a > 0

na +
m−2∑

i=1
nci·a·b − nb −

m−2∑

i=1
nci·b·a > 0

The first two lines model that candidate b wins plurality over candidate a and that
candidate a is second, winning over candidates ci, for i = 1, . . . , m − 2. The last
inequality models the condition that candidate a beats b in a pairwise comparison.
The variable nci·a·b gives the number of voters with candidate ci being their first prefer-
ence and candidate a being ranked before candidate b. Similarly, nci·b·a is the number
of voters with first preference ci and candidate b being ranked before candidate a. We
use “·” to denote any ordering of candidates; in contrast to “∗” used before we also
allow an empty list here. For both variables, nci·a·b and nci·b·a, we group (m −1)!/2 of
the m! former variables. The new variables na and nb both represent (m − 1)! former
variables. Therefore, counting is adapted using the polynomial weight

(na · nb)(m−1)!−1 ·
m−2∏

i=1

(
nci·a·b · nci·b·a

)(m−1)!/2−1

of degree m! − 2m + 2.
The above inequalities assume that candidates b and a are ranked first and second

in a plurality voting. So having the probability for the corresponding voting situations,
we have to multiply by m(m − 1) to get the overall probability of a plurality winner
losing in a second Plurality Runoff round.

For four candidates (m = 4) we obtain an exact limiting probability of

2988379676768359

12173449145352192
= 24.548339 . . . %
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This result can be obtained using the weighted, dimension-reduced problem with
LattE integrale, as well as by a relative volume computation in 24 variables.
However, the latter is a few hundred times slower than integration over the dimen-
sion reduced polyhedron. A similar result from a volume computation is obtained in
De Loera et al. (2011b).

To be certain about our new results, we computed the value above, as well as the
likelihood for the existence of a Condorcet winner, with a fully independent Maple
calculation, using the package Convex (see Franz (2009)). For it, we first obtained
a triangulation (non-overlapping union of simplices) of the dimension-reduced poly-
hedron and then applied symbolic integration to each simplex.

We also tried to solve the five candidate case, where the polyhedron is only
7-dimensional (in 8 variables). The integration of a polynomial of degree 112, how-
ever, seems a bit too difficult for the currently available technology. Nevertheless it
seems that we are close to obtain exact five candidate results as well.

5 Conclusions

Using symmetry of linear systems we can obtain symmetry reduced lower dimen-
sional reformulations. These allow to compute exact limiting probabilities for large
elections with four candidates. In this work we only gave a few starting examples.
Similar calculations are possible for many other voting situations as well. For the
lower-dimensional weighted lattice point problems, efficient mathematical software
for the computation of Ehrhart quasi-polynomials will soon be available. We antici-
pate that it will allow to obtain explicit formulas for the probability of certain voting
outcomes with four candidates and any number of voters. Such formulas will most
likely be quite huge and hardly usable without computer assistance. For elections with
five or more candidates further ideas seem necessary. One possibility to reduce the
complexity of computations further is the use of additional symmetries which remain
in our reduced systems.
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