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Abstract We reconsider the problem of aggregating individual preference orderings
into a single social ordering when alternatives are lotteries and individual preferences
are of the von Neumann–Morgenstern type. Relative egalitarianism ranks alternatives
by applying the leximin ordering to the distributions of 0–1 normalized utilities they
generate. We propose an axiomatic characterization of this aggregation rule.

1 Introduction

The problem of aggregating individual preference orderings into a single social order-
ing admits interesting solutions in contexts where Arrow (1963) Independence of Irrel-
evant Alternatives can be suitably weakened.1 An important example is when social
alternatives are lotteries and individual preferences obey the von Neumann–Morgen-
stern axioms. Dhillon (1998) and Dhillon and Mertens (1999) showed how anonymity
and several weak axioms that are implied by Arrow’s axiom lead to relative utilitari-
anism, which ranks social alternatives according to the sum of 0–1 normalized utilities
they generate for the individuals who are not completely indifferent between all alter-
natives.2 Because relative utilitarianism does not require any a priori knowledge of
individual utilities, it may be regarded as a truly “operational” variant of Harsanyi
(1955) classical utilitarianism.

Yet, relative utilitarianism remains subject to some of the traditional criticisms for-
mulated against classical utilitarianism. If there are just two pure alternatives, a and b,

1 See Fleurbaey and Maniquet (2011) for a theory of fair preference aggregation in such contexts.
2 Further arguments in favor of relative utilitarianism were proposed by Karni (1998) and Segal (2000).
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and society consists of just two individuals with opposite von Neumann–Morgenstern
preferences over the lotteries between a and b, relative utilitarianism deems all lotteries
equally good: flipping a fair coin is not better than choosing, say, b. Just like classical
utilitarianism, relative utilitarianism cares only about final outcomes and shows no
concern for procedural fairness. Critics such as Diamond (1967) and Sen (1970) argue
that a lottery between a and b is superior to b because it gives all individuals a chance
to get their preferred alternative.

In response to that criticism, we propose an egalitarian counterpart to relative util-
itarianism. Relative egalitarianism ranks social alternatives by applying the leximin
ordering to the distributions of 0–1 normalized utilities they generate. Like relative
utilitarianism, this procedure requires no knowledge of individual utilities but, unlike
relative utilitarianism, it embodies a genuine concern for procedural fairness.

We offer an axiomatic characterization of relative egalitarianism which rests mainly
on two properties: Preference for Compromise and Independence of Inessential Expan-
sions.

In the two-individual, two-alternative problem discussed above, the reason why
society might prefer a lottery between a and b to either of these pure alternatives is
that it permits some form of compromise between decisions that seem too radical.
But in many social choice problems, compromises may exist which are not lotteries.
If all individuals have strict preferences between a and b, let us formally define a
compromise between these two alternatives to be any alternative strictly preferred to
b (but not to a) by the supporters of a and strictly preferred to a (but not to b) by the
supporters of b. A compromise could be a lottery between a and b but it need not be.
Preference for Compromise says that if all individuals have strict preferences between
a and b, then society should deem any compromise between a and b at least as good
as the worst of these two alternatives. This is a strengthening of Diamond and Sen’s
suggestion that randomizing between two alternatives should be regarded at least as
good as choosing the worst of the two.

Independence of Inessential Expansions is a weakening of Arrow’s independence
condition which requires that society’s preference over a set of alternatives be unaf-
fected by the addition of new alternatives that no individual finds better than his most
preferred alternative or worse than his least preferred one.

We show that in combination with fairly standard conditions—namely, the Pareto
Principle, Anonymity, and Separability—Preference for Compromise and Indepen-
dence of Inessential Expansions characterize relative egalitarianism.

A few comments on the literature are in order at this point. The first modern for-
mulation of relative egalitarianism is generally credited to Kalai and Smorodinsky
(1975).3 It is phrased in the context of classical bargaining theory, where a choice
rule selects a utility vector from each feasible set.4 Key to the axiomatization of the

3 Kalai and Smorodinsky (1975) considered the two-individual case. Their solution was extended to n
individuals by Imai (1983).
4 Nash’s (1950) solution was meant to describe the likely outcome of a bargaining situation between rational
agents. But part of the literature generated by Nash’s article tends to reinterpret bargaining solutions as fair
arbitration rules that might be used by a benevolent third party. We have such a normative interpretation of
the Kalai–Smorodinsky solution in mind when comparing it to our relative leximin aggregation rule. We
regard the latter as a fair preference aggregation rule that might be used by a benevolent third party.
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On relative egalitarianism 1017

Kalai–Smorodinsky solution is the so-called Restricted Monotonicity condition: an
expansion of the feasible set that does not affect the individuals’ minimal and maxi-
mal utilities should lead to a (weakly) higher utility vector.

Thanks to the work of Roemer (1986), it is by now well understood that defining
choice rules on feasible utility sets rather than on the actual collective choice problems
generating these sets is extremely restrictive because the same feasible utility set can
arise from very different combinations of preferences and resource constraints. More
importantly, the actual content of most axioms exceeds their intended meaning. The
Restricted Monotonicity axiom, for instance, is usually motivated by imagining that
the expansion of the feasible utility set results from an increase in resources (and no
change in preferences) although this expansion could also result from a mere change
in preferences. In the latter case, the requirement that the utility vector selected after
the change dominates the one before the change is meaningless.

These criticisms prompted a reformulation of the main bargaining solutions as
collective choice rules defined on economic environments: see among others Roemer
(1988), Rubinstein et al. (1992) and de Clippel (2008). This last paper is closely related
to our work since it contains an axiomatization of a reformulation of the Kalai–Smoro-
dinsky solution.5 The central axioms are a variant of Restricted Monotonicity and an
independence axiom asking that the solution be unaffected by changes in preferences
outside the feasible set. The main differences with our work are that (i) de Clippel
works on a restricted (though interesting) domain where social alternatives are (lot-
teries over) allocations of private goods whereas we consider an abstract set of pure
alternatives, (ii) he is concerned with choice rules rather than preference aggrega-
tion rules, and (iii) his axiomatization is restricted to the two-individual case (and
seems difficult to generalize) whereas our axiomatization is valid for any number of
individuals.

Another paper discussing a relatively egalitarian choice rule is Nehring (2000).
Nehring’s framework is very different from both de Clippel’s and ours. It is an indi-
vidual decision-theoretic model à la Savage where an act is a mapping from the set
of states of the world to some ordered set of consequences. Mixed acts—i.e., lotteries
over acts—are available. The decision-maker is assumed to be completely ignorant
of the state of the world in the sense that he prefers an act x over an other act y if
and only if the consequence attached to x is better than that attached to y in every
state. A choice rule selects a mixed act from every closed and convex subset of simple
acts. Nehring axiomatizes what he calls the Simultaneous Expected-Utility Maximi-
zation (or SIMEU) choice rule. This rule associates with each extremal prior belief
over states of the world a fictitious decision-maker whose preferences over mixed acts
are determined by this belief (and the fixed ordering of consequences); it then selects
from every feasible set the undominated mixed act which equalizes the 0–1 utilities of
these fictitious decision-makers. Because Nehring’s main axioms are meant to express
consequences of the complete ignorance assumption, his axiom system is markedly
different from de Clippel’s and ours. His WAREP axiom, however, is similar to our
axiom of Independence of Inessential Expansions.

5 The paper is also—and primarily—concerned with the Nash solution.
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2 Framework

Let A be an infinite reference set of pure (social) alternatives and let A denote the
set of nonempty finite subsets of A. For each X ∈ A, let �(X) be the set of lotteries
on X, that is, �(X) = {

a ∈ [0, 1]X | ∑
x∈X a(x) = 1

}
. If x ∈ X, we abuse notation

and also denote by x the lottery in �(X) assigning probability 1 to x . Let R(X) and
R∗(X) denote respectively the set of all preference orderings and the subset of von
Neumann–Morgenstern preference orderings over �(X). Write R = ∪X∈AR(X) and
R∗ = ∪X∈AR∗(X).

Let N = {1, . . . , n} be a fixed finite set of individuals. A (social choice) problem
is a list (X, R) where X ∈ A and R ∈ (R∗(X))N . We call R a preference profile. The
set of all problems is denoted by P . An (aggregation) rule is a mapping R : P → R
such that R(X, R) ∈ R(X) for every (X, R) ∈ P.

We make five comments on the above framework.
(1) As in Dhillon and Mertens (1999), the set X is meant to include the pure social

alternatives that are both feasible and just. The term “just” is used here in the weak
sense of “ethically acceptable” and could be approximated by “lawful”. We call X the
set of acceptable pure alternatives and �(X) the set of acceptable alternatives. When
there is no risk of confusion, we refer to either set as the “acceptable set”. Defining X
is a fundamental ethical issue which cannot be addressed without further knowledge
of the nature of the alternatives in A.

(2) We interpret R(X, R) as the ordering over �(X) that should guide society’s
choices when individual preferences are given by the profile R. We refer to it as soci-
ety’s preference. Note that society’s preference over �(X) is constrained to depend
only upon individual preferences over that set. This is a serious restriction. But it is
a natural one because A is a large unstructured set and individual preferences over
lotteries involving arbitrary alternatives in A may therefore be difficult to elucidate.
Moreover, since no structure is imposed on A, there is no natural reference point
outside X which could help define the aggregation rule.

(3) When the set of acceptable alternatives expands, the social preference over the
originally acceptable alternatives is allowed to change: if X ⊆ X ′ and the preference
profile R′ over �(X ′) coincides over �(X) with the profile R, R(X ′, R′) need not
coincide with R(X, R) on �(X).6

(4) Even though individual preferences are of the von Neumann–Morgenstern type,
society’s preference is not restricted to be of that type. The set of possible aggregation
rules is therefore much larger than in Dhillon and Mertens (1999).

(5) All individual von Neumann–Morgenstern preferences over the acceptable alter-
natives are admissible. This is in line with Arrow’s universal domain assumption and
guarantees that the aggregation rules we discuss are not restricted to a particular type
of social choice problem. In applications, however, it may be desirable to impose
restrictions on preferences. For instance, if X is the set of acceptable allocations in a

6 In Dhillon and Mertens (1999), the acceptable set (which they denote by A) is kept fixed. No axiom
linking social preferences across different acceptable sets is used to characterize relative utilitarianism. Yet,
if the acceptable set is allowed to expand, the social preference recommended by relative utilitarianism over
the originally acceptable alternatives will typically be affected.
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private-good economy, it is natural to require that preferences be selfish, as de Clippel
(2008) does. We believe that our result can be reformulated in such restricted contexts
but such a reformulation is not straightforward. Our proof does rely on the universal
domain assumption.

3 A theorem on relative egalitarianism

What we call relative egalitarianism—or, more precisely, the relative leximin aggre-
gation rule—is the rule which ranks alternatives by applying the leximin ordering to
the distributions of 0–1 normalized utilities they generate. This section proposes a set
of axioms leading to that rule.

For any v ∈ [0, 1]N , let v∗ denote the vector in [0, 1]N obtained by reordering
the coordinates of v in nondecreasing order. The leximin ordering �L on [0, 1]N is
defined by letting v �L w if and only if either there exists j ∈ N such that v∗

i = w∗
i

for all i < j and v∗
j > w∗

j (in which case we write v �L w) or v∗
i = w∗

i for all i ∈ N

(in which case we write v ∼L w).
Given X ∈ A, we denote by R0 the complete indifference relation on �(X).

If (X, R) ∈ P and i ∈ N , we write Ri instead of R(i) and denote by A(X, Ri )

and A(X, Ri ) the sets of best and worst alternatives in �(X) according to Ri . We
let u(., X, Ri ) : �(X) → [0, 1] be the normalized von Neumann–Morgenstern
numerical representation of Ri : if Ri 
= R0, then u(a, X, Ri ) = α ⇔ aIi [αa+
(1 − α)a

]
for any a ∈ A(X, Ri ) and a ∈ A(X, Ri ); if Ri = R0, then

u(a, X, Ri ) = 1 for all a ∈ �(X). The relative leximin aggregation rule RL

is defined as follows: for all (X, R) ∈ P and a, b ∈ �(X), aRL(X, R)b ⇔
(u(a, X, R1), . . . , u(a, X, Rn)) �L (u(b, X, R1), . . . , u(b, X, Rn)).

Our axiomatic characterization of RL uses five axioms. The first two are familiar
conditions. As usual, Pi and Ii denote the strict preference and indifference relations
associated with the individual preference Ri and P(X, R) and I(X, R) denote the strict
social preference and indifference relations associated with R(X, R). Let �(N ) be
the set of permutations on N . If σ ∈ �(N ), σ R ∈ (R∗(X))N denotes the preference
profile such that (σ R)σ(i) = Ri for all i ∈ N .

Pareto Principle. If (X, R) ∈ P, a, b ∈ �(X), and a Ri b for all i ∈ N , then
aR(X, R)b. If, in addition, a Pj b for some j ∈ N , then aP(X, R)b.

Anonymity. For all (X, R) ∈ P and σ ∈ �(N ), R(X, R) = R(X, σ R).

Next we state our central axiom. Preference for Compromise expresses the ethi-
cal judgement that it is desirable to compromise between two social alternatives over
which individual preferences are antagonistic.

Preference for Compromise. Let (X, R) ∈ P, a, b, c ∈ �(X), and ∅ � S � N .

If a Ri cPi b for all i ∈ S and bR j cPj a for all j ∈ N\S, then cR(X, R)a or cR(X, R)b.

Alternative c can be regarded as a compromise between a and b because all agents
find c intermediate between a and b: all agree that c is strictly better than the worst
of a and b and not better than the best of the two (even though they disagree on the
ranking of a and b). Since c is a compromise between a and b, society should find c
at least as good as the worst of a and b. In particular, if society is indifferent between
a and b, then it should find c at least as good as either of these two alternatives.
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1020 Y. Sprumont

Two remarks are in order. First, one may wish to require that society’s preference
for compromise be strict: if ∅ � S � N , a Ri cPi b for all i ∈ S and bR j cPj a for all
j ∈ N \ S, then cP(X, R)a or cP(X, R)b. While we strongly believe that this strict
version of Preference for Compromise is desirable, we do not impose it. We will see
that it follows from the weak version and our other axioms. Second, it is important to
realize that the alternative c in the axiom is a compromise between a and b in a possibly
very poor, “unbalanced” sense. It could happen that the von Neumann–Morgenstern
utility of every agent at c is very close to his von Neumann–Morgenstern utility at
the worst of a and b, meaning that a switch from either a or b to the compromise
alternative c benefits the supporters of the move much less than it hurts its opponents.
In particular, c need not be a lottery between a and b: Preference for Compromise
goes beyond the requirement that randomizing between two alternatives be at least as
good as choosing the worst of the two.7 It is stronger than “procedural fairness” à la
Diamond and Sen.

We now turn to our weakening of Arrow’s independence axiom. As pointed out in
Comment 3 in Sect. 2, the definition of an aggregation rule allows the social preference
over a given subset of alternatives to vary with the set of acceptable alternatives. Such
flexibility is necessary in order to construct “fair” aggregation rules. In particular, it
is needed if society values compromise. To see this, suppose again that the accept-
able set consists of the lotteries between two pure alternatives, a and b. If society is
composed of two individuals with opposite von Neumann–Morgenstern preferences
over �({a, b}), very basic requirements (such as the usual Anonymity and Neutrality
axioms) force social indifference between a and b. But if a third pure alternative, c,
becomes acceptable and individual 1 strictly prefers a to b to c while 2 strictly prefers
c to b to a, the strict version of Preference for Compromise requires that society should
now strictly prefer b to a in �({a, b, c}): the reason is that b may now be regarded as
a compromise between the two agents while a has become a more extreme alternative.

In this example, adding the pure social alternative c to the set {a, b} alters the pref-
erence aggregation problem in an essential way because it changes the worst possible
outcome for individual 1 and the best outcome for 2. Independence of Inessential
Expansions says that society’s preferences over �(X) should be unaffected by the
addition of new alternatives that leave the best and worst outcomes of all individuals
unchanged—what we call an “inessential expansion” of the acceptable set. Our formal
requirement is the following.

Independence of Inessential Expansions. Let (X, R), (X ′, R′) ∈ P be two prob-
lems such that X ⊆ X ′ and R′ coincides with R on �(X). If a R′

i a
′ R′

i a for all i ∈ N and
all a ∈ A(X, Ri ), a′ ∈ X ′, a ∈ A(X, Ri ), then R(X ′, R′) coincides with R(X, R)

on �(X).

While we argued that the social preference should be allowed to vary when the
individuals’ best or worst alternatives change, it is not clear why it should remain
unaffected by “inessential expansions” of the acceptable set. We do not think there
are compelling ethical reasons to insist on this requirement. As is the case with other

7 Epstein and Segal (1992) propose a related condition. In a different context (where individual utilities
are assumed to be available), they submit that if society is indifferent between two alternatives that are not
Pareto-equivalent, a 50–50 lottery between these alternatives should be strictly better than either of them.
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On relative egalitarianism 1021

independence axioms (such as those proposed by Arrow 1963; Hansson 1973; Young
and Levenglick 1978), the primary justification is practical convenience. An aggrega-
tion rule satisfying Independence of Inessential Expansions is relatively simple to use
because the social ranking of alternatives is only affected by fairly radical changes in
the environment.

The restriction to those expansions which do not change the best and worst outcomes
of all individuals, though definitely somewhat ad hoc, is rather natural and seems hard
to avoid. It is present in Nehring (2000) WAREP axiom as well as in the various ver-
sions of the Restricted Monotonicity axiom used by Kalai and Smorodinsky (1975),
Imai (1983) and de Clippel (2008). In fact, Independence of Inessential Expansion is
the direct counterpart of Nehring’s WAREP axiom—expressed for aggregation rules
rather than choice rules. Restricted Monotonicity, on the other hand, not only requires
that “inessential” expansions should not distort social decisions but also imposes a
solidarity requirement that has no counterpart in our axiom.8

Our last axiom is again a familiar one.
Separability. Let X ∈ A, a, b ∈ �(X), and S ⊆ N . Let R, R′ ∈ (R∗(X))N be such
that Ri = R′

i for all i ∈ S and aI j b and aI ′
j b for all j ∈ N \ S. Then aR(X, R)b if

and only if aR(X, R′)b.

Separability says that the social ranking of two alternatives should be independent
of the preferences of all unconcerned individuals, namely those who are indifferent
between the two alternatives in any case. This property, adapted from Fleming (1952),
has a long tradition in social choice theory: see d’Aspremont (1985) for references.

We are now ready to state our main result.

Theorem The aggregation rule R satisfies the Pareto Principle, Anonymity, Prefer-
ence for Compromise, Independence of Inessential Expansions, and Separability if
and only if R = RL .

It is important to remember that no utility information is available in our framework.
An aggregation rule is a purely ordinal procedure transforming every profile of indi-
vidual preference orderings into a social ordering. Our axioms thus perform a double
task: (1) they select the 0–1 normalized von Neumann–Morgenstern representation of
preferences as the adequate measure of individual welfare and (2) they force the use
of the leximin criterion to compare welfare vectors.

Very roughly, the Pareto Principle, Anonymity, Preference for Compromise, and
Separability jointly impose the leximin criterion. The argument is relatively straight-
forward because, as we stressed earlier, Preference for Compromise is a very powerful
condition that recommends even the poorest compromises between social alternatives.

Independence of Inessential Expansions, on the other hand, is responsible for pin-
ning down the 0–1 normalization. This turns out to be a very delicate task. If we
do not impose Independence of Inessential Expansions, (i) the adequate numerical
representation of an individual’s preference need not be a von Neumann–Morgenstern

8 The solidarity requirement present in Restricted Monotonicity is what drives the egalitarian character of
the Kalai–Smorodinsky solution. This role is played by Preference for Compromise in our characterization
of relative egalitarianism.
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1022 Y. Sprumont

utility function and (ii) it could vary with the preferences of the other individuals. The
examples below illustrate these difficulties.

Example 1 Given (X, R) ∈ P and i ∈ N , define v(., X, Ri ) : �(X) → [0, 1] by
letting v(a, X, Ri ) = μ({b∈�(X)|a Ri b})

μ(�(X))
for all a ∈ �(X), where μ is the Lebesgue

measure on R
|X |−1. That is, an individual’s utility from alternative a is measured

by the proportion of acceptable alternatives that he does not consider better than a.

Note that even though v(., X, Ri ) is not linear, it is a numerical representation of the
von Neumann–Morgenstern preference Ri . For all (X, R) ∈ P and a, b ∈ �(X),

let aR(X, R)b ⇔ (v(a, X, R1), . . . , v(a, X, Rn)) �L (v(b, X, R1), . . . , v(b, X,

Rn)), where �L is again the leximin ordering on [0, 1]N . This aggregation rule satis-
fies all our axioms except Independence of Inessential Expansions. Separability is met
because the numerical representation of an individual’s preference does not depend
on the preferences of the others.

The difficulty exemplified by this rule is proper to our framework. In Dhillon and
Mertens (1999), the assumption that society’s preference obeys the independence
axiom prevents the construction of comparable examples. The “utilitarian” ordering
aR(X, R)b ⇔ ∑

i∈N v(a, X, Ri ) ≥ ∑
i∈N v(b, X, Ri ) is generally not a von Neu-

mann–Morgenstern preference over �(X).

Example 2 Partition R∗ into two sets R1∗, R∗ \ R1∗, each containing preferences
differing from complete indifference. For instance, R1∗ could be the set of prefer-
ences with at most two indifference classes of pure alternatives. For each (X, R) ∈
P and i ∈ N , define βi (X, R) = ∣

∣{ j ∈ N \ {i} | R j ∈ R∗ \ R1∗
}∣∣ and define

wi (., X, R) : �(X) → [0, 1] by letting wi (a, X, R) = u(a, X, Ri )
2βi (X, R)

for all
a ∈ �(X). Note that wi (., X, R) is a numerical representation of the von
Neumann–Morgenstern preference Ri that changes with the preferences of the
agents j ∈ N \ i. Let aR(X, R)b ⇔ (w1(a, X, R), . . . , wn(a, X, R)) �L

(w1(b, X, R), . . . , wn(b, X, R)) for all a, b ∈ �(X). Again, this aggregation rule
satisfies all our axioms but Independence of Inessential Expansions. To see why Sep-
arability is satisfied, consider two problems (X, R), (X, R′) where Ri = R′

i for all
i 
= 1, R1 ∈ R1∗, and R′

1 ∈ R∗ \ R1∗. Then, for all i 
= 1,

wi (., X, R′) = u(., X, Ri )
2βi (X, R′)

= u(., X, Ri )
2βi (X, R) + 1

= (u(., X, Ri )
2βi (X, R)

)2

= (wi (., X, R))2,

that is, the numerical representations of the preferences of all agents other than 1
are modified according to a common increasing transformation when 1’s preference
changes from R1 to R′

1. Using the fact that the leximin ordering �L is separable (in the
usual sense formally defined just before Step 2.2 in the proof of our theorem) it follows
easily that for all a, b ∈ �(X) such that aI1b and aI ′

1b, aR(X, R)b ⇔ aR(X, R′)b.
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On relative egalitarianism 1023

The two examples above show that Independence of Inessential Expansions cannot
simply be dispensed with. But one might hope that it could be replaced with some
weaker and less ad hoc axiom. A natural candidate is the following requirement.

Independence of Redundant Alternatives. Let (X, R), (X ′, R′) ∈ P be two prob-
lems such that X ⊆ X ′ and R′ coincides with R on �(X). If for all a′ ∈ X ′ there exists
a ∈ �(X) such that a′ I ′

i a for all i ∈ N , then R(X ′, R′) coincides with R(X, R) on
�(X).

This weakening of Independence of Inessential Expansions merely says that adding
alternatives that are Pareto equivalent to some originally acceptable alternatives does
not change the social ranking over the original acceptable set. It is the translation in our
framework of the property bearing the same name in Dhillon and Mertens (1999). The
rules in Examples 1 and 2 above violate this requirement. Yet, the following example
shows that Independence of Redundant Alternatives cannot replace Independence of
Inessential Expansions in the statement of our theorem.

Example 3 For each (X, R) ∈ P, let U (X, R) denote the normalized utility set gener-
ated by (X, R), that is, U (X, R) = {(u(a, X, R1), . . . , u(a, X, Rn)) | a ∈ �(X)}.
Let α(X, R) = (α1(X, R), . . . , αn(X, R)) be the unique maximizer of

∏
i∈N zi over

all z ∈ U (X, R). For each i ∈ N , define the function vi (., X, R) : �(X) → [0, 1]
by vi (a, X, R) = u(a, X, Ri )

αi (X, R) for all a ∈ �(X). This function is another
example of a numerical representation of Ri which changes with the preferences of
the agents other than i. The rule aR(X, R)b ⇔ (v1(a, X, R), . . . , vn(a, X, Rn)) �L

(v1(b, X, R), . . . , vn(b, X, R)) for all (X, R) ∈ P and a, b ∈ �(X) satisfies
the Pareto Principle, Anonymity, Preference for Compromise, and Independence of
Redundant Alternatives. When n = 2, it also (trivially) meets Separability. Since our
theorem does apply to the two-agent case, this example shows that Independence of
Redundant Alternatives cannot replace Independence of Inessential Expansions in its
statement.

An interesting but seemingly difficult question is whether Independence of Redun-
dant Alternatives can replace Independence of Inessential Expansions in the statement
of our theorem if we add the assumption that n ≥ 3.

All the axioms used in our theorem are independent.
(1) The constant complete indifference rule aI(X, R)b for all (X, R) ∈ P and

a, b ∈ �(X) satisfies all the axioms except the Pareto Principle. Contrary to the
relative leximin rule, the constant indifference rule violates the strict version of Pref-
erence for Compromise described earlier. For an example satisfying that version along
with Anonymity, Independence of Inessential Expansions, and Separability, consider
the opposite of the relative leximin rule defined as follows: for all (X, R) ∈ P and
a, b ∈ �(X), aR(X, R)b ⇔ (1 − u(a, X, R1), . . . , 1 − u(a, X, Rn)) �L (1 −
u(b, X, R1), . . . , 1 − u(b, X, Rn)).

(2) An example of a rule violating only Anonymity is relative serial dictatorship: for
all (X, R) ∈ P and a, b ∈ �(X), aR(X, R)b ⇔ (u(a, X, R1), . . . , u(a, X, Rn))

�(1,...,n) (u(b, X, R1), . . . , u(b, X, Rn)), where �(1,...,n) is the lexicographic order-
ing on [0, 1]N corresponding to the natural ordering over N .

(3) As already explained, the rules in Examples 1 and 2 satisfy all our axioms but
Independence of Inessential Expansions.
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1024 Y. Sprumont

(4) Relative utilitarianism aR(X, R)b ⇔ ∑
i∈N u(a, X, Ri )≥∑

i∈N u(b, X, Ri )

for all (X, R) ∈ P and a, b ∈ �(X) violates only Preference for Compromise.
(5) The lexicographic combination of relative maximin and relative utilitarianism,

RMU , defined by letting aRMU (X, R)b if and only if (i) mini∈N u(a, X, Ri ) >

mini∈N u(b, X, Ri ) or (ii) mini∈N u(a, X, Ri ) = mini∈N u(b, X, Ri ) and
∑

i∈N
u(a, X, Ri ) ≥ ∑

i∈N u(b, X, Ri ), violates only Separability.
We conclude this section with a brief discussion of the role of Separability. Even

though the axiom is used rather heavily in the proof provided in the next section, a
different (and more cumbersome) argument offered in Sprumont (2009) shows that
the other four axioms are strong enough to imply the relative maximin principle: if
the aggregation rule R satisfies the Pareto Principle, Anonymity, Preference for Com-
promise, and Independence of Inessential Expansions, then for all (X, R) ∈ P and
a, b ∈ �(X), mini∈N u(a, X, Ri ) > mini∈N u(b, X, Ri ) ⇒ aP(X, R)b. More-
over, these four axioms imply Separability when n = 2. The role of Separability,
therefore, is only to bridge the gap between relative maximin and relative leximin
when n ≥ 3. The proof in Sprumont (2009) also shows that Separability can be
replaced in our theorem with the following weaker requirement.9

Weak Separability. Let X ∈ A, a, b ∈ �(X), R ∈ (R∗(X))N , i ∈ N , and let
(R0, R−i ) denote the profile obtained from R by replacing Ri with the complete
indifference relation R0. If aP(X, (R0, R−i ))b and aIi b, then aP(X, R)b.

4 A proof of the theorem

An implication of the Pareto Principle is the following well-known condition.
Pareto Indifference. If (X, R) ∈ P, a, b ∈ �(X), and aIi b for all i ∈ N , then
aI(X, R)b.

We begin with two lemmas that combine Pareto Indifference with Independence
of Inessential Expansions. The first lemma shows that these two requirements jointly
imply a strong form of neutrality. Let �(A) denote the set of permutations on A.

If (X, R) ∈ P, π ∈ �(A), and a ∈ �(X), then aπ ∈ �(π(X)) is the lottery on
π(X) given by aπ (π(x)) = a(x) for all x ∈ X and the preference profile Rπ ∈
(R∗(π(X)))N is defined by aπ Rπ

i bπ ⇔ a Ri b for all i ∈ N and a, b ∈ �(X).

Neutrality. For all (X, R) ∈ P, a, b ∈ �(X) and π ∈ �(A), aR(X, R)b ⇔
aπ R(π(X), Rπ )bπ .

Denoting by �(X) the set of permutations on X ∈ A, Neutrality implies that for
all (X, R) ∈ P, a, b ∈ �(X) and π ∈ �(X), aR(X, R)b ⇔ aπ R(X, Rπ )bπ .

Lemma 1 If the aggregation rule R satisfies Pareto Indifference and Independence
of Inessential Expansions, then R satisfies Neutrality.

Proof Let R satisfy Pareto Indifference and Independence of Inessential Expansions.
Let (X, R) ∈ P, a, b ∈ �(X) and π ∈ �(A). We prove that aR(X, R)b ⇒
aπ R(π(X), Rπ )bπ . The converse implication follows immediately since a =

9 Weak Separability is the translation in our framework of the strict part of the condition dubbed “consis-
tency” in Dhillon and Mertens (1999).
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(aπ )π
−1

, b = (bπ )π
−1

, X = π−1(π(X)), and R = (Rπ )π
−1

. Let us thus assume
that

aR(X, R)b. (4.1)

Step 1. We prove that aπ R(π(X), Rπ )bπ if π(X) ∩ X = ∅.

Let X = X ∪ π(X). For each i ∈ N , let Ri be the von Neumann–Morgenstern pref-
erence over �(X) which coincides with Ri on �(X) and is such that x I iπ(x) for all
x ∈ X. This is well defined because π(X) ∩ X = ∅. Observe that Ri coincides with
Rπ

i on �(π(X)). Moreover, a Ri x Ri a for all a ∈ A(X, Ri ) ∪ A(π(X), Rπ
i ), x ∈ X ,

and a ∈ A(X, Ri ) ∪ A(π(X), Rπ
i ). Let R = (R1, . . . , Rn). Applying Independence

of Inessential Expansions to (4.1),

aR(X , R)b. (4.2)

Since aπ I i a and bπ I i b for all i ∈ N , Pareto Indifference implies aπ I(X , R)a and
bπ I(X , R)b. Hence from (4.2),

aπ R(X , R)bπ . (4.3)

Applying Independence of Inessential Expansions to (4.3) and recalling that R coin-
cides with Rπ on �(π(X)), we obtain aπ R(π(X), Rπ )bπ .

Step 2. We prove that aπ R(π(X), Rπ )bπ .

Choose ρ ∈ �(A) such that ρ(X) ∩ X = ρ(X) ∩ π(X) = ∅. By Step 1, (4.1)
implies

aρR(ρ(X), Rρ)bρ. (4.4)

Next consider the permutation π ◦ρ−1 ∈ �(A). Since (π ◦ρ−1)(ρ(X))∩ρ(X) = ∅,
Step 1 and (4.4) imply

(aρ)π◦ρ−1
R((π ◦ ρ−1)(ρ(X)), Rρ)π◦ρ−1

)(bρ)π◦ρ−1
. (4.5)

By definition, (π ◦ ρ−1)(ρ(X)) = π(X). Moreover, (aρ)π◦ρ−1 = aπ since
(aρ)π◦ρ−1

(π(x)) = (aρ)π◦ρ−1
((π ◦ ρ−1)(ρ(x))) = aρ(ρ(x)) = a(x) for all

x ∈ X. Likewise, (bρ)π◦ρ−1 = bπ and (Rρ)π◦ρ−1 = Rπ . Hence (4.5) reduces to
aπ R(π(X), Rπ )bπ . ��

It is worth noting that the above proof does not use the full force of Independence
of Inessential Expansions. In fact, the axiom can be replaced with Independence of
Redundant Alternatives in the statement of Lemma 1.

Our second lemma describes the class of rules satisfying Pareto Indifference and
Independence of Inessential Expansions. It seems natural to conjecture that these two
properties suffice to force society to compare alternatives by ranking the vectors of
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1026 Y. Sprumont

individual normalized utilities they generate according to a fixed ordering on [0, 1]N .
This conjecture is not quite correct. While the aggregation rule must indeed rely solely
on the individual normalized utilities, it turns out that the criterion used to aggregate
these utilities may in fact depend upon the preference profile. But this dependence is
severely restricted. Given (X, R) ∈ P , define N0(X, R) = {i ∈ N | Ri = R0}. For
each S ⊆ N , let PS = {(X, R) ∈ P | N0(X, R) = S}: this is the set of problems
where the individuals indifferent between all acceptable alternatives are the members
of S.

Lemma 2 The aggregation rule R satisfies Pareto Indifference and Independence
of Inessential Expansions if and only if for each S ⊆ N there exists an ordering
�S on [0, 1]N such that for all (X, R) ∈ PS and a, b ∈ �(X), aR(X, R)b ⇔
(u(a, X, R1), . . . , u(a, X, Rn)) �S (u(b, X, R1), . . . , u(b, X, Rn)).

Proof Step 1. We prove the “if ” statement.
Fix a collection of orderings �S on [0, 1]N and suppose that for all S ⊆ N , all
(X, R)∈PS and all a, b∈ X, aR(X, R)b ⇔ (u(a, X, R1), . . . , u(a, X, Rn)) �S

(u(b, X, R1), . . . , u(b, X, Rn)). It is obvious that R satisfies Pareto Indifference.
To check Independence of Inessential Expansions, fix (X, R), (X ′, R′) satisfying
the premises of the axiom. Then for each i ∈ N and c ∈ �(X), u(c, X, Ri ) =
u(c, X ′, R′

i ). Moreover, since R′
i is the complete indifference relation on �(X ′) if

and only if Ri is the complete indifference relation on �(X), we have N0(X, R) =
N0(X ′, R′). Therefore, for all a, b ∈ �(X),

aR(X, R)b ⇔ (u(a, X, R1), . . . , u(a, X, Rn))

�N0(X, R) (u(b, X, R1), . . . , u(b, X, Rn))

⇔ (u(a, X ′, R′
1), . . . , u(a, X ′, R′

n))

�N0(X ′, R′) (u(b, X ′, R′
1), . . . , u(b, X ′, R′

n))

⇔ aR(X ′, R′)b.

Step 2. We prove the “only if ” statement.
Let R satisfy Pareto Indifference and Independence of Inessential Expansions. By

Lemma 1, R also satisfies Neutrality. For each S ⊆ N , define the binary relations
�S, ∼S, �S on [0, 1]N as follows:

(i) v �S w if and only if there exist (X, R) ∈ PS and a, b ∈ �(X) such that
u(a, X, Ri ) = vi and u(b, X, Ri ) = wi for all i ∈ N and aP(X, R)b,

(ii) v ∼S w if and only if there exist (X, R) ∈ PS and a, b ∈ �(X) such that
u(a, X, Ri ) = vi and u(b, X, Ri ) = wi for all i ∈ N and aI(X, R)b,

(iii) v �S w if and only if v �S w or v ∼S w.

The relations �S, ∼S, �S are equivalently defined by replacing �(X) with X
in statements (i) and (ii). To see why, fix v, w ∈ [0, 1]N and suppose there exist
(X, R) ∈ PS and a, b ∈ �(X) such that u(a, X, Ri ) = vi and u(b, X, Ri ) = wi

for all i ∈ N and aP(X, R)b (respectively, aI(X, R)b). Choose distinct pure alter-
natives a′, b′ ∈ A \ X, let X ′ = X ∪ {

a′, b′} and, for each i ∈ N , let R′
i be the von
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Neumann–Morgenstern preference on �(X ′) which coincides with Ri on �(X) and
is such that a′ I ′

i a and b′ I ′
i b. Then (X ′, R′) ∈ PS, a′, b′ ∈ X ′, u(a′, X ′, R′

i ) = vi

and u(b′, X ′, R′
i ) = wi for all i ∈ N and, using Independence of Inessential

Expansions and Pareto Indifference, a′I(X ′, R′)aP(X ′, R′)bI(X ′, R′)b′ (respec-
tively, a′I(X ′, R′)aI(X ′, R′)bI(X ′, R′)b′).

Step 2.1. We claim that each �S is consistent in Suzumura (1976) sense: if there
exist v1, . . . , vm ∈ [0, 1]N such that v1 �S . . . �S vm �S v1, then v1 ∼S . . . ∼S

vm ∼S v1. Suppose, on the contrary, that, say, v1 �S . . . �S vm �S v1. Then there
exist (X1, R1), . . . , (Xm, Rm) ∈ PS and a1, b1 ∈ X1, . . . , am, bm ∈ Xm such
that

akR(Xk, Rk)bk for k = 1, . . . , m − 1 and amP(Xm, Rm)bm, (4.6)

and

u(ak, Xk, Rk
i ) = vk

i and u(bk, Xk, Rk
i ) = v

k+1(mod m)
i

for all i ∈ N and k = 1, . . . , m. (4.7)

By Neutrality, we may assume that X1, . . . , Xm are pairwise disjoint. Let X =
∪m

k=1 Xk . For each i ∈ N , let ui : �(X) → [0, 1] be the von Neumann–Morgen-
stern utility function such that

ui (x) = u(x, Xk(x), Rk(x)
i ) for all x ∈ X, (4.8)

where k(x) is the unique k such that x ∈ Xk . Let Ri be the preference on �(X)

represented by ui and let R = (R1, . . . , Rn).

Note that R coincides with Rk on �(Xk) for each k. Moreover, since N0(X1, R1) =
. . . = N0(Xm, Rm) (= S), (4.8) implies that a Ri x Ri a for all i ∈ N , all a ∈
∪m

k=1 A(Xk, Rk
i ), all x ∈ X, and all a ∈ ∪m

k=1 A(Xk, Rk
i ). Applying Independence

of Inessential Expansions to (4.6),

akR(X, R)bk for k = 1, . . . , m − 1 and amP(X, R)bm . (4.9)

On the other hand, (4.7) and (4.8) imply that bk Ii ak+1(mod m) for all i ∈ N and
k = 1, . . . , m. By Pareto Indifference,

bkI(X, R)ak+1(mod m) for k = 1, . . . , m,

which together with (4.9) contradicts the transitivity of R(X, R).

Step 2.2. If S 
= ∅, the relation �S need not be complete. Since �S is
consistent, however, it has an ordering extension (by Suzumura 1976): denote
it �′

S . By the very definition of �S, we have that for all (X, R) ∈
PS and a, b ∈ �(X), aR(X, R)b ⇔ (u(a, X, R1), . . . , u(a, X, Rn)) �′

S
(u(b, X, R1), . . . , u(b, X, Rn)). ��
We are now ready to proceed to the proof of our theorem.

123



1028 Y. Sprumont

Proof of the theorem Step 1. We prove the “if ” statement.

The Pareto Principle and Anonymity are obviously met. Independence of Inessen-
tial Expansions holds because u(x, X, Ri ) = u(x, X ′, R′

i ) for all x ∈ X and i ∈ N
whenever (X, R), (X ′, R′) satisfy the premises of the axiom.

To check that RL satisfies Preference for Compromise, let (X, R) ∈ P, a, b, c ∈
�(X), ∅ � S � N be such that aRL(X, R)b, a Ri cPi b for all i ∈ S and bR j cPj a
for all j ∈ N \ S. We claim that

min
i∈N

u(c, X, Ri ) > min
i∈N

u(b, X, Ri ), (4.10)

which in turn implies cPL(X, R)b (that is, RL satisfies the strict version of Pref-
erence for Compromise mentioned earlier). Suppose (4.10) does not hold. Let j ∈
N be such that u(c, X, R j ) = mini∈N u(c, X, Ri ) ≤ mini∈N u(b, X, Ri ). Since
aRL(X, R)b, we get u(c, X, R j ) ≤ mini∈N u(b, X, Ri ) ≤ mini∈N u(a, X, Ri ).

In particular, u(c, X, R j ) ≤ u(b, X, R j ) and u(c, X, R j ) ≤ u(a, X, R j ), that is,
bR j c and a R j c. Hence j /∈ S and j /∈ N \ S, a contradiction.

We omit the standard argument showing that RL satisfies Separability.

Step 2. We prove the “only if ” statement.

Let R satisfy the Pareto Principle, Anonymity, Independence of Inessential Expan-
sions, Preference for Compromise, and Separability. By Lemma 2, there exists a col-
lection of orderings �S on [0, 1]N such that for all S ⊆ N , all (X, R) ∈ PS and all
a, b ∈ �(X),

aR(X, R)b ⇔ (u(a, X, R1), . . . , u(a, X, Rn)) �S (u(b, X, R1), . . . , u(b, X, Rn)).

(4.11)

Step 2.1. For all (X, R) ∈ P and all a, b ∈ �(X), aR(X, R)b ⇔ (u(a, X, R1),

. . . , u(a, X, Rn)) �∅ (u(b, X, R1), . . . , u(b, X, Rn)).

Suppose not. Then there exist S ⊆ N , (X, R) ∈ PS, and a, b ∈ �(X) such that
one of the following statements holds:

aP(X, R)b and (u(b, X, R1), . . . , u(b, X, Rn)) �∅ (u(a, X, R1), . . . , u(a, X, Rn)),

(4.12)

aR(X, R)b and (u(b, X, R1), . . . , u(b, X, Rn)) �∅ (u(a, X, R1), . . . , u(a, X, Rn)).

(4.13)

Assume (4.12). Without loss of generality, suppose also that |X | ≥ 3. (If
|X | < 3, simply choose X ∈ A such that X ⊆ X and

∣
∣X

∣
∣ ≥ 3. For

each i ∈ N let Ri be a von Neumann–Morgenstern preference on �(X) coin-
ciding with Ri on �(X) and such that a Ri x Ri a for all a ∈ A(X, Ri ), x ∈
X , a ∈ A(X, Ri ). Then aP(X , R)b by Independence of Inessential Expan-
sions and (u(b, X , R1), . . . , u(b, X , Rn)) = (u(b, X, R1), . . . , u(b, X, Rn)) �∅
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On relative egalitarianism 1029

(u(a, X, R1), . . . , u(a, X, Rn)) = (u(a, X , R1), . . . , u(a, X , Rn)), so that the
argument below would apply with (X , R) instead of (X, R).)

Let R′ = (R′
1, . . . , R′

n) be a profile of preferences over �(X) such that

R′
i 
= R0 and aI ′

i bR′
i x for all x ∈ X and all i ∈ S,

R′
i = Ri for all i ∈ N \ S.

Such a profile exists because
∣
∣X

∣
∣ ≥ 3. By construction, (X, R′) ∈ P∅ and

u(a, X, R′
i ) = u(a, X, Ri ) = u(b, X, R′

i ) = u(b, X, Ri ) = 1 for all i ∈ S,

u(a, X, R′
i ) = u(a, X, Ri ) and u(b, X, R′

i ) = u(b, X, Ri ) for all i ∈ N \ S,

so that (4.12) implies (u(b, X, R′
1), . . . , u(b, X, R′

n)) �∅ (u(a, X, R′
1), . . . , u

(a, X, R′
n)).

But by Separability, aP(X, R)b implies aP(X, R′)b, contradicting (4.11) for
S = ∅. Essentially the same argument applies if we assume (4.13) instead of (4.12).
This completes Step 2.1.

The rest of the proof consists in showing that �∅ is the leximin ordering on [0, 1]N .

Some further terminology is needed at this point. Using the notation ≥, >, � for vec-
tor inequalities, we say that �∅ is strictly monotonic if, for all v, w ∈ [0, 1]N , v > w

implies v �∅ w. If v ∈ [0, 1]N and σ ∈ �(N ), let σv be the vector obtained by
permuting the coordinates of v according to the permutation σ, i.e., (σw)σ(i) = wi for
all i ∈ N . We call �∅ symmetric if, for all v, w ∈ [0, 1]N and σ ∈ �(N ), v �∅ w if
and only if σv �∅ σw. We say that �∅ is compromising if, for all v, w, z ∈ [0, 1]N

such that vi 
= wi for all i ∈ N ,

v ∧ w � z ≤ v ∨ w ⇒ z �∅ v or z �∅ w. (4.14)

Finally, we call �∅ separable if, for all S ⊆ N and v, v′, w, w′ ∈ [0, 1]N such that
vi = v′

i and wi = w′
i for all i ∈ S and v j = w j and v′

j = w′
j for all j ∈ N \ S, we

have v �∅ w if and only if v′ �∅ w′.
Step 2.2. The ordering �∅ is strictly monotonic, symmetric, compromising, and
separable.

These properties follow directly from the Pareto Principle, Anonymity, Prefer-
ence for Compromise, and Separability, respectively. Let us check, for instance,
that the ordering �∅ is strictly monotonic. Fix v, w ∈ [0, 1]N such that v >

w. Choose a, b ∈ A and (X, R) ∈ P∅ such that u(a, X, Ri ) = vi and
u(b, X, Ri ) = wi for all i ∈ N . Since (u(a, X, R1), . . . , u(a, X, Rn)) = v >

w = (u(b, X, R1), . . . , u(b, X, Rn)), the Pareto Principle implies aP(X, R)b. It
follows from Step 2.1 that v �∅ w, as desired. We omit the similar proof that Ano-
nymity, Preference for Compromise, and Separability imply, respectively, that �∅ is
symmetric, compromising, and separable.

Step 2.3. Let T ≥ 2, let z1, . . . , zT ∈ [0, 1]N be coordinate-by-coordinate dis-
tinct (i.e., zt

i 
= zs
i for all i ∈ N and t 
= s) and let z ∈ [0, 1]N . If z �

∧T
t=1zt , then there exists t ∈ {1, . . . , T } such that z �∅ zt .
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1030 Y. Sprumont

Consider first the case where T = 2. Fix z1, z2, z ∈ [0, 1]N such that z1
i 
= z2

i for
all i ∈ N and z � z1 ∧ z2. Since z1

i 
= z2
i for all i ∈ N , we have z1 ∧ z2 � z1 ∨ z2. Let

z′ = z ∧ (z1 ∨ z2). By construction, z1 ∧ z2 � z′ ≤ z1 ∨ z2. Since �∅ is compromis-
ing (in the sense of (4.14)), z′ �∅ z1 or z′ �∅ z2. But since �∅ is strictly monotonic,
z �∅ z′. Hence z �∅ z1 or z �∅ z2, as desired.

To complete the proof, proceed by induction on T . Fix T > 2 and make the
induction hypothesis that, for all T ′ ≤ T − 1, all z1, . . . , zT ′ ∈ [0, 1]N coordi-
nate-by-coordinate distinct, and all z ∈ [0, 1]N such that z � ∧T ′

t=1zt , there exists
t ∈ {

1, . . . , T ′} such that z �∅ zt . Fix now T coordinate-by-coordinate distinct vec-
tors z1, . . . , zT ∈ [0, 1]N and z ∈ [0, 1]N such that z � ∧T

t=1zt . Choose ε > 0 such
that z � ∧T

t=1zt + εe, where e is the unit vector in R
N . Since

∧T
t=1zt + εe =

(
∧T

t=1zt + εe

2

)
+ εe

2

=
((

∧T −1
t=1 zt + εe

2

)
∧

(
zT + εe

2

))
+ εe

2
,

we have z �
(
∧T −1

t=1 zt + εe
2

)
∧ (

zT + εe
2

)
.

Suppose momentarily that the two vectors ∧T −1
t=1 zt + εe

2 and zT + εe
2 are coordi-

nate-by-coordinate distinct. Using the induction hypothesis (with T ′ = 2), we obtain
that

z �∅ ∧T −1
t=1 zt + εe

2
or z �∅ zT + εe

2
. (4.15)

Distinguish two cases.

(i) ∧T −1
t=1 zt + εe

2 �∅ zT + εe
2 . Then (4.15) implies that z �∅ zT + εe

2 , hence
z �∅ zT , and we are done.

(ii) zT + εe
2 �∅ ∧T −1

t=1 zt + εe
2 . Then (4.15) implies that z �∅ ∧T −1

t=1 zt + εe
2 . But since

∧T −1
t=1 zt + εe

2 � ∧T −1
t=1 zt (and z1, . . . , zT −1 are coordinate-by-coordinate dis-

tinct), the induction hypothesis (with T ′ = T −1) implies that ∧T −1
t=1 zt + εe

2 �∅
zt for some t ∈ {1, . . . , T − 1} . So z �∅ zt for some t ∈ {1, . . . , T − 1} , and
we are done again.

If the two vectors ∧T −1
t=1 zt + εe

2 and zT + εe
2 are not coordinate-by-coordinate distinct,

simply pick a small number δ > 0 such that z �
(
∧T −1

t=1 zt + εe
2 + δe

)
∧ (

zT + εe
2

)

and ∧T −1
t=1 zt + εe

2 + δe is coordinate-by-coordinate distinct from zT + εe
2 , and replace

∧T −1
t=1 zt + εe

2 with ∧T −1
t=1 zt + εe

2 + δe in the argument of the previous paragraph.

Step 2.4. For all v, w ∈ [0, 1]N , mini∈N vi > mini∈N wi ⇒ v �∅ w.

Let v, w ∈ [0, 1]N and suppose mini∈N vi > mini∈N wi . Since �∅ is symmetric, we
may assume without loss of generality that v1 ≤ . . . ≤ vn and w1 ≤ . . . ≤ wn . There-
fore v1 > w1. Observe that ∧σ∈�(N )σw = (w1, . . . , w1), so that v � ∧σ∈�(N )σw.

For each σ, choose a small number εσ > 0 such that (i) v � ∧σ∈�(N )(σw + εσ e)
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and (ii) the n! vectors σw + εσ e, σ ∈ �(N ), are coordinate-by-coordinate distinct.
By Step 2.3, v �∅ σw + εσ e for some σ ∈ �(N ). But since �∅ is strictly monotonic
and symmetric, σw + εσ e �∅ σw ∼∅ w for every σ ∈ �(N ). Therefore v �∅ w.

Step 2.5. The ordering �∅ is the leximin ordering on [0, 1]N .

Let v, w ∈ [0, 1]N and assume again, without loss of generality since �∅ is symmet-
ric, that v1 ≤ . . . ≤ vn and w1 ≤ . . . ≤ wn . Suppose there exists i ∈ N such that
v j = w j for all j ∈ N such that j < i and vi > wi . Construct v′, w′ ∈ [0, 1]N by
letting

v′
j =

{
1 for all j ∈ N such that j < i,
v j for all j ∈ N such that j ≥ i,

and

w′
j =

{
1 for all j ∈ N such that j < i,
w j for all j ∈ N such that j ≥ i.

Since �∅ is separable, v �∅ w ⇔ v′ �∅ w′. Since min j∈N v′
j = vi > wi =

min j∈N w′
j , Step 2.4 implies v′ �∅ w′. Therefore v �∅ w. ��
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