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Abstract We consider a problem of allocating infinitely divisible commodities
among a group of agents. More specifically, there are several commodities to be
allocated and agents have continuous, strictly convex, and separable preferences. We
establish that a rule satisfies strategy-proofness, unanimity, weak symmetry, and non-
bossiness if and only if it is the uniform rule. This result extends to the class of
continuous, strictly convex, and multidimensional single-peaked preferences.

1 Introduction

We consider a problem of allocating several infinitely divisible commodities among
a group of agents. We assume that each agent has a continuous, strictly convex, and
“separable” preference. A preference is separable if the preference over consumption
of each commodity is not affected by the consumption levels of the other commodi-
ties. To study this allocation problem, we conduct an axiomatic analysis of (allocation)
“rules”. A rule is a function which assigns a feasible allocation for each preference
profile.

Preferences are usually private information. Agents may strategically misrepresent
their preferences to obtain assignments they prefer. As a result, the assigned alloca-
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tions may not be socially desirable with respect to the agents’ true preferences. Thus,
it is important for a rule to give agents the incentive to represent their preferences
truthfully. The property is called strategy-proofness.1 Our goal is to identify the class
of strategy-proof rules which yield socially desirable allocations.

In the one-commodity case, it is well-known that the rule called the “uniform rule”
is strategy-proof. For this rule, agents are allowed to choose their consumption sub-
ject to a common upper or lower bound, and the common bound is chosen so as to
attain feasibility. In this article, we characterize a multiple-commodity version of the
uniform rule by strategy-proofness and the following axioms.

The first axiom is unanimity: if the sum of the peak amounts of each commodity is
equal to the supply of the commodity, then each agent’s assignment should be equal
to his own peak vector. Indeed, there is no conflict on how to allocate the commodities
in such a case, and agents unanimously would agree that all of them are allocated their
peak amounts respectively. Unanimity is weaker than Pareto efficiency. This weaker
efficiency axiom is used here, because strategy-proofness and Pareto-efficiency with
a mild fairness axiom are incompatible in the multiple-commodity case.2 This is an
important difference between the one- and multiple-commodity models.

The second axiom is weak symmetry: two agents with the same preferences should
receive assignments between which they are indifferent. If two agents have the same
preference but one of them obtains a better assignment, then this agent is deemed to
be favored. The axiom of weak symmetry excludes such unfair treatments.

The third axiom is nonbossiness: the change of an agent’s preference does not alter
allocations unless it alters his own assignment. Satterthwaite and Sonnenschein (1981)
motivated nonbossiness as an axiom of simplicity. Since then, nonbossiness has been
employed by many authors and accepted at face value.3

We offer an interpretation of nonbossiness in the spirit of “consistency”. A typi-
cal application of consistency assumes that an agent is departed with his assignment.
Such a departure leaves the amounts to be allocated to the remaining agents unchanged.
Consistency requires the same allocation be given to the remaining agents.

The assumption of nonbossiness can be interpreted as not a departure of an agent,
but a replacement of the agent with a new agent and the new agent is given the same
assignment. Such a replacement again leaves the amounts to be allocated to all other
agents unchanged. Nonbossiness requires the same allocation be given to all other
agents. Hence, nonbossiness is in the spirit of consistency and can be called replace-
ment consistency.4

We establish that on the class of continuous, strictly convex, and separable prefer-
ences, a rule satisfies strategy-proofness, unanimity, weak symmetry, and nonbossiness

1 Strategy-proofness requires that, in the normal form game induced by the rule, it is a weakly dominant
strategy for each agent to reveal his true preference.
2 See Proposition 1 in Sect. 2.
3 For example, Barberà and Jackson (1995), Serizawa (1996), Barberà et al. (1997), Fleurbaey and Maniquet
(1997), Pápai (2000), Schummer (2000), Miyagawa (2001), Svensson and Larsson (2002), Ehlers and Klaus
(2003), Bogomolnaia et al. (2005), Hatfield (2009), etc.
4 See Thomson (1990, 2004) for comprehensive reviews of the literature on consistency.
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if and only if it is the uniform rule. This result extends to the class of continuous, strictly
convex, and “multidimensional single-peaked” preferences.5

Sprumont (1991) gave the first axiomatic characterization of the uniform rule, which
was introduced in a general (dis)equilibrium model with fixed prices (Bénassy 1982).
In the one-commodity case, he showed that the uniform rule is the only rule satisfying
strategy-proofness, Pareto-efficiency, and anonymity.6 He also showed that anonym-
ity can be replaced by no-envy.7 Ching (1994) strengthened both characterizations by
weakening anonymity or no-envy to weak symmetry.8

It is desirable to analyze the uniform rule in the multiple-commodity case so that
it can be applied to Bénassy (1982) general equilibrium model with fixed prices.
Consider an economy with money and several (nonmonetary) commodities in which
money consumption is not bounded. Agents have preferences which are continuous,
strictly convex, separable, and linear with respect to money. If prices are exogenously
fixed as in Bénassy (1982), then preferences only on consumption of commodities are
induced, and they are continuous, strictly convex, and separable. Our result can be
applied to this class of economies.9

Also, consider a situation where agents contribute several types of input to joint
production process. The total amount of each input is fixed, and the contribution of
each type of input is rewarded proportionally. An agent receives a quantity of output
equal to the sum of the rewards to his contributions. If agents’ preferences are continu-
ous, strictly convex, separable, and linear with respect to money, then preferences only
on contribution of inputs are continuous, strictly convex, and separable. Our result can
be also applied to the problem of how agents contribute each type of input.

Moulin (1980) characterized the class of strategy-proof voting schemes in one-
dimensional public alternative model where agents have single-peaked preferences:
a rule satisfies strategy-proofness and unanimity if and only if it is a so-called “gen-
eralized median voter scheme”. Border and Jordan (1983) established that when the
space of public alternatives is multidimensional and each agent has continuous, strictly
convex, separable, and star-shaped10 preferences, a rule is strategy-proof and unani-
mous if and only if it can be decomposed into a product of one-dimensional rules, each

5 A preference is multidimensional single-peaked if there is an ideal consumption point p ≡ (p1, . . . , pm ),
called the peak, and for any two distinct consumption bundles x ≡ (x1, . . . , xm ) and y ≡ (y1, . . . , ym ),
whenever x� is between y� and p� for each dimension � = 1, . . . , m, x is strictly preferred to y. The
domain of continuous, strictly convex, and separable preferences is a subclass of the multidimensional
single-peaked domain.
6 Anonymity requires that if two agent’s preferences are switched, then their assignments should be switched
too.
7 No-envy requires that no agent should prefer anyone else’s assignment to his own.
8 The one-commodity allotment problem has been analyzed from a wide variety of viewpoints. See, for
example, Thomson (1994a,b, 1995, 1997), Otten et al. (1996), Barberà et al. (1997), Ching and Serizawa
(1998), Massó and Neme (2001, 2007), and Serizawa (2006).
9 Example 1 in Sect. 2 describes the application of the model to Bénassy’s (1982) model in more detail.
10 A preference is star-shaped if there is an ideal consumption point p such that for any bundle x differing
from p, and any real number a ∈ (0, 1), a · p + (1−a) · x is strictly preferred to x and p is strictly preferred
to a · p + (1 − a) · x . Note that, in our model, if a preference is continuous and strictly convex, then it is
star-shaped.
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of which is a generalized median voter scheme. As Border and Jordan (1983) gener-
alized Moulin’s (1980) result to a multidimensional model, we generalize the results
of Sprumont (1991) and Ching (1994) to a model with multiple private commodities.

Amorós (2002) analyzes the same model as ours. Assuming that there are only two
agents, he shows that a rule defined on the class of multidimensional single-peaked
preferences satisfies strategy-proofness, same-sideness,11 and no-envy (alternatively,
symmetry12) if and only if it is the uniform rule.13 In the two-agent case, since the
assignment of one agent determines that of the other agent, nonbossiness automatically
holds, and one agent’s consumption can be treated as if it were a public alternative.
Accordingly, the model of Amorós (2002) can be treated as a special case of Border
and Jordan’s (1983) model, and his result can be derived from theirs,14 although his
proof differs from theirs. On the other hand, when there are more than two agents,
Border and Jordan’s result cannot be applied.

It is worthwhile to emphasize the difficulty of characterizing strategy-proof rules
in models with several private goods and agents as in ours. In private good models
with more than two agents, the assignment of one agent leaves freedom for other
agents’ consumptions. When there is only one private good, this freedom is relatively
limited. On the other hand, when there are multiple private goods and agents as in
our model, such freedom is much wider, and this fact makes characterizing strategy-
proof rules more difficult. Since unanimity is much weaker than Pareto-efficiency, the
characterization becomes even more difficult.

This paper is organized as follows. Section 2 explains the model and the main
results. Section 3 is devoted to the proof of the results in Sect. 2. Section 4 provides
concluding remarks.

2 The model and the results

2.1 Model setting

Let M ≡ {1, . . . , m} be a set of infinitely divisible commodities. For each commodity
� ∈ M , there is an amount W� ∈ R++ to be allocated. Let W ≡ (W1, . . . , Wm) ∈ R

m++.
Let N ≡ {1, . . . , n} be a set of agents. Assume that 2 ≤ n < ∞. For each i ∈ N ,
agent i’s consumption set is X ≡ {xi ∈ R

m+ | for each � ∈ M, 0 ≤ xi
� ≤ W�}, and

11 Same-sideness requires that for each commodity, if the sum of the peak amounts of the commodity
is greater (smaller) than, or equal to, the supply of the commodity, then each agent’s assignment of the
commodity should be smaller (greater) than, or equal to, his own peak amount of the commodity. It is a
necessary condition for Pareto-efficiency.
12 Symmetry requires that two agents with the same preference should receive the same assignment.
13 Sasaki (2003) also showed that the uniform rule is the most efficient rule among all strategy-proof rules
in the two-agent and multiple-commodity model.
14 Since same-sideness implies unanimity, Border and Jordan’s (1983) result implies that a rule satisfies
strategy-proofness and same-sideness if and only if it can be decomposed into a product of one-dimensional
rules, each of which is a generalized median voter scheme. No-envy (alternatively, symmetry) implies that
the one-dimensional rule for each commodity is the uniform rule.
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agent i’s (consumption) bundle is a vector xi ≡ (xi
�)�∈M ∈ X . For each � ∈ M , let

X� ≡ [0, W�] and X−� ≡ ∏
�′ �=�[0, W�′ ].

Each agent i ∈ N has a complete and transitive preference relation Ri on X . Let Pi

be the strict preference relation associated with Ri , and I i the indifference relation.
Given a preference Ri and a bundle x ∈ X , the upper contour set of Ri at x is the
set UC(Ri, x) ≡ {y ∈ X | y Ri x}, and the lower contour set of Ri at x is the set
LC(Ri, x) ≡ {y ∈ X | x Ri y}. The preference Ri is continuous if for each x ∈ X ,
UC(Ri , x) and LC(Ri , x) are closed. It is strictly convex if for each x ∈ X , each pair
{y, z} ⊂ UC(Ri , x), and each a ∈ (0, 1), y �= z implies ay + (1 − a)z Pi x . We
assume that preferences are continuous and strictly convex.15 Given a preference Ri ,
let p(Ri ) ≡ {x ∈ X | for each y ∈ X, x Ri y} be the set of preferred consumptions
according to Ri . Since Ri is continuous and strictly convex, p(Ri ) is a singleton.
We call p(Ri ) the peak of Ri and write (p�(Ri ))�∈M ≡ p(Ri ). We also define two
additional properties of preferences.

Definition 1 A preference relation Ri on X is separable if for each � ∈ M , each
pair xi

�, x̂ i
� ∈ X�, and each pair xi

−�, x̂ i
−� ∈ X−�, (xi

�, xi
−�) Ri (x̂ i

�, xi
−�) if and only if

(xi
�, x̂ i

−�) Ri (x̂ i
�, x̂ i

−�).

Definition 2 A preference relation Ri on X is multidimensional single-peaked if
p(Ri ) is a singleton, and for each pair xi , x̂ i ∈ X such that xi �= x̂ i , whenever for
each � ∈ M , either p�(Ri ) ≥ xi

� ≥ x̂ i
� or p�(Ri ) ≤ xi

� ≤ x̂ i
�, we have xi Pi x̂ i .

Let R denote the class of continuous, strictly convex, and separable preference
relations on X . Any such relation is multidimensional single-peaked. Thus, the class
of continuous, strictly convex, and separable preference relations is a subclass of
continuous, strictly convex, and multidimensional single-peaked preference relations.

A feasible allocation is a list x ≡ (xi )i∈N ∈ Xn such that
∑

i∈N xi = W . Note
that free disposal is not assumed. Let Z be the set of feasible allocations.

A preference profile is a list R ≡ (R1, . . . , Rn) ∈ Rn . An allocation rule, or
simply a rule, is a function f : Rn → Z . Let R−i be a list of preferences for all
agents except for agent i , that is, R−i ≡ (R j ) j∈N\{i}. We often write the profile
(R1, . . . , Ri−1, R̄i , Ri+1, . . . , Rn) as (R̄i , R−i ). Let f i (R) ≡ ( f i

1 (R), . . . , f i
m(R))

be the bundle assigned to agent i by f when the preference profile is R.
Example 1 describes the application of the model to Bénassy’s (1982) general

equilibrium model with fixed prices.

Example 1 Consider an economy with money and m commodities in which money
consumption is not bounded. Let R̂i be the agent i’s continuous, strictly convex, and
separable preference defined on R

m+ × R, where the last coordinate denotes agent
i’s money consumption t i . Assume that preferences are linear in money consump-
tion, that is, for each preference R̂i , there is a function Ui on R

m+ such that for each
(xi , t i ) ∈ R

m+ × R, and each (x̂ i , t̂ i ) ∈ R
m+ × R,

(
xi , t i

)
R̂i

(
x̂ i , t̂ i

)
if and only if Ui

(
xi

)
+ t i ≥ Ui

(
x̂ i

)
+ t̂ i .

15 If Ri is continuous and strictly convex, then for each x ∈ X , the set UC(Ri , x) is strictly convex. The
converse is not true.
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Also, assume that prices p ∈ R
m++ of m commodities are exogenously fixed as in

Bénassy (1982). For each preference R̂i on R
m+ ×R, the preference Ri on X is induced

as follows: for each pair x, x̂ ∈ X ,

x Ri x̂ if and only if (x, t i ) R̂i (x̂, t̂ i ),

where t i = p · (W i − x), t̂ i = p · (W i − x̂), and W i is agent i’s endowment vector.
Then, the induced preferences on X are continuous, strictly convex, and separable.

2.2 Axioms for rules

We introduce the axioms for rules. Let f denotes a general rule in this section. The first
axiom we introduce is strategy-proofness, an incentive property: by misrepresenting
his preferences, no agent should obtain an assignment that he prefers.

Strategy-proofness: For each R ∈ Rn , each i ∈ N , and each R̂i ∈ R, f i (R) Ri

f i (R̂i , R−i ).
The next three axioms are related to efficiency. The first efficiency axiom is Pareto-

efficiency. An allocation x ∈ Z is Pareto-efficient for R if there is no y ∈ Z such
that, for each i ∈ N , yi Ri xi , and for some j ∈ N , y j P j x j . For each R ∈ Rn , let
P(R) be the set of Pareto-efficient allocations for R.

Pareto-efficiency: For each R ∈ Rn , f (R) ∈ P(R).
The second efficiency axiom is same-sideness: for each commodity, if the sum of

the peak amounts of the commodity is greater than, or equal to, the supply of the
commodity, then each agent’s assignment of the commodity should be smaller than,
or equal to, his own peak amount of the commodity, and conversely.

Same-sideness: For each R ∈ Rn and each � ∈ M ,

(i) if
∑

i∈N p�(Ri ) ≥ W�, then for each i ∈ N , f i
� (R) ≤ p�(Ri ), and

(ii) if
∑

i∈N p�(Ri ) ≤ W�, then for each i ∈ N , f i
� (R) ≥ p�(Ri ).

In the one-commodity case, same-sideness is equivalent to Pareto-efficiency.16 In
the multiple-commodity case, Pareto-efficiency implies same-sideness, but the con-
verse is not true. Example 2 illustrates this fact.

Example 2 Let N ≡ {1, 2} and M ≡ {1, 2}. Let f be the rule defined as follows.17

For each R ∈ R2, each i ∈ {1, 2}, and each � ∈ {1, 2},

f i
� (R) ≡

{
p�(Ri )·W�

p�(R1)+p�(R2)
if p�(R1) + p�(R2) > 0

W�

2 otherwise.

Then, f is same-sided. Let R ∈ R2 be such that for each � ∈ {1, 2}, p�(R1) =
p�(R2) = W�, and there is a bundle y1 ∈ Z such that y2 = W − y1 and for each

16 See Sprumont (1991).
17 This rule is called Proportional Rule.

123



A characterization of the uniform rule with several commodities and agents 877

i ∈ {1, 2}, yi Pi ( W1
2 , W2

2 ). Then, f 1(R) = f 2(R) = ( W1
2 , W2

2 ). However, f (R) is
Pareto-dominated by y, contradicting Pareto-efficiency.

The third efficiency axiom is unanimity: if the sum of the peak amounts of each
commodity is equal to the supply of the commodity, then each agent’s assignment
should be equal to his own peak vector.

Unanimity: For each R ∈ Rn , if for each � ∈ M ,
∑

i∈N p�(Ri ) = W�, then for each
i ∈ N , f i (R) = p(Ri ).

Obviously, same-sideness implies unanimity. It is the weakest of our three axioms
related to efficiency.

Our next four axioms have to do with fairness. The first fairness axiom is no-envy:
no agent should prefer anyone else’s assignment to his own. The second fairness axiom
is anonymity: if two agents’ preferences are switched, then their assignments should
be switched too.

No-envy (Foley 1967): For each R ∈ Rn and each i, j ∈ N , f i (R) Ri f j (R).

Anonymity: For each R ∈ Rn , each i, j ∈ N , and each R̂i , R̂ j ∈ R, if R̂i = R j and
R̂ j = Ri , then f i (R̂i , R̂ j , R−i, j ) = f j (R).

The third fairness axiom is symmetry: two agents with the same preferences should
receive equal assignments.

Symmetry: For each R ∈ Rn and each i, j ∈ N , if Ri = R j , then f i (R) = f j (R).
Note that anonymity implies symmetry. The fourth fairness axiom is weak symme-

try: two agents with the same preferences should receive assignments between which
they are indifferent.

Weak symmetry: For each R ∈ Rn and each i, j ∈ N , if Ri = R j , then f i (R) I i

f j (R).
Either no-envy or symmetry implies weak symmetry. Weak symmetry is the weakest

of our four axioms concerning fairness. In the one-commodity case, for any rule satis-
fying Pareto-efficiency, weak symmetry is equivalent to symmetry.18 However, in the
multiple-commodity case, same-sideness and weak symmetry do not imply symmetry.

Next is an axiom introduced by Satterthwaite and Sonnenschein (1981), known
as nonbossiness: when an agent’s preferences change, if his assignment remains the
same, then the chosen allocation should remain the same.

Nonbossiness: For each R ∈ Rn , each i ∈ N , and each R̂i ∈ R, if f i (R̂i , R−i ) =
f i (R), then f (R̂i , R−i ) = f (R).

A usual interpretation of Ri to R̂i in nonbossiness is a preference change of agent
i . Alternatively, we can interpret it as agent Ri being replaced by agent R̂i . The
hypothesis f i (R̂i , R−i ) = f i (R) can then be regarded as the new agent R̂i receiving
agent Ri ’s original assignment. This leaves the amounts to be allocated to all other
agents j �= i unchanged (W − f i (R̂i , R−i ) = W − f i (Ri , R−i )). Now we can apply
the idea of consistency, which is to give the same allocation to all other agents, i.e.

18 See Ching (1994).
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f −i (R̂i , R−i ) = f −i (R). This conclusion is the same as the one obtained from non-
bossiness, so nonbossiness is in the spirit of consistency and can be specifically called
replacement consistency.

By feasibility, the following holds.

Remark 1 If there are only two agents, then any rule is nonbossy.

2.3 Uniform rule

Now, we introduce the uniform rule, a rule that is central to our paper. Under this
rule, for each commodity, agents are allowed to choose their consumption subject to
a common upper or lower bound, and the common bound is chosen so as to attain
feasibility.

Uniform rule, U: For each R ∈ Rn , each � ∈ M , and each i ∈ N ,

Ui
�(R) =

{
min{p�(Ri ), λ�(R)} if

∑
j∈N p�(R j ) ≥ W�

max{p�(Ri ), λ�(R)} if
∑

j∈N p�(R j ) ≤ W�,

where λ�(R) solves
∑

j∈N U j
� (R) = W�.

Example 3 illustrates the definition.

Example 3 Let N ≡ {1, 2, 3, 4}, M ≡ {1, 2}, and (W1, W2) ≡ (10, 20). Let R ∈ R4

be such that p(R1) = (3, 5), p(R2) = p(R3) = (2, 2), and p(R4) = (5, 6). Then,∑
i∈N p1(Ri ) > W1 and

∑
i∈N p2(Ri ) < W2. We calculate λ1(R) = 3 and λ2(R) =

4.5. Then, U 1(R) = (3, 5), U 2(R) = U 3(R) = (2, 4.5), and U 4(R) = (3, 6).

2.4 Main results

In this section, we state our main results. First, as we mentioned in Introduction, we
explain that strategy-proofness and Pareto-efficiency with a mild fairness axiom are
incompatible in the multiple-commodity case.

It is known that in a pure exchange economy, when agents have selfish, monotonic,
continuous, strictly convex, homothetic, and smooth preferences, there is no strategy-
proof, Pareto-efficient and weakly symmetric rule (Serizawa 2002). Since the class of
selfish, monotonic, continuous, strictly convex, homothetic, and smooth preferences is
a subclass of continuous, strictly convex, and separable preferences, this impossibility
result can be applied to our model to obtain the same conclusion.19 Thus, we have the
following impossibility result.

Proposition 1 There is no strategy-proof, Pareto-efficient, and weakly symmetric rule
on the domain of continuous, strictly convex, and separable preferences.

19 See Anno and Sasaki (2009) for detailed discussion.
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A characterization of the uniform rule with several commodities and agents 879

Because of this impossibility result, if strategy-proofness and weak symmetry are
to be kept, Pareto-efficiency needs to be weakened. We weaken it to unanimity and
obtain the following characterization of the uniform rule.

Theorem 1 A rule defined on the domain of continuous, strictly convex, and separable
preferences satisfies strategy-proofness, unanimity, weak symmetry, and nonbossiness
if and only if it is the uniform rule.

The proof of Theorem 1 is in Sect. 3.

Remark 2 The only if part of Theorem 1 fails if we drop any of the first three axioms.
The proportional rule20 satisfies unanimity, (weak) symmetry, and nonbossiness, but
not strategy-proofness. The queuing rules21 satisfy strategy-proofness, unanimity, and
nonbossiness, but not (weak) symmetry. The equal distribution rule22 satisfies strat-
egy-proofness, (weak) symmetry, and nonbossiness, but not unanimity. However, it is
an open question whether nonbossiness is dispensable or not.

We briefly explain the difficulties to show the indispensability of nonbossiness.
Example 4 illustrates a strategy-proof, unanimous, and bossy rule.

20 Proportional rule, Pro: For each R ∈ Rn , each � ∈ M , and each i ∈ N ,

Proi
�(R) =

⎧
⎨

⎩

p�(Ri )·W�∑
j∈N p�(R j )

if
∑

j∈N p�(R j ) > 0

W�
n otherwise.

21 Queuing rule, Qπ , associated with the permutation π on N: For each R ∈ Rn and each � ∈ M ,

Qπ(1)
�

(R) = p�(Rπ(1))

Qπ(2)
�

(R) = min
{

p�(Rπ(2)), W� − Qπ(1)
�

(R)
}

Qπ(3)
�

(R) = min
{

p�(Rπ(3)), W� − Qπ(1)
�

(R) − Qπ(2)
�

(R)
}

.

.

.

Qπ(n)
�

(R) = W� −
n−1∑

j=1

Qπ( j)
�

(R).

22 Equal distribution rule, E: For each R ∈ Rn , each � ∈ M , and each i ∈ N ,

Ei
�(R) = W�

n
.
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Example 4 Let N ≡ {1, 2, 3} and M ≡ {1, 2}. Let g be a rule such that for each
R ∈ R3 and each � ∈ M ,

g1
� (R) = p�(R1)

g2
� (R) =

{
min

{
p�(R2), W� − g1

� (R)
}

if W P1 (0, 0),

W� − g1
� (R) − g3

� (R) if (0, 0) R1 W,

g3
� (R) =

{
W� − g1

� (R) − g2
� (R) if W P1 (0, 0),

min
{

p�(R3), W� − g1
� (R)

}
if (0, 0) R1 W.

Note that, since agent 1 is a dictator under the rule g, this rule is not weakly sym-
metric.23 The important feature of this rule is that the assignments of agent 2 and 3
depend on the agent 1’s preferences, that is, the assignment of an agent is determined
by the preferences of someone else. By constructing this kind of rules, we can find
many bossy rules that are strategy-proof and unanimous. Thus, it might be possible to
construct a bossy rule satisfying the first three properties in Theorem 1. At the same
time, however, since we need to take into account the requirement of weak symmetry
in addition to strategy-proofness and unanimity, it is too complicated to construct such
a rule.

Our result extends to the domain of continuous, strictly convex, and multidimen-
sional single-peaked preferences. The following is a corollary of Theorem 1.

Corollary 1 A rule defined on the domain of continuous, strictly convex, and multi-
dimensional single-peaked preferences satisfies strategy-proofness, unanimity, weak
symmetry, and nonbossiness if and only if it is the uniform rule.

Proof of Corollary 1 Let RM be the class of continuous, strictly convex, and mul-
tidimensional single-peaked preferences. Let f be a rule on Rn

M satisfying the four
axioms. Let R ∈ Rn

M . Let R̂ ∈ Rn be such that for each i ∈ N , (i) p(R̂i ) = p(Ri ),
and (ii) UC(R̂i , f i (R)) ⊂ UC(Ri , f i (R)) and UC(R̂i , f i (R))∩ LC(Ri , f i (R)) =
{ f i (R)}.24 Then, by strategy-proofness, f 1(R̂1, R−1) = f 1(R). By nonbossiness,
f (R̂1, R−1) = f (R). Repeating this argument for i = 2, . . . , n, we have f (R̂) =
f (R). By Theorem 1, f (R̂) = U (R̂). Since the uniform rule is peak-only, U (R) =
U (R̂). Hence, f (R) = U (R). �


In the two-agent case, by Remark 1, any rule is nonbossy. As we mentioned above,
unanimity is weaker than same-sideness, and weak symmetry is weaker than either no-
envy or symmetry. Thus, we obtain Amorós’ (2002) result as a corollary of Theorem 1.

23 Note that the rule g is Pareto-efficient. Thus, Example 4 also illustrates a strategy-proof and Pareto-
efficient rule other than the queuing rules. By constructing this kind of bossy rules, we can find many
strategy-proof and Pareto-efficient rules other than the queuing rules.
24 The condition (ii) means that R̂i is a strict Maskin monotonic transformation of Ri at f i (R) (Maskin
1999). See Fact A in Appendix A for the existence of such transformations.
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Corollary 2 (Amorós 2002) Assume that there are two agents. A rule defined on the
domain of multidimensional single-peaked preferences satisfies strategy-proofness,
same-sideness, and no-envy (alternatively, symmetry) if and only if it is the uniform
rule.

Remark 3 Although the uniform rule is Pareto-efficient in the one-commodity case,
it is not in the multiple-commodity case as illustrated in Example 5 below.

Remark 4 In many models with private goods, group strategy-proofness follows from
strategy-proofness and nonbossiness25 (Barberà and Jackson (1995) for pure exchange
economies; Serizawa (1996) for public goods economies). Furthermore, the uniform
rule is group strategy-proof in the one-commodity case. Under the domain condi-
tion called “indirect sequential inclusion”, strategy-proofness coincides with group
strategy-proofness in the two-agent case (Barberà et al. 2010).26

However, as Example 5 below illustrates, the uniform rule is not group strategy-
proof in the multiple-commodity case. Thus, we cannot replace nonbossiness with
group strategy-proofness in Theorem 1. Example 5 also illustrates that group strategy-
proofness does not follow from strategy-proofness and nonbossiness in the multiple-
commodity case. In the one-commodity case, the domain of single-peaked preferences
satisfies indirect sequential inclusion. On the other hand, in the multiple-commodity
case, the preference domain studied in this paper does not satisfy this domain con-
dition.27 Thus, we cannot apply their results to our model. This is an interesting
difference between the one- and multiple-commodity model.

Example 5 Let N ≡ {1, 2}, M ≡ {1, 2}, and R ∈ R2 be such that p(R1) ≡ (0, 0) ≡
p(R2),

( 2W1
3 , W2

3

)
P1

( W1
2 , W2

2

)
and

( W1
3 , 2W2

3

)
P2

( W1
2 , W2

2

)
. Then, U 1(R) =

( W1
2 , W2

2

)
and U 2(R) = ( W1

2 , W2
2

)
. Let R̂ ∈ R2 be such that p(R̂1) ≡ ( 2W1

3 , 0
)

and p(R̂2) ≡ (
0, 2W2

3

)
. Then, U 1(R̂) = ( 2W1

3 , W2
3 ) and U 2(R̂) = ( W1

3 , 2W2
3

)
. Thus,

for each i ∈ N , Ui (R̂) Pi Ui (R). That is, the uniform rule is not group strategy-proof.
Also, since U (R̂) Pareto-dominates U (R), the uniform rule is not Pareto-efficient.

3 Proof of theorem

In this section, we prove Theorem 1. It is easy to check that the uniform rule is strategy-
proof, unanimous, and weakly symmetric. Furthermore, we can easily verify that the
single-commodity uniform rule is nonbossy. Since the multiple-commodity uniform
rule applies the single-commodity uniform rule commodity by commodity, it is also
nonbossy. Thus, the if part of Theorem 1 holds.

25 Group strategy-proofness: For each R ∈ Rn , there do not exist N̂ ⊂ N and R̂ N̂ ∈ R|N̂ | such that for

each i ∈ N̂ , f i (R̂ N̂ , R−N̂ ) Pi f i (R), where |A| denotes the cardinality of set A.
26 More precisely, they study the public alternative model with more than two agents. In our model, two-
agent case can be regarded as a public good model as mentioned in Introduction. Thus, we can apply their
arguments to our model for the two-agent case. The similar results are also founded in Le Breton and
Zaporozhets (2009).
27 See Appendix B for an example illustrating the violation of indirect sequential inclusion of our preference
domain.
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We turn to the only if part. That is, we pick a rule f satisfying the four axioms,
and prove that f is the uniform rule. We present an informal sketch of the proof in
Sect. 3.1, and discuss the key points and difficulties of the proof in Sect. 3.2. As in
the proof of Corollary 1, we repeatedly use strict Maskin monotonic transformations
in the proof of Theorem 2. See also Fact A in Appendix A for the existence of such
transformations.

3.1 Sketch of proof of only if part

The proof consists of five Steps.

Step I: We show that strategy-proofness, unanimity and nonbossiness imply same-
sideness in Lemma 1.

Next, let � ∈ M , and let x−� be a feasible allocation except for commodity �.
We concentrate on the restricted domain of preference profiles such that, except for
commodity �, each agent i’s peak amount is equal to the fixed assignment xi

−�. Given
� ∈ M , x−� ∈ Z−� ≡ {

(x1−�, . . . , xn
−�) ∈ (X−�)

n | ∑
i∈N xi

−� = W−�

}
, and i ∈ N ,

let R̄i (x−�) ≡ {
Ri ∈ R | p−�(Ri ) = xi

−�

}
and R̄N (x−�) ≡ ∏

i∈N R̄i (x−�). Then,
R̄N (x−�) denotes the restricted domain. For simplicity, given � ∈ M , R ∈ Rn , and
i ∈ N , we write p−�(Ri ) ≡ (p�′(Ri ))�′ �=�.

Note that each preference profile R in R̄N (x−�) is unanimous, i.e.,
∑

i∈N p−�(Ri ) =∑
i∈N xi

−� = W−�. Thus, it follows from same-sideness (Lemma 1) that on R̄N (x−�),
the allocation chosen by the rule always coincides with the allocation x except for
commodity �, that is, for each R ∈ R̄N (x−�), f−�(R) = p−�(R) = x−�. Since the
allocation except for commodity � is fixed on R̄N (x−�) in this way, we can regard the
restriction of f to R̄N (x−�) as if it were a single-commodity rule for commodity �.

Step II: We show that the single-commodity rule for commodity � on the restricted
domain R̄N (x−�) derived in Step I (the restriction of f to R̄N (x−�)) satisfies
several standard properties.

Lemma 2 establishes two properties, “own peak-onlyness” and “peak-onlyness”.
Own peak-onlyness says that if an agent’s preferences change but his peak amounts
remain the same, then his assignment should remain the same. Peak-onlyness says
that if all agents’ preferences change but the peak profiles remain the same, then the
chosen allocation should remain the same. Peak-onlyness implies own peak-onlyness.
These properties are defined as follows.

Own peak-onlyness: For each R ∈ Rn , each i ∈ N , and each R̂i ∈ R, if p(R̂i ) =
p(Ri ) , then f i (R) = f i (R̂i , R−i ).

Peak-onlyness: For each R ∈ Rn and each R̂ ∈ Rn , if for each i ∈ N , p(R̂i ) = p(Ri ),
then f (R) = f (R̂).

Lemma 3 establishes two properties, “own uncompromisingness” and “group
uncompromisingness”. Own uncompromisingness says that for each commodity � and
each agent, if his peak amount of � is smaller (greater) than his assignment of � and his
new peak amount of � is also smaller (greater) than, or equal to, his initial assignment
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of �, then his assignment of � should not change. Group uncompromisingness says
that for each commodity � and each group of agents, if for each agent in the group,
the same assumption holds, then the chosen allocation of � should not change. These
properties are defined as follows.

Own uncompromisingness: For each � ∈ M , each R ∈ Rn , each i ∈ N , and each
R̂i ∈ R,

if p�

(
Ri

)
< f i

� (R) and p�

(
R̂i

)
≤ f i

� (R), then, f i
�

(
R̂i , R−i

)
= f i

� (R) ,

if p�

(
Ri

)
> f i

� (R) and p�

(
R̂i

)
≥ f i

� (R), then, f i
�

(
R̂i , R−i

)
= f i

� (R).

Group uncompromisingness: For each � ∈ M , each R ∈ Rn , each N̂ ⊆ N , and each

R̂ N̂ ∈ R|N̂ |,

if for each i ∈ N̂ , p�

(
Ri

)
< f i

� (R) and p�

(
R̂i

)
≤ f i

� (R), then, f�
(

R̂ N̂ , R−N̂
)

=
f�(R),
if for each i ∈ N̂ , p�

(
Ri

)
> f i

� (R) and p�

(
R̂i

) ≥ f i
� (R), then, f�(R̂ N̂ , R−N̂ ) =

f�(R).

Step III: We focus on the cases where some agents are almost indifferent to all com-
modities except for one commodity, say �. We refer to the preferences of
such agents as “d-indifferent to all commodities except for commodity �,”
where d is a small positive number. They are defined as follows.

Definition 3 Given � ∈ M , and d ∈ (0,
W�

2n ), a preference relation Ri on X with peak
p(Ri ) is d-indifferent to all commodities except for commodity � if for each y� ∈ X�

and each y−� ∈ X−�, we have

if p�

(
Ri ) ≤ y� ≤ W� − d, then

(
y�, y−�

)
Pi (

y� + d, p−�(Ri )
)
, (a)

if d ≤ y� ≤ p�

(
Ri ), then

(
y�, y−�

)
Pi (

y� − d, p−�

(
Ri )). (b)

For sufficiently small d > 0, the indifference surfaces of such a preference at each
consumption bundle are located within the distance d from the consumption bundle
in the coordinate of commodity �. That is, the indifference surfaces of the prefer-
ence at each consumption bundle are almost parallel to the hyperplane with normal
e� ≡ (

0, . . . , 0, 1, 0, . . . , 0
)
, where 1 appears in the �th coordinate. Figure 1 illustrates

a preference that is d-indifferent to all commodities except for commodity �.
Given � ∈ M , xi

� ∈ X�, xi
−� ∈ X−�, and d ∈ (

0,
W�

2n

)
, let RV

(
xi
�, xi

−�, d
) ⊂ R be

the set of all preferences with peak p
(
Ri

) = (
xi
�, xi

−�

)
that are d -indifferent to all

commodities except for commodity �.
Lemma 4 establishes that for a strategy-proof and same-sided rule, if an agent is

almost indifferent to all commodities except for commodity �, and if his preference is
changed, but he is still almost indifferent to all commodities except for commodity �,
then his assignment of commodity � changes little (Fig. 2). Lemma 5 establishes that
for a weakly symmetric and same-sided rule, if two agents have the same preference
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Fig. 1 Illustration of a preference Ri that is d-indifferent to all commodities except for commodity �

and they are almost indifferent to all commodities except for commodity �, then their
assignments of commodity � differ little (Fig. 3). Lemma 6 is the statement implied by
Lemmas 4 and 5 for the case where several agents have the same preference and they
are almost indifferent to all commodities except for one.

Step IV: We establish that the single-commodity rule for commodity � derived in
Step I coincides with the single-commodity uniform rule on the restricted
domain R̄N (x−�) (Lemma 7), that is, for each R ∈ R̄N (x−�), f�(R) =
U�(R). Lemmas 2 to 6 presented in Steps II and III are used to prove
Lemma 7.

To present the basic idea of the proof of Lemma 7, we assume that there are only
three agents and two commodities, say � and �′. Fix R ∈ R̄N (x−�). We also assume(

p�(R1), p�(R2), p�(R3)
) = (0, 0, 0). Invoking uncompromisingness (Lemma 3), we

extend the result obtained under this special assumption to more general peak profiles
for commodity �. Under these assumptions, the uniform rule prescribes equal divi-
sion for commodity �, that is, U�(R) = ( W�

3 ,
W�

3 ,
W�

3

)
. Thus, we show that f�(R) =

( W�

3 ,
W�

3 ,
W�

3

)
.

By contradiction, suppose f�(R) �= ( W�

3 ,
W�

3 ,
W�

3

)
. Then, by feasibility, there is an

agent, say agent 1, whose assignment of commodity � is greater than equal division.
For each agent i , let R̄i be a preference that is almost indifferent to all commodities

except for commodity �, but whose peak is the same as p
(
Ri

)
. Then, since the peak

profile remains the same, the new preference profile R̄ ≡ (
R̄1, R̄2, R̄3

)
still belongs to

the restricted domain R̄N
(
x−�

)
. Thus, by peak-onlyness (Lemma 2), f

(
R̄
) = f (R).
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Fig. 2 Illustration of agent i’s assignments in Lemma 4 for the case of excess supply. By same-
sideness, p�

(
R̄i ) ≤ f i

�

(
R̄i , R−i ) and p�

(
R̃i ) ≤ f i

�

(
R̃i , R−i ). Strategy-proofness implies that

f i (R̄i , R−i )R̄i f i (R̃i , R−i ) and f i (R̃i , R−i )R̃i f i (R̄i , R−i )

Fig. 3 Illustration of assignments in Lemma 5 for the case of excess supply. By same-sideness, p�

(
R̃0) ≤

f i
�

(
R̃i, j , R−i, j ) and p�

(
R̃0)≤ f j

�

(
R̃i, j , R−i, j ). Symmetry implies that f i (R̃i, j, R−i, j ) Ĩ 0 f j (R̃i, j, R−i, j )
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Further, let R̃0 be a preference that is also almost indifferent to all commodities
except for commodity �. We replace the preference of each agent with this new pref-
erence, inductively.

First, we replace agent 1’s preference by R̃1 ≡ R̃0. Then, since R̃1 and R̄1 both
exhibit almost indifference to all commodities except for commodity �, Lemma 4
implies that agent 1’s assignment of commodity � changes little, and so is still greater
than equal division. Thus, by feasibility, there is another agent, say agent 2, whose
assignment of commodity � is less than equal division.

Next, we replace agent 2’s preference by R̃2 ≡ R̃0. By a similar argument, Lemma 4
implies that agent 2’s assignment of commodity � is still less than equal division. Since
agents 1 and 2 have the same preference R̃0, and are almost indifferent to all commod-
ities except for commodity �, Lemma 5 implies that their assignments of commodity �

differ little, and so are both less than equal division. Thus, by feasibility, the assignment
of agent 3 of commodity � is greater than equal division.

Finally, we replace agent 3’s preference by R̃3 ≡ R̃0. By a similar argument,
Lemma 4 implies that agent 3’s assignment of commodity � is still greater than equal
division. Since agents 1, 2 and 3 all have the same preference R̃0, and are also almost
indifferent to all commodities except for commodity �, Lemma 5 implies that their
assignments of commodity � differ little, and so are all greater than equal division.
This is a contradiction to feasibility. Therefore, f�(R) = ( W�

3 ,
W�

3 ,
W�

3

)
.

Step V: We complete the proof of Theorem 1 by extending the result of Step IV to
the entire domain.

First, let R be a preference profile from the entire domain and let � ∈ M . For each
agent i , let R̄i be a strict Maskin monotonic transformation of Ri at f i (R) such that
p�

(
R̄i

) = p�

(
Ri

)
and p−�

(
R̄i

) = f−�(R) (Fig. 4).
Next, we replace agent 1’s preference with his new preference R̄1. Then, by strat-

egy-proofness, his new assignment remains the same. Further, by nonbossiness, all
the other agents’ assignments also remain the same. Repeating this argument for the
remaining agents, the chosen allocation under the new preference profile is the same
as for the initial allocation. Since the new preference profile belongs to the restricted
domain R̄N ( f−�(R)) in Step I, it follows from Step IV that the chosen allocation
coincides with the allocation under the uniform rule. Therefore, the initial allocation
for commodity � also coincides with the allocation under the uniform rule.

3.2 Technical discussion

We refer the literature that established similar results, and discuss the key points and
difficulties of our proofs.

3.2.1 Decomposability

The basic structure of our proof is similar to that of Border and Jordan (1983). Indeed,
we show that any rule satisfying our axioms can be decomposed into a product of
one-dimensional rules, each of which is the single-commodity uniform rule. In the
literature on strategy-proofness, following Border and Jordan (1983), authors such as
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Fig. 4 Illustration of a strict Maskin monotonic transformation R̄ of R at f (R)

Barberà et al. (1993, 1998), and Le Breton and Sen (1999), etc. also proved decompos-
ability results for strategy-proof social choice functions for public alternative models.
However, their decomposability results cannot be applied to our private-commodity
model.

The multidimensional single-peaked conditions of the two models differ in the fol-
lowing way. Multidimensional single-peakedness of preferences plays an important
role in establishing their decomposability results for public alternative models. To
apply the decomposability results for public alternative models to our model, we need
to assume that each agent has multidimensional single-peaked preferences defined
over the entire feasible set Z ≡ {(

x1, . . . , xn
) ∈ Xn | ∑

i∈N xi = W
}
, not only over

agent’s consumption set X . However, in our private-commodity model, we assume that
each agent has multidimensional single-peakedness for preferences defined only over
X .28 In our private-commodity model, agents are only interested in their own assign-
ments, that is, each agent is indifferent to the coordinates representing the assignments
of other agents.

3.2.2 Uniqueness of single-commodity uniform rule

Step IV is the most important and difficult part in our proof. It says that for each � ∈ M ,
and each allocation x−� except for commodity �, the single-commodity allocation rule

28 Note that only in the case of two agents, the multidimensional single-peakedness of preferences only
over X implies the one of preferences over Z . Thus, the results of public alternative models can be applied
to only this case.

123



888 S. Morimoto et al.

derived for commodity � in Step I coincides with the single-commodity uniform rule
on the restricted domain R̄N (x−�) (Lemma 7). In the one-commodity case, Sprumont
(1991) and Ching (1994) already established the similar uniqueness results of the
uniform rule. We borrow some of their proof techniques in proving Lemmas 2 and 3.
However, we need to develop our own in other parts for several reasons.

One reason is that, as Example 6 below illustrates, weak symmetry of the sin-
gle-commodity rule derived in Step I does not follow from weak symmetry of the
multiple-commodity rule. Otherwise, we could directly apply their results to obtain
Lemma 7.

The weak symmetry of the single-commodity rule derived in Step I is defined as
follows. Hereafter, we call it 1D weak symmetry. Let � ∈ M and x−� ∈ Z−�. Let f
be a rule on the entire domain Rn such that for each R ∈ R̄N (x−�), f−�(R) = x−�.
Then, the �-th coordinate f� of the multi-commodity rule f is the derived single-com-
modity rule. Next, for each i ∈ N and each Ri ∈ R̄i (x−�), let R̄(Ri ) be a preference
relation on [0, W�] such that for each pair xi

�, yi
� ∈ [0, W�], xi

� R̄
(
Ri

)
yi
� if and only

if
(
xi
�, xi

−�

)
Ri

(
yi
�, xi

−�

)
. Then, f� is 1D weakly symmetric if for each R ∈ R̄N (x−�)

and each i, j ∈ N , if R̄
(
Ri

) = R̄
(
R j

)
, then f i

� (R) Ī
(
Ri

)
f j
� (R).29

To apply the results of Sprumont (1991) and Ching (1994), we need to assume 1D
weak symmetry defined as above. However, it does not follow from weak symmetry of
the multiple-commodity rule, as illustrated in Example 6 below.

Example 6 Let N ≡ {1, 2} and M ≡ {�, �′}. Let f be the rule on R2 defined as
follows: for each R ∈ R2, if R1 = R2, f 1(R) ≡ f 2(R) ≡ ( W�

2 ,
W�′

2

)
; otherwise

f 1(R) ≡ p
(
R1

)
, and f 2(R) ≡ (

W1, W2
) − p

(
R1

)
. Note that f satisfies weak sym-

metry of the multiple-commodity rule. Let x−� ≡ (
x1−�, x2−�

) ≡ ( 2·W�′
3 ,

W�′
3

)
. Let

R ∈ R̄N
(
x−�

)
be such that R̄

(
R1

) = R̄
(
R2

)
, and p�

(
R1

) ≡ W�

3 ≡ p�

(
R2

)
. Then,

since p�′
(
R1

) = 2·W�′
3 �= W�′

3 = p�′
(
R2

)
, we have R1 �= R2. Thus, by the definition

of f , f 1
� (R) = p�

(
R1

)
and f 2

� (R) = W� − p�

(
R1

)
. Therefore, f 1

� (R) P̄
(
R2

)
f 2
� (R).

Accordingly, the derived single-commodity rule f� violates 1D weak symmetry.

This fact forces us to employ preference profiles outside R̄N (x−�) even in character-
izing the single-commodity rules defined on R̄N (x−�). Notice that while employing
such preference profiles, we cannot apply peak-onlyness and uncompromisingness
introduced in Step II.

Another reason is that we cannot depend on symmetry to obtain Lemma 7. As we
discussed in Sect. 2, in the one-commodity case, same-sideness and weak symmetry
imply symmetry. Symmetry is key to Ching’s (1994) proof of his uniqueness result.
However, in the multiple-commodity case, same-sideness and weak symmetry do not
imply symmetry.

The above facts make characterizing the uniform rule in our model more difficult.
We need to develop new proof techniques to overcome those difficulties. In our proof,
weak symmetry of the multiple-commodity rule plays a role in the form of Lemma 5,
which says that, even if a preference profile is outside R̄N (x−�), whenever two agents

29 Let P̄
(
Ri ) denote the strict relation associated with R̄

(
Ri ), and Ī

(
Ri ) the indifference relation.
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have the same preference and they are almost indifferent to all commodities except
for commodity �, their assignments of commodity � are almost equal. That is, owing
to Lemma 5, we can obtain an implication approximating “symmetry with respect
to commodity � ”. Furthermore, Lemma 4 limits the responsiveness of the agent’s
assignment to a change of his preference. As we explained in Sect. 3.1, we repeatedly
use these observations in our proof.

3.2.3 Nonbossiness

In models with private goods, nonbossiness is often added to strategy-proofness for
tractability. We also assume nonbossiness in our characterization. It is worthwhile to
discuss this requirement.

In many models with private goods, group strategy-proofness follows from strat-
egy-proofness and nonbossiness. However, as we discussed in Remark 4, group strat-
egy-proofness does not follow from strategy-proofness and nonbossiness in our model.

Under the domain condition called “strict monotonic closedness”,30 strategy-proof-
ness, nonbossiness, and weak symmetry imply no-envy (Fleurbaey and Maniquet
1997). However, our domain does not satisfy strict monotonic closedness.31 Thus, we
cannot apply this result. Interestingly, in contrast to the multiple-commodity model,
the domain of single-peaked preferences of the one-commodity model satisfies strict
monotonic closedness. This is one of several critical differences between the one- and
multiple-commodity models.

3.3 Formal proof of only if part

Step I: In Lemma 1 below, we show same-sidedness.

Lemma 1 If a rule is strategy-proof, unanimous, and nonbossy, then it is same-sided.

Proof Let f be a rule satisfying the hypotheses. Let R ∈ Rn and � ∈ M . Assume that∑
h∈N p�

(
Rh

) ≤ W�. (The same argument applies to the opposite case.) By contradic-
tion, suppose that there is i ∈ N such that f i

� (R) < p�

(
Ri

)
. Since

∑
h∈N p�

(
Rh

) ≤

30 Strict monotonic closedness: For each Ri , R̂i ∈ R, and each a, b ∈ X with a Pi b, there is R̄i ∈ R
such that, for each c ∈ X \ {a, b} , (i) a R̂i c ⇒ a P̄i c, (ii) b Ri c ⇒ b P̄i c, and (iii) a P̄i b or b P̄i a.
31 Example illustrating the violation of strict monotonic closedness. Let M ≡ {1, 2}. Let Ri , R̂i ∈ R
and a, b ∈ X be such that p

(
Ri ) ≡ (

W1, 0
)
, p

(
R̂i ) ≡ (

0, W2
)
, a ≡ (0, 0), b ≡ (

W1, W2
)
,
(
0,

W2
2

)
I i b,

and
( W1

2 , W2
)

Î i a. Then, a Pi b. By contradiction, suppose that there is R̄i ∈ R that satisfies the con-

ditions (i), (ii), and (iii) of strict monotonic closedness. Then p
(
R̄i ) ∈ SUC

(
R̂i , a

) ∩ SUC
(
Ri , b

) ≡ B,

where SUC
(
Ri , a

)
is the strict upper contour set of Ri at a.

To see this, suppose on the contrary that p
(
R̄i ) /∈ B. Then (A) p

(
R̄i ) /∈ SUC

(
R̂i , a

)
or (B) p(R̄i ) /∈

SUC(Ri , b). Consider the case (A). Case (B) is similar. Then a R̂i p
(
R̄i ). Thus, by (i), a P̄i p

(
R̄i ). How-

ever, since p
(
R̄i ) is the peak of R̄i , this is a contradiction. Thus, p

(
R̄i ) ∈ SUC

(
R̂i , a

)∩SUC
(
Ri , b

) ≡ B.

Since b /∈ B, p
(
R̄i ) P̄i b. Then, there is zi ∈ X such that zi Ī i b, zi

1 ≡ 2W1
3 , and p2

(
R̄i ) ≤ zi

2 < W2,
which is a contradiction.

Hence, R violates strict monotonic closedness.
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W�, there is j ∈ N\{i} such that f j
� (R) > p�

(
R j

)
. Without loss of generality, let i = 1

and j = 2. For each k ∈ N \{1, 2}, let R̂k ∈ R be such that p
(
R̂k

) = f k(R). Then, by

strategy-proofness, f 3
(
R̂3, R−3

) = f 3(R). By nonbossiness, f
(
R̂3, R−3

) = f (R).

Repeating this argument for k = 4, . . . , n, we obtain f
(
R1,2, R̂−1,2

) = f (R).
There are two cases.

Case 1 p�(R1) − f 1
� (R) ≥ f 2

� (R) − p�(R2).

Let
(
R̂1, R̂2

) ∈ R2 be such that (i) p�

(
R̂1

) = f 1
� (R) + f 2

� (R) − p�

(
R2

)

and p�

(
R̂2

) = p�

(
R2

)
, (ii) for each i ∈ {1, 2}, p−�

(
R̂i

) = f i
−�(R), and (iii)

for each i ∈ {1, 2} , UC
(
R̂i , f i (R)

) ⊂ UC
(
Ri , f i (R)

)
and UC

(
R̂i , f i (R)

) ∩
LC

(
Ri , f i (R)

) = {
f i (R)

}
, that is, R̂i is a strict Maskin monotonic transforma-

tion of Ri at f i (R). Then, by strategy-proofness, f 1
(
R2, R̂−2

) = f 1
(
R1,2, R̂−1,2

)
.

By nonbossiness, f
(
R2, R̂−2

) = f
(
R1,2, R̂−1,2

)
. Since f

(
R1,2, R̂−1,2

) = f (R),

we have f
(
R2, R̂−2

) = f (R). Similarly, by strategy-proofness and nonbossiness,

f
(
R̂
) = f (R). However, by feasibility, for each �′ ∈ M ,

∑
k∈N p�′

(
R̂k

) =
∑

k∈N f k
�′(R) = W�′ . This contradicts unanimity.

Case 2 p�(R1) − f 1
� (R) < f 2

� (R) − p�(R2).

Similarly to Case 1, we derive a contradiction to unanimity by using prefer-
ences

(
R̂1, R̂2

) ∈ R2 such that (i) p�

(
R̂1

) = p�

(
R1

)
and p�

(
R̂2

) = f 2
� (R) −

p�

(
R1

) + f 1
� (R), (ii) for each i ∈ {1, 2}, p−�

(
R̂i

) = f i
−�(R), and (iii) for each i ∈

{1, 2}, UC
(
R̂i , f i (R)

) ⊂ UC
(
Ri , f i (R)

)
and UC

(
R̂i , f i (R)

) ∩ LC
(
Ri , f i (R)

) =
{ f i (R)}. �

Step II: First, we show peak-onlyness on the restricted domain R̄N

(
x−�

)
.

Lemma 2 Let f be a strategy-proof, unanimous, and nonbossy rule. Then, for each
� ∈ M, each x−� ∈ Z−�, each R ∈ R̄N

(
x−�

)
, and each R̂ ∈ R̄N

(
x−�

)
such that for

each i ∈ N, p
(
R̂i

) = p(Ri ), we have f
(
R̂
) = f (R).

Proof Let � ∈ M , x−� ∈ Z−�, R ∈ R̄N (x−�), and R̂ ∈ R̄N (x−�). Assume that for
each i ∈ N , p(R̂i ) = p(Ri ). First, we show f 1(R) = f 1

(
R̂1, R−1

)
. By same-side-

ness (Lemma 1) and p
(
R1

) = p
(
R̂1

)
, we have f 1−�(R) = x1−� = f 1−�

(
R̂1, R−1

)
.

Assume that
∑

i∈N p�

(
Ri

) ≤ W�. (The same argument applies to the opposite case.)

We first show f 1
� (R) ≥ f 1

�

(
R̂1, R−1

)
. By contradiction, suppose that f 1

� (R) <

f 1
�

(
R̂1, R−1

)
. Then, by same-sideness (Lemma 1), p�

(
R̂1

) = p�

(
R1

) ≤ f 1
� (R) <

f 1
�

(
R̂1, R−1

)
. Thus f 1(R) P̂1 f 1

(
R̂1, R−1

)
, contradicting strategy-proofness. Thus,

f 1
� (R) ≥ f 1

�

(
R̂1, R−1

)
. Similarly, we can show f 1

� (R) ≤ f 1
�

(
R̂1, R−1

)
. Hence,

f 1(R) = f 1
(
R̂1, R−1

)
. By nonbossiness, f (R) = f

(
R̂1, R−1

)
. Repeating this argu-

ment for k = 2, . . . , n, we get f
(
R̂
) = f (R). �


Next, we show uncompromisingness on the restricted domain R̄N (x−�).
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A characterization of the uniform rule with several commodities and agents 891

Lemma 3 Let f be a strategy-proof, unanimous, and nonbossy rule. Then, for each
� ∈ M, and each x−� ∈ Z−�, we have

(i) Own uncompromisingness:
for each R ∈ R̄N

(
x−�

)
, each i ∈ N, and each R̂i ∈ R̄i

(
x−�

)
,

if p�

(
Ri

)
< f i

� (R) and p�

(
R̂i

) ≤ f i
� (R), then, f i

(
R̂i , R−i

) = f i (R),

if p�

(
Ri

)
> f i

� (R) and p�

(
R̂i

) ≥ f i
� (R), then, f i

(
R̂i , R−i

) = f i (R),
(ii) Group uncompromisingness:

for each R ∈ R̄N
(
x−�

)
, each N̂ ⊆ N, and each R̂ N̂ ∈ ∏

i∈N̂ R̄i
(
x−�

)
,

if for each i ∈ N̂ , p�

(
Ri

)
< f i

�

(
R
)

and p�

(
R̂i

) ≤ f i
�

(
R
)
, then, f

(
R̂ N̂ , R−N̂

) =
f
(
R
)
,

if for each i ∈ N̂ , p�

(
Ri

)
> f i

�

(
R
)

and p�

(
R̂i

) ≥ f i
�

(
R
)
, then, f

(
R̂ N̂ , R−N̂

) =
f
(
R
)
.

Proof Let � ∈ M , x−� ∈ Z−�, and R ∈ R̄N
(
x−�

)
.

Proof of (i) Let i ∈ N and R̂i ∈ R̄i
(
x−�

)
. Assume that p�

(
Ri

)
< f i

�

(
R
)

and

p�

(
R̂i

) ≤ f i
�

(
R
)
. (The same argument applies to the opposite case.) We show

f i
(
R̂i , R−i

) = f i
(
R
)
. By same-sideness (Lemma 1), f i

−�

(
R̂i , R−i

) = f i
−�

(
R
)
. Also,

by same-sideness (Lemma 1) and p�

(
Ri

)
< f i

�

(
R
)
, for each j ∈ N \ {i}, we have

p�

(
R j

) ≤ f j
�

(
R
)
. Since p�

(
R̂i

) ≤ f i
�

(
R
)
, by feasibility, p�

(
R̂i

) + ∑
j �=i p�

(
R j

) ≤
∑

j∈N f j
�

(
R
) = W�. Thus, by same-sideness (Lemma 1), f i

�

(
R̂i , R−i

) ≥ p�

(
R̂i

)
.

By contradiction, suppose that f i
�

(
R̂i , R−i

) �= f i
�

(
R
)
. There are two cases.

Case 1: f i
�

(
R̂i , R−i

)
> f i

�

(
R
)
.

Then, p�

(
R̂i

) ≤ f i
�

(
R
)

< f i
�

(
R̂i , R−i

)
. Thus, f i

(
R
)

P̂i f i
(
R̂i , R−i

)
, contradict-

ing strategy-proofness.
Case 2: f i

�

(
R̂i , R−i

)
< f i

�

(
R
)
.

Let R̄i ∈ R be such that p
(
R̄i

) = p
(
Ri

)
and f i

(
R̂i , R−i

)
P̄i f i

(
R
)
.

Then, by peak-onlyness (Lemma 2), f i
(
R̄i , R−i

) = f i
(
R
)
. Thus, f i

(
R̂i , R−i

)
P̄i

f i
(
R̄i , R−i

)
, contradicting strategy-proofness. �


Proof of (ii) Let N̂ ⊆ N and R̂ N̂ ∈ ∏
i∈N̂ R̄i

(
x−�

)
. Assume that for each i ∈ N̂ ,

p�

(
Ri

)
< f i

�

(
R
)

and p�

(
R̂i

) ≤ f i
�

(
R
)
. (The same argument applies to the opposite

case.) Without loss of generality, let N̂ ≡ {1, . . . , n̂}.
By own uncompromisingness (Lemma 3-i), f 1

(
R̂1, R−1

) = f 1
(
R
)
. By nonbos-

siness, f
(
R̂1, R−1

) = f
(
R
)
. Repeating this argument for k = 2, . . . , n̂, we have

f
(
R̂ N̂ , R−N̂

) = f
(
R
)
. �
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Step III: Lemma 4 says that for a strategy-proof and same-sided rule, and for each
commodity, when an agent’s preference changes, if both his initial and
his new preferences are d-indifferent to all commodities except for that
commodity, then his assignments of the commodity differ by at most d.

Lemma 4 Let f be a strategy-proof and same-sided rule. Let � ∈ M, d ∈ (
0,

W�

2n

)
,

i ∈ N, xi
� ∈ X�, x̄ i

−�, x̃ i
−� ∈ X−�, R̄i ∈ RV

(
xi
�, x̄ i

−�, d
)
, R̃i ∈ RV

(
xi
�, x̃ i

−�, d
)
, and

R−i ∈ Rn−1. Then,

f i
�

(
R̄i , R−i ) − d < f i

�

(
R̃i , R−i ) < f i

�

(
R̄i , R−i ) + d. (1)

Proof Assume that p�

(
R̄i

) + ∑
j∈N\{i} p�

(
R j

) ≤ W�. (The same argument applies

to the opposite case.) Then, by same-sideness and p�

(
R̄i

) = xi
� = p�

(
R̃i

)
, xi

� ≤
f i
�

(
R̄i , R−i

)
and xi

� ≤ f i
�

(
R̃i , R−i

)
. The proof is in two steps. �


Step 1. f i
�

(
R̃i , R−i

)
< f i

�

(
R̄i , R−i

) + d.

Proof There are two cases.

Case 1-1: f i
�

(
R̄i , R−i

)
> W� − d.

In this case, f i
�

(
R̄i , R−i

) + d > W� ≥ f i
�

(
R̃i , R−i

)
.

Case 1-2: f i
�

(
R̄i , R−i

) ≤ W� − d.

By contradiction, suppose that

f i
�

(
R̃i , R−i ) ≥ f i

�

(
R̄i , R−i ) + d. (2)

Since R̃i ∈ RV
(
xi
�, x̃ i

−�, d
)
, by (a) of Definition 3, we have

f i (R̄i , R−i ) P̃i
(

f i
�

(
R̄i , R−i ) + d, p−�

(
R̃i )

)
.

By (2),

(
f i
�

(
R̄i , R−i ) + d, p−�

(
R̃i )

)
R̃i f i (R̃i , R−i ).

This implies

f i (R̄i , R−i ) P̃i f i (R̃i , R−i ),

contradicting strategy-proofness. �

Step 2. f i

�

(
R̄i , R−i

) − d < f i
�

(
R̃i , R−i

)
.

Proof There are two cases.

Case 2-1: f i
�

(
R̄i , R−i

)
< d.
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In this case, f i
�

(
R̄i , R−i

) − d < 0 ≤ f i
�

(
R̃i , R−i

)
.

Case 2-2: f i
�

(
R̄i , R−i

) ≥ d.

By contradiction, suppose that

f i
�

(
R̄i , R−i ) − d ≥ f i

�

(
R̃i , R−i ). (3)

Since R̄i ∈ RV
(
xi
�, x̄ i

−�, d
)
, by (a) of Definition 3, we have

f i (R̃i , R−i ) P̄i
(

f i
�

(
R̃i , R−i ) + d, p−�

(
R̄i )

)
.

By (3),

(
f i
�

(
R̃i , R−i ) + d, p−�

(
R̄i )

)
R̄i f i (R̄i , R−i ).

This implies

f i (R̃i , R−i ) P̄i f i (R̄i , R−i ),

contradicting strategy-proofness. �

Lemma 5 says that for a weakly symmetric and same-sided rule, and for each com-

modity, when two agents have the same preference, if the preference is d-indifferent to
all commodities except for that commodity, then their assignments of the commodity
differ by at most d.

Lemma 5 Let f be a weakly symmetric and same-sided rule. Let � ∈ M, d ∈ (
0,

W�

2n

)
,

x� ∈ X�, x−� ∈ X−�, R̃0 ∈ RV
(
x�, x−�, d

)
, i, j ∈ N, R̃i = R̃0 = R̃ j , and

R−i, j ∈ Rn−2. Then,

f i
�

(
R̃i, j , R−i, j ) − d < f j

�

(
R̃i, j , R−i, j ) < f i

�

(
R̃i, j , R−i, j ) + d. (4)

Proof Assume that p�

(
R̃i

) + p�

(
R̃ j

) + ∑
k∈N\{i, j} p�

(
Rk

) ≤ W�. (The same argu-

ment applies to the opposite case.) Then, by same-sideness, x� ≤ f i
�

(
R̃i, j , R−i, j

)
and

x� ≤ f j
�

(
R̃i, j , R−i, j

)
. The proof is in two steps.

Step 1. f j
�

(
R̃i, j , R−i, j

)
< f i

�

(
R̃i, j , R−i, j

) + d.

Proof There are two cases.

Case 1-1: f i
�

(
R̃i, j , R−i, j

)
> W� − d.

In this case, f i
�

(
R̃i, j , R−i, j

) + d > W� ≥ f j
�

(
R̃i, j , R−i, j

)
.

Case 1-2: f i
�

(
R̃i, j , R−i, j

) ≤ W� − d.
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By contradiction, suppose that

f j
�

(
R̃i, j , R−i, j ) ≥ f i

�

(
R̃i, j , R−i, j ) + d. (5)

Since R̃ j ∈ RV
(
x�, x−�, d

)
, by (a) of Definition 3, we have

f i (R̃i, j , R−i, j ) P̃ j
(

f i
�

(
R̃i, j , R−i, j ) + d, p−�

(
R̃ j )

)
.

By (5),

(
f i
�

(
R̃i, j , R−i, j ) + d, p−�

(
R̃ j )

)
R̃ j f j (R̃i, j , R−i, j ).

This implies

f i (R̃i, j , R−i, j ) P̃ j f j (R̃i, j , R−i, j ),

contradicting weak symmetry. �

Step 2. f i

�

(
R̃i, j , R−i, j

) − d < f j
�

(
R̃i, j , R−i, j

)
.

Proof There are two cases.

Case 2-1: f i
�

(
R̃i, j , R−i, j

)
< d.

In this case, f i
�

(
R̃i, j , R−i, j

) − d < 0 ≤ f j
�

(
R̃i, j , R−i, j

)
.

Case 2-2: f i
�

(
R̃i, j , R−i, j

) ≥ d.

By contradiction, suppose that

f i
�

(
R̃i, j , R−i, j ) − d ≥ f j

�

(
R̃i, j , R−i, j ). (6)

Since R̃i ∈ RV
(
x�, x−�, d

)
, by (a) of Definition 3, we have

f j (R̃i, j , R−i, j ) P̃i
(

f j
�

(
R̃i, j , R−i, j ) + d, p−�

(
R̃i )

)
.

By (6),

(
f j
�

(
R̃i, j , R−i, j ) + d, p−�

(
R̃i )

)
R̃i f i (R̃i, j , R−i, j ).

This implies

f j (R̃i, j , R−i, j ) P̃i f i (R̃i, j , R−i, j ),

contradicting weak symmetry. �
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The next lemma follows from Lemmas 4 and 5.

Lemma 6 Let f be a strategy-proof, weakly symmetric, and same-sided rule. Let
N̂ � N, i ∈ N \ N̂ , and K = N \ (

N̂ ∪ {i}). Let � ∈ M, d ∈ (
0,

W�

2n

)
, xi

� ∈ X�,

x̄ i
−�, x̃ i

−� ∈ X−�, R̄i ∈ RV
(
xi
�, x̄ i

−�, d
)
, R̃i ∈ RV

(
xi
�, x̃ i

−�, d
)
, and RK ∈ R|K |. For

each j ∈ N̂ , let R̃ j = R̃i . Then,

f i
�

(
RK , R̃ N̂ , R̄i ) − d < f i

�

(
RK , R̃ N̂ , R̃i ) < f i

�

(
RK , R̃ N̂ , R̄i ) + d, and (7)

f or each j ∈ N̂ , f i
�

(
RK , R̃ N̂ , R̄i ) − 2 · d < f j

�

(
RK , R̃ N̂ , R̃i )

< f i
�

(
RK , R̃ N̂ , R̄i ) + 2 · d. (8)

Proof Since R̄i ∈ RV
(
xi
�, x̄ i

−�, d
)
, R̃i ∈ RV

(
xi
�, x̃ i

−�, d
)
, and

(
RK , R̃ N̂

) ∈ Rn−1,

Lemma 4 implies (7). Next, we show (8). Let j ∈ N̂ . Since R̃ j = R̃i , R̃ j ∈
RV

(
xi
�, x̃ i

−�, d
)
, and

(
RK , R̃ N̂\{ j}) ∈ Rn−2, Lemma 5 implies that

f i
�

(
RK , R̃ N̂ , R̃i ) − d < f j

�

(
RK , R̃ N̂ , R̃i ) < f i

�

(
RK , R̃ N̂ , R̃i ) + d.

Now, (8) follows from (7). �


Step IV: We show that f� coincides with the single-commodity uniform rule on the
restricted domain R̄N

(
x−�

)
.

Lemma 7 Let f be a strategy-proof, unanimous, weakly symmetric, and nonbossy
rule. Then, for each � ∈ M, each x−� ∈ Z−�, each R ∈ R̄N

(
x−�

)
, and each i ∈ N,

f i
(
R
) = Ui

(
R
)
.

Proof Let � ∈ M . By same-sideness (Lemma 1), for each x−� ∈ Z−�, each R ∈
R̄N

(
x−�

)
, each i ∈ N , and each �′ �= �, we have f i

�′
(
R
) = xi

�′ = Ui
�′
(
R
)
. Thus

we only show that for each x−� ∈ Z−�, each R ∈ R̄N
(
x−�

)
, and each i ∈ N ,

f i
�

(
R
) = Ui

�

(
R
)
.

Let x−� ∈ Z−� and R ∈ R̄N
(
x−�

)
be such that

∑
i∈N p�

(
Ri

) = W�. Then, by the
definition of U , for each i ∈ N , Ui

�

(
R
) = p�

(
Ri

)
. By unanimity, for each i ∈ N ,

we have f i
�

(
R
) = p�

(
Ri

)
. Thus, for each x−� ∈ Z−�, each R ∈ R̄N

(
x−�

)
such that

∑
i∈N p�

(
Ri

) = W�, and each i ∈ N , we have f i
�

(
R
) = Ui

�

(
R
)
.

Next, we show that for each x−� ∈ Z−�, each R ∈ R̄N
(
x−�

)
such that

∑
i∈N p�

(
Ri

)
< W�, and each i ∈ N , we have f i

�

(
R
) = Ui

�

(
R
)
.

We introduce some notation. Given a preference profile R ∈ Rn , let π
(
R
) ≡

(
π1

(
R
)
, . . . , πn

(
R
))

be a permutation on N such that p�

(
Rπ1

(
R
)) ≥ · · · ≥

p�

(
Rπn

(
R
))

. We simply write π1, . . . , πn when we can omit R as an argument without
confusion. Let RN

�

(
0
)

be the set of preference profiles R such that
∑

i∈N p�

(
Ri

)
< W�
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and for each i ∈ N , p�

(
Ri

) ≤ W�

n . Given k ∈ {1, . . . , n − 1}, let RN
�

(
k
)

be the set of
preference profiles R such that

∑
i∈N p�

(
Ri

)
< W� and

p�

(
Rπ1

)
>

W�

n
,

p�

(
Rπ2

)
>

W� − p�

(
Rπ1

)

n − 1
,

· · ·
p�

(
Rπk

)
>

W� − ∑k−1
i=1 p�

(
Rπi

)

n − k + 1
, and

p�

(
Rπ j

) ≤ W� − ∑k
i=1 p�

(
Rπi

)

n − k
for each j ∈ {k + 1, . . . , n}.

Note that
⋃n−1

k=0 RN
�

(
k
) = {R ∈ Rn | ∑

i∈N p�

(
Ri

)
< W�}. For each k ∈

{0, 1, . . . , n − 1}, let RN
�

(
k, 0

)
be the subdomain of RN

�

(
k
)

such that for each
j ∈ {k + 1, . . . , n}, p�

(
Rπ j

) = 0.
For each k ∈ {0, 1, . . . , n − 1} and each x−� ∈ Z−�, let R̄N

(
k, x−�

) ≡ RN
�

(
k
) ∩

R̄N
(
x−�

)
. Note that for each x−� ∈ Z−�,

⋃n−1
k=0 R̄N

(
k, x−�

) = {R ∈ R̄N
(
x−�

) |
∑

i∈N p�

(
Ri

)
< W�}.

By induction, we will show that for each k ∈ {0, 1, . . . , n − 1}, each x−� ∈ Z−�,
each R ∈ R̄N

(
k, x−�

)
, and each i ∈ N , we have f i

�

(
R
) = Ui

�

(
R
)
. �


Step 1. For each x−� ∈ Z−�, each R ∈ R̄N
(
0, x−�

)
, and each i ∈ N, we have

f i
�

(
R
) = Ui

�

(
R
)
.

Proof Let x−� ∈ Z−� and R ∈ R̄N
(
0, x−�

)
. Then, by the definition of the uniform

rule U , for each i ∈ N , Ui
�

(
R
) = W�

n . We show that for each i ∈ N , f i
�

(
R
) = W�

n .

Let R̂ ∈ R̄N
(
x−�

)
be such that for each i ∈ N , p�

(
R̂i

) = 0. If for each i ∈ N ,

f i
�

(
R̂
) = W�

n , then, by group uncompromisingness (Lemma 3-ii), f
(
R̂
) = f

(
R
)
.

Thus, we only have to show that for each i ∈ N , f i
�

(
R̂
) = W�

n .

By contradiction, suppose that there is j ∈ N such that f j
�

(
R̂
)

>
W�

n . Without

loss of generality, let j = 1. Denote e1 ≡ f 1
�

(
R̂
) − W�

n , and for each k ∈ N \ {1},
let ek ≡ ek−1

n−k+2 . Then, (i) for each k ∈ N \ {1}, ek > 0 and ek < ek−1, (ii) for each
k ∈ {2, 3, . . . , n},

ek = e1
∏k−2

t=0 (n − t)
,

and (iii) for each k ∈ {2, 3, . . . , n},
ek−1

n − k + 1
− ek = e1

∏k−1
t=0 (n − t)

≥ e1

n! . (9)
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Let d ≡ e1
2·n! . For each i ∈ N , let R̄i ∈ RV

(
0, p−�

(
Ri

)
, d

)
, and R̄ ≡ (

R̄1, . . . , R̄n
)
.

Then, by peak-onlyness (Lemma 2), f
(
R̄
) = f

(
R̂
)
.

Let x̃−� ∈ X−�, R̃0 ∈ RV
(
0, x̃−�, d

)
, and R̃1

0 ≡ R̃0. �

Step 1-1. f 1

�

(
R̃1

0, R̄−1
) ≥ W�

n + e1 = f 1
�

(
R̂
)
.

Proof Suppose on the contrary that f 1
�

(
R̃1

0, R̄−1
)

<
W�

n + e1. Since f
(
R̄
) = f

(
R̂
)
,

we have f 1
�

(
R̄
) = W�

n + e1. Let Ř1 ∈ R be such that p
(
Ř1

) = p
(
R̄1

)
and

f 1
(
R̃1

0, R̄−1
)

P̌1 f 1
(
R̄
)
. Then, by peak-onlyness (Lemma 2), f 1

(
Ř1, R̄−1

) =
f 1

(
R̄
)
. Thus, f 1

(
R̃1

0, R̄−1
)

P̌1 f 1
(
Ř1, R̄−1

)
, contradicting strategy-proofness. �


Given N̂ ⊂ N , let R̃ N̂
0 be such that for each i ∈ N̂ , R̃i

0 = R̃0.

Step 1-2. For each k ∈ {1, 2, . . . , n},
(a) if k is even, then there is N̂ ⊂ N such that |N̂ | = k and for each

i ∈ N̂ , we have f i
�

(
R̃ N̂

0 , R̄−N̂
) ≤ W�

n − ek , and

(b) if k is odd, then there is N̂ ⊂ N such that |N̂ | = k and for each i ∈ N̂ ,

we have f i
�

(
R̃ N̂

0 , R̄−N̂
) ≥ W�

n + ek .

Proof The proof proceeds by induction on k. Let k ∈ {1, 2, . . . , n}. When k = 1, by
Step 1-1, we have already proven that (b) holds. Assume that k ≥ 2.

Case (a): k is even.

Our induction hypothesis is that there is N̄ ⊂ N such that |N̄ | = k − 1, and for
each i ∈ N̄ , f i

�

(
R̃ N̄

0 , R̄−N̄
) ≥ W�

n + ek−1.

Suppose that for each j ∈ N \ N̄ , f j
�

(
R̃ N̄

0 , R̄−N̄
)

>
W�

n − ek−1
n−k+1 . Then,

W� =
∑

i∈N

f i
�

(
R̃ N̄

0 , R̄−N̄ )
(by feasibility)

> (k − 1) ·
(

W�

n
+ ek−1

)

+ (n − k + 1) ·
(

W�

n
− ek−1

n − k + 1

)

= W� + (k − 2) · ek−1

≥ W�, (by k ≥ 2 and ek−1 > 0)

which is a contradiction.
Thus, there is j ∈ N \ N̄ such that f j

�

(
R̃ N̄

0 , R̄−N̄
) ≤ W�

n − ek−1
n−k+1 . Let N̂ ≡ { j}∪ N̄

and R̃ j
0 ≡ R̃0. Let i ∈ N̂ . Then,

f i
�

(
R̃ N̂

0 , R̄−N̂ )
< f j

�

(
R̃ N̄

0 , R̄−N̄ ) + 2 · d (by Lemma 6)

≤ W�

n
− ek−1

n − k + 1
+ 2 · d

= W�

n
− ek−1

n − k + 1
+ e1

n!
(

by d = e1

2 · n!
)

≤ W�

n
− ek . (by k ≥ 2 and (9))
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Case (b): k is odd.

Our induction hypothesis is that there is N̄ ⊂ N such that |N̄ | = k − 1, and for
each i ∈ N̄ , f i

�

(
R̃ N̄

0 , R̄−N̄
) ≤ W�

n − ek−1.

Suppose that for each j ∈ N \ N̄ , f j
�

(
R̃ N̄

0 , R̄−N̄
)

<
W�

n + ek−1
n−k+1 . Then,

W� =
∑

i∈N

f i
�

(
R̃ N̄

0 , R̄−N̄ )
(by feasibility)

< (k − 1) ·
(

W�

n
− ek−1

)

+ (n − k + 1) ·
(

W�

n
+ ek−1

n − k + 1

)

= W� − (k − 2) · ek−1

≤ W�, (by k ≥ 2 and ek−1 > 0)

which is a contradiction.
Thus, there is j ∈ N \ N̄ such that f j

�

(
R̃ N̄

0 , R̄−N̄
) ≥ W�

n + ek−1
n−k+1 . Let N̂ ≡ { j}∪ N̄

and R̃ j
0 ≡ R̃0. Let i ∈ N̂ . Then,

f i
�

(
R̃ N̂

0 , R̄−N̂ )
> f j

� (R̃ N̄
0 , R̄−N̄ ) − 2 · d (by Lemma 6)

≥ W�

n
+ ek−1

n − k + 1
− 2 · d

= W�

n
+ ek−1

n − k + 1
− e1

n!
(

by d = e1

2 · n!
)

≥ W�

n
+ ek . (by k ≥ 2 and (9))

Thus, Step 1-2 holds. �


Step 1-3. We derive a contradiction to conclude that for each i ∈ N, f i
�

(
R̂
) = W�

n .
Case 1: n is even.

Then, by Case (a) of Step 1-2, for each i ∈ N , f i
�

(
R̃N

0

) ≤ W�

n − en . Thus,

W� =
∑

i∈N

f i
�

(
R̃N

0

)
(by feasibility)

≤ n ·
(

W�

n
− en

)

< W�, (by en > 0)

which is a contradiction.
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Case 2: n is odd.

Then, by Case (b) of Step 1-2, for each i ∈ N , f i
�

(
R̃N

0

) ≥ W�

n + en . Thus,

W� =
∑

i∈N

f i
�

(
R̃N

0

)
(by feasibility)

≥ n ·
(

W�

n
+ en

)

> W�, (by en > 0)

which is a contradiction.
Therefore, for each i ∈ N , we have f i

�

(
R̂
) = W�

n .

Step 2. Let k ∈ {0, 1, . . . , n −2}. Assume that for each h ∈ {0, 1, . . . , k}, each x̂−� ∈
Z−�, each R̄ ∈ R̄N

(
h, x̂−�

)
, and each i ∈ N, we have f i

�

(
R̄
) = Ui

�

(
R̄
)
.

Then, for each R ∈ RN
� (k + 1, 0) and each i ∈ {π1, . . . , πk+1}, we have

f i
� (R) = p�

(
Ri

)
.

Proof Let R ∈ RN
� (k + 1, 0). Without loss of generality, assume that agents are

indexed so that p�

(
R1

) ≥ · · · ≥ p�

(
Rk+1

)
. Let K̄ ≡ {1, 2, . . . , k + 1}. �


Step 2-1. Let x̂−� ∈ Z−� and R̂ ∈ RN (x̂−�) be such that for each i ∈ N, p�(R̂i ) =
p�(Ri ). Then, for each i ∈ K̄ , we have f i

� (R̂) = p�(R̂i ).

Proof Let i ∈ K̄ . By contradiction, suppose that f i
�

(
R̂
) �= p�

(
R̂i

)
. By same-sideness

(Lemma 1), f i
�

(
R̂
)

> p�

(
R̂i

)
.

Let R̃i
0 ∈ R be such that p�

(
R̃i

0

) = 0 and p−�

(
R̃i

0

) = p−�

(
R̂i

)
. Then, by own

uncompromisingness (Lemma 3-i), f i
�

(
R̃i

0, R̂−i
) = f i

�

(
R̂
)
. Note that for some h ∈

{0, 1, . . . , k}, we have
(
R̃i

0, R̂−i
) ∈ R̄N

(
h, x̂−�

)
.

By the assumption of Step 2, f i
�

(
R̃i

0, R̂−i
) = Ui

�

(
R̃i

0, R̂−i
)
. Also, since R̂ ∈

RN
� (k + 1, 0), by the definition of the uniform rule U , we have Ui

�

(
R̂
) = p�

(
R̂i

)
.

Since p�

(
R̃i

0

) = 0 < p�(R̂i ), by the definition of U , we get Ui
�

(
R̃i

0, R̂−i
) ≤ Ui

�

(
R̂
)
.

Thus,

f i
�

(
R̃i

0, R̂−i ) = Ui
�

(
R̃i

0, R̂−i ) ≤ Ui
�

(
R̂
) = p�

(
R̂i

)
< f i

�

(
R̂
) = f i

�

(
R̃i

0, R̂−i ).

This is a contradiction. �

Step 2-2. For each i ∈ K̄ , we have f i

� (R) = p�

(
Ri

)
.

Proof Let R̄ ∈ Rn be such that for each i ∈ N , (i) p�

(
R̄i

) = p�

(
Ri

)
, (ii) p−�

(
R̄i

) =
f i
−�

(
R
)
, and (iii) UC

(
R̄i , f i

(
R
)) ⊂ UC

(
Ri , f i

(
R
))

and UC
(
R̄i , f i

(
R
)) ∩

LC
(
Ri , f i

(
R
)) = { f i

(
R
)}.

Then, by strategy-proofness, f 1
(
R̄1, R−1

) = f 1
(
R
)
. By nonbossiness,

f
(
R̄1, R−1

) = f
(
R
)
. Repeating this argument for i = 2, . . . , n, we have f

(
R̄
) =

f
(
R
)
.
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By feasibility, f−�

(
R
) ∈ Z−�. Since for each i ∈ N , p−�

(
R̄i

) = f i
−�

(
R
)
, we have

R̄ ∈ RN
(

f−�

(
R
))

. By Step 2-1 and for each i ∈ N , p�

(
R̄i

) = p�

(
Ri

)
, it follows that

for each i ∈ K̄ , f i
�

(
R̄
) = p�

(
R̄i

) = p�

(
Ri

)
. Since f

(
R̄
) = f

(
R
)
, for each i ∈ K̄ ,

we have f i
�

(
R
) = p�

(
Ri

)
. �


Step 3. For each k ∈ {1, 2, . . . , n − 2}, each x−� ∈ Z−�, each R ∈ R̄N
(
k, x−�

)
, and

each i ∈ N, we have f i
�

(
R
) = Ui

�

(
R
)
.

Proof The proof proceeds by induction on k. Let k ∈ {1, 2, . . . , n − 2}. Assume that

(A) For each h ∈ {0, 1, . . . , k − 1}, each x̂−� ∈ Z−�, each R̄ ∈ R̄N
(
h, x̂−�

)
, and

each i ∈ N, we have f i
�

(
R̄
) = Ui

�

(
R̄
)
.

By Step 1, we have already proven that (A) holds when k = 1. We will prove
that

(B) For each x−� ∈ Z−�, each R ∈ R̄N
(
k, x−�

)
, and each i ∈ N, we have f i

�

(
R
) =

Ui
�

(
R
)
.

Let x−� ∈ Z−� and R ∈ R̄N
(
k, x−�

)
. Without loss of generality, we may assume

that agents are indexed so that p�

(
R1

) ≥ · · · ≥ p�

(
Rn

)
. Let K ≡ {1, 2, . . . , k}.

Then, by the definition of the uniform rule U , for each i ∈ K , Ui
�

(
R
) = p�

(
Ri

)
,

and for each j ∈ N \ K , U j
�

(
R
) = W�−∑k

i=1 p�

(
Ri

)

n−k = λ�

(
R
)
. Note that, since

R ∈ R̄N
(
k, x−�

)
implies

∑
i∈N p�

(
Ri

)
< W�, we have λ�

(
R
)

> 0. We show that for
each i ∈ N , f i

�

(
R
) = Ui

�

(
R
)
.

Let R̂−K ∈ R|−K | be such that for each i ∈ N \ K , p�

(
R̂i

) = 0 and p−�

(
R̂i

) =
p−�

(
Ri

)
. Then, since the uniform rule U is group uncompromising, for each i ∈ N ,

Ui
�

(
RK , R̂−K

) = Ui
�

(
R
)
. If for each i ∈ N , f i

�

(
RK , R̂−K

) = Ui
�

(
RK , R̂−K

)
, then,

by group uncompromisingness (Lemma 3-ii), f
(
R
) = f

(
RK , R̂−K

)
. Thus, we only

have to show for each i ∈ N , f i
�

(
RK , R̂−K

) = Ui
�

(
RK , R̂−K

)
.

By (A) and Step 2, we have already proven that for each i ∈ K , f i
�

(
RK , R̂−K

) =
p�

(
Ri

)
. Thus, we only show that for each i ∈ N \ K , f i

�

(
RK , R̂−K

) = λ�

(
R
)
.

By contradiction, suppose that there is j ∈ N\K such that f j
�

(
RK , R̂−K

)
> λ�

(
R
)
.

Without loss of generality, assume that j = k + 1. Note that, since for each i ∈ K ,
f i
�

(
RK , R̂−K

) = p�

(
Ri

)
, and for each i ∈ {k + 2, . . . , n}, f i

�

(
RK , R̂−K

) ≥ 0, by

feasibility, f k+1
�

(
RK , R̂−K

) ≤ W� − ∑k
i=1 p�

(
Ri

)
.

Let e1 ≡ f k+1
�

(
RK , R̂−K

) − λ�

(
R
)
, and for each h ∈ {2, 3, . . . , n − k}, let eh ≡

eh−1
n−k−h+2 . Then, (i) for each h ∈ {2, 3, . . . , n − k}, eh > 0 and eh < eh−1, (ii) for each
h ∈ {2, 3, . . . , n − k},

eh = e1
∏h−2

t=0 (n − k − t)
,

and (iii) for each h ∈ {2, 3, . . . , n − k},
eh−1

n − k − h + 1
− eh = e1

∏h−1
t=0 (n − k − t)

≥ e1

(n − k)! . (10)
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Let d ≡ e1
2·(n−k)! . For each i ∈ N \ K , let R̄i ∈ RV

(
0, p−�

(
R̂i

)
, d

)
, and R̄−K ≡

(
R̄k+1, . . . , R̄n

)
. Then, by peak-onlyness (Lemma 2), f

(
RK , R̄−K

) = f
(
RK , R̂−K

)
.

Let x̃−� ∈ Z−�, R̃0 ∈ RV
0

(
0, x̃−�, d

)
, and R̃k+1

0 ≡ R̃0. �

Step 3-1. f k+1

�

(
RK , R̃k+1

0 , R̄−K∪{k+1}) ≥ λ�

(
R
) + e1 = f k+1

�

(
RK , R̂−K

)
.

Proof The proof is similar to Step 1-1. By contradiction, suppose not. Since
f
(
RK , R̄−K

) = f
(
RK , R̂−K

)
, we have f k+1

�

(
RK , R̄−K

) = λ�

(
R
) + e1. Let

Řk+1 ∈ R be such that p
(
Řk+1

)=p
(
R̄k+1

)
and f k+1

(
RK , R̃k+1

0 , R̄−K∪{k+1}) P̌k+1

f k+1
(
RK , R̄−K

)
. Then, by peak-onlyness (Lemma 2), f k+1

(
RK , Řk+1, R̄−K∪{k+1})

= f k+1
(
RK , R̄−K

)
. Thus, f k+1

(
RK , R̃k+1

0 , R̄−K∪{k+1}) P̌k+1 f k+1
(

RK , Řk+1,

R̄−K∪{k+1}
)

, contradicting strategy-proofness. �


Given N̂ ⊂ N \ K , let R̃ N̂
0 be such that for each i ∈ N̂ , R̃i

0 = R̃0.

Step 3-2. For each h ∈ {1, 2, . . . , n − k},
(a) if h is even, then there is N̂ ⊂ N \ K such that |N̂ | = h and for each

i ∈ N̂ , we have f i
�

(
RK , R̃ N̂

0 , R̄−K∪N̂
) ≤ λ�(R) − eh, and

(b) if h is odd, then there is N̂ ⊂ N \ K such that |N̂ | = h and for each

i ∈ N̂ , we have f i
�

(
RK , R̃ N̂

0 , R̄−K∪N̂
) ≥ λ�

(
R
) + eh.

Proof The proof is similar to Step 1-2, and proceeds by induction on h. Let h ∈
{1, 2, . . . , n − k}. When h = 1, by Step 3-1, we have already proven that (b) holds.
Assume that h ≥ 2.

Case (a): h is even.

Our induction hypothesis is that there is N̄ ⊂ N \ K such that |N̄ | = h − 1 and for
each i ∈ N̄ , f i

�

(
RK , R̃ N̄

0 , R̄−K∪N̄
) ≥ λ�

(
R
) + eh−1.

Suppose that for each j ∈ N\(K ∪N̄
)
, f j

�

(
RK , R̃ N̄

0 , R̄−K∪N̄
)

> λ�

(
R
)− eh−1

n−k−h+1 .

By (A) and Step 2, for each i ∈ K , f i
�

(
RK , R̃ N̄

0 , R̄−K∪N̄
) = p�

(
Ri

)
. Thus,

W� =
∑

i∈N

f i
�

(
RK , R̃ N̄

0 , R̄−K∪N̄ ) (
by feasibility

)

>
∑

i∈K

p�

(
Ri ) + (

h − 1
) · (

λ�

(
R
) + eh−1

)

+(n − k − h + 1) ·
(

λ�(R) − eh−1

n − k − h + 1

)

= W� + (h − 2) · eh−1 (by
∑

i∈K

p�

(
Ri ) + (n − k) · λ�(R) = W�)

≥ W�, (by h ≥ 2 and eh−1 > 0)

which is a contradiction. Thus, there is j ∈ N \ (
K ∪ N̄

)
such that f j

�

(
RK , R̃ N̄

0 ,

R̄−K∪N̄
)

≤ λ�

(
R
) − eh−1

n−k−h+1 .
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Let N̂ ≡ N̄ ∪ { j} and R̃ j
0 ≡ R̃0. Let i ∈ N̂ . Then,

f i
�

(
RK , R̃ N̂

0 , R̄−K∪N̂ )
< f j

�

(
RK , R̃ N̄

0 , R̄−K∪N̄ ) + 2 · d (by Lemma 6)

≤ λ�

(
R
) − eh−1

n − k − h + 1
+ 2 · d

= λ�

(
R
) − eh−1

n − k − h + 1
+ e1

(n − k)!
(

by d = e1

2 · (n − k)!
)

≤ λ�(R) − eh . (by h ≥ 2 and (10))

Case (b): h is odd.

Our induction hypothesis is that there is N̄ ⊂ N \ K such that |N̄ | = h − 1 and for
each i ∈ N̄ , f i

�

(
RK , R̃ N̄

0 , R̄−K∪N̄
) ≤ λ�(R) − eh−1.

Suppose that for each j ∈ N\(
K ∪N̄

)
, f j

�

(
RK , R̃ N̄

0 , R̄−K∪N̄
)

< λ�(R)+ eh−1
n−k−h+1 .

By (A) and Step 2, for each i ∈ K , f i
�

(
RK , R̃ N̄

0 , R̄−K∪N̄
) = p�

(
Ri

)
. Thus,

W� =
∑

i∈N

f i
�

(
RK , R̃ N̄

0 , R̄−K∪N̄ )
(by feasibility)

<
∑

i∈K

p�

(
R j ) + (h − 1) · (

λ�(R) − eh−1
)

+(n − k − h + 1) ·
(

λ�(R) + eh−1

n − k − h + 1

)

= W� − (h − 2) · eh−1
(

by
∑

i∈K

p�

(
Ri ) + (n − k) · λ�(R) = W�

)

≤ W�, (by h ≥ 2 and eh−1 > 0)

which is a contradiction. Thus, there is j ∈ N\(K∪N̄ ) such that f j
�

(
RK , R̃ N̄

0 , R̄−K∪N̄
)

≥ λ�(R) + eh−1
n−k−h+1 .

Let N̂ ≡ N̄ ∪ { j} and R̃ j
0 ≡ R̃0. Let i ∈ N̂ . Then,

f i
�

(
RK , R̃ N̂

0 , R̄−K∪N̂ )
> f j

�

(
RK , R̃ N̄

0 , R̄−K∪N̄ ) − 2 · d (by Lemma 6)

≥ λ�(R) + eh−1

n − k − h + 1
− 2 · d

= λ�(R) + eh−1

n − k − h + 1
− e1

(n − k)!
(

by d = e1

2 · (n − k)!
)

≥ λ�(R) + eh . (by h ≥ 2 and (10))

Thus, Step 3-2 holds.

Step 3-3. We derive a contradiction to conclude that for each i ∈ N \ K ,
f i
�

(
RK , R̂−K

) = λ�(R).

By (A) and Step 2, for each i ∈ K , f i
�

(
RK , R̃−K

0

) = p�

(
Ri

)
.
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A characterization of the uniform rule with several commodities and agents 903

Case 1: n − k is even.

Then, by Case (a) of Step 3-1, for each i ∈ N \ K , we have f i
�

(
RK , R̃−K

0

) ≤
λ�(R) − en−k . Thus,

W� =
∑

i∈N

f i
�

(
RK , R̃−K

0

)
(by feasibility)

≤
∑

i∈K

p�

(
Ri ) + (n − k) · λ�(R) − (n − k) · en−k

= W� − (n − k) · en−k

(

by
∑

i∈K

p�

(
Ri ) + (n − k) · λ�(R) = W�

)

< W�, (by n − k ≥ 2 and en−k > 0)

which is a contradiction.

Case 2: n − k is odd.

Then, by Case (b) of Step 3-1, for each i ∈ N \ K , we have f i
�

(
RK , R̃−K

0

) ≥
λ�(R) + en−k . Thus,

W� =
∑

i∈N

f i
�

(
RK , R̃−K

0

)
(by feasibility)

≥
∑

i∈K

p�

(
Ri ) + (n − k) · λ�(R) + (n − k) · en−k

= W� + (n − k) · en−k

(

by
∑

i∈K

p�

(
Ri ) + (n − k) · λ�(R) = W�

)

> W�, (by n − k ≥ 2 and en−k > 0)

which is a contradiction.
Therefore, for each i ∈ N \ K , we have f i

�

(
RK , R̂−K

) = λ�(R). �


Step 4. For each x−� ∈ Z−�, each R ∈ R̄N (n − 1, x−�), and each i ∈ N, we have
f i
� (R) = Ui

�(R).

Proof Let x−� ∈ Z−� and R ∈ R̄N (n − 1, x−�). Without loss of generality, we may
assume that p�(R1) ≥ · · · ≥ p�

(
Rn

)
. Then, by the definition of the uniform rule

U , for each i ∈ N \ {n}, Ui
�(R) = p�

(
Ri

)
, and U n

� (R) = W� − ∑n−1
i=1 p�

(
Ri

)
.

Let R̂n ∈ R be such that p�

(
R̂n

) = 0 and p−�

(
R̂n

) = p−�

(
Rn

)
. By Steps 1 and

3, when k = n − 2, we have already proven that the assumption of Step 2 holds.
Thus Step 2 implies that for each i ∈ N \ {n}, f i

�

(
R̂n, R−n

) = p�

(
Ri

)
. By fea-

sibility, f n
�

(
R̂n, R−n

) = W� − ∑n−1
i=1 p�

(
Ri

)
. Since

∑
i∈N p�

(
Ri

)
< W�, we have

W�−∑n−1
i=1 p�

(
Ri

)
> 0. Thus p�

(
R̂n

)
< f�

(
R̂n, R−n

)
. By own uncompromisingness

(Lemma 3-i), f (R) = f
(
R̂n, R−n

)
. Thus, for each i ∈ N , we have f i

� (R) = Ui
�(R).
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In the same way, we can also show that for each x−� ∈ Z−�, each R ∈ R̄N (x−�)

such that
∑

i∈N p�

(
Ri

)
> W�, and each i ∈ N , we have f i

� (R) = Ui
�(R).

We have completed the proof of Lemma 7. �

Step V: We complete the proof of Theorem 1 by extending the result of Step IV.

Let f be a strategy-proof, unanimous, weakly symmetric, and nonbossy rule. We
show that for each R ∈ Rn and each � ∈ M , f�(R) = U�(R). Let R ∈ Rn and � ∈ M .
Let R̄ ∈ Rn be such that for each i ∈ N , (i) p�

(
R̄i

) = p�

(
Ri

)
, (ii) p−�

(
R̄i

) =
f i
−�(R), and (iii) UC

(
R̄i , f i (R)

) ⊂ UC
(
Ri , f i (R)

)
and UC

(
R̄i , f i (R)

) ∩
LC

(
Ri , f i (R)

) = { f i (R)}. By strategy-proofness, f 1
(
R̄1, R−1

) = f 1(R). By non-
bossiness, f

(
R̄1, R−1

) = f (R). Repeating this argument for i = 2, . . . , n, we have
f
(
R̄
) = f (R).

By feasibility, f−�(R) ∈ Z−�. Since for each i ∈ N , p−�

(
R̄i

) = f i
−�(R), we have

R̄ ∈ R̄N
(

f−�(R)
)
. Thus, Lemma 7 implies f�(R̄) = U�(R̄). Since the uniform rule is

peak-only, U�

(
R̄
) = U�(R). Thus, f�

(
R̄
) = U�(R). Since f

(
R̄
) = f (R), we obtain

f�(R) = U�(R).

4 Concluding remarks

We considered the problem of allocating several infinitely divisible commodities
among agents with continuous, strictly convex, and separable preferences. We estab-
lished that on this class of preferences, a rule satisfies strategy-proofness, unanimity,
weak symmetry, and nonbossiness if and only if it is the uniform rule. This result ex-
tends to the class of continuous, strictly convex, and multidimensional single-peaked
preferences. We conclude by commenting on future research.

As we discussed in Remark 2, the only if part of Theorem 1 fails if we drop any
of the first three axioms. However, it is an open question whether the uniqueness
part of Theorem 1 holds without nonbossiness. By applying the proof techniques that
we developed in the previous version of this article,32 Adachi (2010) characterized
the uniform rule by means of strategy-proofness, same-sideness, and no-envy in the
multiple-commodity model with more than two agents. His axioms do not include
nonbossiness. However, since unanimity and weak symmetry are weaker than same-
sideness and no-envy respectively, our result is independent of his, and the question
we raised above remains open.

In the one-commodity case, since the uniform rule is nonbossy, strategy-proof-
ness, same-sideness, and weak symmetry imply nonbossiness (Sprumont 1991; Ching
1994). Moreover, effective pairwise strategy-proofness and unanimity imply nonbos-
siness (Serizawa 2006).33 Therefore, it is also an open question whether these logical
relationships for the one-commodity case extend to the multiple-commodity case.

32 The previous version was published as a Discussion Paper. See Morimoto et al. (2010).
33 Effective pairwise strategy-proofness requires that rules are strategy-proof and that no pair of agents can
increase the welfare of any agent of the pair without decreasing the welfare of the other member of the pair,
and neither member of the pair has an incentive to betray his partner. Serizawa (2006) characterized the
uniform rule by effective pairwise strategy-proofness, unanimity, and weak symmetry.
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A characterization of the uniform rule with several commodities and agents 905

As we discussed in Sect. 1, in contrast to the one-commodity model, strategy-proof-
ness is not compatible with Pareto-efficiency under distributional properties such as
weak symmetry in the multiple-commodity model. Thus, we gave up Pareto-efficiency,
and imposed the weaker property of unanimity. Another interesting research direction
is to relax strategy-proofness. One such research is to investigate desirable allocation
rules by employing the property of Maskin monotonicity (for example, see Thomson
2010) instead of strategy-proofness.

It is worthwhile to comment on whether our characterization results of the uni-
form rule hold on smaller domains. For example, the domain of continuous, strictly
convex, and additive symmetric single-peaked preferences is an interesting subclass
of our preference domain.34 In the one-commodity case, Mizobuchi and Serizawa
(2006) show that the uniform rule is a unique rule satisfying strategy-proofness, same-
sideness, and weak symmetry on the symmetric single-peaked domain.35 One might
wonder whether our proof techniques can be applied to obtain the same result as
Mizobuchi and Serizawa (2006) in the multiple-commodity case. However, our proof
techniques cannot be applied on the domain of continuous, strictly convex, and addi-
tive symmetric single-peaked preferences since our proofs employ asymmetric prefer-
ences. Another way to obtain the same result would be to extend the proof techniques
of Mizobuchi and Serizawa (2006) to the multiple-commodity case. In Introduction,
we discussed the difficulty of characterizing strategy-proof rules in the model with
multiple agents and commodities. The same reason makes it difficult to extend the
proof techniques of Mizobuchi and Serizawa (2006) to the multiple-commodity case.
It is still an open question whether our results hold on smaller domains.

Appendix A

In Appendix A, we show the existence of strict Maskin monotonic transformations
used in the proofs of Corollary 1, Case 1 and 2 of Lemma 1, Step 2-2 of Lemma 7,
and Step V in the proof of Theorem 2.

The following fact shows the existence of strict Maskin monotonic transformations.

Fact A Let Ri ∈ R, x ∈ X \ {p(Ri )}, and y ∈ X \ {x} be such that for each � ∈ M,
either p�(Ri ) ≥ y� ≥ x� or p�(Ri ) ≤ y� ≤ x�. Then, there is R̂i ∈ R such that
p(R̂i ) = y and R̂i is a strict Maskin monotonic transformation of Ri at x.

Proof of Fact A We can construct such a preference by composing several preferences
with the peak point y (see Fig. 5). We only prove this fact for the two-commodity case.
Let M = {1, 2}. Applying the similar arguments to the two-commodity case, we can
show that such a transformation exists for the more than two-commodity case.

Note that, there is a preference relation Ri
e on R

m such that (i) Ri
e is continuous,

strictly convex, and separable, and (ii) Ri
e is equivalent to Ri on X , that is, for each

34 A preference Ri is additive symmetric single-peaked if there are symmetric single-peaked functions
{v� : X� → R}�∈M such that for each x, y ∈ X , x Ri y if and only if

∑
�∈M v�(x�) ≥ ∑

�∈M v�(y�).
35 More precisely, they establish the characterization result of the uniform rule on a minimally rich domain.
The domain of symmetric single-peaked preferences is a minimally rich domain.
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Fig. 5 Illustration of constructing a strict Maskin monotonic transformation of Ri at x in Fact A

x̂, ŷ ∈ X , x̂ Ri
e ŷ if and only if x̂ Ri ŷ. Assume that there is a preference relation

R̂i
e on R

m that is a strict Maskin monotonic transformation of Ri
e at x with peak y.

Consider the restriction R̂i of R̂i
e to X , that is, for each x̂, ŷ ∈ X , x̂ R̂i ŷ if and only if

x̂ R̂i
e ŷ. Then, R̂i is a strict Maskin monotonic transformation of Ri at x defined over

X . Thus, we only show the existence of a strict Maskin monotonic transformation R̂i
e

of Ri
e at x with peak y.

Without loss of generality, assume that for each � ∈ M , p�(Ri ) ≤ x�. Then, for
each � ∈ M , p�(Ri ) ≤ y� ≤ x�. The proof of Fact A consists of two steps.

Step 1. Construction of R̂i
e.

Let

x1 ≡ max
{

x ′
1 ∈ R | (

x ′
1, y2

)
I i
e x

}
, x2 ≡ max

{
x ′

2 ∈ R | (
y1, x ′

2

)
I i
e x

}
,

x1 ≡ min
{

x ′
1 ∈ R | (

x ′
1, y2

)
I i
e x

}
, x2 ≡ min

{
x ′

2 ∈ R | (
y1, x ′

2

)
I i
e x

}
,

d1 ≡ x1 − x1, d2 ≡ x2 − x2,

ad1 ≡

⎧
⎪⎨

⎪⎩

(
x2−y2

)2

2·d1·
(

x1−y1

) if d1 > 0,

0 if d1 = 0,

ad2 ≡

⎧
⎪⎨

⎪⎩

(
x1−y1

)2

2·d2·
(

x2−y2

) if d2 > 0,

0 if d2 = 0.

Let a > max{ad1 , ad2}. Note that a > 0. Let Ri
ua

1
and Ri

ua
2

be preferences represented

by the separable and quadratic utility functions ua
1 and ua

2 with peak y and parameter
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A characterization of the uniform rule with several commodities and agents 907

a defined as follows, respectively: for each x̂ ∈ X ,

ua
1(x̂) ≡ −a · (x̂1 − y1)

2 − (x̂2 − y2)
2, and ua

2(x̂) ≡ −(x̂1 − y1)
2 − a · (x̂2 − y2)

2.

Note that, for large a > 0, the preference Ri
ua

�
is almost indifferent to all commodity

except for commodity �. Let B+(y) ≡ {
x ′ ∈ R

m | y1 ≤ x ′
1 and y2 ≤ x ′

2

}
, and

Ū+(x) ≡ UC
(
Ri

ua
1
, x

) ∩ UC
(
Ri

ua
2
, x

) ∩ B+(y).

Let x̃1 ∈ (
x1, y1

)
, x̃2 ∈ (

x2, y2
)
, and let x̂(1), x̂(2) ∈ R

m+ be such that

ua
1

(
x̂(1)

) = ua
1(x), x̂1(1) ≥ y1, x̂2(1) = y2,

and ua
2

(
x̂(2)

) = ua
2(x), x̂1(2) = y1, x̂2(2) ≥ y2.

Finally, let Ri
0 be a continuous, strictly convex, and separable preference on R

m such
that p

(
Ri

0

) = y, UC
(
Ri

0, x̂(1)
) ⊂ SUC

(
Ri

e, x
)
, UC

(
Ri

0, x̂(1)
) ∩ B+(y) ⊂ Ū+(x),

and x̂(1) I i
0 x̂(2) I i

0 (x̃1, y2) I i
0

(
y1, x̃2

)
.36

Let R̂i
e be a continuous, strictly convex, and separable preference on R

m such that
p
(
R̂i

e

) = y and UC
(
R̂i

e, x
) ≡ Ū+(x) ∪ UC

(
Ri

0, x̂(1)
)
.

Step 2. R̂i
e is a strict Maskin monotonic transformation of Ri

e at x.

Since UC
(
Ri

0, x̂(1)
) ⊂ SUC

(
Ri

e, x
)
, for each z ∈ UC

(
R̂i

e, x
) \ Ū+(x), we have

z Pi
e x . Next, we show that UC

(
R̂i

e, x
) ∩ LC

(
Ri

e, x
) ∩ B+(y) = {x}. By contra-

diction, suppose that there is z �= x such that z ∈ UC
(
R̂i

e, x
) ∩ B+(y) and z ∈

LC
(
Ri

e, x
) ∩ B+(y). If for each � ∈ M , y� ≤ z� ≤ x�, then z Pi

e x , which con-
tradicts z ∈ LC

(
Ri

e, x
)
. Thus, there is � ∈ M such that z� > x�. Without loss of

generality, assume that � ≡ 1. Let w̄ ≡ (
x1 + d̄1, y2

)
, and for each ā ∈ [0, 1), let

zā ≡ ā · x + (1 − ā) · w̄. Let ā ∈ [0, 1). Then, by a > max{ad1 , ad2},

ua
1

(
zā) = −a

((
x1 − y1

) + (1 − ā)d̄1
)2 − ā

(
x2 − y2

)2

= −a
(
x1 − y1

)2 − 2a(1 − ā)d̄1
(
x1 − y1

) − a
(
1 − ā

)2
d̄2

1 − ā
(
x2 − y2

)2

≤ −a
(
x1 − y1

)2 − 2a
(
1 − ā

)
d̄1

(
x1 − y1

)

−ā
(
x2 − y2

)2 by a > 0, ā < 1, d̄� ≥ 0

< −a
(
x1 − y1

)2 −
(
x2 − y2

)2

2 · d1 · (
x1 − y1

) · 2
(
1 − ā

)
d̄1

(
x1 − y1

)

−ā
(
x2 − y2

)2 by a > ad1

= ua
1(x).

36 SUC
(
Ri , y

)
(SLC

(
Ri , y

)
) denotes the strict upper (lower) contour set of Ri at y, that is, SUC

(
Ri , y

) ≡
{x ∈ X | x Pi y}.
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Since z ∈ UC
(
R̂i

e, x
)
, ua

1(z) ≥ ua
1(x) > ua

1

(
zā

)
. Thus, for each ā ∈ [0, 1), ua

1(z) >

ua
1(zā). Since z ∈ LC

(
Ri

e, x
)
, x Ri

e z. By strictly convexity of Ri
e, for each ā ∈ [0, 1),

zā Ri
e z. Let z̄ ∈ X be such that z̄2 ≡ z2 and there is â ∈ [0, 1) such that z̄ ≡ zâ .

Then, ua
1(z) > ua

1(z̄) implies z̄1 > z1. Thus, z Pi
e z̄ Ri

e z, which is a contradiction. �


Appendix B

As we noted in Remark 4, in the two-agent case, the domain R2 of continuous, strictly
convex, and separable preferences does not satisfy indirect sequential inclusion intro-
duced by Barberà et al. (2010). In Appendix B, we give an example illustrating the
violation of indirect sequential inclusion of our preference domain.

First, we introduce the condition on preference profile, called “sequential inclu-
sion”. Given a preference relation Ri on X , let R̂(Ri ) be a preference relation on
X such that for each y, z ∈ X , y R̂(Ri ) z if and only if (W − y) Ri (W − z),
and P̂(Ri ) and Î (Ri ) be the strict and indifferent preference relation associated with
R̂(Ri ), respectively.

Sequential inclusion: A preference profile (R1, R2) in a domain R̂2 satisfies sequen-
tial inclusion if for each y, z ∈ X , if y P1 z and y P̂(R2) z, then either LC(R1, z) ⊂
SLC(R̂(R2), y) or LC(R̂(R2), z) ⊂ SLC(R1, y).

The following is the definition of indirect sequential inclusion defined on a domain
R̂2.

Indirect sequential inclusion: For each (R1, R2) ∈ R̂2,

(a) (R1, R2) satisfies sequential inclusion, or
(b) for each y, z ∈ X , there is (R̂1, R̂2) ∈ R̂2 such that

(b-1): R̂1 and R̂2 are the strict Maskin monotonic transformations of R1 and
R2 at z and (W − z), respectively.

(b-2): y P̂
1

z and y P̂(R̂2) z, and
(b-3): either LC(R̂1, z) ⊂ SLC(R̂(R̂2), y) or LC(R̂(R̂2), z) ⊂ SLC(R̂1, y).

The following example says that our preference domain R2 does not satisfy indirect
sequential inclusion.

Example 7 (See Fig. 6) Let N ≡ {1, 2}, M ≡ {1, 2}, y ≡ W , and z ≡ (0, 0). Let(
R1, R2

) ∈ R2 be such that p
(
R1

) ≡ (0, W2) ≡ p
(
R2

)
, (1) y I 1

(
0, W2

2

)
P1

(
W1,

W2
2

)
I 1 z, and (2) y Î

(
R2

) ( W1
2 , 0

)
P̂

(
R2

) ( W1
2 , W2

)
Î
(
R2

)
z. We show that the

profile
(
R1, R2

)
violates the requirement (a) and (b) of indirect sequential inclusion.

The proof consists of two steps.

Step 1. The preference profile (R1, R2) does not satisfy sequential inclusion.

Note that y P1 z and y P̂
(
R2

)
z. Since p

(
R̂
(
R2

)) = (
W1, 0

)
,

(
W1, 0

)
/∈

SLC
(
R̂
(
R2

)
, y

)
. However,

(
W1, 0

) ∈ LC
(
R1, z

)
. Thus, LC(R1, z) is not included

in SLC(R̂(R2), y). Also, since p
(
R1

) = (
0, W2

)
,
(
0, W2

)
/∈ SLC

(
R1, y

)
. How-

ever, (0, W2) ∈ LC
(
R̂
(
R2

)
, z

)
. Thus, LC

(
R̂
(
R2

)
, z

)
is not included in SLC

(
R1, y

)
.

Therefore, the preference profile
(
R1, R2

)
does not satisfy sequential inclusion.
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Fig. 6 Illustration of
(
R1, R2)

and
(
R̂1, R̂2)

in Example 7

Step 2. There is no
(
R̂1, R̂2

) ∈ R2 satisfying conditions (b-1), (b-2), and (b-3).

By contradiction, suppose that there is
(
R̂1, R̂2

) ∈ R2 satisfying (b-1), (b-2) and
(b-3).

First, we show that the inclusion LC(R̂1, z) ⊂ SLC
(
R̂
(
R̂2

)
, y

)
does not hold.

By (b-1), (b-2), and (W1,
W2
2 ) I 1 z, there is x1 ∈ [0, W2] such that

(
W1, x1

)
Î 1 z

and W2
2 < x1. Note that (b-2) implies x1 < W2. Let m̄

(
x1

) ≡ 1
2 · ( W2

2 + x1).

Then,
(
W1, m̄

(
x1

)) ∈ LC
(
R̂1, z

)
. Since p

(
R2

) = (
0, W2

)
and (b-1), p2

(
R̂2

) = W2,

and so, p2
(
R̂
(
R̂2

)) = 0. Thus, p1
(
R̂
(
R̂2

)) ≤ W1 = y1 and p2
(
R̂
(
R̂2

)) = 0 <

m̄
(
x1

)
< W2 = y2. Then, since

(
W1, m̄

(
x1

))
P̂

(
R̂2

)
y, we have

(
W1, m̄

(
x1

))
/∈

SLC
(
R̂
(
R̂2

)
, y

)
. Thus, the inclusion LC

(
R̂1, z

) ⊂ SLC
(
R̂
(
R̂2

)
, y

)
does not hold.

Next, we show that the inclusion LC
(
R̂
(
R̂2

)
, z

) ⊂ SLC
(
R̂1, y

)
does not hold. By

(b-1), (b-2), and
( W1

2 , W2
)

Î
(
R2

)
z, there is x2 ∈ [0, W1] such that

(
x2, W2

)
Î
(
R̂2

)
z

and W1
2 < x2. Note that (b-2) implies x2 < W1. Let m̄

(
x2

) ≡ 1
2 · ( W1

2 + x2
)
.

Then
(
m̄

(
x2

)
, W2

) ∈ LC
(
R̂
(
R̂2

)
, z

)
. Since p

(
R1

) = (
0, W2

)
and (b-1), p1

(
R̂1

) =
0. Thus, p1

(
R̂1

) = 0 < m̄
(
x2

)
< W1 = y1 and p2

(
R̂1

) ≤ W2 = y2. Then,

since
(
m̄

(
x2

)
, W2

)
P̂1 y, we have

(
m̄

(
x2

)
, W2

)
/∈ SLC

(
R̂1, y

)
. Thus, the inclusion

LC
(
R̂
(
R̂2

)
, z

) ⊂ SLC
(
R̂1, y

)
also does not hold. This is a contradiction to (b-3).
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