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Abstract We take a decision theoretic approach to the classic social choice problem,
using data on the frequency of choice problems to compute social choice functions.
We define a family of social choice rules that depend on the population’s preferences
and on the probability distribution over the sets of feasible alternatives that the society
will face. Our methods generalize the well-known Kemeny Rule. In the Kemeny Rule,
it is known a priori that the subset of feasible alternatives will be a pair. We define
a distinct social choice function for each distribution over the feasible subsets. Our
rules can be interpreted as distance minimization—selecting the order closest to the
population’s preferences, using a metric on the orders that reflects the distribution
over the possible feasible sets. The distance is the probability that two orders will
disagree about the optimal choice from a randomly selected available set. We provide
an algorithmic method to compute these metrics in the case where the probability of
a given feasible set is a function only of its cardinality.

1 Introduction

This article attempts to unify social choice theory with decision theory. In the tradition
of Arrow (1951), the objective in social choice theory is to aggregate the ordinal pref-
erences of a population into a single ordinal preference that represents this population.
Given any subset of the alternatives, society’s choice from that subset is the best ele-
ment, according to this representative order. In this way, society’s choice function will
appear to be rational. In decision theory, the focus of the analysis is that the choice
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problem to be faced is not known with certainty. Decision theory seeks rules to make
decisions in all problems, with the understanding that a good rule will make good
choices in most problems, or in frequently encountered problems, but may make bad
choices in some, perhaps less likely problems. In this article, the social ordering used
to represent a population’s preferences is calculated using the frequencies with which
different problems will be faced—combining the problem of social choice with the
problem of decision theory.

This approach to social choice theory and decision theory is a generalization
of that taken by Kemeny. Kemeny (1959) [see also Kemeny and Snell (1962),
Young (1988), and the axiomatization of Young and Levenglick (1978)] studies the
mapping that maximizes the probability that a randomly selected member of the pop-
ulation would agree with the choice made by the social ordering, when the feasible set
is known to be a pair of alternatives and all pairs are equally likely. Our generalization
is to allow all distributions over subsets of alternatives. Our criterion is the same as
Kemeny’s: maximizing the probability of agreement with the social order. Kemeny
shows that the assent-maximizing order that solves his problem can be characterized
as a distance-minimizer in the space of all orders. The distance used is the Kendall τ

distance.1 Kemeny, Kemeny–Snell, and Young–Levenglick were motivated by Con-
dorcet’s wish to “break” cycles in pairs in the least intrusive way possible, reversing
pairwise choices that are supported by weak majorities. In this article we adopt the
same approach, but we do not restrict the problems to pairs. We define a metric on
the space of orders that plays the same role for us as the Kendall τ distance does for
the Kemeny rule. Our metric depends on the probability distribution over the feasible
sets. As in Kemeny’s case, it can be interpreted as the probability that a given pair of
orders will make the same choice from the feasible set.

We provide a computational technique to calculate our metrics. The Kendall τ dis-
tance is the minimal number of adjacent pairs of alternatives that have to be reversed
to go from one preference to another. Our metrics are determined by similar counts
of pairwise exchanges. However, the position in the order at which these reversals are
made is relevant for us, not merely the total number of reversals.

The article proceeds as follows. In Sect. 2, we define our social choice rules. We call
them assent-maximizing because we construct them using metrics that measure the
probability that a pair of orders will agree on the choice at a randomly selected feasible
set. In Sect. 3, we show how these social welfare functions compare to Kemeny’s Rule
and to other well-known families of social welfare functions such as the scoring rules.
Through a series of examples, we explore the dependence of the expected assent-max-
imizing order on the distribution of problems to be faced. We also study the special
case in which, as in Kemeny’s model, the distribution is only a function of the cardi-
nality of the number of available alternatives. We show that if the assent-maximizing
social welfare function is invariant to all distributions over problems then the plurality
winners at each problem are consistent with the assent-maximizing order at every
subset. Conversely, if the plurality winners at every problem are consistent with an
order over the alternatives then this order will be the assent-maximizing social welfare

1 Under this metric, the distance between two orders is the number of the pairwise disagreements between
them. It is also known as the Dodgson distance, the bubble sort distance, or the inversion distance.
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function at every distribution. However, when we restrict attention to the case where
the probability of a given available set is determined by its cardinality, this equivalence
does not hold: there are populations at which the assent-maximizing order is invariant
over this smaller family of distributions but the plurality winners are inconsistent with
any order.

2 Assent-maximizing social welfare functions and the measurement of conflict

The space of alternatives is denoted X = {a1, a2, . . . , an}. A preference π over
X is identified with both an ordering of the elements of X and with a permutation
of the integers {1, . . . , n}. The set of all n! preferences over X is denoted �. Thus,
π = (aπ(1)aπ(2) . . . aπ(n)) represents the preference in which ai is preferred to a j if
and only if π−1(i) < π−1( j). We will say in this case that ai precedes a j in the
order determined by π . We will also say that if π = (π1 . . . πi . . . πn) the alternative
πi = aπ(i) is in position i .

We will refer to the natural ordering of the alternatives as the element e =
(a1a2 . . . an) ∈ � and the associated permutation is the identity e(i) = i for all
i = 1, . . . , n.

Let the set of all non-empty subsets of X be denoted X . Typically, we denote a set
of feasible alternatives by A ∈ X . Given a preference π let cπ (A) be the element in
A that precedes all other elements in A according to π . The function cπ : X → X is
the rational choice function generated by the preference π .

Let ν be a probability distribution over X . We define our measure of conflict
between preferences as

f (π, π ′; ν) = ν{A ∈ X |cπ (A) �= cπ ′(A)}

A population of preferences is a probability distribution λ over the set of all pref-
erences �. Let � be the set of all populations. A social welfare function is a cor-
respondence that assigns a set of preferences to each population. We will define a set
of social welfare functions that we call assent-maximizing. Each assent-maximizing
social welfare function π∗(λ, ν) depends on the distribution ν over the set of choice
problems that might be faced.

Given a population λ and a probability distribution ν, we can describe the level
of expected conflict between a randomly drawn member of the population and any
potential candidate for a social ordering. Let the frequency of expected conflict
between a candidate social ordering π ′ and individual preferences in the popu-
lation λ be defined by

q(π ′, λ, ν) = ∑

π

f (π, π ′; ν)λ(π) (1)

Using this notation, the assent-maximizing social welfare function is defined as
the set of social orderings that minimize this expected conflict

π∗(λ, ν) = arg min
π ′ q(π ′, λ, ν) (2)
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In our model, the preference aggregation operates before the feasible set is deter-
mined, and depends upon the probability distribution over feasible sets. The rule selects
a preference that will be operative at all feasible sets, in such a way that the largest
fraction of the population, on average, agrees with the choice that this preference will
make when a problem arrives.

The determination of π∗(λ, ν) is straightforward once f (π, π ′; ν) is known. For
general probability distributions ν, f (π, π ′; ν) must be calculated at each pair of
preferences. However, when ν(A) depends only on the cardinality of A, as in Kem-
eny’s case where υ(a) = 1

n(n−1)
at every A with cardinality 2 and zero other-

wise, f is a form of distance on �. In this case, we will say that ν is exchange-
able. Exchangeable ν can be summarized by the distribution of the cardinality of
the feasible set, or the size distribution of the feasible set, μ = (μ1, . . . , μn). For
every probability vector μ there is one exchangeable distribution of the feasible set
and in that distribution all sets A with cardinality i are equally likely and collec-
tively have probability μi . We will denote Kemeny’s case, in which it is sure that
the feasible set will contain exactly two alternatives, by μK = (0, 1, 0, . . . , 0). If
ν is exchangeable and we want to emphasize the dependence of the social choice
on the size distribution μ of the set of alternatives, we will write the assent-maxi-
mizing social welfare function as a function of μ, with the slight abuse of notation
π∗(λ, μ).

In Appendix 1, we show that when ν is exchangeable we can give an explicit
formula for f and an algorithm to compute it. We will use the exchangeable case
in several examples, to contrast the properties of assent-maximizing social welfare
functions with other rules and to study the dependence on ν more explicitly. In work-
ing out these examples, we will employ the computational methods described in the
Appendix. Our results and the spirit of our analysis, however, do not depend on the
exchangeability of ν.

It is possible that two preferences will have the same average assent in the popu-
lation, but this is a non-generic event in the space � of all probability distributions
over �. Therefore, assuming μ2 > 0, each assent-maximizing social welfare function
can be regarded as a partition of � into subsets on which π∗(λ, ν) is a constant with
respect to λ.

When (1) is evaluated at the assent-maximizing social welfare function we have
the measure of conflict with assent-maximization

Q(λ, ν) = q(π∗(λ, ν), λ, ν) = ∑

π

f (π, π∗; ν)λ(π) (3)

The measure Q corresponds to the “goodness of fit” of the social preference to the
population of individual preferences.

Given a population λ, we can also define the measure of internal conflict

M(λ, ν) = ∑

π

∑

π ′
λ(π)λ(π ′) f (π, π ′; ν) (4)

The measure M does not depend on a social ordering. It is a direct measure of the
diversity of preferences within the population.
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3 Properties of assent-maximizing social welfare functions and examples

We first discuss the relationship of the social ordering that is produced by our measures
with that produced by the Kemeny method. In the Kemeny method, ν is exchangeable
and concentrated on the family of all pairs. The size distribution of the feasible set is
denoted μK . We will frequently contrast μK with another special case, where all sets
of cardinality two or greater are equally likely, and we denote this size distribution
by μE . Similar examples can be constructed for many other size distributions. The
important point is that larger potential feasible sets will generate a different pattern of
agreement than if only pairs are possible.

Example 1 Maximizing assent to plurality-induced choices

This is our basic example where we show that the Kemeny method can lead to
substantially less average assent then the assent-maximizing social welfare function
determined by ν. This phenomenon is increasingly prevalent when larger feasible sets
are likely. We take the case of equally likely feasible sets for concreteness, with n = 3
and μ = μE = (0, 3

4 , 1
4 ).

The population λ is concentrated on three of the six orderings in � according to the
distribution: λ((a1a2a3)) = 0.49, λ((a3a2a1)) = 0.48, λ((a2a3a1)) = 0.03. This
distribution exhibits the tension between selecting the ordering consistent with the
transitive majority relation (Condorcet Consistency) and selecting the Plurality win-
ner from the three-alternative set A = X . Using plurality rule on every subset, the
choice function would be

c({a1, a2}) = a2

c({a1, a3}) = a3

c({a2, a3}) = a2

c({a1, a2, a3)} = a1

Condorcet Consistency requires that the social ordering be (a2a3a1), as the major-
ity choices from the pairs are transitive. But this ordering does not describe the result
of plurality rule when all three alternatives are available, as a1, not a2, is the plurality
choice from the order three subset. This illustrates a well-known, important point:
populations that satisfy Condorcet Consistency will not necessarily generate plurality
choice functions that are consistent with an ordering. Thus, if the social choice pro-
cedure must produce an ordering, it will have to make trade-offs between matching
plurality choices on subsets of various sizes. The Kemeny method selects the ordering
π = (a2a3a1), which implies a choice of c({a1, a2, a3}) = a2, supported by just 3% of
the population. If A = {a1, a2, a3} never arises, then this choice from the triple does not
create any expected dissent. If A = {a1, a2, a3} may arise, however, expected assent
may be maximized by an ordering that has a1 as its top element instead of a2. When all
subsets with two or more elements are equally likely, we have π∗(λ, μE ) = (a1a2a3),
implying a choice of a1 from A = {a1, a2, a3} that is supported by 49% of the popu-
lation. This gain of 46% in expected support for the social choice at A = {a1, a2, a3}
more than outweighs the decrease of 1 or 2% in support that occurs when {a1, a2} or

123



444 K. A. Baldiga, J. R. Green

{a1, a3} are the feasible sets. Assent-maximization with μE sacrifices matching the
majority preference on two of the three pairs problems to better match the population
preferences in the case where all three alternatives are available. ��

Example 1 emphasizes the tension between assent-maximization and the ordering
requirement. In these cases, we need to consult the distribution ν when forming a social
ordering. On the other hand, when the plurality choice from each A is explainable by
an ordering, that is, when there exists π̂ such that cπ̂ (A) coincides with the plurality
winner at every A ∈ X , then this tension does not exist and, as the following Theorem
states, the social ordering should be independent of ν—in fact it should be the same
as the ordering π̂ .

Theorem 1 If λ ∈ � is a population of preferences such that the assent-maximizing
social welfare function π∗(λ, ν) is independent of ν then plurality choice at each
A ∈ X coincides with π∗(λ, ν). Conversely, if plurality choice on X is a rational
choice function, then this choice function is the assent-maximizing social welfare
function for every distribution ν.

Proof of Theorem 1 Define α(π, λ, A) to be the fraction of the population λ such that
their most preferred element in A coincides with cπ (A), the choice that would be made
by the preference π .

We will prove the contrapositive of the first part of the theorem. Suppose that for
λ ∈ � the plurality choice at some A ∈ X does not coincide with the choice of the
assent-maximizing social welfare function cπ∗(λ,ν)(A) for some ν. We need to show
that the assent-maximizing social welfare function π∗(λ, ν) will not be invariant with
ν. We know that α(π, λ, A) < α(π ′, λ, A) for some A ∈ X . We can then choose a
new ν′ such that ν′(A) is sufficiently large (ν′(A) = 1 would always work) that π ′
will garner more assent than π .

To prove the other direction, suppose plurality choice on X is a rational choice
function. We will prove that this choice function is the assent-maximizing social
welfare function for every distribution ν. Consider any π ′ ∈ �, π ′ �= π . Then, we
have α(π, λ, A) > α(π ′, λ, A) for every A ∈ X . We have that cπ (A) garners the
most possible assent for every A, since it is the choice supported by the plurality,
so π will clearly be the assent-maximizing ordering. There is no tension in this case
between assent-maximization and the requirement that social choice be generated by
an ordering. ��

The condition that the plurality choice function be derivable from an ordering is
very strong. The simplest type of population which generates a rational plurality choice
function contains a majority held preference, where λ(πi ) > 0.5 for some πi . It is
obvious in this case that the choice function induced by πi maximizes assent at every
subset A ∈ X , implying that πi is assent-maximizing for any distribution ν. Pop-
ulations with a majority held preference are a strict subset of the populations which
satisfy the premises of Theorem 1.

Note that if we restrict attention to only exchangeable distributions, Theorem 1
would not hold. It is possible that the assent-maximizing ordering is invariant over
the smaller space of exchangeable distributions and yet the plurality choice function
is not rational. We provide an example below.
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Example 2 Theorem 1 fails when restricted to exchangeable distributions

Take a population λ at which plurality rule would generate cyclic choice over
the pairs in a three-alternative problem: λ(a1a2a3) = 1

3 − ε, λ(a2a3a1) = 1
3 + ε,

λ(a3a1a2) = 1
3 , where ε is small and positive. The claim is that π∗ = (a2a3a1) is the

assent-maximizing order for all exchangeable distributions. Consider the following
table of assents to choices from the pair subsets for each potential social ordering.
Each column contains the assents to cπ (A) for each A for the given π .

A e a1a3a2 a2a3a1 a2a1a3 a3a1a2 a3a2a1

{a1, a2} 2
3 − ε 2

3 − ε 1
3 + ε 1

3 + ε 2
3 − ε 1

3 + ε

{a2, a3} 2
3

1
3

2
3

2
3

1
3

1
3

{a1, a3} 1
3 − ε 1

3 − ε 2
3 + ε 1

3 − ε 2
3 + ε 2

3 + ε

Sum 5
3 − 2ε 4

3 − ε 5
3 + 2ε 5

3
5
3

4
3 + 2ε

For an exchangeable distribution, the assent to each pair is weighted equally in the
maximization. Thus, the final row of sums captures the relevant information about
assent to the pairs. We see a2a3a1 strictly dominates the other candidates on pairs.
The total expected assent for any candidate for any exchangeable distribution will be a
weighted sum of the pairs assent and the triple assent. Since, a2 is the assent-maximiz-
ing choice from the order three subset, a2a3a1 weakly dominates the other candidates
on the triple. Therefore, a2a3a1 is assent-maximizing at all exchangeable distributions.
But, the plurality choice function of this population is not rational because it cycles
on the pairs.

By Theorem 1, there are non-exchangeable distributions at which a2a3a1 would not
be assent-maximizing. For example, a non-exchangeable distribution with ν{a1, a2} >
1
3 , ν{a2, a3} = ν{a1, a3} and ν{a1, a2, a3} = 0 would not produce a2a3a1 as a social
ordering. ��

We now concentrate on the typical case in which there is a tension between assent-
maximization and the ordering requirement. Through a series of five examples we
will demonstrate some features of assent-maximizing social welfare functions. We
will show that assent-maximization may select something other than a Condorcet
winner, even when one exists. We show that the assent-maximizing ordering may lie
outside the support of the preferences in the population. We show that the method of
compromise inherent in assent-maximization is different from both the compromises
made by positional methods such as scoring rules and the compromises made by meth-
ods that use only the numerical vote tallies from pairwise contests. We explore the
relationship between the dispersion around the social choice and the measure of aver-
age disagreement across pairs in the population, showing the counterintuitive result
that a more internally conflicted population may have less expected dissent with its
social ordering than a population with less internal conflict. Finally, we provide two
examples of non-exchangeable problems.

Example 3 Assent-maximization may not rank a Condorcet winner first

This is a well-known four-alternative problem, that of choosing the capital city
of Tennessee [see Young (1988), Moulin (1988)], which we adapt for the present
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discussion by allowing the feasible sets to be larger than pairs. For concreteness, we
assume that all subsets are equally likely.

The four alternatives are the four largest cities in Tennessee:
Memphis = a1, Nashville = a2, Chattanooga = a3, Knoxville = a4
The distribution of preferences λ is: λ((a1a2a3a4)) = 0.42, λ((a2a3a4a1)) =

0.26, λ((a3a4a2a1)) = 0.15, λ((a4a3a2a1)) = 0.17
We have π∗(λ, μE ) = (a1a2a3a4) and π∗(λ, μK ) = (a2a3a4a1). The differ-

ence between our method and the Kemeny method is based on a rather narrow
difference in average assents to the social choice: q((a1a2a3a4), λ, νE ) = 0.5282,
but q((a2a3a4a1), λ, νE ) = 0.5173. This is an admittedly small difference in aver-
age assent. Nevertheless, the induced choice functions are quite different because
(a1a2a3a4) selects Memphis whenever it is available, whereas (a2a3a4a1) never puts
the capital in Memphis at any feasible set.

Notice that Nashville (a2) is a Condorcet winner, beating the other three alterna-
tives in the three pairwise contests where it is one of the options. For that reason the
Kemeny method ranks a2 first. On the other hand, in every available set with three
or more alternatives in which a1 is one of the options, it is chosen by the plurality
of the population. Therefore, as long as the probability is high enough that the actual
available set will have three or more options, a1 should be chosen from these sets. In
these cases, therefore, a1 should be first in the social ordering. ��

Example 4 Compromising on a second best

In both the Examples 1 and 3, the assent-maximizing π∗ was one of the orderings in
the support of λ. This is not always the case as the following four-alternative example
shows:

Let λ((a3a1a2a4)) = 0.33, λ((a2a1a3a4)) = 0.34, λ(a4a1a2a3) = 0.33. For a
variety of metrics, including the equally likely size distribution μE , π∗(λ, μ) =
(a1a2a3a4). This social ordering is somewhat of a compromise of the three order-
ings in the population; it places the alternative that everyone in the population ranks
second, a1, at the top of the social ordering. Though this means that no one in the pop-
ulation will agree with the choice from the order four subset, this social ordering will
perform better on average on subsets of order two and three than an ordering chosen
to match the first-place choice of one segment of the population. The assent-maximi-
zation method trades off support on the order four subset to garner greater support on
the more likely order two and three subsets. Note, however, that if the probability of
facing the order four subset was sufficiently high, the social ordering would change
to π = (a2a1a3a4). ��

The social choice rules based on assent-maximization differ from the two main
classes of methods that have been applied and characterized in the literature. These
methods are the scoring rules, which produce an ordering by combining rank informa-
tion from the individual preferences, and pairwise methods that produce an ordering
as a function of either the majority tournament or the matrix of voting margins across
all pairs of alternatives. Theorem 1 demonstrates assent-maximization is not equiva-
lent to any scoring rule. The reason is that in populations where a majority shares the
same preference, scoring rules will not always produce a social ordering coincident
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with that majority preference.2 A minority with very different preferences will be able
to influence the relative scores.3 We can also see that assent-maximization is not a
member of the class of social welfare functions based only on pairwise comparisons
and satisfying neutrality. There can well be a tension between the way that pairwise
methods break a Condorcet cycle, at its weakest link, and the plurality choice from a
larger feasible set. The following example shows that the assent-maximizing ordering
can differ from the unique recommendations of both of these classes of methods, and
thus that the social welfare function it defines does not lie in either class.

Example 5 Positional and pairwise methods and assent-maximization

In this example, we show that for a particular population, with preferences over just
three alternatives, positional methods, pairwise methods, and our method for a range
of μ can generate three distinct social orderings.

Consider the population λ defined by

λ((a1a2a3)) = 0.10

λ((a1a3a2)) = 0.30

λ((a3a2a1)) = 0.25

λ((a2a1a3)) = 0.35

Saari (2001) has shown that all positional methods will select (a1a2a3),4 while
Kemeny’s method (and all pairwise-based methods) will select (a2a1a3). Our rule,
applied to exchangeable μ with μ3 > 2

5 , will yield (a1a3a2). Under our method,
when μ3 is relatively large, more consideration is given to the choice from the three-
alternative set, so the assent-maximizing ordering has alternative a1 in first-place, as
it will be supported as the choice from the triple by a plurality of the voters. Alter-
native a2 from the triple would be supported by just 0.35 of the population, and a
choice of alternative a3 is supported by just 0.25. Thus, with respect to the top-ranked
alternative, our method looks similar to the positional methods. However, unlike the
positional methods, our method respects the will of the majority on the ordering of
the final two alternatives, placing a3 before a2. Thus, in general, for a given λ, no
positional method or pairwise-based method will agree with our methods over the
entire range of μ. Nor is there a positional method that will agree with our methods
for a given μ over the entire range of λ. ��

2 Daugherty et al. (2009) show that the Borda scores can be recovered from the binary vote margin matrix.
However, the ordering of alternatives by their Borda score will in general be different from the assent-max-
imizing order.
3 A population at which a strict majority would not dominate the social ordering under a scoring rule is
λ((a1a2a3a4)) = 0.55, λ((a2a4a3a1)) = 0.25, λ((a2a3a4a1)) = 0.2. For all ν our method reproduces
the majority’s preference π∗ = (a1a2a3a4) but Borda count produces (a2a1a3a4) because the minority
preferences give a2 an advantage over their last choice, a1.
4 Saari’s result can be seen as follows: Consider any scoring rule, standardized to the vector (1, s, 0) where
s ∈ [0, 1]. Then, we have the following scores for a1, a2, a3, respectively: 0.4+0.35s, 0.35+0.35s, 0.25+
0.3s.
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Example 6 Conflict and compromise

Let λ and λ′ be two populations such that for a given μ, λ is less internally conflicted
than λ′ : M(λ, ν) < M(λ′, ν). Will there be more assent to the assent-maximizing
social ordering at λ than there will be at λ′? In other words, is it easier to find a good
compromise when the population is less conflicted?

A simple example shows that this will not generally be the case. We will fix μ = μE

and let λ and λ′ be given by:

λ((a1a2a3)) = 0.5

λ((a2a1a3)) = 0.5

λ′((a1a2a3)) = 0.5

λ′((a1a3a2)) = 0.25

λ′((a2a1a3)) = 0.25

It is straightforward to show that λ′ is more internally conflicted than λ.

M(λ, ν) = 0.0625

M(λ′, ν) = 0.0703

But

Q(λ, ν) = 0.125 with π∗(λ) = {(a1a2a3), (a2a1a3)}
Q(λ′, ν) = 0.0938 with π∗(λ′) = {(a1a2a3)}

The reason for this difference in conflict measures can be traced to the fact that the
space of preferences is discrete. The measure of conflict with the assent-maximizing
ordering is like a second moment taken around a point in the space which is not a true
mean—one that is chosen in asymmetric situations because it is an approximate com-
promise and lies within the discrete space from which compromises must be selected.
The measure of internal conflict, on the other hand, deals directly with pairs of prefer-
ences chosen from the population and does not require any such point of reference. ��
Example 7 Two non-exchangeable models

Situations in which the probabilities of available sets with a given cardinality are not
all the same arise naturally. Our general framework extends to these cases as well. One
such situation is where the individual alternatives are either available or not available;
the set of available alternatives forms the feasible set for the social choice. If their
availability is statistically independent and each has the same probability of availabil-
ity, we are in the exchangeable case with a binomial distribution over the cardinality
of the available set. Otherwise, we have a non-exchangeable problem. A model of this
form called the “unavailable candidate model” has been explored by Lu and Boutilier
(2010).

A second family of non-exchangeable problems arises when there is a set of differ-
ent underlying issues and within each issue there is a distinguished outcome, which
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we can think of as a status quo. An alternative is a selection of outcomes, one for each
issue—either the status quo or one of the other alternatives. For example, suppose that
there are two issues b and h. Issue b can be decided in favor of a new policy, b1, or the
society can remain with the status quo b0. Similarly, issue h has a status quo policy h0,
or a new policy h1. The members of the population have preferences which can exhibit
substitutability or complementarity across the two new policies—they can prefer to
do one of the new policies, or the other new policy, but not both (the substitutes case),
or they can prefer to do both new policies but not either one without the other (the
complements case). In the general notation of our model there are four “alternatives”
which are composites of these four individual policies as follows:

Alternative Corresponding choices on b and h
a1 b1h1

a2 b0h1

a3 h0b1

a4 b0h0

In this model, the uncertainty about the available set is due to the set of the issues
that are “on the table”. If an issue is not on the table then the status quo is sure to be
the outcome on that issue. In the example we are examining, the possibilities are that
b can be on the table but not h, or h but not b, or both. Thus, there would be three
possible feasible sets of alternatives, {a2, a4}, {a3, a4}, and {a1, a2, a3, a4}, instead
of the family of all subsets. The social preference will not be called upon to make a
decision from a feasible set such as {a1, a3, a4} because if both issues on on the table
then a2 must be available as well. A model of this form has been studied by Ahn and
Oliveros (2010).

As in the case of the unavailable candidate model, assent-maximization can be used
to make the selection of the social ordering. Because of this factored structure of the
alternative space, parameterized functional forms for the preferences and probabili-
ties of combinations of active issues will result in a much simpler calculation of the
assent-maximizing social ordering than would have been the case in general with the
same number of alternatives.

We defer further exploration of this issue to the Appendix, where computational
aspects of assent-maximizing social choice via choice-based metrics on preferences
are discussed. ��

4 Conclusions

We have tried to unite social choice theory and decision theory by recognizing the effect
of the distribution of potential feasible sets as a determinant of the social choice rule. We
use a distance-minimizing approach to the selection of the choice rule, where the dis-
tance between preferences is the probability that these preference would make the same
selection from a random feasible set. We give examples illustrating the dependence of
the choice rule on the distribution of the feasible set, at particular populations. For the
case in which the decision problems are selected using an exchangeable distribution
μ we give an algorithmic method to compute the distance between two preferences.
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Two further topics to be explored as a result of this article are the following:

(1) Our theory suggests a new source of “data” for welfare economics. Instead of
focusing exclusively on the choice function c which describes the choice made
at each feasible set, one should develop a theory that takes into account the fre-
quency of different problems. The data of choice theory would be (c, ν) instead
of only c, where ν matches the empirical distribution of choice problems. By
extending our metrics to the domain of choice functions, we could use assent-
maximization to determine which π is closest to the observed choices under
F(π; ν). This type of methodology is similar to the classic revealed preference
approach but would allow for welfare assessments in the case of irrational choice
data. A related paper is Apesteguia and Ballester (2010).

(2) Our theory defines a mapping from � to � corresponding to each distribution μ.
Thus, given μ, the simplex � is divided into equivalence classes of populations
that have the same social ordering. The algebraic structure of these partitions
and their dependence on μ needs to be explored further. The recent study of
Daugherty et al. (2009) makes significant progress in that regard. Their group
theoretic structure is an alternative to examining the geometric structure of the
equivalence classes for scoring rules as studied by Saari (1994).
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and Decision Conference for their useful feedback on this study. We are also very appreciative of the many
helpful comments of two anonymous referees and an editor at Social Choice and Welfare.

Appendix 1: Exchangeability and computing the measure of conflict

In this appendix, we discuss how our measure of conflict depends on the size distri-
bution of the feasible subset of alternatives in the exchangeable case, where the size
distribution μ = (μ1, . . . , μn) determines the probability of each feasible set.5 We
will show that μ determines a semi-metric on �, and when μ2 > 0 this semi-metric
is indeed a metric on �. The implication of this technical result is that the assent-
maximizing social welfare functions are the minimizers of the expected distance to
the preferences in the population, where the expectation is taken over the population
distribution λ.

We propose a simple computational method for finding f (π, e; ν) that reveals its
dependence on ν in the exchangeable case. The result is linear in the size distribution
μ and the coefficients can be calculated algorithmically as a function of π . While the
number of steps in the algorithm rises rapidly with n, the method is practical because,
once accomplished for a given n, these coefficients are fixed and can be used at any
population facing n alternatives. It does not have to be redone at each population. As
a result of this computational argument, the assent-maximizing social welfare func-
tion can be found via integer programming methods: minimize the average distance

5 We usually will set μ1 = 0. Choice problems with only a single feasible element are possible, but as there
can be no disagreement they are trivial for our purposes. To simplify calculations we frequently assume
that such problems do not arise at all.
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between π∗(λ, μ) and π , using weights λ(π); the integer constraints are needed to
express the fact that π∗ is an order. This integer programming description is well
known in the Kemeny case6 and the present section establishes how this construction
can be extended to all exchangeable distributions.

Once we know the probability of disagreement between an arbitrary π and the
natural ordering e the probability of disagreement between all pairs of orderings are
determined by virtue of the equality of probabilities of all sets of alternatives with
the same cardinality. The probability of disagreement between π and e depends on ν

through the size distribution μ of the feasible set A, thus we can define it as:

F(π;μ) = f (π, e; ν).

The elements of � form a non-directed graph in which the edges are pairs of permu-
tations obtainable from each other by a single transposition of adjacent elements. That
is (π, π ′) is an edge if there is some i ∈ {1, . . . , n} such that πi = π ′

i−1, πi−1 = π ′
i ,

and π j = π ′
j for all j �= i − 1, i . If this relation holds, we say that π differs from π ′

by a transposition at position i , the index i being the larger of the two positions at
which they differ.

If π differs from e only by a transposition at position i , then the family of feasible
sets on which cπ (A) differs from ce(A) is precisely those sets that contain ai−1 and
ai and do not contain any element a j for j < i − 1. For example, if π differs from
e by a transposition at position n then the only feasible set on which they differ is
A = {an−1, an}. If π differs from e by a transposition at position i , then there are 2n−i

sets A at which cπ (A) �= ce(A) because any subset of {ai+1, . . . , an} when combined
with {ai−1, ai } will be such a feasible set. Therefore, a transposition at position i gen-
erates a collection of changes in the choice function, and we know the number of sets
of each cardinality k that are affected by this transposition.

A path ρ from π to π ′ is a list of preferences ρ0, . . . , ρM such that (ρm−1, ρm) is
an edge for all m = 1, . . . , M , and ρ0 = π, ρM = π ′. Clearly, there are many paths
between any two permutations.

There are many algorithms which can be applied to a permutation π that will con-
nect it via a path to e. One of the best known of these sorting procedures is bubble
sort.7 In bubble sort, we make a series of passes through the alternatives, beginning
each time with the best (left-most) alternative. At each step in the algorithm, we com-
pare the element in position i with the element in position i +1. If this pair of elements
does not appear in its natural order, the elements are transposed. The algorithm con-
tinues this series of pairwise comparisons, moving from i = 1 to i = n − 1, at which
point a pass is complete. The algorithm then begins again at i = 1, making another
pass through the ordering. The algorithm terminates when a pass is completed with
no transpositions made.

In this article, we will use a very similar algorithm: reverse bubble sort (RBS).
RBS is exactly like bubble sort except that its passes move leftward from position

6 See Conitzer et al. (2006).
7 Bubble sort is not efficient as an algorithm. We are not concerned with computational efficiency here. As
will be seen below, we are using the sorting procedure as an analytic tool.
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Fig. 1 This figure illustrates the n = 3 case. Each preference ordering appears as a vertex of the regular
hexagon. The RBS signatures between each ordering and its neighbors, the two orders obtainable by a
single transposition, appear around the outside of the hexagon. The element e appears in the upper left-hand
corner. The arrows in the interior of the hexagon are labeled with the RBS signatures of the moves from
the ordering e to the three non-adjacent orderings, each of which requires more than one transposition.
Diagrams of this type have a long history in group theory and social choice, see Kemeny (1959), Le Conte
de Poly-Barbut (1990), Reuter (1996), and Ziegler (1995)

i = n until i = 2. Let us keep track of the positions at which RBS makes a trans-
position. In each pass, either there is or is not a transposition at position i ; there can
never be more than one transposition at position i in any one pass because the pass
continually steps through the positions. Let xi be the number of passes at which there
is a transposition at position i . We call the vector x = (x2, . . . , xn) the RBS signature
of π . (If it is necessary to be explicit we write x(π) instead of x .)

The RBS relationships between the six orderings of the three-alternative case can
be represented geometrically as a permutahedron [see Ziegler (1995) for more on these
diagrams]. Figure 1 features each ordering as a vertex of a regular hexagon. The RBS
signature between each ordering and its neighbors, the two orders obtainable by a
single transposition, appear on the edges of the hexagon. The element e appears in the
upper left-hand corner. The arrows in the interior of the diagram are labeled with the
RBS signatures for the move from the ordering e to the three non-adjacent orderings
which require more than one transposition.

While bubble sort and RBS both convert π into e and both make only transposi-
tions of adjacent alternatives, they generate different sequences of choice functions
along the way. We choose RBS because its associated sequence has an analytically
useful property that we exploit; ordinary bubble sort does not share this property. The
following example is an illustration.
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Example 8 Bubble sort and reverse bubble sort

Let n = 3 and π = (a3a2a1). As bubble sort and RBS each sort π , the following
sequences of preferences is created. Each successive pair (ρi−1, ρi ), i = 1, 2, 3 is an
edge because at each step only one transposition is made.

Bubble sort RBS
ρ0 = (a3a2a1) ρ0 = (a3a2a1)

ρ1 = (a2a3a1) ρ1 = (a3a1a2)

ρ2 = (a2a1a3) ρ2 = (a1a3a2)

ρ3 = (a1a2a3) ρ3 = (a1a2a3)

Using ordinary bubble sort to transform π into e induces the following series of
changes in the choice function. The first link changes cπ ({a1, a2, a3}) and cπ ({a2, a3}).
The second link changes cπ ({a1, a3}). And the third link changes cπ ({a1, a2, a3}) and
cπ ({a1, a2}). Note that cπ ({a1, a2, a3}) would be changed twice along this path, first
from a3 to a2, then from a2 to a1.

By using RBS, the choice from each subset is changed exactly once along the path
from π into e.The first link changes cπ ({a1, a2}). The second link changes cπ ({a1, a3})
and cπ ({a1, a2, a3}). And the third link changes cπ ({a2, a3}). No set A has its asso-
ciated choice changed more than once. The RBS signature is x(a3a2a1) = (1, 2)

because the first and second passes make transpositions at position 3 but only the first
pass makes a transposition at position 2. ��

Example 8 illustrates a general point that is central to our analysis. We will show
below that RBS never changes the choice at a set A more than once. For the purpose
of characterizing preferences π by the choice functions they generate, we can use
RBS to sort them each into e and keep track of the positions at which RBS makes a
transposition. The counts of how many transpositions RBS makes as it transforms π

into e will form a sufficient statistic for the family of sets at which π makes a different
choice than e. These ideas are formalized as follows:

A lexicographically minimal path from π to π ′ is a path ρ0, . . . , ρM in which
there is no set A ∈ X at which cρm−1(A) �= cρm (A) for more than one value of m.
We call these paths lexicographically minimal because their associated signatures are
minimal when compared lexicographically to signatures generated by other paths.
Lexicographically minimal paths are useful because the set of decision problems on
which π and π ′ disagree can be characterized by the lexicographically minimal paths
between them.

Proposition 1 The permutations successively reached as reverse bubble sort converts
π to e constitute a lexicographically minimal path from π to e.

Proof of Proposition 1 Let π ∈ � and let ρ be the path generated by RBS as it sorts
π into e. Assume π �= e and that cπ (A) �= ce(A). Then cπ (A) precedes ce(A) in the
ordering π .

Each step in each pass of RBS involves a possible transposition of alternatives. We
will say that y is promoted beyond x if the alternatives x and y are transposed at a
step and x initially precedes y. As a pass of RBS proceeds, the alternatives that are
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promoted are continually better according to e. Thus in each pass of RBS there are
three possibilities:

(i) There is some step in the pass where ce(A) is promoted and it continues to be
promoted until it is promoted beyond cπ (A).

(ii) There is some step where ce(A) is promoted but some x /∈ A becomes its
immediate predecessor, x < ce(A), and cπ (A) is a predecessor of x at this
step. In this case, ce(A) is no longer promoted during this pass. At the next step
in this pass, either x is promoted beyond its immediate predecessor, or there is
an even better alternative, according to e that is promoted. As some point in this
pass some alternative better than cπ (A) according to e will be promoted beyond
ce(A). However, this alternative cannot be a member of A because it must be
better than ce(A) which is, by definition, the best alternative in A according to
e. Thus, no member of A can be promoted beyond cπ (A) in this pass under the
conditions of possibility (ii).

(iii) There is no step where ce(A) is promoted. In this case, as in the argument
above, when ce(A) stops being promoted, its immediate predecessor is better
than ce(A) according to e. As in (ii), there is some x that is promoted beyond
ce(A) at this pass, but, for the same reason as above, this x cannot be a member
of A as that would contradict the definition of ce(A).

In case (i), at the step where ce(A) and cπ (A) are transposed, the choice from A
will change. By the definition of ce(A) it can never change again at any later step of
the algorithm.

In cases (ii) and (iii), cπ (A) will remain the highest-ranked member of A at all steps
of this pass.

Thus, on the first pass such that case (i) obtains, there will be a change in the choice
from A. At all future passes ce(A) is the highest ranking alternative among those in
A and these passes will be in either case (ii) or case (iii). Thus, the path generated by
RBS is lexicographically minimal. ��

Given π, cπ (A) �= ce(A) for some family of sets A. All lexicographically minimal
paths from π to e change the choice at each of these sets exactly once. RBS can be
used as a computational method to form a list of all sets in this family and to compute
how many there are of each cardinality.

Because of our exchangeability assumption, all sets of a given cardinality have
equal probability under ν. Therefore, once we know how many sets of each cardinal-
ity are changed by RBS, the probability of disagreement will be the linear combination
of these counts weighted by μ.

We will now show how the RBS signatures between preferences can be used to
define a metric8 on �. Proposition 2 shows that the RBS signature between two pref-
erences is uniquely determined at all lexicographically minimal paths between these
preferences. This generalizes the diagrammatic situation from Fig. 1 to cases of larger

8 More generally, in limiting cases, the RBS signatures define only a semi-metric, although the difference
will not be operationally important below. In these limiting cases, we cannot distinguish between two pref-
erences based on the choices they induce. The semi-metric induces a metric on the equivalence classes of
preferences.
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n, where there can be many lexicographically minimal paths. Proposition 3 then shows
that the disagreement probabilities that we have discussed above define a metric on
�.

A converse of Proposition 3 is also valid, and we provide a proof in Appendix 2.
Any metric on � that is exactly additive along the lexicographically minimal paths
in � can be viewed as a disagreement probability for some suitably chosen distribu-
tion over X . The additivity property along lexicographically minimal paths reflects
the choice-based nature of the metric. Theorem 2 (in Appendix 2) characterizes all
such metrics, extending the axiomatization of Kemeny and Snell (1962) who required
additivity along all paths. Taken together, Proposition 3 and Theorem 2 show that the
assumption of assent-maximization is equivalent to the assumption that the procedure
used for preference aggregation is a function of a metric structure on preferences.

Proposition 2 Let ρ0, . . . ρM be any lexicographically minimal path from e to π and
let yi be the number of transpositions at position i that are made along this path. Let
y = (y2, . . . , yn). Then y = x(π).

Proof of Proposition 2 Let ρ and ρ′ be two paths from π to e with RBS signatures
x and x ′, respectively. Let k be the lowest index such that xk �= x ′

k . The number of
A ∈ X with cardinality n−k+2 at which the choice from A changes along these paths
is determined by (x2, . . . , xk) and (x ′

2, . . . , x ′
k) because all transpositions at position

k + 1 and higher affect only sets of cardinality n − k + 1 and smaller. Since, xi = x ′
i

for all i < k, by the definition of k, these two paths cannot make the same number of
changes at sets with cardinality n − k + 2. Since, both of these paths transform π into
e, one of the paths must change one set of cardinality n − k + 2 more than once. ��
Proposition 3 For any μ, the probabilities F(π;μ) form a semi-metric on �. If
μ2 �= 0, then F(π;μ) is a metric on �.

Proof of Proposition 3 We need only verify the triangle inequality. This follows from
the fact that the concatenation of lexicographically minimal paths, one from π to π ′
and the other from π ′ to π ′′ may or may not be a lexicographically minimal path
from π to π ′′. If it is not lexicographically minimal, strict inequality in the triangle
inequality will hold.

As to the assertion that F is a metric whenever μ2 �= 0, note that in this case there
is a positive probability that A will be any particular pair. Thus, if π and π ′ rank any
pair differently, that pair could be the available set and the distance between these two
orderings will be non-zero. (When μ2 = 0 then two orderings that differ only in their
two lowest ranked alternatives will never disagree because some better alternative will
be available and will be the choice of both.) ��

Having a metric on � is an analytical convenience in the computation of social
choice rules and other functions on the space of distributions over �. We use it to find
a central preference that best represents the preferences of a population and to measure
the dispersion among preferences. Other instances of the use of metrics on the space
of preferences in social choice theory for related purposes are Kemeny (1959), Craven
(1996), Klamler (2008), and Barthelemy and Monjardet (1981).

123



456 K. A. Baldiga, J. R. Green

We now turn to the computational use of the RBS signature in deriving the dis-
agreement probabilities. We will compute the number, r(k, i), of sets A with cardi-
nality k such that if a transposition is made at position i that converts π to π ′ then
cπ (A) �= cπ ′(A). The transposition changes the order of two alternatives, πi−1 and πi .
If A has k elements in all, then k − 2 of them must come from those n − i alternatives
that follow πi−1 and πi in the order π . Thus,

r(k, i) =
(

n − i

k − 2

)

Of course, if k − 2 < 0 then r(k, i) = 0.
As all sets with cardinality k are equally likely under our assumptions, each has

probability μk

(n
k)

. Therefore, the probability wik that the feasible set is one of the sets

with cardinality k where the choice is changed by the transposition at position i is

wik = μk
(n

k

)r(k, i)

Each transposition is a measure of disagreement between π and e. The algorithm
changes the choice at a family of feasible sets from cπ (A) to ce(A) which is pre-
cisely the family at which π and e disagree, and it never makes a change where
cπ (A) = ce(A). The lexicographical minimality of the path assures that the total
disagreement is partitioned among the edges with no double counting. Thus, the prob-
ability that the feasible set is such that π and e disagree can be computed by adding the
disagreement probabilities at every step of the RBS algorithm. Adding the probabili-
ties as computed above and weighting each of them by the number of transpositions
required at each position we have:

Proposition 4 If π has RBS signature x(π) and ν is exchangeable with size distribu-
tion μ then the probability of disagreement between π and e is given by

F(π;μ) =
n∑

i=2

n∑

k=2
wik xi =

n∑

i=2

xi (π)
n∑

k=2

μk
(n

k

)

(
n − i

k − 2

)

(5)

This Proposition follows from the above discussion of counts of sets by cardinality.
Formula 5 shows how π and the size distribution μ enter into the probability of

disagreement. The effect of the preference π is completely summarized by its RBS
signature x(π). This disagreement probability is a linear function of the signature,
with coefficients dependent on the size distribution of the feasible sets.

We now examine some special cases of exchangeable distributions and see what
this formula tells us.

The case in which it is sure that the feasible set will contain exactly two alternatives
is the problem studied by Kemeny (1959). In this case, we define

μK = (0, 1, 0, . . . , 0)
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We know from the Kemeny (1959) and Young and Levenglick (1978) articles that in
this case F is Kendall’s tau: wik = 1 for all k, so the formula reduces to

∑n
i=2xi , the

total number of pairwise exchanges needed to carry π into e.
In the case, where it is certain that all alternatives will be available, so that A = X

with probability one, we define

μX = (0, . . . , 0, 1)

Two preferences π and π ′ disagree if and only if π1 �= π ′
1. Thus, w2n = 1 and wik = 0

for i > 1 or k < n. In this case, F assigns zero distance between all preferences that
agree with e on the top element, and a unit distance for all those that disagree. It is in
cases such as this that F is a semi-metric instead of a metric, because μ2 = 0.9

Finally, in the case in which all A ∈ X with two or more elements are equally
likely, we define

μE =
(
0,

(n
2

)
, . . .

(n
n

))

∑n
j=2

(n
j

)

The scalar factor adjusts for the fact that we put zero probability on sets of order zero
and one. In the case, where all subsets are equally likely, a transposition at position i
affects the optimum if and only if both πi−1 and πi are in A and none of πk are in A
for k < i − 1. The probability of this event is 1

2i . Below, we work through an example
of how to compute F(π;μ) in this case.

Example 9 Computing F(π;μ)

Suppose we want to compute F(a3a1a2;μE ).

Step 1: Use RBS to sort a3a1a2 into e. The following table catalogs the number of
transpositions made at each position.

a3a1a2 a1a3a2 a1a2a3 Total
Transposition at position 2 0 1 0 1
Transposition at position 3 0 0 1 1

We write the signature of a3a1a2 as x(a3a1a2) = (1, 1).
Step 2: Use formula (5) to compute the probability of disagreement.

F(π;μ) =
n∑

i=2

n∑

k=2
wik xi =

n∑

i=2

xi (π)
n∑

k=2

μk
(n

k

)

(
n − i

k − 2

)

=
3∑

i=2

xi (π)
3∑

k=2

μk
(3

k

)

(
3 − i

k − 2

)

9 Craven (1996) examines the social choice rule associated several metrics on the space of orderings differ-
ent from μK following the Kemeny’s approach in other respects. One of his metrics is μX , corresponding to
the case in which it is certain that all alternatives are available. The other metrics are among those described
in Diaconis (1988). They do not lead to an interpretation as the probability of disagreement and are thus
not “choice based” in our terminology.
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= x2(π)

[
3∑

k=2

μk
(3

k

)

(
3 − 2

k − 2

)]

+ x3(π)

[
3∑

k=2

μk
(3

k

)

(
3 − 3

k − 2

)]

= x2(π)

[
μ2
(3

2

)

(
3 − 2

2 − 2

)

+ μ3
(3

3

)

(
3 − 2

3 − 2

)]

+x3(π)

[
μ2
(3

2

)

(
3 − 3

2 − 2

)

+ μ3
(3

3

)

(
3 − 3

3 − 2

)]

= 1

[
3
4(3
2

)

(
3 − 2

2 − 2

)

+
1
4(3
3

)

(
3 − 2

3 − 2

)]

+ 1

[
3
4(3
2

)

(
3 − 3

2 − 2

)

+
1
4(3
3

)

(
3 − 3

3 − 2

)]

= 1

[
3
4

3

(
1

0

)

+
1
4

1

(
1

1

)]

+ 1

[
3
4

3

(
0

0

)

+
1
4

1

(
0

1

)]

=
[

1

4
+ 1

4

]

+
[

1

4
+ 1

4
(0)

]

= 3

4
�

Appendix 2: Axiomatic foundation for metrics on preference orderings

In the article, we define the metrics on � as probabilities of disagreement at a ran-
domly chosen A ∈ X . In this appendix, we give a set of axioms that give rise to these
metrics, without having to mention random feasible sets or to be specific about their
distribution. Our axioms are very much like those of Kemeny and Snell (1962) and
thus we will be brief. There is one key modification of the Kemeny–Snell axioms. It
is this modification that allows for all the metrics in our family other than Kendall’s
distance.

We are concerned with a function

f : � × � → R

Axiom 1 f is a semi-metric

That is, f is a non-negative, symmetric function satisfying the triangle inequality
f (π, π ′) + f (π ′, π ′′) � f (π ′′, π)

Axiom 2 f is order preserving under permutations

If f (π, π ′) � f (π, π ′′) then for all permutations ρ, f (ρ◦π, ρ◦π ′) � f (ρ◦π, ρ◦π ′′)

Axiom 3 If π i and π j are obtained from e by a single adjacent transposition at
positions i and j , respectively, then i < j implies f (π i , e) � f (π j , e)

Axiom 4 If (ρ0, ρ1, . . . ρM ) is a lexicographically minimal path from π to π ′ then
∑M

k=1
f (ρk−1ρk) = f ( π, π ′).
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Theorem 2 Let x(π) be the RBS signature of π and assume that f satisfies Axi-
oms 1, 2, 3, and 4. There exists a non-increasing set of non-negative numbers dk for
k = 2, . . . , n such that

f (π, e) =
n∑

k=2

xk(π)dk

The proof of this Theorem is exactly like the proof in Kemeny and Snell except
that, because of the weakening of Axiom 4 to lexicographically minimal paths instead
of all paths (which Kemeny and Snell called “lines”), we can construct the distance
from π to e only along lexicographically minimal paths. By Theorem 2 above, all
lexicographically minimal paths have the same RBS signature. Thus, we need only
specify the distances between two permutations that differ in a single transposition at
i for all values of i . These can be any non-increasing numbers, according to Axiom 3.
Then our Axiom 4 gives us the values of f as linear combinations of these distances.
Because all lexicographically minimal paths generate the same distance, f is well
defined.

Obviously, the Kendall τ distance corresponds to dk = 1 for all k. If dm = 0 for any
m then f will be a semi-metric but not a metric, as f (π, π ′) can be zero for π �= π ′.
When all dm > 0, f will be a metric.

If (ρ0, ρ1, . . . ρM ) is a path from π to π ′ but not a lexicographically minimal path,
as required by Axiom 4, then

∑M
k=1 f (ρk−1ρk) � f ( π, π ′). To see this in an example,

let us reconsider Example 8. There are two paths from (a3a2a1) to e given in this exam-
ple: One, the RBS path, is (a3a2a1), (a3a1a2), (a1a3a2), (a1a2a3). The other (which
is obtained by the regular bubble sort algorithm) is (a3a2a1), (a2a3a1), (a2a1a3),

(a1a2a3). The former is lexicographically minimal while the latter is not. Calculating
the distances along these paths, the former sums to d2 + 2d3 but the latter sums to
2d2 + d3. Clearly, these are equal in the case of the Kemeny metric and the triangle
inequality holds strictly in all other cases. The lexicographically minimal path defines
the distance f ((a3a2a1), e).

To find the exchangeable distribution on X corresponding to a given non-increasing
vector (d2, . . . , dn), we can solve the system of equations derived from the formula
in proposition 4 for μ.

For each i = 2, . . . , n:

di =
n∑

k=2

μk
(n

k

)

(
n − i

k − 2

)
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