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Abstract In contrast to a social choice function, a social choice procedure is pro-
posed which depends both on the way a set of alternatives is broken up into the subsets
and the sequence in which each of these subsets is taken up for consideration. This
article investigates the Arrow question in this generalized framework.

1 Introduction

The sensitivity of Arrow’s well-known impossibility theorem (Arrow 1963) to the
requirement of transitivity in social preference relation was first noticed by Sen (1969).
The importance of transitive rationalization in economics lies in its role in the inte-
grability controversy in demand theory. While Georgescu-Roegen (1936) established
that the basic problem of integrability is the question of transitivity of the preference
relation of a consumer, Hicks (1946) argued that the real issue underlying integrability
is the question of path independence. This led Arrow to justify the requirement of tran-
sitivity in social preference relation to insure the independence of final choice from the
way the alternatives are divided over pairs. He argued that it is “an important attribute
of a genuinely democratic system capable of full adoption to varying environment”
(Arrow 1959, p. 120).

Being curious about Arrow’s justification of requiring transitivity in social prefer-
ence relation, Plott (1973) proposed the framework of a social choice function which
maps every pair made of a profile of individual preference orderings and a set of alter-
natives to a nonempty subset of the set presented for choice. In contrast, the Arrowian
social welfare function maps a profile of individual preference orderings over a set of
alternatives to a reflexive, complete, and transitive social preference relation. In this
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598 T. Bandyopadhyay

proposed framework, Plott described a two-stage choice process which is a mechanism
of divide and conquer, where a set of alternatives is divided into subsets, a choice is
made over each of these smaller sets, and then a final choice is made over the chosen
alternatives in the first round. Since the final choice depends on the alternatives from
the smaller sets, the final outcome crucially depends on the way alternatives are divided
up for consideration. Path independence of this “divide and conquer” rule of making
a decision means that the final choice is independent of the way in which the set of
alternatives is initially divided up for consideration.1 A close examination of Sen’s
well-known possibility theorem reveals that there exists a non-dictatorial social choice
function which satisfies the other two Arrow conditions, namely, the weak Pareto prin-
ciple and the independence of irrelevant of alternatives together with the requirement
of path independence of two-stage choice process. However, the underlying power
structure turns out to be oligarchic.2

An alternative choice process was proposed by Bandyopadhyay (1990a,b) in which
choice proceeds in a sequence of a finite set of alternatives by considering the first two
elements of the sequence to make a choice, then for every chosen element, compare
with the third element of the sequence and take the union. Then for every chosen
element of the earlier round, compare with the next element of the sequence and take
the union, and so on, until all the alternatives have been considered. It was established
that the path independence of such a choice process is equivalent to transitive ratio-
nalization.3 This result in turn resolves Arrow’s conjecture about the relation between
a weak preference ordering and a path independent choice process.

A close observation of Bandyopadhyay’s sequential choice process reveals that it
allows some evidently inoptimal alternatives in the earlier round to be carried over in
the next round for consideration. This led Bandyopadhyay (1998) to propose a refined
sequential choice process in which choice proceeds in a sequence of nonempty subsets
of a set of alternatives presented for choice such that the collection or union of all these
subsets is the entire set. For a given sequence of subsets, the choice process begins
by choosing from the first element of the sequence. Then every alternative chosen in
the first round is compared with the alternatives of the next element of the path, and
then collect all chosen alternatives. Now exclude all elements of second subset from
the collected chosen alternatives that are rejected when the second subset is compared
with any chosen element of the first round. The surviving alternatives are considered
to be the winner in the second round. In the following stage, each of these winning
alternatives of the second round is compared with the alternatives of the next element
of the path. The process continues following the path until the last element of the
path is considered. Note that the refinement in the proposed sequential choice process
comes in its exclusion of inoptimal elements at each stage as choice proceeds along

1 Note that a two-stage path independent choice process does not guarantee rational choice.
2 Gibbard (1969) established that weakening transitive rationality to quasi-transitive rationality in social
preference relation insures an oligarchic power structure if an aggregation rule which maps a profile of
individual preference orderings to a reflexive, complete, and quasi-transitive social preference relation
is required to satisfy the Arrowian conditions of weak Pareto principle and independence of irrelevant
alternatives. See also Mas-Collel-Sonnenschein (1972).
3 See Bandyopadhyay (1998).
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the path. The path independence of such a refined sequential choice process is equiv-
alent to quasi-transitive rationalization. It is possible for a further refinement of this
sequential choice process; the path independence of finer refined choice procedure is
equivalent to acyclic rationalization.4 Thus, in the light of social choice literature, the
asymmetric power structure in social decision making depends on the adopted choice
process. 5

Some observations on the present state of the literature are in order. First, the out-
come of the requirement of a path independent social choice function crucially depends
on the description of a choice process. Second, all the choice processes that are dis-
cussed in the literature are based either on the way the entire set is divided into the
subsets or on the sequence in which the successive subsets are taken up for consider-
ation. Although we have described few choice processes, there are numerous possible
ways one can think of a process to make a choice. So this observation demands a more
general or abstract social choice process.

This article introduces a general structure in which primitive is not merely from a
set the choice is made, but also the process that one is adopted to make the choice.
In contrast to a social choice function, a social choice procedure is proposed which
depends both on the way a set of alternatives is broken up into the subsets and the
sequence in which each of these subsets is taken up for consideration. Specifically, for
any given profile of individual preference orderings and for any given set of alternative
social states, say A, a social choice procedure is a rule which, for every sequence of
subsets of A that constitute the entire set, specifies a subset of the set A. This article
investigates the Arrow question in this generalized framework.

2 Preliminaries

Let L be a society consisting of a finite N number of individuals. Every individual
i in the society L has a preference relation which is a weak order on a finite set of
alternative social states X . Let [X ] be the set of all possible non-empty subsets of
X . An element of [X ] will be called an issue. We assume |L| ≥ 3 and |X | ≥ 3.
A profile of individuals’ preference orderings, called a situation, is a specification,
for example, s = (Ri )i∈L , of weak preference orderings Ri on X for each individual
i ∈ L . Corresponding to Ri , Pi and Ii are the strict and indifference relations defined
in the usual way. Let S be the set of all profiles of individual preference orderings.

Let Lxy = {i ∈ L|x Pi y} and L(xy) = {i ∈ L|x Ri y} be the set of individuals in a
society for whom the indicated preference holds, given the profile of individual pref-
erence orderings s ∈ S. Similarly, for another preference profile, say s′ ∈ L , we use
L ′

xy and L ′
(xy), respectively, for the set for which the indicated preference holds.

A social choice function C(.) is a rule which maps every issue A ∈ [X ] and every
profile of individual preference orderings s ∈ S to [X ] such that Ø �= C(s,A) ⊆ A.

4 See Bandyopadhyay (1998).
5 For the relation between various transitive rationalization and power structure in the presence of other
Arrow conditions, see Kelly (1978).
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When the dependence on the preference orderings of individuals, i.e., a situation s ∈ S,
is unambiguous, we will write social choice function as C(A).

For any given situation s, a social choice function C(.) generates a preference rela-
tion (called base relation by Georgescu-Roegen (1936)) Rb on X as follows: for all
x, y ∈ X, x Rb y iff x ∈ C({x, y}). Then, x Pb y iff (x Rb y and ¬ y Rbx); x Ib y iff (x Rb y
and y Rbx).

For all x1, x2, . . . , xn ∈ X , we say that a binary relation Q over X is (i)
reflexive if x1 Qx1; (ii) connected if x1 �= x2 → x1 Qx2 or x2 Qx1; (iii) acyclic
if [(x1 Q∗x2 & x2 Q∗x3 & . . . & xn−1 Q∗xn) → x1 Qxn], where Q∗ is a sub-rela-
tion of Q such that [x1 Q∗x2 : (x1 Qx2 & ¬ x2 Qx1)]; (iv) quasi-transitive if
[(x1 Q∗x2 & x2 Q∗x3) → x1 Q∗x3]; (v) transitive if [(x1 Qx2 & x2 Qx3) → x1 Qx3];
(vi) a weak order iff it is reflexive, connected and transitive; (vii) quasi-transitive or-
der iff it is reflexive, connected, and quasi-transitive; (viii) suborder iff it is reflexive,
connected, and acyclic.

An element x in any set A is said to be a best element of A with respect to a
binary relation Q iff xQy for all y ∈ A. The set of best elements in A with respect to
Q, M(A,Q) = {x ∈ A|x Qy for all y ∈ A}.

A social choice function C(.) is said to be transitive rational iff there exists a weak
order Q, defined on X , such that C(s,A) = M(A,Q) for all A ∈ [X ].Q is then called
the transitive rationalization of C(.).6 Similarly, a social choice function C(.) is said to
be quasi-transitive rational iff there exists a reflexive, connected and quasi-transitive
relation Q, defined on X , such that C(s,A) = M(A,Q) for all A ∈ [X ].

Now, following Richter (1966), given a choice function C(.), we define the revealed
weak preference relation V by the condition: xVy if and only if there exists A ∈ [X ]
such that x ∈ C(A) and y ∈ A. Whenever an alternative x ∈ A\C(A) we say x is
revealed inferior in A. Clearly, ¬ xV y means that in the presence of y, x cannot be
chosen; i.e., y globally blocks x , and we write yGx.

Corresponding to the above notion of revelation, for all A ∈ [X ], all distinct x, y ∈
X , and for A �= C(A) we define the following axioms.

Weak Axiom of Revealed Preference (WARP): x ∈ A\C(A) implies yGx for all
y ∈ C(A).7

Axiom of Quasi-Transitive Order (AQTO): x ∈ A\C(A) implies yGx for some
y ∈ C(A).8

In words, WARP requires that in the presence of a revealed preferred alternative, a
revealed inferior alternative cannot be chosen. In other words, WARP says that every
revealed inferior alternative in a set A is dominated or globally blocked by every
revealed preferred alternative of A. AQTO requires that every revealed inferior alter-
native of a set A is globally blocked by some revealed preferred alternative of A.

Theorem A Let C(.) be a social choice function.

6 .Originally, Samuelson (1938) studied the rationalization question in the context of a demand function,
i.e., a single-valued choice function.
7 This condition is equivalent to Condition 4 (Arrow 1959) or Sen’s (1971) conditions α and β together.
8 This condition is equivalent to Sen’s (1971) α and δ together.
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(A.1) C(.) is transitive rational iff it satisfies WARP;
(A.2) C(.) is quasi-transitive rational iff it satisfies AQTO.

The first part of Theorem A is due to Arrow (1963), and the second part is due to
Bandyopadhyay and Sengupta (1991).9

3 Choice process

3.1 Plott’s two-stage process

In the published literature, it is Plott (1973) who described a two-stage choice process
in which a set of alternatives is divided into smaller sets, a choice is made over each of
these sets, and then a final choice is made from the set of alternatives chosen in the first
round.10 Path independence of this “divide and conquer” rule of making a decision
means that the final choice is independent of the way in which the set of alternatives
is initially divided up for consideration.

Formal description of choice procedures and path independence requires some
additional notation. For A ∈ [X ], let A1, A2, . . . , An be a sequence of non-empty
subsets of A such that ∪n

i=1 Ai = A.11 Let 〈A1, A2, . . . , An〉 denote an ordered set
of subsets of A, and let �(A) be the set of all such ordered sets of subset of A.

Given a social choice function C(.), the two-stage process is defined to be a function
h which for every A ∈ [X ] and every 〈A1, A2, . . . , An〉 ∈ �(A) specifies a subset
h (〈A1, A2, . . . , An〉) of A such that h (〈A1, A2, . . . , An〉) = C

(∪n
i=1 Bi

)
where, for

i ∈ {1, 2, . . . , n} , Bi = C(Ai ).
A choice function C(.) satisfies path independence in the two-stage process (PI) iff,

for all A ∈ [X ] and all sequences 〈A1, A2, . . . , An〉 ∈ �(A), h (〈A1, A2, . . . , An〉) =
h(〈A〉).12

The condition PI says that the final choice would be independent of the way a given
set of alternatives is initially divided into subsets for consideration.

3.2 Sertel-Van der Bellen’s sequential process

Sertel and Van der Bellen (1980) introduced a choice procedure in which for any given
sequence of non-empty subsets, a choice is made from the first element of the path;
then the alternatives of the next element are compared with all alternatives chosen
in the earlier round; and the process continues until the last element of the path is
considered. We generalize this idea as described below.

Given a social choice function C(.), the Sertel-Van der Bellen (SV) process is defined
to be a function ha which for every A ∈ [X ] and every 〈A1, A2, . . . , An〉 ∈ �(A)

9 See also Sen (1969), Schwartz (1976).
10 In an unpublished paper it was Afriat (1967) who first introduced a similar choice process.
11 This is a finite ordered cover of a set of alternatives. It was called path by Sertel and Van der Bellen
(1980).
12 Note that what is relevant for the final outcome is the way a given set of alternatives is divided up for
consideration, not the sequence in which the smaller sets are taken up for consideration.
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specifies a subset ha (〈A1, A2, . . . , An〉) of A such that ha (〈A1, A2, . . . , An〉) = J n

where, J 1 = C (A1) and for every i ∈ {2, 3, . . . n} , J i = C
(
J i−1 ∪ Ai

)
. Note that

J n = C (J n − 1 ∪ An) is the terminal choice.13

This is a generalization of the procedure originally introduced by Sertel and Van
der Bellen in the sense that they restricted the subsets A′

i s to a single element set.
Note, the SV procedure requires that in each stage all alternatives chosen in the earlier
round are compared together with the alternatives of the next element of the path. The
process continues following the path until the last element of the path is considered.

A social choice function C(.) satisfies path independence in SV process (SVPI) iff,
for all A ∈ [X ] and all sequences 〈A1, A2, . . . , An〉 ∈ �(A), ha (〈A1, A2, . . . , An〉)
= ha(〈A〉).

It was shown in Bandyopadhyay (1990a,b) that the path independence with respect
to the two-stage choice process and path independence with respect to the Sertel–Van
der Bellen process are equivalent.

3.3 Sequential choice process

We now introduce an alternative procedure in which choice proceeds in a sequence of
non-empty subsets, a choice is made from the first element of the path; then compare
every surviving alternative in the earlier round with the next element of the path and
collect all the chosen alternatives; and the process continues until the last element of
the path is considered. In other words, for a set of alternatives A and for any given
sequence, 〈A1, A2, ..., An〉 in �(A), a choice is made from the first element of the
sequence, A1. Let the set of chosen elements in the first round, C(A1), be T 1. Then the
next element of the sequence, A2, is compared with every alternative, a, in the set T 1.
We collect all alternatives chosen by comparing each element of T 1 together with A2.
Let the set of chosen alternatives in the second round, ∪a ∈ T 1C ({a} ∪ A2) be T 2.
The process continues following the sequence until the last element of the sequence
is considered. This is a generalization of a choice process originally introduced by
Bandyopadhyay (1988). In contrast, the SV choice process describes a procedure in
which the entire set of previously chosen elements is to be compared together with
the alternatives of the next element of the sequence.

For a social choice function C(.), the sequential choice process is defined to be
a function g which for every A ∈ [X ] and every 〈A1, A2, . . . , An〉 ∈ �(A), speci-
fies a subset g(〈A1, A2, . . . , An〉) of A such that g (〈A1, A2, . . . , An〉) = T n where,
T 1 = C (A1) and for i ∈ {2, 3, . . . , n} , T i = ∪a∈T i−1C ({a} ∪ Ai ). Note that T n =
∪a∈T n−1C ({a} ∪ An) is the terminal choice.14

13 This is a generalization of the usual (Afriat–Plott–Sertel & Van der Bellen) formula-tion of path inde-
pendence. It is rather similar to a notion called search symmetry (Afriat (1967)): one gets the same outcome
whichever of certain paths one follows through a sequence of subsets of a set A of alternatives. This is also
known as path invariance (Sertel and Van der Bellen (1980)). In Sertel & Van der Bellen, a choice set could
be empty.
14 This is a generalization of a process introduced in Bandyopadhyay (1988) where the smaller sets Ai ’s
were restricted to the single element sets.
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For a single-valued social choice function, for any sequence 〈A1, A2, . . . , An〉 ∈
�(A), both the SV choice process and the sequential choice process will yield identical
outcome, i.e., ha (〈A1, A2, . . . , An〉) = g (〈A1, A2, . . . , An〉).

A social choice function C(.) satisfies path independence in the sequential
choice process (PI′) iff, for all A ∈ [X ] and all sequences 〈A1, A2, . . . , An〉 ∈
�(A), g (〈A1, A2, . . . , An〉) = g(〈A〉).

3.4 Refined sequential choice process

In our description of the sequential choice process we have the following observa-
tions. Consider a sequence 〈A1, . . . , Ai+1, . . . , An〉. Suppose C (A1) = {x, y}. Also
suppose C ({x} ∪ A2) = {x} and C ({y} ∪ A2) = {z}. Clearly, z is rejected in the set
{x} ∪ A2. However, following the sequential choice procedure, once again z is to be
compared with A3. Clearly, the sequential choice procedure allows a defeated alter-
native to be carried over to the next round for further consideration. Since Chernoff
(1954) showed that a rational choice set never contains an element which is rejected
in any smaller set comparison, the sequential choice procedure clearly allows some
inefficiency in making a decision. We now propose a refinement of our sequential
choice procedure in which every chosen alternative of the previous round is compared
with the next element of the sequence, and whenever an alternative of the new element
of the sequence is defeated by one of the chosen alternatives of the earlier round then
that alternative must be excluded.

For a social choice function C(.), a refined sequential choice process is defined to be
a function gr which for every A ∈ [X ] and every 〈A1, A2, . . . , An〉 ∈ �(A), specifies
a subset gr (〈A1, A2, . . . , An〉) of A such that gr (〈A1, A2, . . . , An〉) = T n

r where,
T 1

r = C (A1) and for i ∈ {2, 3, . . . , n} , T i
r = ∪a∈T i−1

r
C ({a} ∪ Ai ) \Ri where, Ri =

{x ∈ Ai |x /∈ C ({y} ∪ Ai )} for some y ∈ T i−1
r . Note that T n

r = ∪a∈T n−1r C({a} ∪
An)\Rn is the terminal choice.

The elements in the set Ri are inoptimal elements of Ai when compared with the
chosen elements of the previous, (i − 1)th, round. The refined sequential choice pro-
cess differs from the earlier sequential choice process in the sense that it excludes the
inoptimal elements Ri at each stage of the process.

A social choice function C(.) satisfies path independence in the refined sequen-
tial choice process (PI′′) iff, for all A ∈ [X ] and all sequences 〈A1, A2, . . . , An〉 ∈
�(A), gr (〈A1, A2, . . . , An〉) = gr (〈A〉).

Theorem B (Bandyopadhyay and Sengupta (1991); Bandyopadhyay (1998)). (1)
WARP ↔ PI′; (2) AQTO ↔ PI′′.

Clearly, Theorems A and B together implies that a social choice function C(.) is
transitive (respectively, quasi-transitive) rational if and only if it satisfies PI′ (respec-
tively, PI′′). As a consequence, a social choice function satisfying the weak Pareto
principle and the condition of independence of irrelevant alternatives is dictatorial
(respectively, oligarchical) if it is required to satisfy the PI′ (respectively, PI′′). Thus,
the asymmetric power structure in a social choice crucially depends on the choice
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process that is being adopted to make a decision. In real life there are numerous ways
one can describe a choice process.

4 Choice procedures

Given an ordered subsets of A ∈ [X ], 〈A1, A2, . . . , An〉 ∈ �(A), it is obvious that
if a chooser has to choose according to the order then she will possibly choose first
from A1 (i.e., C(A1)), however, the final outcome depends on the adopted process.
For example, one can compare C(A1) with A2, or for each element of C(A1) with A2,
or for each element of C(A1) with each element of A2, or as it is suggested by Plott.
Furthermore, after choosing at the second round what a chooser would do with the
rejected element in the earlier round when it is confronting A3 once again depends the
description of the adopted process. So it is of interest to investigate the class of choice
processes that are associated with a particular power structure. So we introduce below
a notion of an abstract social choice process.

A social choice procedure, CP(.), is a rule which for every profile of individual pref-
erence orderings s ∈ S and for every issue A ∈ [X ], every integer n ∈ {1, 2, . . .|A|}
and for every n-element of sequence of subsets of A, 〈A1, A2, . . . , An〉 ∈ �(A)

specifies a non-empty subset of A,(i.e., Ø �= CP (s, 〈A1, A2, . . . , An〉) ⊆ A such
that CP (s, 〈A1〉) = H . Whenever a situation s ∈ S is unambiguous, we will write
social choice procedure as CP (〈A1, A2, . . . , An〉). Clearly, for n = 1, a social choice
procedure is reduced a social choice function.

For any A ∈ [X ], a social choice procedure, CP(.), is said to be path independent
iff for all 〈A1, A2, . . . , An〉 ∈ �(A), CP (〈A1, A2, . . . , An〉) = CP(〈A〉).

For any A ∈ [X ], a social choice procedure, CP(.), is said to be upper path inde-
pendent iff for all 〈A1, A2, . . . , An〉 ∈ �(A), CP(〈A〉) ⊆ C P (〈A1, A2, . . . , An〉).

For any A ∈ [X ], a social choice procedure, CP(.), is said to be lower path inde-
pendent iff for all 〈A1, A2, . . . , An〉 ∈ �(A), CP (〈A1, A2, . . . , An〉) ⊆ CP(〈A〉).15

The conditions which the social choice procedure may be required to satisfy for all
pairs of alternative social states, x, y ∈ A ⊆ X and for all situations s, s′ ∈ S are:

Independence (IN): [L(xy) = L ′
(xy)and L(yx) = L ′

(yx)] → C (s, 〈{x, y}〉) =
C

(
s′, 〈{x, y}〉).

Weak Pareto optimality (PO) |Lxy | = N → y /∈ C (〈A〉).
Absence of veto (AV) |Lxy | = N − 1 → y /∈ C(〈A〉).
Strict monotonicity (SM) [Lxy ⊆ L ′

yx &L ′
yx ⊆ L yx and if at least one of these is a

proper subset] → [x ∈ C (s, 〈{x, y}〉) → {x} = C
(
s′, 〈{x, y}〉)].

These properties are familiar in the literature and do not need any discussion. Under
the restriction that the issue A contains exactly two elements, our Pareto optimality
condition is known in the literature as the weak Pareto principle (WP).

We now introduce certain conditions which are concerned with the distribution of
“power” among individuals in a society. For a distinct pair of alternatives x, y ∈ X ,
and for all s ∈ S, a set of individuals L ⊆ L is

15 Factorizing the path independence of two stage choice procedure, one can obtain h (〈A1, A2, . . . , An〉) ⊆
h(〈A〉) what Ferejohn and Grether (1977) called weak path independence.
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Choice procedures and power structure 605

Decisive for x against y [x Pi y forall i ∈ L] → {x} = C(〈{x, y}〉).
Quasi-decisive for x against y [x Pi y forall i ∈ L] → x ∈ C (〈{x, y}〉).

We utilize the notion of decisiveness and quasi-decisiveness to introduce the possible
power structure of a unique group of individuals in making a social decision.

Dictatorship There exists an individual i ∈ L who is decisive for every pair of
alternatives.
Oligarchic There exists a unique coalition of individuals L , L ⊆ L , who is decisive
for every pair of alternatives and every individual i ∈ L is quasi-decisive for every
pair of alternatives.
Weak-dictatorship There exists an individual i ∈ L who is quasi-decisive for every
pair of alternatives.
Almost-dictatorship A weak-dictator i ∈ L is said to be almost-dictator iff for all
x, y ∈ X and all s ∈ S, [x Pi y & x R j y forsome j �= i ∈ L] → {x} = C(〈{x, y}〉).
Throughout this article, we assume that the social choice procedure satisfies the

independence condition.

Theorem 1 Let CP(.) be a path independent choice procedure.

(1.1) If CP(.) satisfies PO then there exists a unique oligarchy.
(2.2) If single-valued CP(.) satisfies PO then there exists a dictator.
(3.3) If CP(.) satisfies PO and SM then there exists an almost dictator.

Chernoff (1954) showed that a chosen alternative from a set A cannot be rational
if that element is rejected in any subset of A. He introduced the following property for
rational choice.

A social choice procedure is said to satisfy the Chernoff condition (CC) iff for all
A1, A2 ∈ [A1 ∪ A2] and all x ∈ A1, if x /∈ CP(〈A1〉), then x /∈ CP(〈A1 ∪ A2〉).
Theorem 2 Let CP(.) be a choice procedure. Then the upper path independence con-
dition is equivalent to CC.

Sen (1977) identified the requirement of Chernoff condition is the reason behind
the Arrow-Gibbard impossibility theorems.16 However, the consequence of retaining
the lower path independence condition is stated below.

Theorem 3 There exists a non-oligarchic social choice procedure that satisfies WP
and lower path independence.

Theorem 4 Let CP(.) be a lower path independent choice procedure.

(4.1) There is no CP(.) which satisfies AV.
(4.2) For |X |〉N, if CP(.) satisfies PO then there exists an individual who is quasi-

decisive over at least (|X | − N + 1) (|X | − 1) pairs of alternatives.
(4.3) If C P (.) satisfies PO and SM then there exists an almost dictator.

Our results essentially show that the asymmetric power structure remains intact
when one invokes path independence or lower path independence of an abstract social
choice procedure. This suggests that the connection between the requirement of path
independence and asymmetric power structure is more robust than a mere adoption of
a particular choice process.

16 See Bandyopadhyay (1984, 1985, 1986).
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5 Proofs

To prove Theorem 1 we will use the following lemma.

Lemma 1 Let CP(〈.〉) be a path independent social choice procedure. Then the base
relation Rb is quasi-transitive.

Proof Let A = {x, y, z}. Suppose xPb y and yPbz. If zRbx , then for 〈{x, y}, {z}〉 ∈
�(A), z ∈ CP(〈{x, y}, {z}〉), whereas for 〈{y, z}, {x}〉 ∈ �(A), {x} = CP(〈{y, z}, {x}〉),
a contradiction that CP(〈.〉) is a path independent choice procedure.

The rest of the proof of (1.1) follows from Gibbard (1969). For a single valued
social choice procedure, it is immediate that the base relation Rb is transitive and thus
the rest of the proof of (1.2) follows from Arrow (1963). Following Bordes and Salles
(1978), the lemma below completes the proof of (1.3).

Lemma 2 If a social choice procedure CP(〈.〉) satisfies SM and if there is a weak
dictator then he is a unique almost dictator.

Proof of Theorem 2 We first show that CC implies upper path independence. Suppose
not. Then for some sequence 〈A1, A2〉 ∈ �(A), x ∈ CP(〈A〉) and x /∈ CP (〈A1, A2〉).
For x ∈ A1, there are two possibilities: (i) x /∈ CP (〈A1, 〉) and (ii) x ∈ CP (〈A1, 〉). If
(i) holds, then the contradiction is immediate. If (ii) holds, then, given x ∈ CP(〈A〉)
and x /∈ CP (〈A1, A2〉) , x /∈ CP(〈B〉) for some B ⊆ A. Once again contradicting CC.
Following the same argument, the contradiction is immediate for x /∈ A1.

Now we show that upper path independence implies CC. Suppose not. Then for
A, B ∈ [X ], where B ⊆ A, suppose x /∈ CP(〈B〉), x ∈ B; however, x ∈ CP(〈A〉).
Since x /∈ CP(〈B〉), then for a path 〈B, A/B〉 ∈ �(A), x /∈ CP(〈B, A/B〉). Given
x ∈ CP(〈A〉), by upper path independence, x ∈ CP(〈B, A/B〉), a contradiction.

The proof of Theorem 3 is very similar to Bordes (1976) and therefore is omitted.

Proof of Theorem 4 We first prove (4.1). Given AV, for all distinct a, b ∈ X , there
exists at least one coalition which is “almost decisive” for a against b, i.e., a set of
individuals L ′ such that aPi b for all i ∈ L ′ and bP j a for all j ∈ (L − L ′) implies
a Pbb. Compare all almost decisive sets, and let L* be the smallest almost decisive
coalition for x against y. It is clear that |L*| ≥ 2.

Construct a situation s as follows:

For all i ∈ (L∗ − {h}) x Pi y Piz,
for all j ∈ (L − L∗) y Pjz Pjx,

and z Phx Ph y.

(1)

Since L* is an almost decisive coalition for x against y, x Pb y. By AV, y Pbz.
Since L* is the smallest almost decisive coalition, we must have z Pbx . Now, by
lower path independence, for 〈{x, y}, {z}〉 ∈ �(A), C P (〈{x, y}, {z}〉) ⊆ CP(〈A〉),
i.e., z ∈ CP(〈A〉), which contradicts AV.

To prove (4.2) we use the following two lemmas.
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Lemma 3 Let CP(〈.〉) be a lower path independent social choice procedure. Then for
any A ∈ [X ], the base relation Pb is either acyclic or CP(〈A〉) = A.

Proof Let A = {x, y, z}. Suppose not. Suppose CP(〈A〉) �= A. Without loss of
generality suppose z /∈ CP(〈A〉). Now, suppose xPb y and yPbz. If zPbx , then for
〈{x, y}, {z}〉 ∈ �(A), {z} = CP(〈{x, y}, {z}〉), a contradiction that CP(〈.〉) is a lower
path independent choice procedure.

Lemma 4 Let CP(〈.〉) be a social choice procedure which satisfies WP. If its base
relation Pb is acyclic then for |X |〉N, there exists an individual who is quasi-decisive
over at least (|X | − N + 1)(|X | − 1) pairs of alternatives.

The proof is left to the reader since it is very similar to Blair and Pollak (1982).
Now to complete the proof of (4.2) one needs to consider a situation s that resulted

in a cycle that contains a Pareto-dominated alternative. By Lemma 3, all of the alter-
natives in the cycle, including the Pareto-dominated one, are chosen from the set
of alternatives involved in the cycle. This contradicts PO. The proof is complete by
Lemma 4.

To prove (4.3) we consider the following lemma originally introduced by Mas-
Collel and Sonnenschein (1972).

Lemma 5 If a social choice procedure CP(〈.〉) satisfies WP and SM then there exists
a weak dictator or else a cycle of social strict preference in the base relation.

To complete the proof consider an issue A that contains three or more alternatives.
First, restrict attention to the set of all but one of the alternatives. If PO and SM are
satisfied, then by Lemma 5, either there exist a weak dictator or else a cycle in Pb

on the restricted set of alternatives. The remaining alternative can be inserted into the
profile so that it is both Pareto-dominated and it appears in the cycle. Once again, by
Lemma 3, all of the alternatives in the cycle, including the Pareto-dominated one, are
chosen from the set of alternatives involved in the cycle. This contradicts PO. The rest
of the proof is immediate from Lemma 2.
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