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Abstract We provide in this paper two properties that are both necessary and
sufficient to characterize the domain of single-peaked preference profiles. This char-
acterization allows for a definition of single-peaked preference profiles without using
an ad hoc underlying order of the alternatives and also sheds light on the structure
of single-peaked profiles. Considering the larger domain of value-restricted prefer-
ence profiles (Sen, Econometrica 34:491–499, 1966) we also provide necessary and
sufficient conditions for a preference profile to be single-caved or group-separable.
Our results show that for single-peaked, single-caved and group-separable profiles
it is sufficient to restrict to profiles containing of either three individuals and three
alternatives or two individuals and four alternatives.

1 Introduction

The notion of single-peaked preferences introduced by Black (1948, 1958) and
Arrow (1951) is by now a key assumption in many economic models, ranging from
Hotelling-Downs political competition models to most local public goods models.
Agents in a given economy have single-peaked preferences if there exists a linear order
of the set of alternatives such that any agent’s preference relation along this ordering is
either always strictly decreasing, always strictly increasing, or first strictly increasing
and then strictly decreasing.1 In many models this guarantees for instance the existence

1 Preferences that are not strictly decreasing when deviating from the peak (but still decreasing) are
called in the literature “single-plateaued” preferences.
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of an equilibrium, the existence of a Condorcet winner, or the existence of incentive-
compatible mechanisms. More recently, Spector (2000) and DeMarzo et al. (2003)
showed that repeated interactions may lead to unidimensional opinions, thereby
providing additional rational for the use of single-peaked preferences.

While in many models the existence of such an underlying linear order is without
loss of generality, there is no a priori reason to confine the use of single-peakedness to
those models in which this underlying linear order has a straightforward interpretation.
After all, single-peakedness is a much more valuable property than the existence of
an (interpretable) underlying order of the alternatives. Yet, in order to extend the use
of single-peakedness to general models in which there is no obvious a priori ordering
of the alternatives we need to know under which conditions a preference profile is
single-peaked.2 We provide in this paper an answer to this question by identifying a
pair of properties that are both necessary and sufficient for a preference profile to be
single-peaked.

Beyond being an invitation to enjoy the properties offered by single-peakedness
to environments different from the usual ones, our characterization result also sheds
light on the structure of single-peaked preferences. A quick historical review of the
literature can help to assess our contribution. When Arrow (1951) formalized the con-
cept of single-peaked preferences his main objective was to provide a set of conditions
ensuring the transitivity of the majority decision. Arrow’s definition of single-peaked-
ness involved the set of all alternatives. Inada (1964) then observed that Arrow’s
transitivity result can be obtained by requiring only single-peakedness for any triple
of alternatives. This observation has a simple, yet powerful interpretation: for any
triple of alternatives there is one that is not considered the worst by any individual.
Although Inada already observed that this property does not necessarily imply sin-
gle-peakedness over all alternatives his result still nourishes the temptation to intuit
that single-peakedness for any triple and single-peakedness for all alternatives are two
faces of the same coin.

Failure for a preference profile to be single-peaked mainly comes from the con-
straint imposed by the underlying linear ordering, i.e., alternatives must all fit in
a one-dimensional space.3 Single-peakedness can thus be lost when there are too
many agents with too many different preferences, or when the set of alternatives is
“too large.” Indeed, whenever there are at most two agents and three alternatives any
preference profile is single-peaked. Adding a third agent can create a conflict if the
set of alternatives that are considered worst by at least one agent contains the three
alternatives. Following Sen (1966) and Sen and Pattanaik (1969), we call a profile
such that the set of worst alternatives has always a cardinality no greater than two
worst-restricted. But single-peakedness may also be lost when adding a fourth alter-
native instead of a third agent. This situation, a bit more technical, can be summarized

2 For any individual it is trivial to construct a linear ordering of the alternatives such that the preferences
of this agent are single-peaked with respect to this ordering. The difficulty is to find a linear order that is
common to all individuals.
3 Single-peakedness can be defined on other underlying structures than that of linear orders. The notion of
separability in Border and Jordan (1983) represents an n-dimensional version of single-peakedness, whereas
Demange (1982) studies single-peaked preferences on a tree.
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as follows. There are three alternatives such that the two individuals disagree on the
relative ranking of them. Call the intermediate alternative the “pivot” for this triple.
Then, single-peakedness requires that these agents should disagree on the relative
ranking of a fourth alternative with respect to the pivot. Preference profiles satisfy-
ing this restriction are called α-restricted. Our main result (Theorem 1) states that
these two properties that operate over very simple structures, worst-restriction and
α-restriction, are the set of necessary and sufficient properties of a preference profile
to be single-peaked.4

In addition to the characterization of the single-peaked domain we also provide a
characterization of the domain of group-separable preferences, i.e., preference pro-
files such that the set of alternatives can be split in two sets, with the property that
each individual prefers any alternative in one of the sets to any alternative in the
other set. Such a characterization is mostly motivated by the relation between single-
peaked and group-separable preferences profiles and goes back to the contributions
of Sen (1966) and Sen and Pattanaik (1969).5 Indeed, Sen and Pattanaik observed
that Inada’s condition over triples could be generalized by considering not only the
worst alternatives but also the best or the “intermediate” alternatives. Requiring that
for any triple of alternatives one is not considered as the most preferred by any indi-
vidual (best-restricted profile) is a necessary condition to obtain single-cavedness. If
instead we consider the intermediate alternative, i.e., neither the best nor the worst,
we obtain a necessary condition (medium-restricted profile) for group-separability.
While a characterization of single-caved profiles is easily obtained from our charac-
terization of the single-peaked domain, group-separability is a bit more delicate to
work with, mainly because such profiles do not come along with an intuitive topol-
ogy of the alternatives (as opposed to single-peakedness that assumes that alternatives
can be ordered on a one-dimensional space). Like single-peakedness, group separa-
bility is always obtained as long as there are no more than two individuals and three
alternatives. Clearly, adding a third individual can make the preference profile not
medium-restricted (and hence, not group-separable). But separability can also be lost
when adding a fourth alternative instead of a third individual. Two conditions must
be met for this to happen. First, the sets of worst and best alternatives of each indi-
vidual must have an empty intersection. Second, both individuals’ preferences must
coincide on the relative ranking of the best and worst alternatives of one of the indi-
viduals, and yet hold opposite views with respect to the best and worst alternatives
of the other individual. If such a configuration does not occur then we say that the
profile is β-restricted. Our second result (Theorem 2) states that medium-restriction
and β-restriction are the set of necessary and sufficient properties for a preference
profile to be group-separable.

The paper is organized as follows. Notation and the main definitions are provided
in Sect. 2. We present the characterization of the single-peaked and group-separable
domains in Sect. 3 and 4, respectively. We conclude in Sect. 5. The main proofs are
relegated to the Appendix.

4 Note that the α-restriction is not related to the α-property in choice theory.
5 See also Dummett and Farquharson (1961) and Pattanaik (1970) for other accounts on the matter.
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2 Preliminaries

Let X be a finite set of alternatives. We use the symbols ⊂ and ⊆ to denote strict
and weak inclusion, respectively. For any two sets A ⊂ B, we denote by AB the
complementary set of A over the set B, i.e., AB = {x ∈ B : x /∈ A}. If B = X we
simply write A. The cardinality of a set A is denoted |A|.

Let N be a finite set of agents. A preference profile P = (Pi )i∈N describes the
preference relations of agents, where each agent i ∈ N is endowed with a connected,
transitive, asymmetric preference relation Pi over X . The relation Pi is connected if
for any two distinct alternatives x and x ′, we have either x Pi x ′ or x ′ Pi x . It is transitive
if for any x, x ′ and x ′′ such that x Pi x ′ and x ′ Pi x ′′ we have x Pi x ′′. It is asymmetric if
for any pair of alternatives x and x ′, if x Pi x ′ then (not x ′ Pi x).

For any two alternatives x and x ′, the relation x Pi x ′ means that agent i prefers alter-
native x to x ′. Given two non-empty sets A and B and a preference relation Pi we use
the shorthand APi B to denote that for any x ∈ A and any x ′ ∈ B, x Pi x ′. For any pref-
erence relation Pi we denote by Pi the reverse relation, i.e., for any x, x ′ ∈ X, x ′ Pi x
if and only if x Pi x ′. Let P = (Pi )i∈N .

For any set A ⊆ X , let w(A, Pi ) be the least preferred alternative in A according
to the preference relation Pi , i.e., w(A, Pi ) = {x ∈ A : for each x ′ �= x, x ′ Pi x}
and let W (A, P) = ∪i∈N {w(A, Pi )}. Similarly, let b(A, Pi ) be the most preferred
alternative in A according to the preference relation Pi , i.e., b(A, Pi ) = {x ∈ A :
for each x ′ �= x, x Pi x ′} and B(A, P) = ∪i∈N {b(A, Pi )}.6 Finally, if A contains 3

alternatives, let m(A, Pi ) denote the alternative in A which is neither b(A, Pi ) nor
w(A, Pi ). Let M(A, P) = ∪h∈N {m(A, Pi )}.

Definition 1 A profile P is worst-restricted (resp. best-restricted, medium-restricted)
for a triple of alternatives, x, x ′, x ′′ ∈ X , if |W ({x, x ′, x ′′}, P)| ≤ 2 (resp.
|B({x, x ′, x ′′}, P)| ≤ 2, |M({x, x ′, x ′′}, P)| ≤ 2). A profile P is worst-restricted
(resp. best-restricted, medium-restricted) if it is worst-restricted (resp. best-restricted,
medium-restricted) for any triple of alternatives in X .

Value-restricted preferences (where for any triple “value” can be either “worst”,
“best” or “medium” and for different triples it can take different meanings) were
introduced by Sen (1966). In words, a preference profile over a triple of alternatives
is a value-restricted profile if there is an alternative that is never the most preferred
(resp. least preferred or “medium”-preferred) for any individual. The fact that prefer-
ence profiles over any triple of alternatives satisfy at least one value-restriction allows
the method of majority decision to be a social welfare function satisfying Arrow’s
conditions (and in particular, being transitive). Notice that imposing all the triples
of alternatives to respect the same restriction, we obviously obtain profiles satisfy-
ing value-restriction. Let Pworst,Pbest, and Pmedium denote the set of preference
profiles that are worst-restricted, best-restricted and medium-restricted, respectively.

6 Notice that given our assumptions, the worst and the best alternative for each individual exist and are
unique.
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Table 1 Admissible
orientations (example)

L1: a b c d

L2: b a c d

L3: c a b d

L4: d a b c

L5: d c b a

L6: d c a b

L7: d b a c

L8: c b a d

3 Single-peaked preference profiles

For any A ⊆ X , let LA denote the set of all (strict) linear orders over A, i.e., the set of
connected, transitive, and asymmetric binary relations. We denote by L A (when clear,
we use L) a generic element of LA.7 For any two alternatives x and x ′, the relation
x Lx ′ means that in the ordering L alternative x ranks before alternative x ′. We say
that two alternatives x and x ′ are consecutive in L if x Lx ′ (resp. x ′Lx) and there does
not exist another alternative x ′′ such that x Lx ′′Lx ′ (resp. x ′Lx ′′Lx). The fact that k
alternatives are consecutive in L for k ≥ 3 is defined similarly.

Given a preference relation Pi and a set A ⊆ X , a linear order L over A is an
admissible orientation of A with respect to Pi if for any triple of alternatives of
A, b(A, Pi ), x ′ and x ′′ such that either b(A, Pi )Lx ′Lx ′′ or x ′′Lx ′Lb(A, Pi ), we have
x ′ Pi x ′′.

Consider an individual i with the following preference relation over alternatives
a, b, c, and d: a Pi bPi cPi d. This preference relation admits eight different admissible
orientations. Table 1 depicts all admissible orientations for individual i for these four
alternatives, where, for instance, the admissible orientation L3 is cL3aL3bL3d.

We denote by L ∗
A(Pi ) the set of all admissible orientations of A with respect to Pi .

Additionally, L ∗
A(P) = ∩i∈N L ∗

A(Pi ). Clearly, for each individual i ∈ N ,L ∗
X (Pi ) �=

∅ —e.g., Pi ∈ L ∗
X (Pi ). However, it is not always possible to guarantee the existence

of an ordering L over X such that L ∈ L ∗
X (P).8

Definition 2 A preference profile P is single-peaked if L ∗
X (P) �= ∅.

The set of single-peaked preference profiles is denoted by PSP. Observe that if
a profile P /∈ PSP, then for any ordering L over X there exists three consecu-
tive alternatives in L , say x, x ′ and x ′′ such that x Lx ′Lx ′′ and an i ∈ N such that
w({x, x ′, x ′′}, Pi ) = x ′.

It is well known that if a profile P ∈ PSP then P is worst-restricted. Yet, as
Inada (1964) showed through an example, the converse is not true. The existence of

7 Note also that any preference relation Pi is, in our context, also a linear order. However, to add clarity
we will not use the terminology “linear ordering” to define a preference relation.
8 Our definition of single-peakedness clearly corresponds to our aim of characterizing classical preference
domains. There is also the notion of single-peaked choice, that can be explored in the works of Moulin
(1984) or Bossert and Peters (2006).
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an admissible orientation for any triple does not guarantee the existence of an admis-
sible orientation for set X . Inada’s example includes a set of four alternatives and a
set of four individuals. Our characterization of single-peakedness is based on Inada’s
example, but considering only four alternatives and two individuals. Indeed, two of the
preferences in Inada’s example are redundant as a source of non-single-peakedness.
The other two do not hold the following property:

Definition 3 A preference profile P is α-restricted if there do not exist two agents,
i, j ∈ N , and four alternatives x, x ′, x ′′, x ′′′ such that

(i) They are opposite in a triple: x Pi x ′ Pi x ′′′, x ′′′ Pj x ′ Pj x . In this case alternative x ′
is called the pivot.

(ii) They coincide in ranking: x ′′ Pi x ′, x ′′ Pj x ′.

If a profile is not α-restricted then there are two individuals i, j ∈ N and four alterna-
tives who “agree” to set alternatives x and x ′′′ as the end points of a common admissible
orientation. The “disagreement” arises however with alternatives x ′ and x ′′. Let Pα

denote the set of preference profiles that are α-restricted.
Notice that in Definition 3 the case x ′ Pi x ′′, x ′ Pj x ′′ does not have to be excluded

explicitly. If for either i or j the alternative x ′′ is the least preferred (among x, x ′, x ′′
and x ′′′), then it is easy to find an admissible orientation (e.g., simply by putting x ′′
either the first or the last of the orientation). If, on the contrary, the alternative x ′′ is not
the least preferred by any of the two individuals, then there does not exist an admissible
orientation for individuals i and j . However, a quicker way consists of observing that
we are back to conditions (i) and (ii) by permuting x ′ and x ′′ (i.e., alternative x ′′ is
now the pivot). Hence, we do not need to explicitly rule out the case x ′ Pi x ′′, x ′ Pj x ′′.

As the following examples show, it is easy to check that if a preference profile fails
to satisfy either worst-restriction or α-restriction, then it cannot be single-peaked.

Example 1 Consider three individuals, i, j, k and l and four alternatives, a, b, c and
d. The following table depicts these indivuals preferences over these four alternatives.

Pi Pj Pk Pl

a a a d
b b d b
c d b a
d c c c

An easy way to check for failure of worst-restriction is to see whether there are three
distinct alternatives with the same “preference level,” i.e., all these alternatives are the
k-th preferred, for some k ≥ 3. This is obviously not the case for the fourth preferred
alternatives. Considering the third preferred alternative, we notice that there are three
individuals, j, k, and l, whose third preferred alternative is d, b, and a, respectively.
It suffices now to check that for j, k and l the alternatives {a, b}, {a, d}, and {d, b}
lie above d, b, and a in their preferences, respectively. Since this is the case in this
example, we can conclude that the profile does not satisfy worst-restriction.

On the contrary, note that we cannot find any pair of individuals and four alter-
natives such that the profile fails to satisfy α-restriction. More precisely, notice that
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we can find two individuals, i and l, and three alternatives a, b, and d that satisfy
condition (i) of the definition α-restriction, where the pivot is b. However, the fourth
alternative c, is not preferred to alternative b by both individuals. That is, these two
individuals and four alternatives do not comply with condition (ii) of Definition 3.

Example 2 Consider four individuals, i, j, k, and l and four alternatives, a, b, c, and d.
The following table depicts these individuals’ preferences over these four alternatives.

Pi Pj Pk Pl

a a a a
b b d c
c d b b
d c c d

The above profile clearly satisfies worst-restriction, yet it does not satisfy
α-restriction. A quick way to check failure of α-restriction consists of identifying
a possible “pivot” by looking at an alternative that is the k-th preferred by two indi-
viduals (k ≥ 3). This is the case for instance with individuals k and l and alternative b
(which would be the “pivot”). Alternatives d and c are ranked differently with respect
to b by individuals k and l. That is, for individuals k and l the preference relation
over b, c, and d are opposite. To complete our checking we must ensure that there is a
fourth alternative that is preferred by both individuals to the pivot. This is the case for
alternative a, so we can conclude that the above profile fails to satisfy α-restiction.

The main result of this section shows that in fact worst-restriction and α-restriction
are also sufficient to characterize single-peakedness.9

Theorem 1 PSP = Pworst ∩ Pα .

The proof of Theorem 1 consists of showing that for any profile P ∈ Pworst ∩Pα

we can construct a linear order L such that L ∈ L ∗
X (P). To this end, we consider

the collection of sets {W (X, P), W (W (X, P), P), . . .}. Since P ∈ Pworst, the cardi-
nality of all these sets is at most 2. We then construct a linear order L such that the
alternatives in W (X, P) are located at the extreme ends of L , and then completing L
with the alternatives in W (X, P). Since the arguments used in the the construction
of L slightly differ whether the sets in {W (X, P), W (W (X, P), P), . . .} contain one
or two alternatives, we first consider the sets containing two alternatives and then
complete L by incorporating the singleton sets.

Observe that if A ⊂ X and L ∗
A(P) = ∅, then L ∗

X (P) = ∅. Similarly, if for any
coalition S ⊂ N we have ∩i∈SL ∗

A(Pi ) = ∅, then L ∗
A(P) = ∅. Theorem 1 shows that

some basic converse statement also holds. More precisely, if L ∗
X (P) = ∅ then there

exist minimal sets A, S of alternatives and individuals (with minimal dimensions, 3
and 3, or 4 and 2) such that ∩i∈SL ∗

A(Pi ) = ∅.
Another preference domain, similar to single-peakedness, is the class of single-

caved preference profiles.10

9 Notice that Examples 1 and 2 clearly show that worst-restriction and α-restriction are independent
properties.
10 Some authors call such preferences single dipped, e.g., Klaus et al. (1997).
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Definition 4 A preference profile P is single-caved if P is single-peaked, i.e.,
L ∗

X (P) �= ∅.

Let PSC be the set of single-caved profiles. The set PSC can also be characterized
directly as the set of preference profiles that are best-restricted and α-restricted, where
this latter property is the α-restriction in which we invert individuals’ preferences. That
is, a profile P is α-restricted if there do not exist two individuals i, j ∈ N and four
alternatives, x, x ′, x ′′, and x ′′′ such that (a) x Pi x ′ Pi x ′′′, x ′′′ Pj x ′ Pj x , and (b) x ′ Pi x ′′
and x ′ Pj x ′′. Let Pα denote the set of preference profiles that are α-restricted. We
then obtain the following characterization of the domain of single-caved preference
profiles.

Corollary 1 PSC = Pbest ∩ Pα .

Proof That PSC ⊆ Pbest ∩ Pα is obvious. To show that Pbest ∩ Pα ⊆ PSC con-
sider a profile P ∈ Pbest ∩ Pα . It is easy to see that P ∈ Pbest implies P ∈ Pworst

and P ∈ Pα implies P ∈ Pα . So, P ∈ PSP and thus P ∈ PSC. �

4 Group-separable preference profiles

Given a preference relation Pi and a set A ⊆ X , a non-empty set E ⊂ A is a separa-
tion of A with respect to Pi if either E Pi AE or AE Pi E . We denote by SA(Pi ) the
set of all separations of A with respect to Pi . Additionally, SA(P) = ∩i∈N SA(Pi ).
Clearly, for each individual i ∈ N ,SA(Pi ) �= ∅. For instance, {b(A, Pi )} ∈ SA(Pi )

and {w(A, Pi )} ∈ SA(Pi ). However, it is not always possible to guarantee, for any
A ⊆ X , the existence of a separation E such that E ∈ SA(P).

Definition 5 A preference profile P is group-separable if for any A ⊆ X,SA(P) �=∅.

The set of group-separable preference profiles is denoted by PGS. It is easy to see
that if a profile is group-separable, then it is also medium-restricted (each group of three
alternatives is separable). In a first analysis by Inada (1964), the author announces that
these two ideas are equivalent. However, as Inada points out (1969), this is not the
case. The existence of a separation for any triple does not guarantee the existence of
a separation for set X . We present here another source of non-group-separability that
considers a group of four alternatives and only two individuals.

Definition 6 A preference profile P is β-restricted if there do not exist i, j ∈ N and
four alternatives x, x ′, x ′′ and x ′′′ such that

x Pi x ′ Pi x ′′ Pi x ′′′ and x ′ Pj x ′′′ Pj x Pj x ′′. (1)

Let Pβ be the set of preference profiles that are β-restricted. The conditions
depicted in Eq. 1 can be re-stated as follows. First, individuals i and j’s respective best
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and worst alternatives must differ, i.e., {w(A, Pi ), b(A, Pi )}∩{w(A, Pj ), b(A, Pj )} =
∅ where A = {x, x ′, x ′′, x ′′′}. Second, the preference of both individuals must coin-
cide with respect to the best and worst alternatives of one of them and differ with
respect of the best and worst alternatives of the other. That is, b(A, Pj )Piw(A, Pj )

and w(A, Pi )Pj b(A, Pi ). The combination of these two requirements gives Eq. 1.

Example 3 Consider four individuals, i, j, k, and l and four alternatives, a, b, c, and
d. The following table depicts these indivuals preferences over these four alternatives.

Pi Pj Pk Pl

a d b a
b c d b
c b a c
d a c d

Routine examination shows that the above profile is medium-restricted. Notice
however that the preferences Pi and Pk fail to satisfy the requirement of
β-resriction.

On the contrary, the profile depicted in Example 1 satisfies β-restriction (with indi-
viduals i, j , and l with alternatives a, c, and d) but fails to satisfy medium-restriction.11

It is not difficult to see that any group-separable profile must be β-restricted. With
the previous analysis, any group-separable profile must be both medium-restricted and
β-restricted. We conclude our results by showing that this pair of properties constitutes
a characterization of group-separable profiles.

Theorem 2 PGS = Pmedium ∩ Pβ .

The proof of Theorem 2 consists first of showing that if a profile P ∈ Pmedium ∩
Pβ then P restricted to the set B(X, P)∪W (X, P) is group-separable.12 Given a sep-
aration set E and its complementary F , it may be that for some individual i the set E
(or F) is not connected, i.e., there exist x, x ′ ∈ E and x ′′ /∈ E such that x Pi x ′′ Pi x ′. The
second and main step of the proof consists of showing that E ∪{x ′′} ∈ SE∪F∪{x ′′}(P).
Continuing this way with all other alternatives we eventually obtain a separation of X
for the profile P , provided P ∈ Pmedium ∩ Pβ .

5 Conclusion

Our results first show that single-peakedness (or single-cavedness or group separabil-
ity) can be lost just because of the existence of two individuals and four alternatives,
or three individuals and three alternatives. What is perhaps more surprising is that
we are able to endow the reverse statement with a precise meaning: if a profile is

11 So Examples 1 and 3 show that medium-restriction and β-restriction are independent properties.
12 We start by observing that if P ∈ PGS then any profile P̂ such that P̂i ∈ {Pi , Pi } is also group-separable.
It follows that for any pair of individuals i, j ∈ N , we can assume without loss of generality that
b(X, Pi )Pj w(X, Pi ).
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not single-peaked (single-caved or group-separable, respectively) then there must be
a violation of that property for a set of three preferences over three alternatives or a
set of two preferences over four alternatives.

Absent an exact characterization of either single-peaked or group-separable
preferences, these preference domains usually (if not only) appear in models in which
they can be considered as “natural” assumptions like for instance Hotelling or Down-
sian types of models. It is our contention that the characterizations we offer can open
the way to the use of those domains in other contexts. As far as we know, Bartholdi
and Trick (1986) is the only paper that identifies single-peakedness without using an
a priori linear order of the alternatives to be ranked. Their approach differs from ours,
however, since they do not provide a set of properties that characterize single-peaked-
ness, as we do. Instead, they provide an algorithm to find admissible orientations and
show that given a preference profile single-peakedness can be stated in polynomial
time.13

The identification of which sets of preferences allow this kind of representation con-
stitutes one of the main problems of, among other fields, the design of strategy-proof
social choice functions.14 Inspired by classical results (e.g., Moulin 1980), a huge
amount of literature has discussed two of its main features. First, the generalization
of the notion of single-peakedness to non-linear structures, in the search of strategy-
proof social choice functions. Second, the deep analysis of voting by committees (see
Barberà et al. (1991)) show that single-peakedness is the seed of non-manipulability
in several domains. In a recent paper, Nehring and Puppe (2006) show the relevance
of this approach.
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Appendix

In order to prove Theorem 1 we introduce the following definition. Given an ordering
L over a set A, two consecutive alternatives x, x ′ ∈ A such that x Lx ′ and an alternative
x ′′ /∈ A, we say that we augment the ordering L with the relation x Lx ′′Lx ′ to mean
that now L is an ordering over A ∪ {x ′′} such that for any alternative x̂ such that x̂ Lx
(resp. x ′Lx̂) we have x̂ Lx ′′ (resp. x ′′Lx̂). Augmenting a linear by incorporating two
alternatives is defined similarly.

13 To proceed they transform the problem of finding a linear ordering into a matrix problem and apply
an algorithm originally proposed by Booth and Lueker (1976) —see also Knoblauch (2010). Trick (1989)
proposes an algorithm to check single-peakedness on a tree.
14 Although related, the existing literature has mainly focused on the size of the “Condorcet Domain”. See
Fishburn (2002) and the references therein.
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Proof of Theorem 1 That PSP ⊆ Pα ∩ Pworst is obvious. We now show that Pα ∩
Pworst ⊆ PSP. To this end, let P ∈ Pα ∩ Pworst. Let X1, . . . , Xk be the collection
of sets of alternatives such that X1 = W (X, P), and for each 1 ≤ h ≤ k, Xh =
W (∪ j<h X j , P). Let Y = {∪h Xt : |Xt | = 2} and Z = {∪h Xt : |Xt | = 1}. Since
P ∈ Pworst, Y ∪ Z = X . To prove that Pα ∩ Pworst ⊆ PSP we show that we
can construct an ordering L such that L ∈ L ∗

Y (P) and then we show that L can be
augmented to incorporate alternatives in Z such that L ∈ L ∗

Y∪Z (P).

Step 1 Construction of L such that L ∈ L ∗
Y (P).

Let Y1, . . . , Yy be the collection of sets of alternatives such that Y1 = W (Y, P),
and for each 1 ≤ h ≤ y, Yh = W ((∪ j<hY j )Y , P).15

Let Y1 = {e1, f1}, and let L be the linear ordering over Y1 such that e1L f1. Clearly,
L ∈ L ∗

Y1
(P). We now proceed by induction to show that we can augment L to include

also a relation over all alternatives in Y . To this end, suppose that for some t ≥ 1
we can construct two sets, Et = {e1, . . . , et } and Ft = { f1, . . . , ft } and a linear
order L such that e1L . . . Let L ft L . . . L f1, and L ∈ L ∗∪h≤t Yh

(P), where for each
h ≤ t, Yh = {eh, fh}.

Let Yt+1 = {x, x ′}. We now show that there exists x̂, x̃ ∈ Yt+1 such that
x̃ �= x̂ and L can be augmented with the relations et L x̂ L x̃ L ft . To this end, let
S1 = {x, x ′}\W ({et , x, x ′}, P) and S2 = {x, x ′}\W ({ ft , x, x ′}, P). We first show
that S1, S2 �= ∅. By construction, there exists l > 1 such that Xl = {et , ft }. So,
{et , ft } = W (∪h<l Xh, P) and thus, since x, x ′ ∈ ∪h<l Xh, et ∈ W ({et , x, x ′}, P)

and ft ∈ W ({ ft , x, x ′}, P). Since P ∈ Pworst, |W ({et , x, x ′}, P)| ≤ 2 and
|W ({ ft , x, x ′}, P))| ≤ 2. So, S1, S2 �= ∅. We claim that there exist x̂ ∈ S1 and
x̃ ∈ S2 such that x̂ �= x̃ . To see this, suppose on the contrary that there does
not exist such a pair of alternatives. The only possibility is then S1 = S2 and
|S1| = 1. Without loss of generality, suppose x ′ /∈ S1, S2. So, and thus there
exists i ∈ N such that x ′ = w({et , x, x ′}, Pi ). So, et Pi x ′ and x Pi x ′. Given that
{et , ft } = W (∪h<l Xh, P) it must be x ′ Pi ft . Similarly, since x ′ /∈ S2 there exists
j ∈ N such that x ′ = w({x, x ′, ft }, Pj ). So, x Pj x ′ and ft Pj x ′. Like for individual
i , it can be shown that x ′ Pj et . Since et Pi x ′ and x ′ Pj et , i �= j . So, (Pi , Pj ) is not
α-restricted when considering the alternatives et , x, x ′, ft (where the pivot is x ′), so
P is not α-restricted, a contradiction. Hence, there exists x̂ ∈ S1 and x̃ ∈ S2 such that
x̂ �= x̃ . Without loss of generality, let x̂ = x and x̃ = x ′. We now set et+1 = x and
ft+1 = x ′, and augment the ordering L with the following relations

et Let+1L ft+1L ft . (A.1)

We claim that L ∈ L ∗∪h≤t+1Yh
(P). To see this, suppose on the contrary that L /∈

L ∗∪h≤t+1Yh
(P). So, there exists i ∈ N and three alternatives consecutive in L , say x, x ′

and x ′′, such that x Lx ′Lx ′′ and w({x, x ′, x ′′}, Pi ) = x ′. Suppose x ′ = eh , where
h ≤ t − 1. So, {x, x ′, x ′′} ⊂ {e1, . . . , et }, and thus L /∈ L ∗∪h≤t Yh

(P), a contradiction

15 Note that the sets Y1, Y2, . . . are ordered as the the sets Xt , i.e., if there are two sets Yh and Yh′ such
that h < h′ then there exists two sets Xt and Xt ′ such that Xt = Yh , Xt ′ = Yh′ and t < t ′.
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with the induction hypothesis. Similarly, we have x ′ �= fh for h ≤ t − 1. So, x ′ ∈
{et , et+1, ft+1, ft }. Suppose first that x ′ = et+1. So, x ′ = w({et , et+1, ft+1}, Pi ) and
thus x ′ ∈ W ({et , et+1, ft+1}, P). Hence, et+1 /∈ S1, a contradiction. So, x ′ �= et+1.
Similarly, it can be shown that x ′ = ft+1 implies ft+1 /∈ S2, a contradiction. So,
x ′ ∈ {et , ft }. Without loss of generality, suppose that x ′ = et . So, x = et−1 and
x ′′ = et+1 and thus et−1 Pi et and et+1 Pi et . Since L ∈ L ∗∪h≤t Yh

(P), we have

et−1 Pi et Pi ft . (A.2)

Since Yt = {et , ft } = W ((∪h<t Yh)Y , P), there exists j ∈ N such that et =
w((∪h<t Yh)Y , Pj ). Since et , et+1, ft ∈ (∪h<t Yh)Y , et+1 Pj et and ft Pj et . So, j �= i .
Since L ∈ L ∗∪h≤t Yh

(P), ft Pj et implies et Pi et−1. So, we have

ft Pj et Pi et−1 and et+1 Pj et . (A.3)

So, (Pi , Pj ) is not α-restricted when considering the alternatives et−1, et , et+1,

ft (with et as the pivot). So, P is not α-restricted, a contradiction. Hence L ∈
L ∗∪h≤t+1Yh

(P).

Step 2 Construction of L such that L ∈ L ∗
Y∪Z (P).

Let {c1
0, . . . , cp0

0 } be the set of all alternatives (if any) such that for 1 ≤ h ≤
p0, Xh = Zh = {ch

0 }. (So, notice that X p0+1 = Y1.) Similarly, for 1 ≤ h ≤ y, let
{c1

h, . . . , cph
h } be the set of all alternatives (if any) such that there exists t such that

Xt = Yh, Xt+ j = {c j
h} for 1 ≤ j ≤ ph , and if h < y, Xt+ph+1 = Yh+1. Clearly,

⋃
h≤y

⋃
j≤p j

{c j
h} = Z . We now show that we can augment the ordering L obtained

in Step 1 by including the elements (c1
0, . . . , c

py
y ).

Consider first c1
y and augment L with the relations ey Lc1

y L fy . We claim that L ∈
L ∗

Y∪{c1
y}(P). To this end, suppose that L /∈ L ∗

Y∪{c1
y}(P). So, there exists an individ-

ual i ∈ N and three consecutive alternatives in L , x, x ′ and x ′′ such that x Lx ′Lx ′′
and w({x, x ′, x ′′}, Pi ) = x ′. It is easy to check that x ′ ∈ {ey, c1

y, fy}. Suppose first
that x ′ = c1

y . So, c1
y = w({ey, c1

y, fy}, Pi ). Let t such that Xt = {ey, fy}. Hence,

∪h<t Xt = {ey, fy} ∪h=1,...,py {ch
y}. By construction, ch

y Pj c1
k for all 1 < h ≤ py and

each individual j ∈ N . So, c1
y = w({ey, c1

y, fy}, Pi ) implies c1
y = w(∪h<t Xt , Pi )

and thus c1
y ∈ W (∪h<t Xt , P). So, c1

y ∈ Xt , a contradiction. Hence, x ′ ∈ {ey, fy}.
Without loss of generality, suppose x ′ = ey . So, x = ey−1 and x ′′ = c1

y . Since
L ∈ L ∗

Y (P), ey−1 Pi ey implies ey Pi fy . So, we have

ey−1 Pi ey Pi fy and c1
y Pi ey . (A.4)

Since ey = w(∪h<t Xt , Pi ), there exists j �= i such that ey = w(∪h<t Xt , Pj ). So,
fy Pj ey . Since L ∈ L ∗

Y (P), we have ey Pj ey−1. Since c1
y /∈ Xt , c1

y Pj ey . So, we have

fy Pi ey Pi ey−1 and c1
y Pi ey . (A.5)
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So, (Pi , Pj ) is not α-restricted when considering the alternatives ey−1, ey, c1
y, fy (with

ey as the pivot). So, P is not α-restricted, a contradiction. Hence, L ∈ L ∗
Y∪{c1

y}(P).

Consider now c2
y . We claim that we can augment L either with the relations

ey Lc1
y Lc2

y L fy or with the relations ey Lc2
y Lc1

y L fy . To see this, suppose that aug-
menting L with the relations ey Lc1

y Lc2
y L fy implies L /∈ L ∗

Y∪{c1
y ,c

2
y}(P) and that

augmenting L with the relation ey Lc2
y Lc1

y L fy also implies L /∈ L ∗
Y∪{c1

y ,c
2
y}(P). If we

cannot augment L with the relations ey Lc1
y Lc2

y L fy then there exist three consecutive
alternatives in L , x, x ′ and x ′′ such that x Lx ′Lx ′′ and W ({x, x ′, x ′′}, P) = {x ′}. A
reasoning similar to the previous one shows that x ′ ∈ {c1

y, c2
y}. Since by construction,

c2
y Phc1

y for each individual h ∈ N , we have x ′ = c1
y . So, there exists i ∈ N such that

ey Pi c1
y and c2

y Pi c1
y . Since L ∈ L ∗

Y∪{c1
y}(P), ey Pi c1

y implies c1
y P fy . So, we have

ey Pi c
1
y Pi fy and c2

y Pi c
1
y . (A.6)

Similarly, if we cannot augment L with the relations ey Lc2
y Lc1

y L fy then we can
repeat the above reasoning and deduce that there exists j ∈ N such that

fy Pj c
1
y Pj ey and c2

y Pj c
1
y . (A.7)

Clearly, j �= i and (Pi , Pj ) is not α-restricted when considering the alternatives
ey, c1

y, c2
y, fy (with c1

y as the pivot). So, P is not α-restricted, a contradiction. Hence,
L ∈ L ∗

Y∪{c1
y ,c

2
y}(P). It suffices now to repeat the same arguments with alternatives

c3
y, . . . , c

py
y with the following rule: If L is augmented with the relations ey Lc1

y

Lc2
y L fy (resp. ey Lc2

y Lc1
y L fy) then L has to be augmented with the relations

c2
y Lc3

y L . . . Lc
py
y L fy (resp. ey Lc

py
y L . . . Lc1

y L fy). The same arguments as the ones
developed above show that L ∈ L ∗

Y∪h=1,...,py {ch
y }(P). For 1 ≤ h < k a similar reason-

ing can be used to show that we can augment L with either ehc1
h . . . cph

h eh+1 (but not
ehcph

h . . . c1
heh+1) or with fh+1cph

h . . . c1
h fh (but not fh+1c1

h . . . cph
h fh). This concludes

the proof. �
In order to prove Theorem 2 we introduce the following notation. For any profile

P ∈ P let I (P) be the set of profiles such that P ′ ∈ I (P) if for each i ∈ N , P ′
i ∈

{Pi , Pi }.

Proof of Theorem 2 That PGS ⊆ Pβ ∩ Pmedium is obvious. We now show that
Pβ ∩ Pmedium ⊆ PGS. Let P ∈ Pβ ∩ Pmedium. Without loss of generality, we
can consider P ′ ∈ I (P) such that for each h ∈ N , b1 P ′

hw1. With a slight abuse of
notation, let P ′ = P .

Step 1 There exist two sets E and F such that B(X, P) ∪ W (X, P) = E ∪ F and
E ∈ SE∪F (P).
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Table 2 Case 2.1
P1

i P2
i P3

i P4
i P5

i P6
i

wk wk wk b1 b1 b1

bk b1 b1 w1 wk wk

b1 bk w1 wk bk w1

w1 w1 bk bk w1 bk

For any individual i ∈ N , let (with some abuse of notation) bi = b(X, Pi ) and
wi = w(X, Pi ). Let E = {b1} and F = {w1}. Clearly, E ∈ SE∪F (P). Consider
now any 1 < k < n and suppose that E ∈ SE∪F (P), where E = ∪h<k{bh} and
F = ∪h<k{wh}. Consider now individual k and the alternatives bk and wk . Since
E ∈ SEk−1∪Fk−1(P), we have E Pk F . Let E ′ = E ∪ {bk} and F ′ = F ∪ {wk}. So,
E ′ Pk F ′ and thus E ′ ∈ SE ′∪F ′(Pik ). To prove Step 1 by induction, it suffices to show
that E ′ ∈ SE ′∪F ′(P). We distinguish between the following cases:

Case 1. bk ∈ E and wk ∈ F . So, E ′ = E and F ′ = F and thus we obviously have
E ′ ∈ SE ′∪F ′(P).

Case 2. bk /∈ E and wk /∈ F . Suppose that E ′ /∈ SE ′∪F ′(P). So, there exists
i such that E ′ /∈ SE ′∪F ′(Pi ). Hence, i �= k. Since E ∈ SE∪F (Pi ) and
b1 Phw1 for each h ∈ N , E Pi F . So, there exist x ′ ∈ E ′ and y′ ∈ F ′
such that y′ Pi x ′. By the induction hypothesis, notice that x ′ ∈ E implies
y′ = wk and y′ ∈ F implies x ′ = bk . We distinguish between the following
subcases. [Case 2.1. ]

Case 2.1. x ′ = bk and y′ = wk . So, wk Pi bk . Since bk /∈ E, bk �= b1 and thus
bk Pkb1. Similarly, since wk /∈ F, wk �= w1 and thus w1 Pkwk . So, we have

bk Pkb1 Pkw1 Pkwk . (A.8)

By construction, and since bk �=b1 and wk �=b1 we have b1 P1{bk, wk}P1w1.
Suppose that wk P1bk . So, (P1, Pk) is not β-restricted, and thus P /∈ Pβ ,
a contradiction. Hence, bk P1wk and thus

b1 P1bk P1wk P1w1. (A.9)

Since wk Pi bk, i �= 1. Combining wk Pi bk and b1 Piw1 the six possible
configurations for Pi are given in Table 2.
It is easy now to notice that for l = 1, 2, 4, 6, the profiles (P1, Pk, Pl

i ) /∈
Pmedium with the alternatives {bk, w1, wk}, {b1, w1, wk}, {b1, bk, w1},
and {b1, bk, wk}, respectively. If l = 3, 5 then the profiles (P1, Pl

i )

or (Pk, Pl
i ) are not in Pβ considering the alternatives (b1, bk, w1, wk)

and (b1, bk, w1, wk), respectively. Hence, for l = 1, . . . , 6, we have
P /∈ Pmedium ∩ Pβ , a contradiction. So, E ′ ∈ SE ′∪F ′(P).

Case 2.2 x ′ = bk and y′ �= wk . So, y′ ∈ F . Suppose first that i = 1. Since
bk /∈ E ∪ F, bk �= w1 and thus bk P1w1. Since y′ ∈ F, y′ �= b1, and thus
b1 P1 y′. Finally, since y′ Pi bk we then have
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Table 3 Case 2.2
P1

h∗ P2
h∗ P3

h∗

bk b1 b1

b1 bk w1

w1 w1 bk

y′ y′ y′

b1 P1 y′ P1bk P1w1. (A.10)

Since bk /∈ E ∪ F, bk Pkb1. Since E ′ ∈ S (E ′ ∪ F ′, Pk), b1 Pk{w1, y′}.
Suppose first that w1 Pk y′. So, we have bk Pkb1 Pkw1 Pk y′. It follows
that (P1, Pk) /∈ Pβ where P1 is given by Eq. A.10. So, P /∈ Pβ ,
a contradiction. Thus we have

bk Pkb1 Pk y′ Pkw1. (A.11)

Since y′ ∈ F and y′ �= w1, there exists an individual j with 1 < j < k such
that either y′ = b j or y′ = w j . Without loss of generality, suppose y′ = w j .
Since y′ �= w1, w1 Pj y′. We then have three possibilities (depicted in
Table 3),Using P1 and Pk given by Eqs. A.10 and A.11, it is easy to check
that for l = 1, 2, 3 the profiles (P1, Pl

j , Pk) /∈ Pmedium-contradiction
with alternatives {bk, w1, y′}, {b1, bk, y′}, {b1, bk, w1}, respectively. So,
P /∈ Pmedium, a contradiction. Hence, h∗ �= 1, i.e., E ′ ∈ SE ′∪F ′(P1).
It follows then that b1 P1bk P1 y′. By construction E ′ ∈ SE ′∪F ′(Pk). Since
bk �= b1, we have bk Pkb1 Pk y′. By the definition of i, y′ Pi bk . Since
E ∈ SE∪F (Pi ) and E Pi F, b1 Pi y′. So, b1 Ph∗ y′ Ph∗bk . This implies that
(P1, Ph∗ , Pk) /∈ Pmedium, and thus P /∈ Pmedium, a contradiction. So,
E ′ ∈ SE ′∪F ′(P).

Case 2.3 x ′ �= bk and y′ = wk . This case is the symmetric of Case 2.2, the proof
is therefore omitted.

Case 3 bk /∈ E and wk ∈ F . Suppose E ′ /∈ SE ′∪F ′(P). So, there exists i such
that E ′ /∈ SE ′∪F ′(Pi ). Hence, i �= k. Since E ∈ SE∪F (Pi ), E Pi F . So,
there exist x ′ ∈ E ′ and y′ ∈ F ′ such that y′ Pi x ′. Since wk ∈ F and since
E ∈ SE∪F (Pi ), x ′ = bk and y′ ∈ F . We can then repeat the argument
developed in Case 2.2., obtaining then either P /∈ Pmedium or P /∈ Pβ .
So, E ′ ∈ SE ′∪F ′(P).

Case 4 bk ∈ E and wk /∈ F . This case is the symmetric of Case 3 using the
same argument as in Case 2.3, the proof is therefore omitted.

We then conclude that ∪h≤k{bh} ∈ S∪h≤k {bih }∪h≤k {wih }(P). By induction, we then
have that B(X, P) ∈ SB(X,P)∪W (X,P)(P). Let E1 = B(X, P) and F1 = W (X, P).

Step 2 There exist E∗ ⊂ X such that E∗ ∈ SX (P).
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Table 4 Step 2
Pi Pj Pl Pl′

bl′ bl′
x ei ei bl′
ei f j x x

f j x wl f j

wl wl

For each h ∈ N , let eh = w(E1, Ph), fh = b(F1, Ph), Hh(E1) = {x ∈ E1 :
x Pheh} and Hh(F1) = {x ∈ F1 : fh Ph x}. Suppose ∪h∈N (Hh(E1) ∪ Hh(F1)) = ∅.
Let E∗ = X\F1 = F1. Clearly, E∗ ∈ SX (P), and thus we are done. Suppose then
that ∪h∈N Hh(E1) ∪ Hh(F1) �= ∅. Without loss of generality suppose that there exists
i ∈ N such that Hi (E1) �= ∅, and let x = b(Hi (E1), Pi ) —the case when Hi (F1) �= ∅
is symmetric defining x = w(Hi (F1), Pi ).

Since E1 ∈ SE1∪F1(P), x /∈ F1. We show that E1 ∪ {x} ∈ SE1∪F1∪{x}(P). To
this end, suppose E1 ∪ {x} /∈ SE1∪F1∪{x}(P). So, there exists j ∈ N such that
E1 ∪ {x} /∈ SE1∪F1∪{x}(Pj ). Clearly, E1 ∪ {x} ∈ SE1∪F1∪{x}(Pi ). So, i �= j , and
there exists x ′ ∈ F1 such that x ′ Pj x . Without loss of generality, let x ′ = f j . Since
x /∈ F1, we have f j Pj x Pjw j . Since ei ∈ E1 and f j ∈ F1 we have

bi Pi x Pi ei Pi f j and ei Pj f j Pj x Pjw j . (A.12)

Suppose first ei = b j . So, b j = ei Pj bi . Since bi ∈ E1 and f j ∈ F1, bi Pj f j . So,
we have ei Pj bi Pj f j Pj x . We then have (Pi , Pj ) /∈ Pβ and thus P /∈ Pβ , a contra-
diction. So, ei �= b j and thus there exists l ∈ N , l �= i, j such that ei = bl . Using a
similar argument it can be shown that we have f j �= wi , which implies that there exists
l ′ ∈ N , l ′ �= i, j such that f j = wl ′ . We now show that l �= l ′. Suppose on the contrary
that l = l ′. So, bl = ei Pl x Pl f j = wl ′ . It follows that (Pi , Pj , Pl) /∈ Pmedium and
thus P /∈ Pmedium where (Pi , Pj ) is the profile given by Eq. A.12, a contradiction.
So, l �= l ′.

Consider now individuals i, j and l and the alternatives x, ei , wl . Clearly, since
by construction ei = bl , m({ei , wl , x}, Pl) = x . Since wl ∈ F1, ei Piwl and thus
using Eq. A.12 we have m({ei , wl , x}, Pi ) = ei . Since P ∈ Pmedium, we have
m({ei , wl , x}, Pj ) �= wl . Since wl ∈ F1, ei Pjwl , and thus since P ∈ Pmedium we
have x Pjwl , for otherwise we would have an m({ei , wl , x}, Pj ) = wl , i.e., (Pi , Pj , Pl)

would not be medium-restricted. A similar argument with individuals i, j , and l ′ and
alternatives bl ′ , x, f j yields bl ′ Pi x . So, we have

bl ′ , Pi x Pi ei Pi { f j , wl} and {bl ′ , ei }Pj f j Pj x Pjwl , (A.13)

where ei Pi { f j , wl} reads as ei Pi f j and ei Pjwl but no relation is specified for
f j and wl , and similarly for {bl ′ , ei }Pj f j . Note that Eq. A.13 implies f j �= wl

and ei �= bl ′ . Consider individuals i and j and alternatives ei , f j , x, wl . Since
P ∈ Pβ , we have f j Piwl . Similarly, the alternatives ei , f j , x, bl ′ and the fact
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that P ∈ Pβ yield bl ′ Pj ei . This yields the profile (Pi , Pj , Pl , Pl ′) depicted in
Table 4. Consider now the individuals i, l and l ′ and the alternatives ei , bl ′ , x .
Clearly, m({ei , bl ′ , x}, Pi ) = x . From the definitions of bl and bl ′ and the fact
that ei = bl , we have m({ei , bl ′ , x}, Pl ′) ∈ {x, ei } and m({ei , bl ′ , x}, Pl) ∈ {x, bl ′ }.
Since P ∈ Pmedium, m({ei , bl ′ , x}, Pl ′) = ei implies m({ei , bl ′ , x}, Pl) = x . Simi-
larly, m({ei , bl ′ , x}, Pl) = bl ′ implies m({ei , bl ′ , x}, Pl ′) = x . Suppose first m({ei ,

bl ′ , x}, Pl) = x . Since bl ′ ∈ E , we have ei Pl x Plbl ′ Plwl . Observe now that
m({bl ′, f j , x}, Pi ) = x, m({bl ′ , f j , x}, Pj ) = f j . Since bl ′ ∈ E and f j ∈ F , we have
m({bl ′, f j , x}, Pl) = bl ′ . So, P /∈ Pmedium, a contradiction. So, m({ei , bl ′ , x}, Pl) =
bl ′ and thus m({ei , bl ′ , x}, Pl ′) = x . Repeating the above reasoning yields again
P /∈ Pmedium. Let E2 = E1 ∪ {x} and F2 = F1. So, we have E2 ∈ SE2∪F2(P).

Suppose now that we have defined Et and Ft such that for each 2 ≤ t ′ ≤ t , we
have either

• Et ′ = Et ′−1 ∪ {x} with x = b(Hi (Et ′−1), Pi ) for some i ∈ N where Hi (Et ′−1) =
{x ∈ Et ′−1 : x Phw(Et ′−1, Pi )}, and Ft ′ = Ft ′−1.

• Ft ′ = Ft ′−1 ∪ {x} with x = w(Hi (Ft ′−1), Pi ) for some i ∈ N where Hi (Ft ′−1) =
{x ∈ Ft ′−1 : b(Ft ′−1, Pi )Ph x}, and Et ′ = Et ′−1.

and Et ∈ SEt ∪Ft (P).
For each h ∈ N , define the sets Hh(Et ) and Hh(Ft ) as the sets Hh(Et ′) and

Hh(Ft ′), t ′ < t . Without loss of generality, suppose that there exists i ∈ N such that
Hi (Et ) �= ∅ and let x = b(Hi (Et ), Pi ) —the case when Hi (Ft ) �= ∅ is symmet-
ric defining x = w(Hi (Ft ), Pi ). We show that Et ∪ {x} ∈ SEt ∪{x}∪Ft (P). To this,
suppose on the contrary that Et ∪ {x} /∈ SEt ∪{x}∪Ft (P).

So, there exists j ∈ N such that Et ∪ {x} /∈ SEt ∪Ft ∪{x}(Pj ). Clearly, Et ∪ {x} ∈
SEt ∪Ft ∪{x}(Pi ). So, i �= j , and there exists x ′ ∈ Ft such that x ′ Pj x . For each h ∈ N ,
let et

h = w(Et , Ph) and f t
h = b(Ft , Ph). Without loss of generality, let x ′ = f t

j . Since
x /∈ Ft , we have f t

j Pj x Pjw j . Since et
i ∈ Et and f t

j ∈ Ft we have

bi Pi x Pi e
t
i Pi f t

j and et
i Pj f t

j Pj x Pjw j . (A.14)

If et
i = bl for some l �= i and f t

j = wl ′ for some l ′ �= j , it suffices to repeat the
arguments developed after Eq. A.12. Suppose then that there does not exist l �= i such
that et

i = bl . So, there exists t ′ < t and l �= i such that et
i = b(Hl(Et ′), Pl). Since

x /∈ Et , x /∈ Et ′ . So, et
i Pl x . By construction, x Plwl and thus we have

et
i Pl x Plwl . (A.15)

Similarly, if there does not exist l ′ �= j such that f t
j = wl ′ then there exists t ′ < t and

l ′ �= i such that f t
j = w(Hl ′(Ft ′), Pl ′). Since x /∈ Ft , x /∈ Ft ′ . So, we have

bl ′ Pl ′ x Pl ′ f t
j . (A.16)

Combining the profiles depicted in Eqs. A.14, A.15, A.16 yield a profile similar to that
of Table 4. It is readily verified that the same arguments go through, which allows us to
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conclude that Et∪{x} ∈ SEt ∪{x}∪Ft (P). Since the number of alternatives is finite, there
exists T such that ET ∈ SET ∪FT (P) and for each h ∈ N , Hh(ET ) = Hh(FT ) = ∅.
It suffices then to define E∗ = FT and we have E∗ ∈ SX (P). �
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