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Abstract We introduce a model of (wireless communication) networks: a group of
agents want to communicate with each other; an agent has his own position, chooses
his costly communication range, and benefits from direct and indirect communications
with other agents; any two agents can directly communicate if each agent is located
within another agent’s communication range; they can indirectly communicate if each
agent is connected to another agent through a sequence of direct communications.
Although efficiency and stability are not compatible in a general context, we iden-
tify interesting subclasses of problems where an efficient and stable network exists:
the uniform interval model, the uniform circle model, and the communication favor-
able domain. We also investigate the consequence of allowing agents to relocate their
positions. For certain networks, relocation-proofness is equivalent to stability.

1 Introduction

We introduce a model of (wireless communication) networks: a group of agents want
to communicate with each other; an agent has his own position, chooses his costly
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communication range, and benefits from direct and indirect communications with
other agents; any two agents can directly communicate if each agent is located within
another agent’s communication range; they can indirectly communicate if each agent
is connected to another agent through a sequence of direct communications. Examples
of such a situation are abundant in the real world: amateur radio, beacons (an ancient
system of optical telegraph), etc.

Following Jackson and Wolinsky (1996), we investigate an existence of an efficient
and stable network for the model. As in other models of networks, efficiency and
stability are not compatible in a general context. However, we can identify interest-
ing subclasses of problems where an efficient and stable network exists: the uniform
interval model, in which agents are located uniformly on a unit interval; the uniform
circle model, in which agents are located uniformly on a unit circle; and the communi-
cation favorable domain, in which the cost of setting a communication range is small
compared with its benefits. We generalize the model by allowing agents to move their
positions with relocation costs. As it turns out, for certain networks, relocation-proof-
ness is equivalent to stability.

This paper belongs to a growing literature on the network formation in which
agents’ utilities depend on the structure of the network.1 Compared with the existing
network formation models, our model has at least three differences. Firstly, each agent
is assigned with a position that plays a significant role in the formation of wireless
communication networks. Since each agent’s benefit and cost depend on his position,
each agent plays a different role in the network formation process. We can also discuss
how the possibility of relocating positions affects the process.

Secondly, any two agents enjoy the benefits of direct communications if each agent
is located within another agent’s communication range. Thus, each agent’s decision
on his communication range would affect all the other agents within his range. On the
other hand, in the link-based network models, each agent’s decision on a link would
affect the agents connected through the link.

Thirdly, a wireless communication network cannot be fully described by a simple
graph. Since two distinct networks may induce the same graph, we define a network
as a pair of a communication range profile and a position profile.

The remainder of this paper is organized as follows. Section 2 introduces our model
of networks, and the notions of efficiency and stability. Section 3 analyzes an existence
of an efficient and stable network in two specific models, the uniform interval model
and the uniform circle model. Section 4 shows that efficiency and stability are not
compatible on the general domain and discusses how a positive result can be obtained
by imposing a domain restriction. Section 5 generalizes the model by allowing agents
to move their positions and investigates the implications. Concluding remarks follow
in Sect. 6.

1 See, for example Bala and Goyal (2000), Bloch and Dutta (2009), Bloch and Jackson (2007), Dutta and
Mutuswami (1997), Dutta and Jackson (2000), Galeotti et al. (2006), Jackson and van den Nouweland
(2005), Johnson and Gilles (2000), and for a survey Jackson (2005).
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Efficiency and stability in a model of wireless communication networks 443

2 The model

Let N ≡ {1, . . . , n} where n ≥ 3 be a set of agents. Each agent i ∈ N has a position
pi ∈ R

K for K ≥ 1. We assume that pi �= p j for all i, j ∈ N with i �= j . Let
p ≡ (pi )i∈N be a position profile, and P the set of all position profiles. Each agent
i ∈ N decides his communication range ri ∈ R+. Let r ≡ (ri )i∈N be a communi-
cation range profile, and R the set of all communication range profiles. A wireless
communication network, or a network, is a pair (r, p) ∈ R × P of a communication
range profile and a position profile. Let W ≡ R × P be the set of all networks.

For all p ∈ P and all i, j ∈ N , the metric distance between i and j is m(i, j; p) ≡
‖pi − p j‖. Note that for all p ∈ P and all i ∈ N , m(i, i; p) = 0. For all (r, p) ∈ W , let
g(r, p) ≡ {{i, j}| m(i, j; p) ≤ ri and m(i, j; p) ≤ r j } be the graph induced by (r, p).
For simplicity, {i, j} is denoted by i j . If i j ∈ g(r, p), agents i and j are (directly)
linked under (r, p) and i j is called a link. For all (r, p) ∈ W and all i, j ∈ N with
i �= j , a path between i and j under (r, p) is a sequence of agents i1, . . . , i J such that
ik ik+1 ∈ g(r, p) for all k ∈ {1, . . . , J − 1} with i = i1 and j = i J . For all (r, p) ∈ W
and all i, j ∈ N with i �= j , the (geodesic) distance between i and j under (r, p),
d(i, j; r, p), is the number of links in a shortest path between i and j ; if there is no
path between i and j under (r, p), we set d(i, j; r, p) = ∞. We abuse a notation to
denote a positive integer by d.

We are ready to introduce examples of networks. For all p ∈ P , let (r0, p) be the
empty network such that for all i ∈ N , r0

i = 0; for all p ∈ P , let (rmax, p) be the
maximal network such that for all i ∈ N , rmax

i = max j �=i m(i, j; p); for all p ∈ P,

let (rmin, p) be the minimal communication range network or minimal network such
that for all i ∈ N , rmin

i = min j �=i m(i, j; p) if there is an agent j �= i such that
mink �=i m(i, k; p) = m(i, j; p) = mink �= j m( j, k; p), or rmin

i = 0 otherwise.
Let b : N → R+ be the benefit function that associates with each d ∈ N a nonneg-

ative real value. We assume that b is strictly decreasing and limd→∞ b(d) = 0. Let
c : R+ → R+ be the communication cost function or cost function that associates with
each communication range ri a nonnegative real value. We assume that c is strictly
increasing, continuous, concave, and c(0) = 0.

For all (r, p) ∈ W and all i ∈ N , the utility of i under (r, p) is defined to be his
benefit minus his cost, that is,

ui (r, p) ≡
∑

j �=i

b(d(i, j; r, p)) − c(ri ).

For all (r, p) ∈ W , let v(r, p) ≡ ∑
i∈N ui (r, p) be the value of the network (r, p).

Next we introduce two axioms, which will be the main interests of this paper.
Efficiency requires that a network maximize the sum of individual utilities for a given
position profile.

Definition A network (r, p) ∈ W is efficient if for all (r ′, p) ∈ W, v(r, p) ≥ v(r ′, p).

Stability requires that no agent benefit by adjusting his communication range alone.
For all i ∈ N and all r ∈ R, let r−i ≡ (r j ) j∈N\{i}.
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Fig. 1 The uniform interval
model

Definition A network (r, p) ∈ W is stable if for all i ∈ N and all (r ′, p) ∈ W such
that r−i = r ′−i , ui (r, p) ≥ ui (r ′, p).

For all p ∈ P and all i ∈ N , let C Ri (p) ≡ {q ∈ R+| for some j ∈ N , q =
m(i, j; p)} be the set of the metric distances from agent i to all the agents (including
himself).

Remark 1 Under our formulation of the network, if an increase in an agent’s commu-
nication range does not change the induced graph, the agent becomes worse off. As
a consequence, if there is i ∈ N such that ri /∈ C Ri (p), then (r, p) ∈ W is neither
stable nor efficient.

3 Two specific models of position profiles

We introduce two models of position profiles: the uniform interval model2 and the
uniform circle model. In the uniform interval model, agents are assumed to be located
uniformly on a unit interval, and in the uniform circle model, on a unit circle. We
present examples showing that efficiency and stability can be compatible in these
models.

3.1 The uniform interval model

In the uniform interval model, agents are located uniformly on a unit interval [0, 1].
Formally, as in Fig. 1, let the position profile p− ≡ (p−

i )i∈N be such that for all
i ∈ N , p−

i = i−1
n−1 .

We introduce a parameterized family of networks for the uniform interval model,
which contains the empty, the minimal, and the maximal networks. For all α ∈
{0, 1, . . . , n − 1}, (rα, p−) is a network under which any pair of agents are directly
linked if the metric distance between them is at most α

n−1 . Formally, for all α ∈
{0, 1, . . . , n − 1}, let rα ≡ (rα

i )i∈N be such that

rα
i =

⎧
⎪⎨

⎪⎩

min
{

α
n−1 , n−i

n−1

}
, if i ≤ n

2 ,

min
{

α
n−1 , i−1

n−1

}
, if i > n

2 .

If α = 1, rα = rmin and if α = n − 1, rα = rmax.
We present examples of stable networks.

2 This model was first studied by Johnson and Gilles (2000) in the network formation literature.
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Proposition 1 In the uniform interval model, if
∑n−1

d=1 b(d) ≥ c( 1
n−1 ), then (rmin, p−)

is stable.

Proof Let (rmin, p−) be given. By Remark 1, any agent is worse off whenever he
increases his communication range. Since

∑n−1
d=1 b(d) ≥ c( 1

n−1 ), no agent can be
better off by decreasing his communication range. Therefore, (rmin, p−) is stable.


�
Proposition 2 In the uniform interval model, if b(1) − b(2) ≥ c( 1

n−1 ), then for all
α ∈ {0, 1, . . . , n − 1}, (rα, p−) is stable.

Proof For any α ∈ {0, 1, . . . , n − 1}, let (rα, p−) be given. By Remark 1, any agent
is worse off whenever he increases his communication range. Now suppose that agent
i decreases his communication range from rα

i to r ′
i . By concavity of c, the cost abate-

ment is at most (α − β)c( 1
n−1 ) where β is the largest integer such that β

n−1 ≤ r ′
i .

On the other hand, the benefit decrement is at least (α − β)(b(1) − b(2)). Since
b(1) − b(2) ≥ c( 1

n−1 ), agent i cannot be better off by decreasing his communication
range. Altogether, for all α ∈ {0, 1, . . . , n − 1}, (rα, p−) is stable. 
�

Examples of efficient networks follow.

Proposition 3 In the uniform interval model, if b(1)−b(2) ≥ c( 1
n−1 ), then (rmax, p−)

is efficient.

Proof By Remark 1, we consider only the networks (r, p−) ∈ W such that r ≤ rmax.
Suppose that (r, p−) is not maximal. Since there is i ∈ N such that ri < rmax

i , there
is at least one pair of agents who are not directly linked under (r, p−). Among pairs
of agents not directly linked, let i and j be a pair who are closest to each other in the
metric distance. Let r ′

i = max{ri , m(i, j; p−)} and r ′
j = max{r j , m(i, j; p−)}. Then,

i and j are directly linked under (r ′
i , r ′

j , r−i j , p−) where r−i j ≡ (rk)k∈N\i j .

We claim that for k = i, j, r ′
k − rk ≤ 1

n−1 . Suppose, without loss of generality,

that r ′
i − ri > 1

n−1 . Then, there is k ∈ N such that ri < m(i, k; p−) < r ′
i . Since

r ′
i − ri > 0 implies r ′

i = m(i, j; p−), we have m(i, k; p−) < m(i, j; p−). Since
ri < m(i, k; p−), i and k are not directly linked under (r, p−). Altogether, we have a
contradiction to the choice of i and j .

We compare v(r, p−) with v(r ′
i , r ′

j , r−i j , p−). For i and j , by concavity of c, the

cost increment is at most c( 1
n−1 ) while the benefit increment is at least b(1) − b(2).

Since b(1) − b(2) ≥ c( 1
n−1 ), i and j are weakly better off from the direct communi-

cation, which implies that v(r ′
i , r ′

j , r−i j , p−) ≥ v(r, p−). By iterating the argument,
we conclude that (rmax, p−) is efficient. 
�
Proposition 4 In the uniform interval model, if 2b(1)+(2n−5)b(2) ≤ c(1)−c( n−2

n−1 ),

then (r0, p−) is efficient.

Proof By Remark 1, we consider only the networks (r, p−) ∈ W such that r ≤
rmax. Suppose that (r, p−) is not empty. If g(r, p−) = ∅, by Remark 1, v(r, p−) <
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v(r0, p−). Otherwise, let S = {k ∈ N | max jk∈g(r,p−)m( j, k; p−) = q∗} where
q∗ = maxi j∈g(r,p−)m(i, j; p−). Note that |S| ≥ 2. Let r ′

S = (r ′
k)k∈S be such that for

each k ∈ S, r ′
k = q∗ − 1

n−1 . Let r−S = (ri )i∈N\S . Note that each agent in S loses at

most two links from this adjustment. Also, for each k ∈ S, rk − r ′
k ≥ 1

n−1 .
We compare v(r, p−) with v(r ′

S, r−S, p−). For each k ∈ S, by concavity of c,

the cost abatement is at least c(1) − c
(

n−2
n−1

)
while the benefit decrement is at most

2b(1)+(n−3)b(2). For each i ∈ N \S, the benefit decrement is at most |S|b(2). Thus,
the total benefit decrement is at most |S|(2b(1)+ (n − 3)b(2))+ (n −|S|)|S|b(2) and

the total cost abatement is at least |S|
(

c(1) − c
(

n−2
n−1

))
. Since 2b(1)+ (n −3)b(2)+

(n − |S|)b(2) ≤ c(1) − c
(

n−2
n−1

)
, we have v(r ′

S, r−S, p−) ≥ v(r, p−). By iterating

the argument, we conclude that (r0, p−) is efficient. 
�
Remark 2 If c is strictly concave, (rmax, p−) in Proposition 3 is uniquely efficient.
However, the concavity of c is not sufficient to prove its uniqueness. The same remark
holds for (r0, p−) in Proposition 4.

We can make the following observations for the uniform interval model. Since the
empty network is always stable, under the assumption of Proposition 4, it is both effi-
cient and stable. On the other hand, from Propositions 2 and 3, if b(1)−b(2) ≥ c( 1

n−1 ),
the maximal network is both efficient and stable.

3.2 The uniform circle model

In the uniform circle model, agents are located uniformly on a unit circle in the
counter clockwise direction. Formally, as in Fig. 2, let the position profile po ≡
(po

i )i∈N be such that for all i ∈ N , po
i =

(
cos 2(i−1)π

n , sin 2(i−1)π
n

)
. Furthermore,

to simplify our analysis, we will assume that n is odd.

Fig. 2 The uniform circle model
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We introduce a parameterized family of networks for the uniform circle model,
which contains the empty, the minimal, and the maximal networks. For all α ∈
{
0, 1, . . . , n−1

2

}
, let ρα ≡

√
2 − 2 cos 2απ

n . Note that ρα is strictly increasing and

strictly concave in α. For all α ∈ {
0, 1, . . . , n−1

2

}
, (rα, po) is a network under which

any pair of agents are directly linked if the metric distance between them is at most ρα .
Formally, for all α ∈ {

0, 1, . . . , n−1
2

}
, let rα be such that for all i ∈ N , rα

i = ρα . If
α = 1, rα = rmin. On the other hand, if α = n−1

2 , rα = rmax.
We discuss examples of stable and efficient networks. Since the proofs are similar

to those in the uniform interval model except the calculation of costs and benefits, they
are omitted.

Proposition 5 In the uniform circle model:

(i) If 2
∑(n−1)/2

d=1 b(d) ≥ c(ρ1), then (rmin, po) is stable.
(ii) If 2b(1) − 2b(2) ≥ c(ρ1), then for all α ∈ {0, 1, . . . , n−1

2 }, (rα, po) is stable.
(iii) If 2b(1) − 2b(2) ≥ c(ρ1), then (rmax, po) is efficient.
(iv) If 2b(1) + (2n − 5)b(2) ≤ c(ρ(n−1)/2) − c(ρ(n−3)/2), then (r0, po) is efficient.

We can make the following observations for the uniform circle model. Since the
empty network is always stable, under the assumption of Proposition 5 (iv), it is both
efficient and stable. On the other hand, from Proposition 5 (ii) and (iii), if 2b(1) −
2b(2) ≥ c(ρ1), the maximal network is both efficient and stable.

4 General model of position profiles

As shown in the previous section, efficiency and stability are compatible if the position
profile is appropriately specified. We investigate whether such a result can be gener-
alized to more general domain of position profiles. However, the answer is negative:
we can easily find a position profile in which an efficient and stable network does not
exist.

Proposition 6 If c is unbounded, there exists a position profile p ∈ P such that any
efficient network is not stable.

Proof Let N = {1, 2, 3}. Suppose that c is unbounded. We divide into two cases.

Case 1 b(1) < 3b(2). By the assumptions on c, there exist x, y ∈ R++ such that
c(x) < min{b(2), 3b(2)−b(1)} and c(y) = b(1)+b(2). Let p ∈ P be such that p1 =
(0, 0), p2 = (x, 0), and p3 = (x + y, 0). Since c(x) < b(2) and c(y) = b(1) + b(2),
we have x < y, which implies that rmin = (x, x, 0) and rmax = (x + y, y, x + y). Let
r∗ = (x, y, y) and r ′ = (0, y, y). By Remark 1, we need to consider only the follow-
ing 5 networks for efficiency: (r0, p), (rmin, p), (r ′, p), (r∗, p), and (rmax, p). Note
that v(r0, p) = 0, v(rmin, p) = 2b(1)−2c(x), v(r ′, p) = 2b(1)−2c(y), v(r∗, p) =
4b(1) + 2b(2) − c(x) − 2c(y), and v(rmax, p) = 6b(1) − c(y) − 2c(x + y). Since
v(r ′, p) < v(rmin, p), (r ′, p) is not efficient. Now we show that (r∗, p) is uniquely
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efficient. Since 0 < c(x) < min{b(2), 3b(2)−b(1)} and c(y) = b(1)+b(2), we have

v(r∗, p) − v(r0, p) = 4b(1) + 2b(2) − c(x) − 2c(y)

> 4b(1) + 2b(2) − b(2) − 2b(1) − 2b(2)

= 2b(1) − b(2)

> 0,

v(r∗, p) − v(rmin, p) = 2b(1) + 2b(2) + c(x) − 2c(y)

= 2b(1) + 2b(2) + c(x) − 2b(1) − 2b(2)

= c(x)

> 0, and

v(r∗, p) − v(rmax, p) = 2c(x + y) − c(y) − c(x) − 2b(1) + 2b(2)

> 2c(x + y) − c(y) + b(1) − 3b(2) − 2b(1) + 2b(2)

= 2c(x + y) − c(y) − b(1) − b(2)

> c(y) − b(1) − b(2)

= 0.

Altogether, (r∗, p) is uniquely efficient. However, by setting r ′′
2 = x , we have

u2(r∗, p) = 2b(1) − c(y) < b(1) − c(x) = u2(r ′′
2 , r∗−2, p), which implies that

(r∗, p) is not stable.

Case 2 3b(2) ≤ b(1). By the assumptions on c, there exist x, y ∈ R++ such that
c(x) < b(2), c(y) = b(1), and c(x + y) < 3

2 b(1) − b(2). Let p ∈ P be such that
p1 = (0, 0), p2 = (x, 0), and p3 = (x + y, 0). Since c(x) < b(2) and c(y) = b(1),
we have x < y, which implies that rmin = (x, x, 0) and rmax = (x + y, y, x + y).
Let r∗ = (x, y, y) and r ′ = (0, y, y). Similarly to Case 1, we can show that (rmax, p)

is uniquely efficient. However, by setting r ′′
1 = x , we have u1(rmax, p) = 2b(1) −

c(x + y) < b(1)+ b(2)− c(x) = u1(r ′′
1 , rmax−1 , p), which implies that (rmax, p) is not

stable.

This example is easily extended to the models with more than three agents by
assigning to each agent i ∈ {4, . . . , n}, pi = (x, i z) where z ∈ R++ is chosen to
satisfy c(z) > n(n − 1)b(1). Also, it is obvious that the result can be extended to the
positions in a more than two-dimensional space. 
�

Since it is natural to require that the cost function be unbounded, Proposition 6
shows that it is not easy for a network to satisfy both efficiency and stability in a
general environment. One way-out is to impose a restriction on the position profiles
as we did in the previous section. Another possibility is to impose a restriction on the
cost and benefit functions as in the below.

Definition A position profile p ∈ P is communication favorable with respect to b
and c if c(maxi∈N (max j �=i m(i, j; p))) < b(1) − b(2).

Since this condition requires that the maximum communication cost between agents be
less than the additional benefit increased by a direct communication, each agent has an
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Efficiency and stability in a model of wireless communication networks 449

incentive to form the maximal network. Let P f (b, c) be the set of all communication
favorable position profiles with respect to b and c.

It is not surprising that the maximal network is the only efficient one on the com-
munication favorable domain.

Proposition 7 For all p ∈ P f (b, c), (rmax, p) is uniquely efficient.

Proof Let p ∈ P f (b, c). Suppose that (r, p) is not maximal. Then, any pair of agents
i, j ∈ N who are not linked are better off by increasing their communication ranges
to m(i, j; p), which increases the value of the network. By Remark 1, among the net-
works that induce the complete graph, only the maximal network maximizes the value
of the network. Altogether, we conclude that (rmax, p) is the only efficient network. 
�

To show that at least one efficient network is stable on this restricted domain of
position profiles, we check whether the maximal network is stable. In fact, there are
many stable networks on this domain. We show the result by introducing two axioms.
The minimal range property requires that each agent should choose the minimal range
to induce a given graph.

Definition A network (r, p) ∈ W satisfies the minimal range property if for all
(r ′, p) ∈ W such that g(r ′, p) = g(r, p), r ≤ r ′.

Intruding-proofness requires that no agent can communicate with another agent by
his unilateral deviation.

Definition A network (r, p) ∈ W is intruding-proof if for all i, j ∈ N , m(i, j; p) ≤
ri implies m(i, j; p) ≤ r j .

As it turns out, on our communication favorable domain, stability is equivalent to
the minimal range property and intruding-proofness together.

Proposition 8 On the communication favorable domain, a network is stable if and
only if it satisfies the minimal range property and intruding-proofness.

Proof Let p ∈ P f (b, c). First, we show that stability implies the minimal range prop-
erty. Suppose that (r, p) ∈ W does not satisfy the minimal range property. Then,
there is i ∈ N who is better off by decreasing his communication range as long as the
induced graph remains unchanged. Therefore, (r, p) is not stable, a contradiction.

Next, we show that stability implies intruding-proofness. Suppose that (r, p) is not
intruding-proof. Then, there is i ∈ N who can communicate with another agent by
increasing his communication range. Since p ∈ P f (b, c), he is better off by doing so.
Therefore, (r, p) is not stable, a contradiction.

Finally, we show that the minimal range property and intruding-proofness together
imply stability. Let (r, p) ∈ W satisfy the two properties. By the minimal range prop-
erty, any decrease in each agent’s communication range results in losing at least one
link in g(r, p). Since p ∈ P f (b, c), this decrease makes him worse off. By intruding-
proofness, any increase in each agent’s communication range cannot change g(r, p).
Altogether, we conclude that (r, p) is stable. 
�
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Since it can easily be shown that the maximal network satisfies the minimal range
property and intruding-proofness, we establish the following corollary.

Corollary 1 On the domain of communication favorable position profiles, the maxi-
mal network is stable.

Therefore, the maximal network is both efficient and stable on the domain of com-
munication favorable position profiles. Next, we investigate whether its uniqueness
can be maintained without imposing efficiency. Since the empty network is always
stable, the answer is negative. Moreover, our next example shows the possibility of
having many stable networks.

Example 1 A stable network may not be unique. Let N = {1, 2, 3}. Let p1 = (0, 0),

p2 = (0, 2), and p3 = (1, 2). Then, maxi∈N (max j �=i m(i, j; p)) = m(1, 3; p) =√
5 ≈ 2.24. Assume that b(d) = 5(.5)d and c(ri ) = 1

2ri . Since c(m(1, 3; p)) =
1.12 < 1.25 = b(1) − b(2), p is communication favorable with respect to b and c.
Since (r0, p), (rmin, p), and (rmax, p) satisfy the minimal range property and intrud-
ing-proofness, all of them are stable.

On the other hand, if we strengthen our stability notion to strong stability (Dutta
and Mutuswami 1997; Jackson and van den Nouweland 2005), the maximal net-
work emerges as the only strongly stable network on the communication favorable
domain. Strong stability requires a coalition to deviate if each member of the coa-
lition is (strictly) better off. For all S ⊆ N and all r ∈ R, let rS ≡ (ri )i∈S and
r−S ≡ (ri )i∈N\S .

Definition A network (r, p) ∈ W is strongly stable if for all S ⊆ N and all (r ′, p) ∈
W such that r−S = r ′−S , there exists i ∈ S such that ui (r, p) ≥ ui (r ′, p).

Proposition 9 On the communication favorable domain, the maximal network is
uniquely strongly stable.

Proof Let p ∈ P f (b, c). It is easy to show that (rmax, p) is strongly stable. Now sup-
pose that (r, p) is not maximal. Then, there is S ⊆ N such that for all i ∈ S, ri �= rmax

i .
Let r ′

S = rmax
S . If ri > rmax

i , by Remark 1, i is better off by setting r ′
i = rmax

i . If
ri < rmax

i , i can communicate with at least one additional agent by setting r ′
i = rmax

i .
Since p ∈ P f (b, c), i is better off by doing so. Therefore, (r, p) is not strongly stable.
Altogether, we conclude that (rmax, p) is uniquely strongly stable. 
�

A stronger version of strong stability, strong stability 2, which is proposed by
Jackson and van den Nouweland (2005), requires a coalition to deviate if each mem-
ber of the coalition is weakly better off and at least one of them (strictly) better off.
Since the maximal network satisfies strong stability 2 on the communication favorable
domain, we can impose this requirement instead.

5 Relocation-proofness of a network

We generalize the model by allowing each agent to change his position with relocation
cost. The process of network formation with position mobility is as follows: (i) each
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agent is located on a position, (ii) each agent chooses his communication range, (iii)
each agent chooses whether to relocate his position and adjust his communication
range, and (iv) the process continues until no agent has an incentive to change his
position or communication range.

Let � : R+ → R+ be the relocation cost function that associates with each relo-
cation metric distance ||p′

i − pi || a nonnegative real value. We assume that � is
strictly increasing and �(0) = 0. Furthermore, we require that moving an agent’s
position be at least as costly as adjusting his communication range, that is, for all
x ∈ R+, �(x) ≥ c(x).

An agent relocates his position or changes his communication range if it is bene-
ficial to him. Relocation-proofness requires that each agent should not have such an
incentive. For all i ∈ N and all p ∈ P , let p−i ≡ (p j ) j∈N\{i}.

Definition A network (r, p) ∈ W is relocation-proof if for all i ∈ N and all (r ′, p′) ∈
W such that r−i = r ′−i and p−i = p′−i ,

ui (r, p) ≥ ui (r
′, p′) − �(||p′

i − pi ||).

It is easy to check that relocation-proofness implies stability.

Our next example shows that an agent may have an incentive to relocate his position
in a stable network even though he incurs the relocation cost.

Example 2 A stable network may not be relocation-proof. Let N = {1, 2, 3, 4, 5}.
Let p1 = (0, 0), p2 = (1, 1), p3 = (2, 1), p4 = (2, 2), and p5 = (1, 2). Assume
that b(1) = 0.9, b(2) = 0.1, and c(ri ) = ri . Let r = (0,

√
2,

√
2,

√
2,

√
2), r ′ =

(
√

2,
√

2,
√

2,
√

2,
√

2), and r ′′ = (0, 1,
√

2,
√

2,
√

2). Since u1(r, p) > u1(r ′, p),
agent 1 does not have an incentive to deviate. Since u2(r, p) > u2(r ′′, p), neither does
agent 2. Symmetric arguments apply to agents 3, 4, and 5. Altogether, we conclude
that (r, p) is stable.

Now we show that the stable network (r, p) is not relocation-proof. Let �(||p′
i −

pi ||) = 5
4 ||p′

i − pi ||. As in Fig. 3, if agent 1 relocates his position to p′
1 = ( 3

2 , 3
2

)
and

changes his communication range to r ′
1 =

√
2

2 , his utility goes up: u1(r, p) = 0 <

0.24 = u1(r ′
1, r−1, p′

1, p−1) − �(||p′
1 − p1||).

We investigate whether it is possible to identify the relation between stability and
relocation-proofness in a general context. Of course, it is easy to check these two con-
cepts are equivalent for the empty network. We extend the relation for the maximal
network.

Proposition 10 The maximal network is relocation-proof if and only if it is stable.

Proof It is enough to show that a stable maximal network is relocation-proof. Suppose
that (rmax, p) is stable, but not relocation-proof. That is, there exist i ∈ N , r ′

i ∈ R+
and p′

i ∈ R
K such that ui (r ′

i , rmax−i , p′
i , p−i ) − �(||p′

i − pi ||) > ui (rmax, p). As in
Fig. 4, let k ∈ N be such that m(i, k; p′

i , p−i ) ≤ r ′
i and that for all j ∈ N with

m(i, j; p′
i , p−i ) ≤ r ′

i , m(i, k; p) ≥ m(i, j; p). Let r ′′
i = m(i, k; p). Since other
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Fig. 3 A stable network may
not be relocation-proof

Fig. 4 How to choose k and r ′′
i

in the proof of Proposition 10.
Let k ∈ N be an agent located
within r ′

i from p′
i but farthest

from pi , and r ′′
i = m(i, k; p)

agents’ communication ranges are maximal and for all j ∈ N , m(i, j; p′
i , p−i ) ≤ r ′

i
implies m(i, j; p) ≤ r ′′

i , we obtain g(r ′
i , rmax−i , p′

i , p−i ) ⊆ g(r ′′
i , rmax−i , p). Therefore,

∑

j �=i

b(d(i, j; r ′′
i , rmax−i , p)) ≥

∑

j �=i

b(d(i, j; r ′
i , rmax−i , p′

i , p−i )). (1)

On the other hand, by the triangle inequality,

r ′
i + ||p′

i − pi || ≥ m(i, k; p′
i , p−i ) + ||p′

i − pi ||
= ||pk − p′

i || + ||p′
i − pi ||

≥ ||pk − pi ||
= m(i, k; p)

= r ′′
i .
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By concavity of c, c(r ′
i ) + c(||p′

i − pi ||) ≥ c(r ′′
i ), which implies that c(r ′

i ) + �(||p′
i −

pi ||) ≥ c(r ′′
i ). Together with (1),

ui (r
′′
i , rmax−i , p) =

∑

j �=i

b(d(i, j; r ′′
i , rmax−i , p)) − c(r ′′

i )

≥
∑

j �=i

b(d(i, j; r ′
i , rmax−i , p′

i , p−i )) − c(r ′
i ) − �(||p′

i − pi ||)

= ui (r
′
i , rmax−i , p′

i , p−i ) − �(||p′
i − pi ||),

which contradicts to the stability of (rmax, p). 
�

In the uniform interval model, from Propositions 2 and 10, if b(1)−b(2) ≥ c( 1
n−1 ),

the maximal network is relocation-proof. Also, in the uniform circle model, from Prop-
ositions 5 and 10, if 2b(1)−2b(2) ≥ c(ρ1), the maximal network is relocation-proof.

For the minimal network, we can establish its relocation-proofness only for the two
specific models.

Proposition 11 In the uniform interval model, if
∑n−1

d=1 b(d) ≥ c( 1
n−1 ) and �( 1

n−1 )−
c( 1

n−1 ) ≥ b(1)−b(2)+ (n −3)(b(2)−b(n −1)), then (rmin, p−) is relocation-proof.

Proof Let (rmin, p−) be given. Suppose that agent i moves to p′
i ∈ R and sets r ′

i ∈ R+.
We divide into two cases.

Case 1 ||p′
i − p−

i || < 1
n−1 . If r ′

i < min j �=i m(i, j; p′
i , p−

−i ), agent i incurs costs only.

Since
∑n−1

d=1 b(d) ≥ c( 1
n−1 ), he cannot be better off. If r ′

i ≥ min j �=i m(i, j; p′
i , p−

−i ),
then g(r ′

i , rmin−i , p′
i , p−

−i ) ⊆ g(rmin, p−), so that agent i’s benefit does not increase.
Moreover, moving i’s position by ||p′

i − p−
i || is at least as costly as adjusting his

communication range by the same length. Therefore, agent i cannot be better off.

Case 2 ||p′
i − p−

i || ≥ 1
n−1 . Then, the benefit increment is at most b(1)− b(2)+ (n −

3)(b(2) − b(n − 1)) whichever r ′
i ∈ R+ agent i chooses. On the other hand, the cost

increment is at least �
(

1
n−1

)
− c

(
1

n−1

)
. Since �

(
1

n−1

)
− c

(
1

n−1

)
≥ b(1) − b(2) +

(n − 3)(b(2) − b(n − 1)), agent i cannot be better off.

Altogether, (rmin, p−) is relocation-proof. 
�

We state without proof a related result for the uniform circle model.

Proposition 12 In the uniform circle model with at least seven agents,3 if 2
∑(n−1)/2

d=1
b(d) ≥ c(ρ1) and �(ρ1) − c(ρ1) ≥ b(1) − b(2) + (n − 3)

(
b(2) − b

( n−1
2

))
, then

(rmin, po) is relocation-proof.

3 With at least seven agents, ρ1 is less than the radius for the uniform circle model.
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6 Concluding remarks

This paper presents a model of wireless communication networks. In the general
model, we observe the tension between efficiency and stability as in Jackson and
Wolinsky (1996). We partially resolve the tension in two ways: by appropriately spec-
ifying agents’ positions and by restricting the cost and benefit of communications.
We generalize the model by allowing agents to relocate their positions and show that
relocation-proofness is equivalent to stability for the maximal and the empty networks.

Alternatively, we can analyze the model by taking a cooperative game theoretic
approach: first, define the worth of each coalition using a value function and then,
consider its distribution using an allocation rule. This approach can be applied to our
model since the communication benefit is generated by an individual decision through
mutual communications. In our work in progress, we study such variations of wireless
communication networks.

Another interesting question is to analyze a directed model of wireless communi-
cation networks. In our model, the benefits are generated only by mutual communica-
tions. However, for a model of strategic advertising and broadcasting, it is reasonable
to assume that the benefits are generated by unilateral access to other agents. We hope
to address the issue in our future research.
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