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Abstract Most political and economic theorists point to moral hazard in teams as
the main obstacle to lobbies’ collective action. In this paper, we address this important
issue with a coalition-formation game. In the process of doing so, we characterize
equilibrium lobby structures both in the absence and in the presence of moral hazard.
Three notable results emerge from such an exercise: (1) an equilibrium lobby structure
exists under both specifications of the model, (2) moral hazard in teams may raise large
groups’ equilibrium lobby size, and (3) it may also raise the level of collective action
of large groups with low organizational costs.

1 Introduction

In many situations of interest in economics and political science, agents with common
goals form groups or organizations. The achievement of these goals often depends
on nonverifiable, individual contributions by group members to the collective cause.
The activity carried out by such groups is referred to as collective action; political
influence, labor unions, military alliances, and global pollution control, being canoni-
cal examples. For concreteness, the present paper focuses on interest groups.

There is now a large literature on inefficiencies arising in groups or organizations’
collective action, dating back to the seminal work of Olson (1965). All of these papers
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point to free riding within organized groups (or moral hazard in teams) as an important
obstacle to collective action: each member of the group has an incentive to benefit from
the effort contributed by other members while contributing insufficiently herself. As
the incentive to shirk grows with the group’s size, large groups are consequently
expected to be the most affected by the free-rider problem. Thus, we can conjecture
that, paraphrasing (Mueller 2003, p. 473)

the appearance of organizations that effectively represent large numbers of indi-
viduals requires that separate and selective incentive(s) be used to curb free-
riding behavior.

The point we wish to make in this paper is that this apparently compelling conclusion
may actually be questioned. Much of the analysis of collective action has been concer-
ned with the free-rider problem within organized groups. However casual observation
suggests that, lobbying, as many similar collective-action situations, involves a preli-
minary stage that does not explicitly appear in the Olsonian theory: before engaging
effectively in activities of interest to their members, groups have to get organized. That
is, potential members of a lobby must first bear initial organization costs that consist
of developing administrative structures, or communication networks, to name a few.
A complete analysis of the implication of moral hazard in teams on collective action
should, accordingly, include the lobby-formation stage.

Thus, this paper asks the following question: Does moral hazard in teams impede
large groups’ collective action in a setting that takes lobby formation into considera-
tion? To answer this question, we cast the analysis of the free-rider problem within
a two-stage framework in which groups first organize in a lobby, and then compete
to further their interests. An immediate consequence of this assumption is that, in
addition to the traditional free-riding phenomenon described in the collective-action
literature, another one appears here: At the lobby formation stage, some members
of a given group may choose to remain out of the lobby that represents the group’s
interests. When we refer to free-riding, we must thus distinguish between the beha-
vior of individuals who do not join the lobby in the first stage of the game, and the
behavior of those who join the lobby but shirk in the second stage. To avoid any
confusion, we henceforth use the term moral hazard in teams (Holmström 1982)
to designate free riding within organized lobbies, while a free-rider is exclusively
referred to as any individual who stays out of a lobby while benefiting from its
action.

Examples of such situations abound in collective action. Among the most conspi-
cuous of these are environmental lobbies and some labor unions, the members of
which engage in activities that also benefit many non-members. Moreover, most of
these activities (demonstrations, letter-writing, telephone campaigns) are particularly
subject to moral hazard. But this coexistence of free-riding and moral hazard phe-
nomena is not limited to lobbying. Another example is provided by international
environmental agreements. While some countries do not participate, some others sign
the agreement but then cheat on it (see Petrakis and Xepapadeas 1996).

The process through which lobbies compete to influence government policy is
extremely complex. Our aim here is to concentrate on moral hazard in teams within
organized lobbies, and then to abstract from any other complexity that such a situation
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might realistically entail. Esteban and Ray (2001) offer a model of collective action that
appears to be particularly well suited to this purpose. In this model, groups of identical
individuals hold different views about the relative desirability of feasible alternatives,
and each would like its favorite to be chosen. The simplification taken here is to let
influence mechanisms lurk in a win-probability function à la Tullock (1980), which
maps lobbies’ aggregate contributions into a probability distribution over favored
alternatives. Although this is a highly abstract version of groups’ competition for
influence, it contains all the elements needed to study the impact of moral hazard in
teams on lobby formation and collective action, which is the main focus of the present
paper. We model the lobby formation process as Nash, in the sense that an equilibrium
structure is one in which no individual wants to leave his or her lobby, given the
equilibrium behavior of the other individuals in the society, and no individual has an
incentive to become a lobbyist.

We consider two different specifications of this model, which both possess an equi-
librium lobby structure (Proposition 1). To highlight the impact of moral hazard on
groups’ ability to organize in a lobby, we first study the case in which individual
contributions are verifiable, and cooperation between lobby members is then feasible.
This benchmark case displays a noteworthy feature: whatever the value of the exoge-
nous cost of getting organized, the equilibrium size of each lobby cannot exceed some
upper-bound, which does not depend on the total size of the group it represents (Pro-
position 2). Therefore, large groups (with a membership that exceeds the upper-bound
under consideration) contain free-riders when there is no moral hazard in teams. We
then do the same exercise with a more realistic framework in which contributions are
not verifiable. Proposition 3 establishes that there is no upper-bound, except the group
size, on a lobby’s equilibrium membership: its equilibrium size can be arbitrarily large
as long as its fixed costs are sufficiently low. Our model thus predicts that the lobby’s
membership of large groups with low fixed costs is larger with than without moral
hazard in teams. This is a somewhat surprising, but actually quite intuitive, result: the
non-verifiability of individual contributions allows lobbyists to reduce their contri-
bution costs, and thus raises individuals’ incentives to become lobbyists. If it is too
costly for an individual to join the lobby that defends her interests, she may refrain
from doing so. By lowering the cost of being a lobby member, moral hazard in teams
favors participation in lobbying activities. In fact something stronger is true: provided
that a group’s size is large enough and its fixed organization cost is sufficiently low,
moral hazard in teams raises that group’s total contribution to lobbying (Proposition 4).
This last result stands in sharp contrast with the above-mentioned Olsonian conjecture,
inviting a reassessment of the role of moral hazard in teams in collective action. In
particular, curbing moral hazard within an organized group, as urged by Olson (1965),
may sometimes have a perverse effect, undermining individuals’ incentives to take
part in collective action.

1.1 Related literature

In The Logic of Collective Action, Olson (1965) has offered the first steps of a theory
on collective action. A large literature has followed from this initial work, which
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explores the relationship between group size and collective action.1 The most recent
theoretical contributions are due to Agrawal and Goyal (2001), and Esteban and Ray
(2001). Another branch of this literature, including Petrakis and Xepapadeas (1996)
and Pecorino (1998, 2001), studies groups’ ability to overcome the free-rider (or
moral-hazard) problem. To the best of our knowledge, the present paper is the first
contribution that questions the negative impact of moral hazard in teams on collective
action.

Most of the political-economy literature on lobbying has been focused on the
influence process (an extensive survey can be found in Grossman and Helpman 2001).
Although these authors clearly recognized the importance of group formation in the
lobbying process, issues of formation and organization have been little discussed in
formal models. Focusing on the case of trade policy, Mitra (1999) was the first contri-
bution to study lobbying with a model involving an explicit coalition-formation stage:
in the first stage of the game, individuals with common interests in the trade policy
decide whether or not to bear the cost of getting organized; in the second stage, groups
that have formed lobby the government in order to influence its policy. Mitra (1999)
however assumes that, once formed, lobbies act as a single entity, and consequently
ignores the free rider problem raised by the collective-action literature. Felli and Merlo
(2006) offer a theory of endogenous lobbying centering on a bargaining game between
an elected decision-maker and a coalition of lobbies chosen by the latter. Lobbying is
endogenous in their model, for the policy-maker selects the lobbies that participate in
the lobbying process.

Recently, Le Breton and Salanie (2003), and Martimort (2004) have explored lobby
formation in common-agency settings. Both papers emphasize how government’s pri-
vate information affects the participation in the lobbying process. But there is no
explicit organization step in their models, as participation means nonzero contribution.
They have little to say about biases in collective action that may result from groups’
organization. Our contribution here is in examining the linkage between moral hazard
in teams and collective action via its effects on lobby formation.

The paper is also related to the literature that studies participation in mechanisms for
voluntary public good provision. Although this literature is now too large for us to give
an exhaustive survey here, we should explain this paper’s relationship to the closely
related contribution by Saijo and Yamato (1999). They consider symmetric Cobb–
Douglas economies in which agents, as in our model, play a two-stage game with
voluntary participation: in the first stage, each agent decides whether she participates
in the mechanism or not; in the second stage, the agents who decided to participate
in the first stage choose their strategy. They find that some agents choose not to
participate in a wide class of parametric configurations of the model. Although the
context is different from collective action, this result resembles our Proposition 2
when we restrict the model to a single group. Unlike this paper, they do not analyze
the impact of moral hazard in teams on the incentives to participate.

Finally, our analysis of collective-action problems is related to recent papers in the
literature on coalition-formation games. The paper most closely related to our model

1 We refer the reader to Sandler and Hartley (2001) for a recent account of the literature on collective
action.
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is that by Espinosa and Macho-Stadler (2003), who study the impact of moral hazard
in teams on the formation of partnerships in a model of Cournot competition between
identical firms. In their paper, coalition formation is modelled as an infinite-horizon
sequential bargaining game that determines endogenously the number of competing
partnerships. They show that, when moral hazard within partnerships is not too severe,
the coalition structure may be more concentrated then it would be in the absence
of moral hazard. Coalition formation has also been studied (with different stability
concepts) in models of contest similar to that used in the second stage of our model,
but with a focus different from the interplay between moral hazard and free riding in
groups’ collective action. Recent contributions include for instance Baik and Shogren
(1995), Baik and Lee (2001), Bloch et al. (2006), and Sánchez-Pagés (2007).

The paper is organized as follows. In Sect. 2, we present the model. Existence
and characterization results are presented in Sect. 3. Finally, Sect. 4 is devoted to
concluding remarks. Proofs are gathered in Appendix.

2 The model

As mentioned in Sect. 1, a natural way to model lobby formation in collective-action
settings is as a two-stage process in which each lobby first forms, and then competes
with other organized groups to influence decision-making. Following Mitra (1999),
we thus study a two-stage lobby-formation game with the following structure:2

1. Lobby formation: every individual decides whether to join or not the organized
group that represents her interests.

2. Collective action: lobbies that have formed play a collective-action game.

This formalism allows us to distinguish between two free-riding phenomena. The
first may arise in the first stage of the game, when some individuals do not join the
lobby, although benefiting from its action in the second stage. The second, called
moral hazard in teams throughout the paper, arises in the second stage when effort is
not verifiable and lobby members contribute insufficiently to the lobbying action.

We will study (pure strategy) subgame perfect Nash equilibria of this game. Moving
backward, we first describe the collective-action stage, and then turn to lobby forma-
tion.

2.1 Collective action

In this subsection, we sketch the abstract collective-action model proposed by Esteban
and Ray (2001). We will describe this model below, but refer the reader to that paper
for an in-depth discussion of the basic assumptions.

Consider a society in which individuals belong to one of G distinct groups, labelled
with an index i ∈ {1, . . . , G}. Let ni ≥ 2 be the size of group i , and n be the size of the
entire population: n ≡ ∑

i ni . The members of each group share a common interest in

2 Murdoch et al. (2003) use a similar framework in the context of an environmental treaty. Nations first
decide whether or not to participate and then they choose their level of participation.
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the choice of a collective good (public project, government, . . .) for the whole society.
G mutually exclusive alternatives are available: members of group i favor alternative
i . Each member of group i enjoys a per-capita benefit of wi > 0 if alternative i is
chosen by the society, and a zero benefit if another alternative is chosen.3

Group i’s interests may be defended by a lobby (or organized group), called lobby
i , with membership si ∈ [0, ni ]. In the original version of the model, the si ’s are exo-
genously given and equivalent to the total size of each group (si = ni , i = 1, . . . , G).
We postpone to the next subsection to explain how, in the present paper, individuals
in the society decide to become either lobbyists or free-riders.

Collective action takes place as follows: Within each lobby, individuals simul-
taneously contribute a certain level of effort to the collective cause, thus yielding
lobbies’ aggregate efforts. Let Ai denote lobby i’s aggregate effort, and A−i be the
aggregate effort of lobby i’s opponents plus some positive term A0. This parameter
simply reflects the presence of an alternative that only benefits the decision-maker,
as diversion of public funds for private use. Actually, assuming A0 > 0 allows us to
sidestep discontinuity and existence problems.4 The probability for alternative i to be
chosen is then given by

πi (Ai , A−i ) ≡ Ai

Ai + A−i
.

The cost of contributing effort level a to the lobbying is given by c(a), where c is an
increasing, continuous, strictly convex function with c′(0) = 0. As in Esteban and
Ray (2001), the shape of the c function will play an important role in the statement of
the formal results. More precisely, we will use the following convexity index:

α(a) ≡ ac′′(a)

c′(a)
,

which can be interpreted as the elasticity of the marginal rate of substitution between
reward and effort. For technical convenience, α is assumed to be bounded from above.

Given group efforts (A1, . . . , AG), the expected utility of a member of lobby i
contributing a is, therefore, equal to

πi (Ai , A−i ) wi − c(a).

Two possible formulations of the model will successively be studied. We begin
with the verifiable-contribution case because it creates a benchmark against which to
measure the impact of moral hazard in teams on groups’ collective action.

3 Esteban and Ray (2001) distinguish between the public and the private components of the collective good.
This distinction would not play any role in the present analysis.
4 To see this, suppose A0 = 0 and consider a continuation game in which only one lobby has formed. This
game has no Nash equilibrium, and therefore, the general game has no subgame perfect Nash equilibrium.

123



Moral hazard and free riding in collective action 203

2.1.1 Collective action when effort is verifiable

Consider first the case where lobbyists’ contribution levels are verifiable. In such
a situation, cooperation within lobbies is feasible, for lobbyists can write ex ante
contracts contingent on their individual contribution. We assume that each lobby’s
objective is to maximize its members net welfare, with the same contribution for all
members. We posit that the outcome of this specification of the game is a profile
(a1, . . . , aG), such that each group i maximizes

si

[
si ai

si ai + A−i
wi − c(ai )

]

with respect to ai , taking the equilibrium aggregate effort exerted by the other groups
as given—namely, a group Nash equilibrium to use the language of Duggan (2001).
Hence, if (a1, . . . , aG) is such an equilibrium, these effort levels must satisfy the
following first-order condition:

siwi

si ai + A−i

(

1 − si ai

si ai + A−i

)

= c′(ai ), (1)

for every i = 1, . . . , G.
Following the reasoning used in Esteban and Ray (2001), it is easy to check that the

system of equations defined by (1) has a unique solution for every vector (s1, . . . , sG) ∈
R

G+. By definition, Ai = si ai = πi A where A ≡ Ai + A−i , and then ai = πi A/si .
Thus, we can rewrite the first-order condition (1) as

ϕ (πi , A, si ) ≡ siwi

A
(1 − πi ) − c′

(

A
πi

si

)

= 0.

Since ϕ is strictly decreasing in πi and ϕ(1) < 0 ≤ ϕ(0), there is a unique value of πi ,
πi (A, si ), that satisfies the above equation for each given A and si . The condition that∑G

i=0 πi (A, si ) = 1 (where π0 ≡ A0/A) determines the unique equilibrium value of
A, say A (s1, . . . , sG), since πi (A, si ) is strictly decreasing in A. We then define the
unique solution to Eq. (1) as ai (si , s−i ) ≡ πi (A (si , s−i ) , si ) A (si , s−i ) /si , where
s−i denotes the vector of memberships of all lobbies except i .

2.1.2 Collective action with moral hazard in teams

We now turn to the situation in which effort levels are not verifiable.5 In this case,
lobbyists’ behavior is subject to moral hazard: instead of maximizing the lobby’s
aggregate welfare, each member of lobby i chooses a contribution, a, which maximizes

5 For the sake of emphasis, we do not allow groups to implement incentive schemes to alleviate cooperation
problems. This enables us to sharpen the impact of moral hazard in teams which is the central theme of the
paper.
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her individual expected utility

Ai

Ai + A−i
wi − c(a)

taking as given the other individuals’ contribution. The level of effort ai exerted by
the members of lobby i must, therefore, satisfy the first-order condition

wi

si ai + A−i

(

1 − si ai

si ai + A−i

)

= c′(ai ) (2)

for every i = 1, . . . , G.
As in the case without moral hazard, one can show that the system of equa-

tions (2) defines the unique Nash equilibrium of the second-stage game. Denoting
by {am

i (si , s−i )}G
i=1 the solutions of these equations, we can immediately note that

am
i (si , s−i ) < ai (si , s−i ) whenever si > 1. Hence, moral hazard leads to a decrease

in the individuals’ effort levels. This occurs because each individual fails to consider
the benefits for other lobbyists of her contribution to the lobbying activity.

Up to this point, we have taken each lobby’s membership as given. We now propose
a model of lobby formation in which lobbies’ memberships are endogenously derived.

2.2 Lobby formation and equilibrium structures

In the first-stage of the game, all individuals in society simultaneously choose whether
to join or not the lobby that defends their interest. That is, a player’s action set in this
stage is {in, out}. As in Mitra (1999), we assume that forming a lobby involves a
fixed cost Fi ≥ 0 for group i . Here lobby formation is regarded as a sunk investment
(establishing links with politicians, building an administrative structure and commu-
nication networks). Those in society who do not initially bear that set-up investment
do not have access to lobbying during the decision process.6

Since players perfectly anticipate the effort levels that will be exerted in the second
stage, their payoffs can be expressed as functions of lobbies’ sizes (s1, . . . , sG). We
describe these payoffs using the functions P∗

i , Q∗
i in the absence of moral hazard, and

Pm
i , Qm

i in the presence of moral hazard: if an individual of group i plays “in,” she
becomes a lobbyist and her payoff when the lobby’s size is si > 0 (including herself)
is given by

P∗
i (si , s−i ) ≡ si ai (si , s−i )

A0 + ∑G
j=1 s j a j (s j , s− j )

wi − c (ai (si , s−i )) − Fi

si

6 This assumption is comforted by a recent empirical analysis by Hojnacki and Kimball (2001). Their
study confirms that political action committee (PAC) affiliates in the US enjoy significantly greater access
to members of Congress than non-affiliated lobbyists. Furthermore, they show that this lobbying advantage
stems from the base of support PACs have established around the country, and not from their contributions.
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in the absence of moral hazard, and

Pm
i (si , s−i ) ≡ si am

i (si , s−i )

A0 + ∑G
j=1 s j am

j (s j , s− j )
wi − c

(
am

i (si , s−i )
) − Fi

si

with moral hazard. If an individual of group i plays “out,” she has no effect on the
future play since the second stage of the game only involves lobbyists. This individual
is a free-rider in that she benefits from the lobbying without contributing to it; she
thus receives

Q∗
i (si , s−i ) ≡ si ai (si , s−i )

A0 + ∑G
j=1 s j a j (s j , s− j )

wi ,

or

Qm
i (si , s−i ) ≡ si am

i (si , s−i )

A0 + ∑G
j=1 s j am

j (s j , s− j )
wi .

Consider now the (pure-strategy) subgame-perfect Nash equilibria of the game
without moral hazard. In a subgame perfect equilibrium with memberships (si , s−i ),
every individual who has chosen to join a lobby does at least as well by doing so as she
would do if she were to change her decision to “out”, given the anticipated outcome
of the second-stage collective-action game. Put formally,

P∗
i (si , s−i ) ≥ Q∗

i (si − 1, s−i ). (3)

Similarly, every individual who has chosen to remain out of her lobby does at least as
well by doing so as she would do if she were to change her decision to “in”:

Q∗
i (si , s−i ) ≥ P∗

i (si + 1, s−i ). (4)

To use the language of coalition-formation games, conditions (3) and (4) ensure
internal and external stability, respectively.7 The same reasoning applies to the equi-
libria of the game with moral hazard.

The next definitions make precise the meaning of equilibrium structure in the lobby
formation game under both specifications of the model. For notational ease, we define
the stability functions {L∗

i (si , s−i )}G
i=1, as

L∗
i (si , s−i ) ≡ P∗

i (si , s−i ) − Q∗
i (si − 1, s−i ).

These functions, introduced by Carraro and Siniscalco (1997), capture individuals’
incentives to become (and remain) lobbyists. They will be handy when we come to
study equilibrium memberships in Sect. 3.

7 The concept of internal and external stability was introduced by d’Aspremont et al. (1983) who used it
to study cartel stability in single-coalition games.
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Definition 1 In the absence of moral hazard, an equilibrium structure of the lobby
formation game is a profile (s∗

1 , . . . , s∗
G) ∈ ({0} ∪ N)G such that:

(i) s∗
i ≤ ni ,

(ii) L∗
i (s

∗
i , s∗−i ) ≥ 0 if s∗

i > 0, and
(iii) L∗

i (s
∗
i + 1, s∗−i ) ≤ 0 if s∗

i < ni ,
for every i = 1, . . . , G.

The last two conditions of Definition 1 correspond to internal and external stability,
respectively. They ensure that, in equilibrium, nobody wants to leave [condition (ii)]
or to join [condition (iii)] a lobby. Condition (i) is a natural feasibility condition.
We similarly define an equilibrium structure under moral hazard. As above, we first
introduce the stability functions {Lm

i (si , s−i )}G
i=1:

Lm
i (si , s−i ) ≡ Pm

i (si , s−i ) − Qm
i (si − 1, s−i ).

Definition 2 With moral hazard in teams, an equilibrium structure of the lobby for-
mation game is a profile (sm

1 , . . . , sm
G ) ∈ ({0} ∪ N)G such that:

(i) sm
i ≤ ni ,

(ii) Lm
i (sm

i , sm
−i ) ≥ 0 if sm

i > 0, and
(iii) Lm

i (sm
i + 1, sm

−i ) ≤ 0 if sm
i < ni ,

for every i = 1, . . . , G.

Let S∗(F) [respectively, Sm(F)] be the set of equilibrium structures in the absence
(respectively, in the presence) of moral hazard when the vector of fixed costs is
F = (F1, . . . , Fn). Characterizing these equilibrium structures occupies the section
to follow.

3 Equilibrium lobby structures

In this section, we are interested in three questions. First, what conditions guaran-
tee the existence of equilibrium lobby structures? Second, assuming that such stable
structures exist, what can we say about the equilibrium size of lobbies in the different
contexts envisioned by the model? And finally, under what conditions can we infer
from equilibrium lobby structures that, contrary to the Olsonian conjecture, moral
hazard in teams favors large groups’ collective action? We begin the analysis with
an introductory example, postponing the statement of general results until the next
subsections.

3.1 A simple example

To facilitate a clear understanding of the impact of moral hazard in teams on lobby
formation, it may be helpful to begin with a simple graphical representation. We
assume that G = 1 in order to be able to represent the equilibrium structure in a single
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Fig. 1 Stability functions

graph. Let w1 = 1, A0 = 0.5, and let c(a) = a2/2. As we want to depict a situation
in which the fixed cost is arbitrarily low, we further assume that F1 = 0.

Figure 1 represents group 1’s stability function under both specifications of the
model. The grey curve represents L∗

1(s1), and the black curve represents Lm
1 (s1).

To begin with, consider the without-moral-hazard curve. Applying Definition 1 and
assuming n1 ≥ 2, the unique equilibrium membership is easily seen to be s∗

1 = 2.
Indeed, at every s1 < 2, condition (ii) is violated and it is consequently profitable
for free-riders to become lobbyists. On the contrary, leaving the lobby is a profitable
move for lobbyists whenever s1 ≥ 3. Thus, s∗

1 = 2 is the unique integer satisfying both
stability conditions. An immediate consequence of this is that, even if the exogenous
cost of forming the lobby is zero, group 1 comprises n1−2 free-riders in the equilibrium
of the game without moral hazard.

Now, let us introduce moral hazard in teams in the game. Looking at the black curve
in Fig. 1, we can see that Lm

1 (s1) > 0 for every s1 ≤ 4, and Lm
1 (s1) < 0 for every

s1 ≥ 5. This in turn implies that sm
1 = 4 must be the unique equilibrium structure

of the game with moral hazard. Thus, two individuals who were free-riders in the
previous case are now lobbyists, and the size of the lobby is consequently larger in the
presence than in the absence of moral hazard: sm

1 ≥ s∗
1 .

For any membership s1 to survive as an equilibrium structure, it must be that neither
lobbyists nor free-riders have an incentive to deviate: while deviation to lobbying may
be desirable for a free-rider as a means of raising the win probability, π1, deviation to
free-riding may also be desirable for a lobbyist in order to avoid the cost of contribution,
c(a1). An intuition for the above result can be obtained by comparing the two cost-
of-contribution curves in Fig. 2. Indeed, the cost of contribution appears to be quite
different depending on whether the lobby faces moral hazard or not. Inspecting first the
problem solved by cooperating lobbyists in the absence of moral hazard, we see that
we can break the effect of the size change (dsi > 0) on individual contributions into
two effects: (i) a positive effect from the increase in the marginal gain from individual
contributions (a marginal increase of a1 induces a larger increase of group 1’s win
probability), and (ii) a negative effect from the fact that the same level of aggregate
effort, A1 = s1a1, requires lower individual contributions. Thus, even if the second
effect dominates, it is attenuated by the first one. As a result, even when s1 is large,
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Fig. 2 Group 1’s costs of contributions

lobbyists have strong incentive to leave the lobby in order to escape the onerous cost
of contribution to lobbying.

The positive effect of the size on individual contribution dies out when the lobby
faces moral hazard, for lobbyists no longer internalize the positive impact of their
contribution on the other members of the lobby. With moral hazard in teams, an increase
in s1 only strengthens lobbyists’ incentives to free ride their partners, thereby lessening
individual contributions to lobbying: in Fig. 2, the black curve lies everywhere below
the grey one. This makes lobbying sufficiently attractive to induce some free-riders to
join the lobby.

The reason why we need the fixed cost F1 to be low is the following. A brief
inspection of payoff functions reveals that an increase in the fixed cost reduces the
payoff of lobbyists without affecting the payoff of free-riders, thus shifting both sta-
bility functions in Fig. 1 downwards. This causes the intersections of these functions
with the horizontal axis, and therefore, the corresponding equilibrium memberships,
to become closer as F1 increases. For instance, s∗

1 = sm
1 = 1 when F1 = 0.1, and

s∗
1 = sm

1 = 0 when F1 = 1.
Another relevant parameter is the size of the group, n1. For moral hazard to raise

lobby 1’s equilibrium membership, n1 must be sufficient large: if n1 does not exceed
2, then equilibrium memberships with and without moral hazard are the same (s∗

1 =
sm

1 = n1). As n1 increases beyond 2, sm
1 increases (sm

1 = 3 when n1 = 3, and sm
1 = 4

when n1 ≥ 4) while s∗
1 remains equal to 2.

This example illustrates the simple fact that, although moral hazard in teams causes
individual contributions to decline, it may also raise the lobby size by reducing indi-
vidual contribution costs.

3.2 Existence and characterization of equilibrium memberships

We propose now to investigate whether the intuition provided in the above example
carries over to the general model with several groups. Although the analysis appears
straightforward with a single group, it is far less obvious with competing groups.
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Indeed, the introduction of moral hazard in the game affects now all lobbies’ member-
ships and contributions at the same time, and strategic interactions greatly complicate
explicit analysis.

A first difficulty concerns equilibrium existence. Restricting attention to single-
coalition games, d’Aspremont et al. (1983) prove that an equilibrium structure always
exists. The following proposition extends their result to situations in which several
coalitions can form, thus motivating the analysis to follow.

Proposition 1 An equilibrium structure exists both in the absence and in the presence
of moral hazard in teams. That is, for any F ∈ R

G+,

S∗(F) �= ∅ and Sm(F) �= ∅.

Thus, existence (but not uniqueness) of equilibrium structures obtains without spe-
cific conditions on the parameters of the model.

Let us now turn to the characterization of equilibrium lobby memberships. We start
with the important base case in which organized lobbies do not face moral hazard in
teams.

Proposition 2 For every i = 1, . . . , G, there exists an upper-bound s̄i ≥ 0 (that does
not depend on ni ) such that (s∗

i , s∗−i ) ∈ S∗(F) implies s∗
i ≤ s̄i .

Proposition 2 asserts the existence of an upper bound on the equilibrium size s∗
i of

each lobby i in the absence of moral hazard in teams. An immediate consequence of
this is that large groups (ni > s̄i ) contain free-riders in any equilibrium.

The proof of this result is relegated to Appendix, but we give a brief intuition here.
Suppose that, contrary to the statement of the proposition, there is no upper-bound
on the equilibrium membership of group i (ignoring the group’s size ni ). Therefore,
Definition 1 requires that for any membership si there exists s′

i > si such that the
stability function L∗

i

(
s′

i , s−i
)

is nonnegative for some s−i . We prove however that,
for every s−i and Fi , L∗

i must be negative when si becomes arbitrarily large, thus
establishing the desired contradiction.

We now turn to the case where effort is not verifiable. While Proposition 2 places
no restriction on the profile of fixed costs, the next proposition characterizes the equi-
librium structures of the game with moral hazard when fixed costs are low. We further
assume that the index α(·) is relatively large. As shown by Sect. 3.1, the negative
effect of moral hazard in teams on the lobbyists’ contribution cost is the driving force
of our results. For a given gap between ai and am

i , the larger α(·) the larger the impact
of moral hazard on the cost of contribution (and then on the incentive to become a
lobbyist), c(ai )− c(am

i ). A lower bound equal to
√

2 proves sufficient to establish the
result.

Proposition 3 Suppose infa α(a) >
√

2. The following statement is true for every
lobby i = 1, . . . , G: for every si < ni , there is F̃i > 0 such that si < sm

i for all
(sm

i , sm
−i ) ∈ Sm(F) whenever Fi < F̃i .

Of particular importance here is this: if a group is large (ni > s̄i ), and if its fixed
costs are low (Fi < F̃i ), then moral hazard in teams raises the equilibrium size of the
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lobby that represents this group (sm
i > s∗

i ). Proposition 3 thus confirms the intuitions
of Sect. 3.1. As we have visualized in Fig. 1, this is something to be expected in
groups with moral hazard in teams. A similar logic is at work here: The main reason
members of groups with a low fixed cost become lobbyists is that the non-verifiability
of contributions allows them to contribute less than in a world with verifiable effort,
thus raising their incentive to join the lobby.

Moreover, applying Proposition 3 with si = ni − 1, we immediately see that, in
contrast to the case without moral hazard, group i does not contain free-riders in
equilibrium whenever its organizational cost is sufficiently low.

To provide a basic intuition for Proposition 3, consider the stability function Lm
i , as

in Fig. 1. From Definition 2 and Proposition 1, we know that a sufficient condition for
the statement of Proposition 3 to be true is that the stability function, Lm

i , is positive
at every (s′

i , s−i ) such that s′
i ≤ si + 1. The proof of Proposition 3 shows that, when

fixed cost Fi is zero and the cost function is sufficiently convex (namely, when α

exceeds
√

2), Lm
i has a positive lower-bound [which depends only on α(am

i (si , s−i ))].
This follows from the fact that the decline in the cost of contribution resulting from an
increase in si is sufficiently large to prevent Lm

i from falling below zero. By continuity,
the same is true for positive, but small enough, values of Fi .

3.3 Moral hazard in teams and collective action

In the preceding discussion, we considered the impact of moral hazard in teams on
lobbies’ size. An interesting question now is whether the small individual contribution
caused by moral hazard might be swamped by a larger group of contributors, so
that the group’s equilibrium contribution would be larger than that when cooperation
among lobbyists is feasible. As noted by Costain (1980), lobbies representing a large
number of individuals may sometimes be very effective in collective action, even if
their activities are subject to moral hazard. Focusing on women’s lobbies, she argues
that, despite the pessimistic predictions of the classical theory of collective action,
the strong lobbying effort in support of women’s rights in the 1970s should lead to a
reassessment of their potential for political influence.

We then turn to groups’ aggregate contribution, and ask whether moral hazard may
“favor” collective action, in the following sense:

Definition 3 Moral hazard in teams is said to favor group i’s collective action if
sm

i am
i (sm

i , sm
−i ) > s∗

i ai (s∗
i , s∗−i ) for every (sm

i , sm
−i ) ∈ Sm(F) and every (s∗

i , s∗−i ) ∈
S∗(F).

In other words, moral hazard in teams favors a group’s collective action if, and only
if, the aggregate contribution of that group in any equilibrium with moral hazard is
larger than its aggregate contribution in any equilibrium without moral hazard. The
next proposition gives sufficient conditions for this to happen.

Proposition 4 Suppose infa α(a) >
√

2. Fixing n j , j �= i , there exist n̄i > 0 and
F̄i > 0 such that moral hazard in teams favors group i’s collective action whenever
ni > n̄i and Fi < F̄i .
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Unlike the standard theory of collective action, it turns out that moral hazard and
groups’ size here may favor collective action. While moral hazard decreases individual
contributions to lobbying, it also raises the number of these contributions. Proposition 4
states that the second effect dominates the first when the group under consideration is
large and its organizational cost is low. It thus makes moral hazard in teams somewhat
less detrimental than one might have inferred from the pessimistic conclusions of the
aforementioned literature.

This result is a direct consequence of Propositions 2 and 3. As the aggregate contri-
bution of lobby i increases with its membership under both specifications of the model,
its equilibrium level is bounded from above in the absence of moral hazard but has no
upper-bound—apart from the group size ni —in the case with moral hazard when the
fixed cost is arbitrarily small. Allowing for large values of ni , we obtain Proposition 4.

Before concluding the analysis, a word of caution is in order. Although the above
result provides conditions under which moral hazard increases groups’ level of col-
lective action (the Ai ’s), it remains silent about groups’ effectiveness in obtaining any
special alternative (the πi ’s). More precisely, an increase in Ai does not guarantee that
group i’s success probability increases, for moral hazard may also raise A−i . Howe-
ver, an immediate corollary of the above proposition is that the introduction of moral
hazard in a single large group with low fixed cost raises its probability of success.

4 Concluding remarks

The model used here describes the lobbying process at a fairly high level of abstrac-
tion, focusing exclusively on free-riding issues. Our aim, however, is not to provide a
comprehensive theory of lobby formation, but to develop a simple intuition for how
two different free-riding phenomena interact in this process. By restricting attention
only to incentives to free ride, our model has deliberately ignored considerations that
may be generated by other factors such as the existence of a collective identity, or
some divergence in lobby members’ objectives and valuations of the public project
(heterogeneity). Such an oversimplification of the collective-action problem has lar-
gely been emphasized by empirical studies, like Gupta et al. (1997), and Masters and
Delaney (1987), and the experimental literature on collective action, like Schneider
and Pommerehne (1981), or Ostrom (1998). Before further complicating the game-
theoretic model, however, it was worth asking what could be said about the actual
impact of moral hazard in teams on lobbies’ collective action, when the other factors
are abstracted away. Possible generalizations and extensions of the present model are
left for future research.

Appendix

We use the following notation throughout this appendix:

Ai (si , s−i ) ≡ si ai (si , s−i ),

A−i (si , s−i ) ≡ A0 +
∑

j �=i

s j a j (s j , s− j ),
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A(si , s−i ) ≡ Ai (si , s−i ) + A−i (si , s−i ),

π̃i (si , s−i ) ≡ Ai (si , s−i )/A(si , s−i ),

for every i = 1, . . . , G. Similar notation applies to the with-moral-hazard case with a
superscript “m” indicating the difference. For instance, Am

i (si , s−i ) ≡ si am
i (si , s−i ).

Proof of Proposition 1

Denote by Si ≡ {0, 1, . . . , ni } the set of all possible sizes of lobby i , and by S ≡
×G

i=1Si the set of all possible lobby structures. We construct a self-map ϕ : S → S,
observe that a fixed point of ϕ constitutes an equilibrium lobby structure, and prove
that ϕ has a fixed point.

We construct ϕ(s1, . . . , sG) = (ϕ1(s−1), . . . , ϕG(s−G)) as follows. First, if L∗
i

(ni , s−i ) ≥ 0, then ϕi (s−i ) = ni . Otherwise, if L∗
i (ni − 1, s−i ) ≥ 0 and

L∗
i (ni , s−i ) < 0, then ϕi (s−i ) = ni − 1. Repeating this procedure until si = 0 if

necessary, ϕi (s−i ) is thus defined as the largest si ∈ Si such that L∗
i (si , s−i ) ≥ 0 and

L∗
i (s, s−i ) < 0 for every integer s > si , ϕi (s−i ) = si . If such a si does not exist,

then ϕi (s−i ) = 0. It is easy to see that a fixed point of ϕ satisfies all the conditions of
Definition 1.

In order to show that ϕ has a fixed point, we will check that all the conditions of
the Caristi’s fixed point theorem are satisfied (Ok 2007, p. 238):

Let ϕ be a self-map on a complete metric space (S, d). If

d (s, ϕ(s)) ≤ f (s) − f (ϕ(s)) for all s ∈ S

for some lower semicontinuous f ∈ R
S that is bounded from below, then ϕ

has a fixed point in S.

Consider the complete metric space (S, d), where d(s, s′) ≡ ∑G
i=1 |si − s′

i | for
all s and s′ in S, and define the continuous (and then lower semicontinuous) function
f : S → R as

f (s) ≡ 1

1 − n
d (s, ϕ(s)) ,

for every s ∈ S. Note that f is bounded from below by n/1 − n, and

f (s) − f (ϕ(s)) = 1

1 − n

[
d (s, ϕ(s)) − d

(
ϕ(s), ϕ(2)(s)

)]

≥ 1

1 − n
[d (s, ϕ(s)) − nd (s, ϕ(s))]

= d (s, ϕ(s))

for every s ∈ S. Thus, ϕ satisfies all the conditions of Caristi’s fixed point theorem
and, consequently, has a fixed point. This completes the proof of Proposition 1.

123



Moral hazard and free riding in collective action 213

Proof of Proposition 2

We proceed with a series of lemmas.

Lemma 1 For every i = 1, . . . , G,

∂π̃i (si , s−i )

∂si
> 0,

∂ A(si , s−i )

∂si
> 0,

lim
si →∞

∂ A (si , s−i )

∂si
= 0, and lim

si →∞ π̃i (si , s−i ) = 1

Proof A slight change in the proof of Proposition 2 in Esteban and Ray (2001) yields:

∂π̃i (si , s−i )

∂si
> 0 ,

∂ A(si , s−i )

∂si
> 0, and

∂ A−i (si , s−i )

∂si
< 0.

Differentiating Eq. (1) with respect to si , and rearranging terms, we obtain (with
some abuse of notation):

∂π̃i (si , s−i )

∂si
= π̃i (α(ai ) + 1)

α(ai ) + π̃i
1−π̃i

[
1

si
− 1

A(si , s−i )

∂ A(si , s−i )

∂si

]

.

But we have just seen that this derivative is positive, hence

0 <
∂ A (si , s−i )

∂si
<

A (si , s−i )

si
= ai (si , s−i ) + A−i (si , s−i )

si
. (5)

As the marginal benefit from an increase in si is zero when lobby i’s size is infinite [see
Eq. (1)], limsi →∞ ai (si , s−i ) = 0 (c′(0) = 0). Moreover, A−i (si , s−i ) is decreasing
in si . It consequently results from (5) that ∂ A(si ,s−i )

∂si
→ 0 as si → ∞.

Finally, we can rewrite Eq. (1) as follows

wi
[
1 − π̃i (si , s−i )

] = c′ (ai (si , s−i ))

[

ai (si , s−i ) + A−i (si , s−i )

si

]

.

As the right-hand side of the above equality converges to zero as si becomes arbitrarily
large, we obtain that limsi →∞ π̃i (si , s−i ) = 1. �
Lemma 2 For every i = 1, . . . , G, let τi : S → (1,∞) be defined as

τi (si , s−i ) ≡ 1 + π̃i (si , s−i ) − π̃i (si − 1, s−i )

π̃i (si − 1, s−i )
[
1 − π̃i (si , s−i )

] .

Then, for every s−i , limsi →∞ τi (si , s−i ) = 1.
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Proof Let σi be defined as

σi (si , s−i ) ≡ π̃i (si , s−i ) − π̃i (si − 1, s−i )

π̃i (si − 1, s−i )
[
1 − π̃i (si , s−i )

] .

To prove the lemma, we must show that σi → 0 as si → ∞. Noting that

σi (si , s−i ) = π̃i (si , s−i ) − π̃i (si − 1, s−i )

π̃i (si − 1, s−i )

A (si , s−i )

A−i (si , s−i )

<
π̃i (si , s−i ) A (si , s−i ) − π̃i (si − 1, s−i ) A (si − 1, s−i )

π̃i (si − 1, s−i ) A−i (si , s−i )

= Ai (si , s−i ) − Ai (si − 1, s−i )

π̃i (si − 1, s−i ) A−i (si , s−i )

<
Ai (si , s−i ) − Ai (si − 1, s−i )

π̃i (si − 1, s−i ) A0
,

we immediately see that this boils down to showing that Ai (si , s−i )− Ai (si − 1, s−i )

tends to 0 as si becomes arbitrarily large (π̃ → 1 as si → ∞). Applying the mean
value theorem to Ai (·, s−i ), we know that there exists ω ∈ (si − 1, si ) such that

Ai (si , s−i ) − Ai (si − 1, s−i ) = ∂ Ai (s, s−i )

∂s

∣
∣
∣
∣
s=ω

.

It then remains to show that this derivative converges to zero. By definition,

∂ Ai (s, s−i )

∂s
= ∂ A(s, s−i )

∂s
− ∂ A−i (s, s−i )

∂s
.

As A−i (·, s−i ) is strictly decreasing, continuous, and bounded from below, its slope
must tend to zero as si → ∞. Furthermore, Lemma 1 tells us that the derivative of
A(·, s−i ) also converges to zero. This establishes Lemma 2. �

Lemma 3 There exists δ̄ > 0 such that the following statement is true whenever
δ < δ̄:

c(a) > δ[ac′(a)], ∀a > 0. (6)

Proof As c(a) and ac′(a) are both strictly increasing functions that are zero at a = 0,
a sufficient condition for (6) to hold is that c′(a) > δ(ac′(a))′ for any a > 0.

Let δ̄ ≡ 1/(1 + supa>0 α(a)) (δ̄ is well-defined since α is assumed to be bounded
from above). Therefore, for all δ < δ̄, we have

1

δ
> 1 + ac′′(a)

c′(a)
,
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or

δ
[
c′(a) + ac′′(a)

]
< c′(a), ∀a > 0.

This completes the proof of Lemma 3. �
We now complete the proof of the main proposition. Define δi (si , s−i ) as

δi (si , s−i ) ≡ (τi (si , s−i ) − 1)
1

π̃i (si , s−i ) + τi (si , s−i ) (1 − π̃i (si , s−i ))
,

and note that, by Lemma 2, it tends to zero as si gets arbitrarily large. This implies that,
for every s−i ∈ S−i ≡ × j �=i S j , there exists s̄i (s−i ) > 0 such that δi < δ̄ whenever
si > s̄i (s−i ).

Now, let (si , s−i ) ∈ S∗(F) and suppose that, contrary to the statement of the
proposition, si > s̄i ≡ maxs−i ∈S−i s̄i (s−i ). It follows from Lemma 3 that

L∗
i (si , s−i ) = [

Q∗
i (si , s−i ) − Q∗

i (si − 1, s−i )
] − c(ai (si , s−i )) − Fi

si

= ai (si , s−i )
siwi A−i (si , s−i )

A(si , s−i )2 δi (si , s−i ) − c(ai (si , s−i )) − Fi

si

= ai (si , s−i )c
′(ai (si , s−i ))δi (si , s−i ) − c(ai (si , s−i )) − Fi

si
< 0,

where the third equality is due to Eq. (1). But this is a contradiction with (si , s−i )

being an equilibrium structure.

Proof of Proposition 3

We first prove a useful lemma.

Lemma 4 Define δm
i : S → R+ as

δm
i (si , s−i ) ≡ si

π̃m
i (si , s−i ) − π̃m

i (si − 1, s−i )

π̃m
i (si , s−i )

[
1 − π̃m

i (si , s−i )
] .

There exists θ ∈ (si − 1, si ) such that

δm
i (si , s−i ) >

α
(
am

i (θ, s−i )
)

2 + α
(
am

i (θ, s−i )
) .

Proof From the mean value theorem, there exists θ ∈ (si − 1, si ) such that

π̃m
i (si , s−i ) − π̃m

i (si − 1, s−i ) = ∂π̃m
i (s, s−i )

∂s

∣
∣
∣
∣
s=θ

.
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Differentiating Eq. (2) and the following

am
i (θ, s−i ) = π̃m

i (θ, s−i ) Am (θ, s−i )

θ

with respect to θ , and rearranging terms yields:

∂π̃m
i (θ, s−i )

∂θ

[
1

1 − π̃m
i (θ, s−i )

+ α
(
am

i (θ, s−i )
)

π̃m
i (θ, s−i )

]

= α
(
am

i (θ, s−i )
)

θ
− ∂ Am(θ, s−i )

∂θ

1 + α
(
am

i (θ, s−i )
)

Am(θ, s−i )
. (7)

Furthermore, note that

∂ Am(θ, s−i )

∂θ
<

∂ Am
i (θ, s−i )

∂θ
= ∂π̃m

i (θ, s−i )

∂θ
Am(θ, s−i ) + π̃m

i (θ, s−i )
∂ Am(θ, s−i )

∂θ

so that

1

Am(θ, s−i )

∂ Am(θ, s−i )

∂θ
<

1

1 − π̃m
i (θ, s−i )

∂π̃m
i (θ, s−i )

∂θ
.

Combining this inequality with Eq. (7), we obtain the following:

∂π̃m
i (θ, s−i )

∂θ
>

π̃m
i (θ, s−i )

[
1 − π̃m

i (θ, s−i )
]

θ

α
(
am

i (θ, s−i )
)

2π̃m
i (θ, s−i ) + α

(
am

i (θ, s−i )
) .

As a consequence,

δm
i (si , s−i ) >

si

θ

π̃m
i (θ, s−i )

π̃m
i (si , s−i )

[
1 − π̃m

i (θ, s−i )
]

[
1 − π̃m

i (si , s−i )
]

α
(
am

i (θ, s−i )
)

2π̃m
i (θ, s−i ) + α

(
am

i (θ, s−i )
)

>
α

(
am

i (θ, s−i )
)

2 + α
(
am

i (θ, s−i )
) ,

where the second inequality results from the fact that, as shown by (7), π̃m
i (si , s−i )/si

is strictly decreasing in si . �
We now return to the proof of Proposition 3. Suppose first that, for every (si ,s−i )∈ S:


m
i (si , s−i ) ≡ Qm

i (si , s−i ) − Qm
i (si − 1, s−i ) > c

(
am

i (si + 1, s−i )
)
. (8)

This implies that, for any si < ni , there exists F̃i (si ) > 0 such that, for every s−i ,
Lm

i (s′
i , s−i ) ≡ 
m

i (s′
i , s−i ) − c(am

i (s′
i , s−i )) − Fi/s′

i > 0 for all s′
i ≤ si + 1, whenever

Fi < F̃i (si ). This in turn implies that each equilibrium structure, (sm
i , sm

−i ) satisfies
sm

i ≥ si + 1 > si (Definition 2, Proposition 1).
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Let us show that (8) holds under the conditions of Proposition 3. To do so, define
first the lower-bound α̃ as the unique (positive) solution to the following equation:

α̃

2 + α̃
≡ 1

1 + α̃
,

namely α̃ ≡ √
2.

Now, using Eq. (2) and rearranging terms, we can express 
m
i (si , s−i ) as follows:


m
i (si , s−i ) = am

i (si , s−i )c
′(am

i (si , s−i ))δ
m
i (si , s−i ).

Hence, inequality (8) holds for a given (si , s−i ) if

am
i (si , s−i )c

′(am
i (si , s−i ))δ

m
i (si , s−i ) > c(am

i (si , s−i )).

The functions c(a) and ac′(a)δ are both increasing (δ > 0), and equal to zero at a = 0.
As a consequence, a sufficient condition for the above inequality to be true is that

[
α

(
am

i (si , s−i )
) + 1

]
δm

i (si , s−i ) > 1.

But Lemma 4 implies that this condition holds when infa α(a) >
√

2. This com-
pletes the proof of the proposition.

Proof of Proposition 4

The proof of Proposition 4 hinges on the following result.

Lemma 5 Given s−i ∈ R
G−1+ ,

∂ Am
i (si , s−i )

∂si
> 0 and lim

si →∞ Am
i (si , s−i ) = ∞.

Proof By definition,

Am
i (si , s−i ) ≡ π̃m

i (si , s−i )Am(si , s−i ). (9)

Since both terms on the right-hand side are increasing in si , so is Am
i . This implies

that if Am
i is bounded from above, there exists Ki > 0 such that limsi →∞ Am

i
(si , s−i ) = Ki . But since π̃m

i (si , s−i ) ≤ 1, this in turn implies from (9) that there
exists K > 0 such that limsi →∞ Am(si , s−i ) = K . Thus we get a contradiction since
Eq. (2)

Am
−i (si , s−i )wi

Am(si , s−i )2 = c′
(

Am
i (si , s−i )

si

)
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does not hold for limiting values of si . Indeed, the right-hand side converges to zero
(am

i → 0, and c′(0) = 0), whereas the left-hand side always exceeds A0wi/K 2 > 0.
This establishes the lemma. �

Now, let s̄i be the upper-bound defined in Proposition 2. Note that the set M ≡
[0, s̄i ] × (× j �=i [0, n j ]) is nonempty and compact. Then, by continuity of Ai , the
upper-bound Āi ≡ max{Ai (si , s−i ) : (si , s−i ) ∈ M} > 0 is well-defined.

From Lemma 5, there exists ni (s−i ) > 0 such that Am
i (ni (s−i ), s−i ) = Āi , and

Am
i (ni , s−i ) ≥ Am

i (ni (s−i ), s−i ) whenever ni ≥ ni (s−i ). We set n̄i ≡
max{ni (s−i ) : s−i ∈ × j �=i {0, . . . , n j }}.

Now, applying Proposition 3 with si = n̄i , we know that there exists F̄i > 0 such
that sm

i > n̄i and for all (sm
i , sm

−i ) ∈ Sm(F) whenever Fi < F̄i .
Am

i (·, s−i ) being strictly increasing, for any structure (s∗
i , s∗−i ) ∈ S∗(F),

Am
i

(
sm

i , sm
−i

)
> Am

i

(
n̄i , sm

−i

) ≥ Āi ≥ Ai
(
s∗

i , s∗−i

)
,

whenever Fi < F̄i . Proposition 3 establishes the first inequality, and Proposition 2
establishes the last inequality. This ends the proof of the proposition.
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