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Abstract A social welfare function treating all generations equally is derived from
a set of axioms that allow for preferences for catastrophe avoidance or risk equity.
Implications for the case where there is a risk of world extinction are studied. We
show that substantial time discounting can arise from the planner’s taste for catastro-
phe avoidance, even if the probability of the world ending is infinitesimally small.

1 Introduction

Many major policy decisions involve making trade-offs between the welfare of current
and future generations. Policy guidance has then to rely on a given social objective. The
most common approach involves assuming that the social planner aims at maximizing
a social welfare function:

SW =
∞∑

t=0

γ tUt ,

where t indicates time, Ut is the aggregate utility of cohort t and γ t is the social
discount factor (the discount rate being 1 − γ ).
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Such an approach has been extensively criticized by economists and philosophers.
The main point is that generations are not treated equally, since they are assigned a
weight that depends on when they were born. This is generally considered to be unfair,
a point of view most clearly expressed by philosopher Henry Sidgwick who argued
that “[...] the time at which a man exists cannot affect the value of his happiness from
a universal point of view” (Sidgwick 1907, p. 414).

To our knowledge, there is only one argument that has been suggested to provide
an ethical ground for using such a welfare function. Initially developed by Dasgupta
and Heal (1974, 1979), it involves assuming that between any two dates there exists a
positive probability 1 − γ that the world ends. An equitable utilitarian objective leads
then to the above social welfare function.

Still, this argument is problematic when we turn to quantitative aspects. Social dis-
count rates are usually taken between 1 and 5 % per year. But, for most people it would
seem excessively pessimistic to assume a yearly probability of the word ending of
1 or 5%. With a 5% probability we would have more than a 50% chance of disappearing
in the next 14 years. Even with a probability of the world ending of 1% per year, there
would be the less than a 50% chance of seeing the world lasting more than 69 years.
It is hard to believe that this should reflect the beliefs of a reasonable social planner.

The aim of this paper is to provide a theoretical foundation for a social welfare
function displaying time discounting, but which is ethically acceptable, in the sense
that it treats all generations equally. Our argument, just as that of Dasgupta and Heal,
relies on the idea that at any time there is a positive probability that the world ends.
However, the novelty is that we suggest different foundations that make it possible to
distinguish the social discount rate from the probability of the world ending. Indeed
we are able to break down social discount into two parts: one representing the risk
of the extinction of the world, and the other related to aversion to correlated risks. It
is thus possible to believe that the instantaneous probability of the world ending is
very low, but that accounting for such a risk leads to introduce a discount rate that
significantly differs from zero.

Theoretically speaking, our work relies on an axiomatic construction of the plan-
ner’s preferences that largely resembles the one suggested by Harsanyi (1955). It
extends Harsanyi’s approach by considering a weaker version of the Pareto axiom,
that allows us to consider preferences for “Catastrophe Avoidance”, a notion that was
initially suggested by Keeney (1980) and discussed further in Fishburn (1984).

The remainder of the paper is organized as follows. In Sect. 2, we introduce the
notation. Section 3 will expose the axiomatic construction of the planner’s preferences.
Preferences for Catastrophe Avoidance are discussed in Sect. 4. In Sect. 5, we explore
the consequences when there is a positive (but tiny) instantaneous probability of the
world ending and see that it actually yields a rate of discount that is possibly far from
zero. Last, in Sect. 6, we show how the additive representation can be recovered as a
limit case of the more general representation that we derive.

2 The setting

We consider a society composed of consecutive generations. Time is discrete and
infinite, and a period is denoted by t ∈ N (with N the set of natural numbers). Each

123



Preferences for catastrophe avoidance reconcile social discounting 417

potential generation is identified by the period at which it is supposed to be born. We
use the adjective “potential” to emphasize the fact that those generations may never
exist (for example because the end of the world occurs before their birth date). Gen-
erations do not overlap: people can live only one period. The situation of a generation
is described by a unidimensional outcome xt . This is an element of the set of possible
outcomes X = K ∪ {d}. K is an interval in the positive real line, R+. Elements of
K can be seen as comparable measures of the standards of living of the generation. d
indicates the non-existence status. X satisfies habitual topological properties.1 In the
sequel, we will assimilate generations to individuals. It is to be understood that we
have in mind representative agents of the generations.

We wish to consider uncertain prospects. Let P be the set of all simple lotteries on
X .2 For simplicity, individuals are assumed to be identical and selfish (they have the
same self-regarding preferences). Each individual’s preferences are represented by a
binary relation �I defined on P . We denote by �I the strict preference relation and
by ∼I the indifference relation.

Like Harsanyi (1955) we restrict the study to the case where individual prefer-
ences admit an expected utility representation on P . Stated differently, there exists a
Bernoulli utility function u(.) such that:

∀p, p̂ ∈ P : p �I p̂ ⇔
∑

x∈X

u(x)p(x) ≥
∑

x∈X

u(x) p̂(x).

By normalization, we can assume without loss of generality that u(d)= 0. We also
need the following minimal sensitivity condition: there exist x̄ and x̂ in K such that
u(x̄)> u(x̂)> 0. The differentiability of u will also be assumed in Sect. 3 in order to
have a well-defined notion of the social discount rate. This assumption is not necessary
to derive our representation result.

Let us now describe social outcomes and preferences. The literature on the evalua-
tion of infinite utility streams initiated by Diamond (1965) makes no assumption as to
the asymptotic properties of feasible utility streams.3 In this paper, we consider the risk
of the world ending. We are thus led to put some structure on possible intertemporal
outcomes. We assume that the society will end in a finite time. The termination date
is however unknown.

To be more specific, if we denote XN the Cartesian product of individual outcome
spaces, the social outcome space is

χ =
{

x ∈ XN such that ∃T : ∀t ≤ T xt �= d and xt ′ = d ∀t ′ > T
}

The social planner’s preferences will be defined on Q, the set of all simple lotteries
on χ . Because the set χ is a strict subset of XN, we work with a smaller choice set

1 In particular, X is a metric space using the following metric m : X × X → R
+: m(x, x̂) = |x − x̂ |,

∀(x, x̂) ∈ K × K ; m(x, d) = +∞ , ∀x ∈ K ; m(d, d) = 0.
2 A simple lottery on X is a mapping p : X → [0, 1] with the property that (i) there exists a finite subset
J ⊂ X such that p(x) > 0 ∀x ∈ J and p(x) = 0 ∀x ∈ X \ J ; (ii)

∑
x∈J p(x) = ∑

x∈X p(x) = 1.
3 See Fleurbaey and Michel (2003) for a recent paper containing an extensive review of this literature.
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than the one considered by Epstein (1983). This is of particular importance: to restrict
attention to outcomes in χ , rather than working on XN, enables to circumvent the
necessity of impatience established by Koopmans (1960) and, in a framework involv-
ing risk, by Epstein (1983). The specifications that will be obtained in Proposition 1
are concrete examples of continuous social orderings that do not exhibit impatience
or, in the context of intergenerational justice, preference for earlier generations.4 Note
that the restriction we impose bears some similarities with the one used by Ramsey
(1928).5

The consideration of outcomes in χ seems appropriate if we think that the world
has a finite but uncertain time horizon. In a comment on a paper by Koopmans, Fisher
argued that the infinite horizon was primarily introduced as a convenience to escape
the problems associated with an arbitrary terminal date (Fisher 1965). Our approach
can achieve this task without making the assumption that the horizon is infinite.

We follow Harsanyi in assuming that the social planner’s preferences admit an
expected utility representation.6 There exists a Bernoulli index U defined on χ such
that:

∀q, q̂ ∈ Q : q �S q̂ ⇔
∑

x∈χ

U (x)q(x) ≥
∑

x∈χ

U (x)q̂(x)

For any subset of the set of individuals, I ⊂ N, and for any q ∈ Q, we denote qI

the marginal distribution of q on the outcomes of individuals in I .7 In particular, we
denote qt the marginal distribution on individual t’s outcomes. Remark that qt ∈ P
for any q ∈ Q and any t ∈ N.

Last we introduce a subset of Q that will be of particular importance. Let
∏

t∈N
P

be the set of product lotteries on XN.8 We define the set of “independent distributions”,
R , by:

R = Q ∩
∏

t∈N

P.

An element of R thus describes a societal risk composed of independent individual
risks. An experiment where each individual would be asked to flip a coin could be
represented by an element of R. The case of a social planner who flips a coin to
determine all individual outcomes cannot be represented by an element of R. This is
also the case for any aggregate risk, as with the risk of an ecological catastrophe that

4 Thus our conclusions also contrast with the results obtained in the literature on the aggregation of infinite
utility streams. The structure of χ explains the different conclusions.
5 Ramsey (1928) considered an infinite horizon but he restricted attention to paths converging to a constant
tail at the “bliss”level. We assume that all paths have a constant tail composed of outcomes d.
6 Harsanyi’s approach is not free from controversy. In particular, it has been argued that the expected utility
axioms might not be appropriate for the social planner (Diamond (1967), Epstein and Segal (1992)). This
contention has however also been criticized, for instance in Deschamps and Gevers (1977), Broome (1984)
or Fleurbaey (2007).
7 Let I = {i1, i2, . . .}. qI is a a mapping qI : X I → [0, 1] such that, for all (x̄i1 , x̄i2 , . . .) in X I ,
qI (x̄i1 , x̄i2 , . . .) = ∑

t∈N\I
∑

x̄t ∈X q (x ∈ χ : xi = x̄i ∀i ∈ I ; xt = x̄t ).
8 A simple lottery q belongs to

∏
t∈N P if, for any t and t ′ in N and any xt and xt ′ in X , q{t,t ′}(xt , xt ′ ) =

qt (xt )qt ′ (xt ′ ).
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would deteriorate the welfare of several generations, or that associated with the world
ending.

3 Planner’s preferences

In this section, we state the assumptions made on the planner’s preferences and then
provide a representation result.

Our first axiom is a restricted Pareto axiom:

Axiom 1 Restricted Pareto (RP):

∀q, q̂ ∈ R, if ∀t ∈ N, qt �I q̂t then q �S q̂

If, furthermore, ∃t ′ / qt ′ �I q̂t ′ then q �S q̂.

The above axiom is called Restricted Pareto, because we apply Pareto’s principle to
independent distributions only. This axiom is weaker than the standard strong Pareto
axiom, which would be obtained by replacing R by Q in the above definition.

The reason for using a restricted version of the Pareto axiom, instead of the standard
one, is that we want the planner’s preferences to reflect individual preferences when
independent risks are concerned, but possibly to deviate from individual preferences
when collective risks come at play. This possibility was first considered by Keeney
(1980) and Fishburn (1984). More recently we also find it in Manski and Tetenov
(2007). Such a restricted axiom is necessary if we want to allow for social judgments
on how individual risks are combined.

This seems reasonable if we consider that the social planner should not only care
for individuals’ happiness but also implement some coordination between individu-
als’ behaviors in order to avoid undesirable social outcomes. For instance, the social
planner might want to avoid major social catastrophes. Fishburn argued that social
risk diversification would be particularly “appealing if the fate of the human race were
at stake”(Fishburn 1984, p. 904). This is precisely the issue that is discussed in the
present paper.

But the restricted axiom also enables to consider the converse of catastrophe avoid-
ance, namely “Risk Equity”(the notion was introduced in Keeney (1980)). Risk Equity
may also seem appropriate because it guarantees that people do not face too different
fates. Our axiomatic makes it possible to consider this principle as well and to study
its consequences on the social discount rate.

Restricted Pareto is however not innocuous. Like Pareto’s principle it may be crit-
icized on the ground that it bears only on ex-ante evaluations.9 The social planner
may have concerns about the ex-post distribution of welfare that would be incompat-
ible with the acceptance of the restricted Pareto axiom. The present paper does not
tackle these issues. Restricted Pareto only permits to consider the role of correlated
generations’ fate on social welfare.

9 See Hammond (1981), Myerson (1981) or Fleurbaey (2007) on this problem. See also Rabinowicz (2002)
on the use of Pareto’s principle restricted to ex-post situations.
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The second major axiom we use is an independence axiom called Independence
of the Utilities of the Dead.10 It stipulates that, at any given date, the choice between
two socially risky prospects does not depend on the situation of individuals who tres-
passed. The principle is usually justified by the fact that we cannot change the fate of
those already dead, so that their welfare should not matter for present choices.

Denote δx the one-point measure on x ∈ X .11 The Independence of the Utilities of
the Dead axiom is as follows:

Axiom 2 Independence of the utilities of the dead (IUD): Let q, q ′, q̂ and q̂ ′ be four
simple lotteries in Q for which there exists T ∈ N such that:

• qt = q ′
t = δxt and q̂t = q̂ ′

t = δx̂t for all t ≤ T .
• qN\{1,...,T } = q̂N\{1,...,T } and q ′

N\{1,...,T } = q̂ ′
N\{1,...,T }.

Social preferences satisfy the (IUD) axiom if, for any such q, q ′, q̂ and q̂ ′, the
following equivalence holds:

q �S q ′ ⇔ q̂ �S q̂ ′

Last, we would like the social planner to treat all generations impartially. In the
literature, the concept of intergenerational equity has often been represented using
finite permutations of individual outcomes.12 A finite permutation π is a bijection
π : N → N such that, for some T ∈ N, π(t) = t for all t ≥ T . Let � denote the set
of all finite permutations. For any x ∈ χ and any π ∈ �, x(π) denotes the sequence
(xπ(1), xπ(2), . . . , xπ(n), . . .). Our anonymity axiom is as follows:

Axiom 3 Anonymity (A): ∀x ∈ χ , ∀π ∈ � such that x(π) ∈ χ :

δx ∼S δx(π).

The axiom holds on sure prospects. This is enough to obtain our result. Its counter-
part in terms of expected utility would be stronger but is more difficult to write. We
prefer this weaker axiom which is simpler and sufficient for our purpose. Remark also
that the anonymity axiom rules out any pure time preference of the social planner.

We are now able to state a representation result.

Proposition 1 Assume that individual preferences admit and expected utility repre-
sentation on P and that social preferences admit an expected utility representation
on Q. Then social preferences satisfy (RP), (IUD) and (A), if and only if they can be
represented by an expected utility using the Bernoulli utility function:

U (x) = 1

ε
×

(
1 −

∏

t∈N

(1 − εu(xt ))

)
(1)

10 The axiom was proposed by Blackorby, Bossert and Donaldson in a series of papers on intertemporal
social ethics. See for instance Blackorby et al. (2002).
11 A one-point measure is a simple lottery δx ∈ P such that δx (x) = 1 and δx (y) = 0, ∀y ∈ X \ {x}. The
definition of one-point measures on x ∈ χ is similar.
12 For some discussion of permutations as expressing impartiality, and the presentation of different per-
mutation conditions, see Fleurbaey and Michel (2003).
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with ε �= 0 such that εu(xt )< 1 for all xt ∈ X, or the Bernoulli utility function:

U (x) =
∑

t∈N

u(xt ). (2)

Proof See Appendix 1. ��
Note that the above representation of the social planner’s preferences is contingent

on the normalization assumption that has been made on u, namely u(d)= 0. In par-
ticular, because u(d)= 0, the infinite product and sum that appear in (1) and (2) are
well defined for any x ∈ χ . Note also that ε > 0 is possible only if u is bounded from
above. Conversely, ε < 0 is possible only if u is bounded from below. We want to
consider these two cases and therefore assume that the function u is bounded.

The additive welfare function (Eq. 2) corresponds to the limit of the multiplicative
representation (Eq. 1) when ε tends to zero. We will therefore consider the multiplica-
tive representation as the general one, remembering that the additive one is obtained
by taking ε = 0. Only the additive case would be obtained if we were to replace (RP)
by the standard strong Pareto axiom.13

The representation of preferences given by Proposition 1 resembles the one found
in Eqs. 9.16 and 9.17 of Meyer (1976). Our proof indeed makes use of a standard
recursivity argument, similar to the one used by Meyer (1976) and Epstein (1983).
Their axioms were adjusted to fit the intertemporal social choice framework. The
proof also had to be adapted to the choice set we consider, which is larger than the one
studied by Meyer (1976) but smaller than the one studied by Epstein (1983) because
of the structure of χ . Proposition 1 should not be considered as the main achievement
of the paper. Our contribution is of a different nature: it involves highlighting the
judiciousness of the multiplicative representation in social choice and exploring its
consequences when there is an exogenous risk of the world ending.

First, we explain in the next section how the parameter ε that enters Eq. (1) is related
to catastrophe avoidance.

4 Catastrophe avoidance

Keeney (1980), who discusses the social evaluation of fatality risks, defines catastrophe
avoidance as follows: social preferences are said to exhibit a preference for catastrophe
avoidance if the probability π1 of having n1 fatalities is preferred to a probability π2
of having n2 fatalities when n1 < n2 and π1n1 = π2n2. Stated otherwise, under the
assumption of a preference for Catastrophe Avoidance, for a given number of expected
fatalities, the social planner prefers the case of an accident that kills few people to a
less likely accident that kills more people.

In our setting, we are not concerned by fatality risks, but by the mere existence of
individuals. Still, the transposition of Keeney’s definition to our framework is trivial.
The planner’s utility exhibits preferences for catastrophe avoidance if and only if, in
the case where all existing individuals are provided with the same positive utility level,

13 Proof available upon request.
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the planner prefers the lottery where the number of individuals that will ever exist is
M with probability (1 −π1) and M − n1 with probability π1 , to the lottery where the
number of individuals is M with probability (1 − π2) and M − n2 with probability
π2, when π1n1 = π2n2 and n1 < n2.

With the representation in Eq. (1), a preference for catastrophe avoidance occurs if
for all u > 0 and all n1, n2, π1, π2 such that π1n1 = π2n2 and n1 < n2 we have:

(1 − π1)(1 − εu)M + π1(1 − εu)M−n1 > (1 − π2)(1 − εu)M + π2(1 − εu)M−n2 .

Simplifying the above inequality by (1 − εu)M and using π1n1 = π2n2, this leads to:

(1 − εu)−n1 − 1

n1
>

(1 − εu)−n2 − 1

n2
.

Thus preferences for catastrophe avoidance exist if and only if f (n) = (1−εu)−n−1
n is a

decreasing function. But f ′(n) = (1−εu)−n

n

[
log(1 − εu) + (1−εu)n−1

n

]
which is neg-

ative for all n > 0 if and only ε > 0. Assuming preference for catastrophe avoidance
is therefore equivalent to taking ε > 0.

Indeed, as shown by the second theorem of Keeney (1980), preference for catas-
trophe avoidance is equivalent to risk aversion with respect to the number of existing
individuals (when all existing individuals are provided with the same utility level).
To measure the strength of the preference for catastrophe avoidance, we can therefore
use an Arrow–Pratt coefficient of risk aversion with respect to the number of existing
individuals. More precisely, assume that all individuals that ever exist are provided
with the same amount of commodity x , which yields the same utility level u(x). For
any N denote

U(N , x) = U (x, . . . , x︸ ︷︷ ︸
N times

, d, . . .)

the social utility when the number of individuals that will ever exist is N . Also denote
�U(N , x) = U(N +1, x)−U(N , x) and �2U(N , x) = �U(N +1, x)−�U(N , x).
We can define the index of catastrophe avoidance as the following Arrow–Pratt coef-
ficient:

ICA(x) = −�2U(N , x)

�U(N , x)

It is a matter of simple computation to show that, when the social welfare function takes
the form shown in (1), we have U(N , x) = 1

ε
− 1

ε
(1− εu(x))N and ICA(x) = εu(x).

In particular the index of catastrophe avoidance equals zero when ε = 0 . This means
that utilitarian preferences (which fulfill the unrestricted Pareto axiom) cannot exhibit
preferences for catastrophe avoidance.

The appeal of the catastrophe avoidance principle has been disputed. For instance,
Fleurbaey (2007) notices that catastrophe avoidance implies a preference for ex-post
inequalities. Catastrophe avoidance also means that we prefer to sacrifice the last
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generation for sure than to give the last two generations half a chance of existing.14

One might rather want social preferences to satisfy risk equity. Risk equity corresponds
to the idea that equalizing independent risks is socially desirable (see Keeney 1980). In
our framework, this is possible only if ICA(x)< 0. Accordingly, the criterion obtained
in Proposition 1 can accommodate risk equity if we choose ε < 0.

There are evidences (quoted in Keeney (1980)) that many people would endorse
catastrophe avoidance in the case of large risks such as the end of the world. On the
other hand, risk equity seems also ethically appealing. Without taking side for any of
these principles, we will now see that preferences (or distaste) for catastrophe avoid-
ance as expressed in the ICA play a key role when looking at time discounting arising
from the risk of the world ending.

5 The risk of the world ending and the social discount rate

For the sake of simplicity we consider the case where uncertainty only bears on the
timing of the world’s disappearance. The planner’s problem involves ranking infinitely
long consumption plans, knowing that for a reason that is independent of his behavior,
the world will stop existing at a finite date (consumption becoming then impossible).
This problem is similar to the one considered by Dasgupta and Heal (1979). To sim-
plify matters further, we assume that at each period there is a probability p that the
end of the world occurs and a probability (1 − p) that the world survives. We also
consider infinitely long consumption plans x ∈ K N such that u(xt )> 0 for all t ∈ N.

The situation that we consider involves a countably infinite number of events, one
for each possible ending date. It can be described by a discrete lottery but not by a
simple lottery. It is however possible to extend the representations in Eqs. (1) and (2)
from the set of all simple lotteries to a convex set of discrete lotteries. We encounter
one problem though: the Bernoulli utility functions in (1) and (2) are not bounded,
except when ε > 0 and u(xt )> 0 for all t . When the Bernoulli utility function is not
bounded, we may have a problem with the convergence of the expected utility for
some discrete lotteries, so that the choice criterion is not well-defined.15 Social pref-
erences using Bernoulli functions in Eqs. (1) and (2) therefore admit an expected
utility representation only on the set of discrete lotteries for which the expected utility
is finite. For any ε we denote Qε denote this set. The set Qε necessarily contains all
simple lotteries on χ .

Consider a consumption plan x =(xt ) ∈ K N. For any T ≥ 0 there is a probability
p(1 − p)T that the world will last exactly T periods. In such a case the consumption

plan x yields a social utility 1
ε
×

(
1 − ∏T

t=1 (1 − εu(xt ))
)

if T > 0 and zero if T = 0.

The expected utility associated with x is therefore:

W (x) = 1

ε

∞∑

T =1

p(1 − p)T

(
1 −

T∏

t=1

(1 − εu(xt ))

)
. (3)

14 We thank the associate editor for suggesting this example.
15 On this issue, see Hammond (1998, p. 187).
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Since the social planner aims at maximizing expected utility, W (x) is a social welfare
function representing the planner’s preferences over consumption plans. A consump-
tion plan x will be preferred to an alternative plan x̂ if and only if W (x) > W (x̂).

The infinite sum in Eq. (3) converges whatever p > 0 for all admissible ε ≥ 0. The
lottery that we consider therefore belongs to Qε for these values of ε. In the case of
risk-equity preferences (ε < 0) however, the sum may not converge when p is suffi-
ciently low. In that case, we must restrict attention to values p large enough so that
the discrete lottery belong to Qε. All the results in this section are given for values p
satisfying this condition.

As it emerges from Eq. (13) in Appendix 2, the social welfare function in Eq. (3)
can be rewritten:16

W (x) = (1 − p)

+∞∑

T =1

u(xT )

T −1∏

t=1

[
(1 − εu(xt )) (1 − p)

]
(4)

We recognize here stationary recursive preferences. Indeed, if we denote t x = (xt ,

xt+1, . . .) the infinite sequence of generations’ consumptions from period t on, we
have the recursive relation:

W (t x) = u(xt ) + [
(1 − εu(xt )) (1 − p)

]
W (t+1x). (5)

Stationary recursive preferences have been studied at length in the economic liter-
ature ever since Koopmans (1960). The particular form obtained here was originally
introduced by Uzawa (1968) in continuous time and Epstein (1983) in discrete time.
As is well-known, recursive preferences generally display endogenous discounting.

Like Koopmans (1960) or Epstein (1983), we define the rate of time discounting
along a constant consumption path by looking at how the marginal utility of consump-
tion changes with time. Formally, if we denote conx the constant consumption program
for which xt = x ∈ K for any t ∈ N, the rate of time discounting is defined by:

ρ(x) = 1 −
∂W
∂x2
∂W
∂x1

x=conx . (6)

When preferences are given by the social welfare function W shown in Eq. (3)
we have the following result:

Proposition 2 The social rate of discount is

ρ(x) = p + (1 − p)εu(x) = p + (1 − p)I C A(x)

Proof See Appendix 2. ��
Note that when ε = 0, that is in the standard utilitarian case, we find that the rate of

discount equals the instantaneous probability of the world ending, which is consistent

16 We use the habitual convention that
∏0

t=1 g(xt ) = 1 for all functions g.
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with the results of Dasgupta and Heal. From Proposition 2 we also have the immediate
consequences:

Corollary 1 1) The rate of discount is greater than the hazard rate of the world dis-
appearing whenever social preferences exhibit preferences for catastrophe avoid-
ance (i.e. ρ > p whenever ε > 0).

2) The rate of discount is lower than the hazard rate of the world disappearing when-
ever social preferences exhibit preferences for risk equity (i.e. ρ < p whenever
ε < 0).

3) In the case ε > 0, when the probability of the world ending is infinitesimally small,
the rate of discount approximately equals I C A(x) = εu(x).

These three points deserve some comments. First we see that preference for catas-
trophe avoidance makes the social planner discount the future more heavily. The reason
is that the planner wants to avoid the worst catastrophe in which: (1) only few indi-
viduals ever come to life; (2) those few individuals sacrifice most of their resources
for the sake of future generations that will actually never exist.

Conversely and for symmetrical reasons, preference for risk equity lowers the social
discount rate. This is true only for sufficiently large value of p, for, when ε < 0, the
lottery we consider does not belong to Qε when p tends to zero.

Lastly, even if the instantaneous probability of the world ending is very small, the
rate of discount may be quite large. This may seem counterintuitive, as one might
expect that when p is infinitesimally small, the planner would not exhibit pure time
preference, as a consequence of the anonymity axiom. There is however a simple
intuition that explains why the rate of discount does not tend to zero when p tends to
zero. The point is that when p tends to zero the expected number of individuals that
will ever exist (which equals 1

p ) tends to infinity. As a consequence, the smaller p, the
greater the loss when the world ends. Thus, when p tends to zero, the probability of a
catastrophe occurring does tend to zero, but the magnitude of the catastrophe tends to
infinity. Both factors compensate and lead the social planner to use a non-negligible
social discount even if p is very small. At the limit p → 0, the discount rate is equal
to the index of catastrophe avoidance.

Recursive preferences have been increasingly used in optimal growth theory with
seminal contributions by Uzawa (1968), in continuous time, and Beals and Koopmans
(1969) in discrete time. Several papers have provided interesting developments on
the existence and convergence of optimal paths in many settings, for instance Epstein
(1983), Lucas and Stockey (1984), Epstein (1987) or Palivos et al. (1997). They obtain
results similar to the standard neoclassical growth model with exogenous discounting
when social preferences display ‘increasing marginal time preference’; that is when
the discount rate ρ(x) is increasing in x . With preferences displayed in Eq. (4), this is
the case whenever u(x) is increasing in x , a conventional assumption.

6 Recovering the additive social welfare function

An indisputable drawback of the multiplicative representation is that the expected
utility is not additive. For most applications, this is a source of substantial increase in
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complexity. Still, following a strategy similar to that of Bommier (2006), additivity
can be recovered by considering the limit case where the difference in welfare between
existing or not existing is assumed to be much greater than the difference in welfare
between having a low or a high level of consumption. More precisely, assume that
the xt (when different from d) remain in a bounded domain [xmin, xmax] and that the
function u is such that:

u(xt ) = 0 when xt = d,

u(xt ) = 1 + λv(xt ) when xt �= d,

where λ is very small and v is a bounded function over [xmin, xmax]. In such a case
the difference in welfare between existence and non-existence is approximately equal
to 1, while the difference in welfare between having xmin or xmax equals λ(v(xmax) −
v(xmin)), which is assumed to be much smaller than 1.

Consider now one of the lotteries we have studied in Sect. 5. Assume that the lottery
belongs to Qε and consider the limit case where λ is infinitesimally small. Note that
in such a case, the index of catastrophe avoidance is independent of x and equals ε.

We obtain following result:

Proposition 3 In the limit where λ → 0 the social planner’s preferences are repre-
sented by the social welfare function

Wε(x) =
∞∑

t=0

γ tv(xt )

where γ = (1 − p)(1 − ε).

Proof See Appendix 3. ��
We therefore obtain the standard additive representation, with a discount rate that

equals p + (1 − p) ε. Thus, we end up with a formulation that is the same as that of
Dasgupta and Heal, though with the fundamental difference that the rate of discount
is now augmented by a factor that depends on the index of catastrophe avoidance.
Thus, there is no contradiction between assuming that the probability that the world
disappears is very low, and that the rate of discount is significantly greater than zero.
Nor is there any inequitable bias in favor of present generations.

Despite its simplicity, the additive approximation may be controversial, for we have
to assume that the difference in welfare between existence and non-existence is much
larger than the difference in welfare between possible lives. This is of course disput-
able. Blackorby et al. (1995) argue for example there are states of extreme poverty that
are, from the planner’s point of view, worse than non-existence. If one is reluctant to
use the additive approximation, there is no other solution than to rely on the recursive
formula given by Eq. (4).

Preferences for catastrophe avoidance permits to reconcile intergenerational equity
with endogenous time discounting. The simplifying assumption of exogenous dis-
counting can be seen as a limit case that corresponds to the additive approximation
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detailed above. Whether or not this limit case may be considered as relevant depends
on how wide we think the welfare gap is between existence and non-existence.

7 Conclusion

We have extended the standard utilitarian aggregation of preferences à la Harsanyi
to account for a possible planner’s taste for catastrophe avoidance or for risk equity.
This was done by replacing the usual Pareto axiom by a weaker axiom. This axiom
stipulates that there is no divergence between the social planner’s and the individuals’
preferences as long as uncorrelated risks are considered, but that some divergence may
occur when correlated risks are at play. The axiom allows planners to express their
own views on collective consequences.

Preferences for catastrophe avoidance were found to play a key role when account-
ing for the probability that the world may end. We showed that an equitable social
planner who has no pure time preference, but preferences for catastrophe avoidance,
discounts the welfare of future generations with a rate that is greater than the instan-
taneous probability of the world coming to an end. More importantly this rate does
not vanish when the instantaneous probability of the world ending tends towards zero.
In other words, substantial time discounting does not necessarily reflect the planner’s
lack of equity, or the planner’s belief that the world will soon end. There is a third
source of social discounting that results from the combination of preference for catas-
trophe avoidance with the belief that there is indeed a positive (but, possibly very
small) probability that the world will end.

The end of the world is a very stylized representation of an event with durable
consequences. Its key characteristics, for our analysis of time discounting, is that it
durably and negatively impacts individuals’ utilities and marginal utilities.17 In fact, it
can be shown that, when the planner exhibits preferences for Catastrophe Avoidance,
the planner’s discount rate increases with the likelihood of an event having these char-
acteristics occurring. Natural extensions of this paper therefore involve considering
less caricatured risks, such as the possibility of an ecological catastrophe, and see how
they may affect time discounting.

Appendices

In all the proofs we use the convention that
∏0

t=1 g(xt ) = 1 for all functions g.

Appendix 1: Proof of Proposition 1

It is straightforward to check that if the planner’s preferences are represented by the
multiplicative or additive utility function shown in (1) and (2) they satisfy (RP), (IUD)
and (A). We will therefore focus on showing that (RP), (IUD) and (A) imply these
particular specifications.

17 When the world ends, the utilities and marginal utilities of future individuals are irreversibly set to zero.
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Consider a Bernoulli utility function that represents the planner’s preferences:

Ũ (x) = Ũ (x1, x2, x3, . . .).

Let q and q̂ be two lotteries in Q such that q1 �= q̂1 and qt = q̂t = δd for all t > 1.
The (RP) axiom implies that, for any such q and q̂:

∑

x∈X

Ũ (x, d, d, . . .)q1(x)≥
∑

x∈X

Ũ (x, d, d, . . .)q̂1(x)⇔
∑

x∈X

u(x)q1(x)≥
∑

x∈X

u(x)q̂1(x)

Thus Ũ (x, d, d, . . .) must be an individual Bernoulli utility function. There exist real
numbers a > 0 and b such that Ũ (x, d, . . .) = au(x)+ b for all x ∈ X . Denote U the

function on XN such that U (x) = Ũ (x)−b
a . U is a Bernoulli utility functions for the

planner that satisfies the condition:

U (x, d, d, . . .) = u(x) for all x ∈ X (7)

Our sensitivity condition implies that there exists x̄ ∈ K such that u(x̄) > 0. For any
T ∈ N \ {1}, define VT (xT , xT +1, . . .) ≡ U (x̄, . . . , x̄, xT , xT +1, . . .). Consider q and
q̂ in Q such that qT �= q̂T , qt = q̂t = δx̄ for all t < T , and qt = q̂t = δd for all
t > T . The (RP) axiom implies that:

∑

x∈X

VT (x, d, d, . . .)qT (x)

≥
∑

x∈X

VT (x, d, d, . . .)q̂T (x) ⇔
∑

x∈X

u(x)qT (x) ≥
∑

x∈X

u(x)q̂T (x).

Thus VT (x, d, d, . . .) must be a Bernoulli utility function for generation T , which
means that there exist real numbers aT > 0 and bT such that VT (x, d, . . .) = aT u(x)+
bT for all x ∈ X . Denote UT (xT , xT +1, . . .) ≡ VT (xT ,xT +1,...)−bT

aT
. UT is such that:

UT (x, d, d, . . .) = u(x) for all x ∈ X (8)

We also take U1(x1, x2, . . .) ≡ U (x1, x2, . . .).
Consider now q, q ′, q̂ and q̂ ′, four probability measures in Q satisfying the follow-

ing conditions for some T ∈ N:18

• qt = q ′
t = δx̄ for all t ≤ T − 1, qT = q ′

T = δxT , and q̂t = q̂ ′
t = δx̄ for all t ≤ T .

• qN\{1,...,T } = q̂N\{1,...,T } and q ′
N\{1,...,T } = q̂ ′

N\{1,...,T }.

18 In the case T = 1, the first condition can be written q1 = q ′
1 = δx1 , and q̂1 = q̂ ′

1 = δx̄ .
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According to the (IUD) axiom, q �S q ′ ⇔ q̂ �S q̂ ′. Using the definition of UT
we obtain:

∑

T +1x∈χ

UT (xT , xT +1, . . .)qN\{1,...,T }(xT +1, . . .) ≥
∑

T +1x∈χ

UT (xT , xT +1, . . .)q ′
N\{1,...,T }(xT +1, . . .)

⇐⇒∑

T +1x∈χ

UT +1(xT +1, . . .)qN\{1,...,T }(xT +1, . . .) ≥
∑

T +1x∈χ

UT +1(xT +1, . . .)q ′
N\{1,...,T }(xT +1, . . .)

The equivalence is true for any xT ∈ K and for any qN\{1,...,T } and q ′
N\{1,...,T }.

Denote UT,xT (xT +1, . . .) ≡ UT (xT , xT +1, . . .). The equivalence implies that UT,xT

and UT +1 are two Bernoulli utility functions representing the same preference ordering
on the uncertain future after period T . The function UT,xT must therefore be obtained
from UT +1 by a positive affine transformation. In other words, for any xT ∈ K there
exist vT (xT ) and wT (xT ) > 0 such that

UT (xT , xT +1, . . .) = vT (xT ) + wT (xT ) × UT +1(xT +1, . . .). (9)

The normalization condition (8) implies that:

vT (xT ) = u(xT ), ∀xT ∈ X, ∀T ∈ N. (10)

Remark that the (A) axiom imposes that UT (x, y, d, . . .) = UT (y, x, d, . . .). Using
(9) and (10), this implies that for any x, y ∈ K we must have:

u(x) + wT (x)u(y) = u(y) + wT (y)u(x)

or equivalently:
1 − wT (x)

u(x)
= 1 − wT (y)

u(y)

The ratio 1−wT (x)
u(x)

is therefore constant for any x ∈ K . Let denote it by εT . We have

wT (x) = 1 − εT u(x) ∀x ∈ K . (11)

Since wT (x) > 0 we must have εT u(x) < 1.
Gathering the results in (9), (10) and (11) for t = 1, · · · , T , we obtain that:

U (x1, . . . , xT , d, d, . . .)

=
T∑

t=1

u(xt )

t−1∏

τ=1

(1 − ετ u(xτ )) + UT +1(d, d, . . .)

T∏

τ=1

(1 − ετ u(xτ ))

We also know that UT +1(d, d, . . .) = 0, so that:

U (x1, . . . , xT , d, d, . . .) =
∑

t∈N

u(xt )

t−1∏

τ=1

(1 − ετ u(xτ )). (12)
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We need to prove that εT = ε for all T ∈ N. First consider the outcomes
(x1, x2, x3, d, d, . . .) and (x3, x2, x1, d, d, . . .). Axiom (A) requires that U (x1, x2, x3,

d, d, . . .) = U (x3, x2, x1, d, d, . . .). Using Eq. (12) and after some simplifications, we
get: ε1 (u(x1) − u(x3)) = ε2 (u(x1) − u(x3)). Recall that our sensitivity requirement
imposes that there exist x̄ and x̂ in K such that u(x̄) > u(x̂) > 0. Taking x1 = x̄ and
x3 = x̂ , we end up with ε1

(
u(x̄) − u(x̂)

) = ε2
(
u(x̄) − u(x̂)

)
. This implies ε1 = ε2.

Consider (x̄, . . . , x̄, xt , xt+1, xt+2, d, d, . . .) and (x̄, . . . , x̄, xt+2, xt+1, xt ,

d, d, . . .), for any t ∈ N \ {1}. The same argument as above, using xt = x̄ and
xt+2 = x̂ , proves that εt = εt+1. This completes the proof that εT = ε for all T ∈ N

so that Eq. (12) becomes:

U (x1, . . . , xT , d, d, . . .) =
∑

t∈N

u(xt )

t−1∏

τ=1

(1 − εu(xτ ))

If ε = 0, we get the additive Bernoulli function:

U (x) =
∑

t∈N

u(xt ).

When ε �= 0 we compute:

1 − εU (x1, . . . , xT , d, d, . . .)

= 1 −
T∑

t=1

εu(xt )

t−1∏

τ=1

(1 − εu(xτ ))

= 1 +
T∑

t=1

(1 − εu(xt ))

t−1∏

τ=1

(1 − εu(xτ )) −
T∑

t=1

t−1∏

τ=1

(1 − εu(xτ ))

= 1 +
T∑

t=1

t∏

τ=1

(1 − εu(xτ )) −
T∑

t=1

t−1∏

τ=1

(1 − εu(xτ ))

=
T∏

t=1

(1 − εu(xt )) =
∏

t∈N

(1 − εu(xt )) .

We eventually get the multiplicative specification:

U (x) = 1

ε

(
1 −

∏

t∈N

(1 − εu(xt ))

)
.
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Appendix 2: Proof of Proposition 2

For any x ∈ K N and T > 0 denote

U (x, T ) = 1

ε
×

(
1 −

T∏

t=1

[1 − εu(xt )]

)

and, for T = 0,
U (x, 0) = 0.

We have, for any T ≥ 0:

U (x, T + 1) − U (x, T ) = 1

ε
× (

1 − [
1 − εu(xT +1)

]) ×
T∏

t=1

[1 − εu(xt )]

= u(xT +1) ×
T∏

t=1

[1 − εu(xt )] .

When the lottery belongs to Qε, we can write:

W (x) =
+∞∑

T =0

p(1 − p)T U (x, T ) =
+∞∑

T =0

[
(1 − p)T − (1 − p)(1 − p)T

]
U (x, T )

=
+∞∑

T =0

(1 − p)T U (x, T ) −
+∞∑

T =0

(1 − p)T +1U (x, T )

=
+∞∑

T =0

(1 − p)T U (x, T ) −
+∞∑

T =0

(1 − p)T +1U (x, T + 1)

+
+∞∑

T =0

(1 − p)T +1 [U (x, T + 1) − U (x, T )]

=
+∞∑

T =1

(1 − p)T u(xT )

T −1∏

t=1

[1 − εu(xt )] . (13)

Now, we can easily compute the partial derivative of W (x) with respect to xt :

∂W (x)

∂xt
= u′(xt )(1 − p)t

t−1∏

τ=1

[1 − εu(xτ )]

−εu′(xt ) [1 − εu(xt )]
−1

+∞∑

T =t

(1 − p)T +1u(xT +1)

T∏

τ=1

[1 − εu(xτ )] .
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Along a constant consumption path x =conx , denoting u(x) and u′(x) by u and u′,
the above expression reduces to:

∂W (x)

∂xt
= u′(1 − p)t (1 − εu)t−1

−εu′ [1 − εu]−1
+∞∑

T =t

(1 − p)T +1u(1 − εu)T

= (1 − p)t (1 − εu)t−1

×
(

u′ − εuu′ [1 − εu]−1
+∞∑

T =t

(1 − p)T −t+1 [1 − εu]T −t+1

)

= (1 − p)t (1 − εu)t−1

(
u′ − εuu′ [1 − εu]−1

+∞∑

T =0

((1 − p) (1 − εu))T

)
.

We eventually obtain that:

ρ(x) = 1 −
∂W (x)
∂x2

∂W (x)
∂x1

x=conx = 1 − (1 − p)(1 − εu) = p + (1 − p)εu.

Appendix 3: Proof of Proposition 3

Consider a lottery that belongs to Qε. The planner’s preferences over consumption
plans are represented by:

W (x) = 1

ε

+∞∑

T =1

p(1 − p)T

(
1 −

T∏

t=1

[1 − εu(xt )]

)

Substitute u(x) = 1 + λv(x) in the above formula and write that:

W (x) � W (x)|λ=0 + λ
∂W

∂λ
|λ=0

to obtain

W (x) � 1

ε

+∞∑

T =1

p(1 − p)T
(

1 − [1 − ε]T
)

+λ

+∞∑

T =1

p(1 − p)T [1 − ε]T −1

(
T∑

t=1

v(xt )

)
.
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The first term is a constant and does not affect preferences. Switching the summation
signs, the second term equals

λ

+∞∑

t=1

v(xt )

+∞∑

T =t

p(1 − p)T [1 − ε]T −1

= λp [1 − ε]−1
+∞∑

t=1

v(xt )

+∞∑

T =t

[(1 − p)(1 − ε)]T

= λp [1 − ε]−1

1 − (1 − p)(1 − ε)

+∞∑

t=1

γ tv(xt )

where γ = (1 − p)(1 − ε). The term λp[1−ε]−1

1−(1−p)(1−ε)
is a positive multiplicative factor

which does not affect preferences. We therefore see that the planner’s preferences can
be represented by

+∞∑

t=1

γ tv(xt ).
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