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Abstract We introduce two new concepts of strategy-proofness for social choice
correspondences based on the theory of preferences over sets of alternatives under
complete uncertainty. One is based on Pattanaik and Peleg (Soc Choice Welf 1:113–
122, 1984) and the other is based on Bossert et al. (Econ Theory 16:295–312, 2000).
We prove that there is no social choice correspondence satisfying anonymity, neutral-
ity, a range condition, and either of our concepts of strategy-proofness.

1 Introduction

The Gibbard–Satterthwaite theorem (Gibbard 1973; Satterthwaite 1975) states that
strategy-proofness, nondictatorship, and resoluteness are inconsistent conditions for
any social choice rule. Here, resoluteness means that only a single alternative is
assigned to each preference profile. Consequently, the scope of the G-S theorem is
restricted to social choice functions, but this is a “rather restrictive and unnatural
assumption” (Gärdenfors 1976, p. 220). So, this paper undertakes to investigate what
can be done with the G-S theorem when we deal with social choice correspondences
(SCC) instead of social choice functions, i.e., drop the condition “resoluteness” in the
G-S theorem.

Defining strategy-proofness for SCCs is not a trivial issue. Because agents have
preferences over alternatives, we need preferences over sets of alternatives to define
strategy-proofness for SCCs. Corresponding to each way of extending preferences over
alternatives to preferences over sets of alternatives, many definitions are proposed in
the literature. (Some of them are discussed in Sect. 4.)
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332 S. Sato

In this paper, we make use of results in the literature1 on preferences over sets
of alternatives under complete uncertainty. The theory of preferences over sets under
complete uncertainty deals with situations where agents having preferences over alter-
natives know the set of possible outcomes, but they have no further information about
the selection of the final outcome. Many ways to extend preferences over alterna-
tives to preferences over sets of alternatives are axiomatically characterized. When
the agents have no information about the probabilities of the final outcome from the
value of an SCC, the situation is exactly the one supposed in the theory of preferences
over sets under complete uncertainty. We define strategy-proofness for SCCs based on
two prominent results of this theory: one is Pattanaik and Peleg (1984) and the other
is Bossert et al. (2000).

We give two impossibility theorems. Theorem 3.1 shows that there is no SCC sat-
isfying anonymity (symmetric treatment of agents), neutrality (symmetric treatment
of alternatives), a range condition, and strategy-proofness based on the preferences
characterized by Pattanaik and Peleg (1984). The same statement, Theorem 3.2, holds
with the preferences characterized by Bossert et al. (2000). The theorems show that we
cannot hope for a strategy-proof SCC satisfying standard conditions in social choice
theory when the agents are completely uncertain about the final selection from the
value of an SCC. Although there are many impossibility theorems for strategy-proof
SCCs, either they use a relatively strong concept of strategy-proofness or they use
nonstandard conditions to derive an impossibility. (See Sect. 4.)

The plan of the paper is the following. In Sect. 2, we give basic notation and defini-
tions. Strategy-proofness for SCCs is defined and our main results are given in Sect. 3.
In Sect. 4, we review some related literature. Section 5 is devoted to the proofs of the
results.

2 Basic notation and definitions

Let N = {1, . . . , n} be a finite set of agents with n ≥ 3, let X be a finite set of alter-
natives with |X | ≥ 3, and let X be the set of all nonempty subsets of X . Let L denote
the set of linear orders (complete, transitive, and antisymmetric binary relations) on
X . Typically, a preference on X is given by a linear order, denoted by R or Ri , and
a preference on X is given by a weak order (complete and transitive binary relation),
denoted by � or �i . An element of LN is called a preference profile, and generic
notation for a preference profile is RN , and its value at i ∈ N is denoted by Ri . Given
a preference profile RN , an agent i ∈ N , and a linear order R′

i , let (R′
i , R−i ) denote

the preference profile such that its value at i is R′
i and its value at j ∈ N \{i} is R j .

Given a linear order R on X , let P denote the strict relation induced by R. Given a
weak order � on X , let � denote the strict relation and let ∼ denote the indifference
relation induced by �. For each linear order R on X and for each A ∈ X , let max R|A
denote the best element of A with respect to R, i.e., (max R|A, x) ∈ R for all x ∈ A;
similarly, let min R|A denote the worst element of A with respect to R. We often drop

1 The seminal work on preference under complete uncertainty is Kannai and Peleg (1984). See Barberà
et al. (2004) for a recent survey.
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On strategy-proof social choice correspondences 333

R and write max A and min A when their meaning is clear. Also, when A = X , we
simply write max R and min R instead of max R|X and min R|X , respectively. For

any statements A and B,

[
A
B

]
means “A and B”.

A correspondence of LN into X is called a social choice correspondence (SCC).
We introduce standard conditions in social choice theory: anonymity requiring sym-
metric treatment of agents, neutrality requiring symmetric treatment of alternatives,
and a range condition.

Definition 2.1 An SCC F is said to satisfy

(i) anonymity if for every preference profile RN , and for each permutation σ of
N , F(RN ) = F(Rσ

N ), where Rσ
N denotes the preference profile defined by for

each i ∈ N , Rσ
i = Rσ(i).

(ii) neutrality if for each preference profile RN , and for each permutation ρ of X ,
ρ(F(RN )) = F(ρ(RN )), where ρ(RN ) denotes the preference profile defined
by for each i ∈ N ,

ρ(Ri ) = {(x, y) ∈ X2 | (ρ−1(x), ρ−1(y)) ∈ Ri }.

(iii) the range condition if there exist x ∈ X and RN ∈ LN such that F(RN ) = {x}.

3 Strategy-proofness and results

In this section, we define strategy-proofness for SCCs. For that purpose, we need pref-
erences on X . We define a class of plausible weak orders on X associated with each
linear order on X by means of an extension rule, a correspondence of L into the set of
weak orders on X . For an extension rule E and a linear order R, E(R) is interpreted
as the set of admissible or plausible preferences on X with respect to a preference R
on X .

Definition 3.1 For each extension rule E , an SCC F is said to be E strategy-proof
if for every preference profile RN , for every i ∈ N , and for every R′

i ∈ L,

F(RN ) �i F(R′
i , R−i ), ∀ �i ∈ E(Ri ). (3.1)

There are many conceivable extension rules. Whether an extension rule is plausible
or not depends on the context under consideration. An important assumption in this
paper is that every agent knows that the set of possible outcomes is F(RN ), but he
has no information about the probabilities of those outcomes. Thus, the agents are
completely uncertain about the final selection. The literature on preferences over sets
of alternatives under complete uncertainty presents a variety of plausible preferences
over sets associated with each preference over basic alternatives, and it is natural to
apply those results to our research. We can categorize those preferences over sets into
two groups: given a preference R over alternatives, the first group consists of prefer-
ences such that a set A is indifferent to the set {max R|A, min R|A}, and the second
group consists of preferences such that a set A is not necessarily indifferent to the
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set {max R|A, min R|A}. The preferences in the first group are consistent with the
notion of limited rationality according to which an agent confronted with a complex
decision problem often simplifies the problem by focusing on salient features of the
problem, and hence those preferences deserve to be considered. (See Bossert et al.
2000 for a discussion of this point.) However, in this paper, we consider the prefer-
ences in the second group. (Strategy-proofness based on preferences in the first group
is considered by Sato 2007.) We deal with two prominent extension rules characterized
by Pattanaik and Peleg (1984) and Bossert et al. (2000), respectively.

Definition 3.2 (Pattanaik and Peleg 1984) For each linear order R on X , let E P P (R)

be the set consisting of two weak orders �bot and �top on X defined below. �bot uses
the worst alternative with respect to R as the primary criterion for ranking elements
of X , but when the worst alternatives in A and B are identical, the worst alternatives
in the reduced sets A\{min A} and B\{min B} are considered. By proceeding in this
manner, if all of the alternatives in B are eliminated while some alternatives of A
remain, then A �bot B. �top is the dual of �bot. Formally,

• assume ak Pak−1 P · · · Pa2 Pa1 and bh Pbh−1 · · · Pb2 Pb1, then

A �bot B ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∃l such that

[
al Pbl

∀m < l, am = bm

]

or[
k ≥ h

∀m ≤ h, am = bm

]
,

• assume a1 Pa2 P · · · Pak−1 Pak and b1 Pb2 P · · · Pbh−1 Pbh , then

A �top B ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∃l such that

[
al Pbl

∀m < l, am = bm

]

or[
k ≤ h

∀m ≤ k, am = bm

]
.

This extension rule E P P is called the PP extension rule (after Pattanaik and Peleg).

Definition 3.3 (Bossert et al. 2000) For each linear order R on X , let E B P X (R) denote
the set consisting of two weak orders �min and �max. The basic ideas of these weak
orders are similar to those of �bot and �top in E P P (R). �min also uses the worst alter-
natives with respect to R as the primary criterion for ranking elements of X , but �min

uses the best alternatives as the secondary criterion. When the worst alternatives in A
and B are identical, �min considers the best alternatives and moves to the next step
only if both the best and the worst alternatives of A and B are identical. In such cases,
�min removes both the best and the worst alternatives from A and B, and considers
the remaining sets A\{max A, min A} and B \{max B, min B} in the same manner.
�max is the dual of �min. Formally,
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• assume ak Pak−1 P · · · Pa2 Pa1 and bh Pbh−1 · · · Pb2 Pb1, then

A �min B ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃l such that

⎡
⎢⎣ al Pbl or

[
al = bl

ak−l+1 Pbk−l+1

]

am = bm ∀m < l, ∀m > k − l + 1

⎤
⎥⎦

or⎡
⎢⎣

k ≥ h

∀m ≤ h/2,

[
am = bm

ak−m+1 = bh−m+1

]
⎤
⎥⎦

• assume a1 Pa2 P · · · Pak−1 Pak and b1 Pb2 P · · · Pbh−1 Pbh , then

A �max B ⇐⇒ the same statement as that of the right-hand side of �min.

This extension rule is called the BPX extension rule (after Bossert, Pattanaik, and
Xu).

Example 3.1 Let X = {x1, x2, x3, x4, x5} and x1 Px2 Px3 Px4 Px5, and consider rank-
ings on A = {{x3}, {x1, x5}, {x2, x3, x5}, {x1, x4, x5}}. Then,

• {x3} �bot {x1, x5} �bot {x2, x3, x5} �bot {x1, x4, x5}, and
• {x3} �min {x1, x4, x5} �min {x1, x5} �min {x2, x3, x5}.
Thus, �bot and �min differ from each other in ranking the sets in A. However, on A,
�top and �max are equal to the following �:

• {x1, x4, x5} � {x1, x5} � {x2, x3, x5} � {x3}.
Thus, ({x1, x4, x5}, {x2, x3, x5}) �∈ (

�bot ∩ �top
)

whereas ({x1, x4, x5}, {x2, x3, x5})∈(
�min ∩ �max

)
.

Based on the introduced extension rules E P P and E B P X , E P P strategy-proofness and
E B P X strategy-proofness are defined (Definition 3.1). The following two theorems
show that those strategy-proofness cannot be achieved by SCCs satisfying anonymity,
neutrality, and the range condition.

Theorem 3.1 There is no SCC satisfying anonymity, neutrality, the range condition,
and E P P strategy-proofness.

Theorem 3.2 There is no SCC satisfying anonymity, neutrality, the range condition,
and E B P X strategy-proofness.

One might have a reservation about the validity of E P P strategy-proofness and E B P X

strategy-proofness because the extension rules E P P and E B P X are rather restrictive.
A natural inquiry is “Certainly, an agent with a preference R on X might have the pref-
erences over X specified by E P P and E B P X , but he might have other different weak
orders on X . Do the conclusions of Theorems 3.1 and 3.2 remain the same in such
cases?” As formally stated in the next corollary, the impossibilities of Theorems 3.1
and 3.2 are unchanged, because the more possible weak orders on X are associated
with R ∈ X , the more possibilities for manipulation there are.
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336 S. Sato

Corollary 3.1 Let E be any extension rule such that either

(i) E P P (R) ⊂ E(R) for all R ∈ L, or
(ii) E B P X (R) ⊂ E(R) for all R ∈ L, holds.

Then, there is no SCC satisfying anonymity, neutrality, the range condition, and E
strategy-proofness.

Now, we show that the conditions anonymity, neutrality, and the range condition are
essential for our impossibility theorem. First, dictatorship satisfies all of the conditions
but anonymity. Next, a constant SCC such that F(RN ) = {x} for some x ∈ X and
for every preference profile RN satisfies all of the conditions but neutrality. Lastly,
an SCC such that F(RN ) = X for every preference profile RN satisfies all of the
conditions but the range condition.

Finally, we note that even if any kind of binary relation over X (such as quasi-orders)
is admitted as the value of an extension rule, then the statement of Corollary 3.1 holds
as long as either of the two conditions in Corollary 3.1 is satisfied.2

4 Related literature

Much has been written about strategy-proof SCCs (Gärdenfors 1976; Feldman 1979;
Duggan and Schwartz 2000; Barberà et al. 2001; Benoît 2002; Ching and Zhou 2002,
among others) However, there is no agreement on what is the best definition of strategy-
proofness for SCCs, and there are many different definitions of strategy-proofness.3

In this section, we review selected related papers. An important point is that the more
preferences over sets are permitted, the easier we obtain impossibility results.

Ching and Zhou (2002) and Barberà et al. (2001) give impossibility results with
relatively large sets of preferences on X . The concept of strategy-proofness by Ching
and Zhou (2002) is stronger than ours.

Ching and Zhou (2002) (CZ strategy-proofness): An SCC F is strategy-proof if for
any preference profile RN , for any i ∈ N , and for any R′

i ∈ L,

(i) a Ri b for all a ∈ F(RN )\F(R′
i , R−i ) and for all b ∈ F(R′

i , R−i ), and
(ii) a Ri b for all a ∈ F(RN ) and for all b ∈ F(R′

i , R−i )\F(RN ).

This definition of strategy-proofness assumes diverse preferences on X , and it is stron-
ger than E P P and E B P X strategy-proofness. To see this point, let X = {x1, x2, x3}
and suppose that there exist an SCC F , a preference profile RN , and R′

i such that

x1 Pi x2 Pi x3, F(RN ) = {x1, x3}, and F(R′
i , R−i ) = {x2, x3}.

Then, x3 ∈ F(RN ) and x2 ∈ F(R′
i , R−i )\F(RN ), which violates the second condition

of CZ strategy-proofness. In other words, a preference �i such that {x2, x3} �i {x1, x3}

2 This fact was pointed out by an anonymous Associate Editor.
3 Gärdenfors (1979) studies different definitions of manipulation given by Pattanaik (1973, 1975),
Gärdenfors (1976), Kelly (1977), Fishburn (1978).
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On strategy-proof social choice correspondences 337

belongs to the set of admissible preferences on X associated with Ri . Clearly, in our
extension rules, �i �∈ E P P (Ri )∪E B P X (Ri ), while it can be seen that every preference
in E P P (Ri ) ∪ E B P X (Ri ) is admissible in the sense of Ching and Zhou (2002).

Barberà et al. (2001) present two kinds of preferences on X . Their first concept of
strategy-proofness is the same as that of CZ strategy-proofness. The second definition
is based on the following extension rule: For each R ∈ L, let E B DS(R) be the set
consisting of � such that for any A, B ∈ X ,

A � B ⇐⇒
∑
a∈A

u(a)

|A| ≥
∑
b∈B

u(b)

|B|

for some numerical representation u of R. Consequently,
⋃

R∈L E B DS(R) is con-
sidered to be the set of admissible preferences on X . In defining

⋃
R∈L E B DS(R),

Barberà et al. (2001) assume that the alternatives in each set are mutually compatible,
and there is no uncertainty. Barberà et al. (2001) show that the second concept of
strategy-proofness and unanimity lead to dictatorial or bi-dictatorial rules. Because
there are many possible numerical representations of R, many preferences on X are
admitted. For example, the following preference that is neither in

⋃
R∈L E P P (R) nor

in
⋃

R∈L E B P X (R) falls within
⋃

R∈L E B DS(R):

{x1} �i {x2} �i {x3} �i {x4} �i {x5} and {x1, x3, x4, x5} �i {x1, x2, x5}.

(Let u(x1) = 12, u(x2) = 9, u(x3) = 8, u(x4) = 4, and u(x5) = −120.) On the other
hand, because �bot �∈ ⋃

R∈L E B DS(R), the second concept of strategy-proofness of
Barberà et al. (2001) is not strictly stronger than ours. Thus, their second concept of
strategy-proofness and ours are independent from each other.

Benoît’s (2002) concept of strategy-proofness is weaker than ours. However, Benoît’s
impossibility result needs a condition called near unanimity. Near unanimity requires
that when all but one agent have a common maximal singleton, then the singleton
must be chosen at the profile. Duggan and Schwartz (2000), whose concept of strat-
egy-proofness is also weaker than ours, impose a similar condition to near unanimity,
called residual resoluteness, to derive their impossibility theorem. Barberà et al. (2001,
p. 393) remark on near unanimity as follows:

A less innocuous assumption made on social choice rules is that they satisfy the
property of “near unanimity”. . . . For instance, the rule which selects the union
(over individuals) of maximal elements violates this property.

Moreover, the rule selecting the set of Pareto-efficient alternatives violates near una-
nimity and residual resoluteness. Benoît (2002) and Duggan and Schwartz (2000)
exclude such SCCs by near unanimity and residual resoluteness, respectively, and
not by strategy-proofness. In other words, their impossibility theorems depend on
nonstandard conditions in social choice theory.
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Gärdenfors (1976) considers strategy-proof SCCs with anonymity and neutrality.
With a rather weak concept of strategy-proofness, Gärdenfors gives an impossibil-
ity result when there are three alternatives and three agents, and agents’ preferences
over alternatives are weak orders. Also, with linear preferences, Gärdenfors shows
that there exists an SCC satisfying strategy-proofness, anonymity, neutrality, and the
Condorcet criterion.4 At the same time, Gärdenfors (1976, p.226) conjectures that
any strategy-proof SCC satisfying some standard conditions such as neutrality and
anonymity “should be too undecisive to be of practical interest”. Feldman (1979) also
considers strategy-proof social decision functions (SDF) with anonymity and neutral-
ity. An SDF is a function of X × LN into X , and it is a more general concept than
an SCC. (For each SDF C , C(X, ·) is an SCC in our sense.) Feldman (1979) gives a
series of interesting results. However, three conditions used in most of his theorems are
rather restrictive. The first condition is |X | ≥ n. In many situations, this requirement is
difficult to satisfy, notably, in elections. The second and the third ones are contraction
consistency and expansion consistency.5 The plurality rule and the Borda rule, both
are famous and widely prevalent in real societies, violate contraction consistency and
expansion consistency, respectively.

Thus, our contribution is that we derive impossibility theorems with (i) weak con-
cepts of strategy-proofness based on prominent results in the literature on prefer-
ences over sets of alternatives under complete uncertainty, and (ii) standard conditions
(anonymity, neutrality, and the range condition) in social choice theory.

5 Proofs

Lemma 5.1 If an SCC F satisfies either E P P strategy-proofness or E B P X strategy-
proofness, then for every preference profile RN , for any i ∈ N, for any R′

i ∈ L,

(max Ri |F(RN ), max Ri |F(R′
i , R−i )) ∈ Ri (5.1)

and

(min Ri |F(RN ), min Ri |F(R′
i , R−i )) ∈ Ri . (5.2)

4 An SCC F is said to satisfy the Condorcet criterion if F(RN ) = {x} whenever x is the Condorcet winner
with respect to RN .
5 A SDF C satisfies contraction consistency if for any preference profile RN and for any A ∈ X ,

x ∈ C(A, RN ) ⇒ ∀y ∈ A, x ∈ C({x, y}, RN ).

A SDF C satisfies expansion consistency if for preference profile RN and for any A ∈ X ,

[
x ∈ A

x ∈ C({x, y}, RN ), ∀y ∈ A

]
⇒ x ∈ C(A, RN ).
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Proof First, assume that F is E P P strategy-proof. If (5.1) fails to hold, then F(R′
i , R−i )

�top
i F(RN ), which is a contradiction. Also, if (5.2) fails to hold, then F(R′

i , R−i ) �bot
i

F(RN ), which is a contradiction.
Next, assume that F is E B P X strategy-proof. If (5.1) fails to hold, then F(R′

i , R−i )

�max
i F(RN ), which is a contradiction. Also, if (5.2) fails to hold, then F(R′

i , R−i )

�min
i F(RN ), which is a contradiction. ��

Lemma 5.2 Let F be an SCC satisfying either E P P or E B P X strategy-proofness and
let x be any element of X. If F(RN ) = {x} for some preference profile RN , then for
any preference profile R′

N such that {y ∈ X |(y, x) ∈ R′
i } ⊂ {y ∈ X | (y, x) ∈ Ri }

for all i ∈ N, we have F(R′
N ) = {x}.

Proof We prove this statement by induction. Let k be any integer such that 0≤k≤n−1.
Assume F(R′{1,...,k}, R−{1,...,k})={x}. We prove that F(R′{1,...,k,k+1}, R−{1,...,k,k+1})=
{x}. For notational simplicity, let K = {1, . . . , k} and let K+1 = {1, . . . , k + 1}.
Suppose on the contrary that F(R′

K+1
, R−K+1) �= {x}. Let v be any element of

F(R′
K+1

, R−K+1) with v �= x .

Case 1: vPk+1x . In this case, we have

(max Rk+1|F(R′
K+1

, R−K+1), max Rk+1|F(R′
K , R−K )) ∈ Pk+1,

which is a contradiction with Lemma 5.1.
Case 2: x Pk+1v. In this case, x P ′

k+1v holds. Thus

(min R′
k+1|F(R′

K , R−K ), min R′
k+1|F(R′

K+1
, R−K+1)) ∈ P ′

k+1,

which is a contradiction with Lemma 5.1. Therefore, F(R′
K+1

, R−K+1) = {x}. By
induction on k, we can conclude that F(R′

N ) = {x}. ��
Definition 5.1 An SCC F is said to satisfy unanimity if for any x ∈ X and for any
preference profile RN such that max Ri = x for all i ∈ N , F(RN ) = {x}.
Lemma 5.3 If an SCC F satisfies E P P or E B P X strategy-proofness, neutrality, and
the range condition, then F satisfies unanimity.

Proof Let x be any element of X and let RN be any preference profile such that
max Ri = x for all i ∈ N . By the range condition, there exist y ∈ X and a preference
profile R′

N such that F(R′
N ) = {y}. Let R′′

N = R′
N (x, y), where R′

N (x, y) denotes the
preference profile obtained by interchanging x and y at RN . By neutrality, F(R′′

N ) =
{x}. Let R∗

N be the preference profile defined by for each i ∈ N , R∗
i = R′′

i (max R′′
i , x),

where R′′
i (max R′′

i , x) denotes the linear order obtained by interchanging max R′′
i and

x at R′′
i . Note that at R∗

N , every agent puts x at the top of his preference. By Lemma 5.2,
F(R∗

N ) = {x}. Because {z ∈ X | (z, x) ∈ Ri } = {x} = {z ∈ X | (z, x) ∈ R∗
i } for all

i ∈ N , by Lemma 5.2, we have F(RN ) = {x}. ��
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Table 1 Construction of the profile R′
N in Lemma 5.3

RN : x /∈ F(RN ), y ∈ F(RN ) R′
N : {y} = F(R′

N )

Agent Best Worst

i x · · ·
N\{i} · · · · · ·

�⇒
Agent Best Worst

i x y · · ·
N\{i} y · · · · · · x

Lemma 5.4 Let F be an E P P or E B P X strategy-proof SCC satisfying unanimity and
let RN be any preference profile such that max Ri �∈ F(RN ) for some i ∈ N. Let
max Ri = x and let y be any element of F(RN ). Then,

• lift y to the second place at Ri , and
• at each R j ( j ∈ N \{i}), lift y to the top and take x to the bottom.

Let R′
N be the resulting preference profile. Then, F(R′

N ) = {y}. (See Table 1.)

Proof First, we prove x �∈ F(R′
N\{i}, Ri ). We prove this claim by induction with the

induction base x �∈ F(RN ). Let k be any integer with 0 ≤ k ≤ |N\{i}|−1 and assume
that there exists K ⊂ N \{i} such that |K | = k and x �∈ F(R′

K , R−K ). Our goal is to
prove that there exists K ′ ⊂ N \{i} such that |K ′| = k + 1 and x �∈ F(R′

K ′ , R−K ′).
Let j be any element of (N \{i})\K . We claim that K ′ = K ∪ { j} is a desired set of
agents. Suppose on the contrary that x ∈ F(R′

K ′ , R−K ′) holds. Note that

• min R′
j |F(R′

K , R−K ) �= x = min R′
j , and

• min R′
j |F(R′

K ′ , R−K ′) = x = min R′
j .

That is, (min R′
j |F(R′

K , R−K ), min R′
j |F(R′

K ′ , R−K ′)) ∈ P ′
j , which is a contradiction

with Lemma 5.1. Thus, K ′ is such that |K ′| = k+1 and x �∈ F(R′
K ′ , R−K ′). By induc-

tion on k, there exists K ′′ ⊂ (N \{i}) with |K ′′| = |N \{i}| and x �∈ F(R′
K ′′ , R−K ′′).

Because |K ′′| = |N \{i}| implies K ′′ = N \{i}, we have x �∈ F(R′
N\{i}, Ri ).

Next, we prove F(R′
N ) = {y}. First, we show that x �∈ F(R′

N ). Suppose on the
contrary that x ∈ F(R′

N ). Then,

• by the first part of the proof, max Ri |F(R′
N\{i}, Ri ) �= x = max Ri , and

• max Ri |F(R′
N\{i}, R′

i ) = x = max Ri .

Thus, (max Ri |F(R′
N\{i}, R′

i ), max Ri |F(R′
N\{i}, Ri )) ∈ Pi , which is a contradiction

with Lemma 5.1. Therefore, x �∈ F(R′
N ). We now show that F(R′

N ) = {y}. Sup-
pose on the contrary that F(R′

N ) �= {y}. Then, there exists v ∈ X \ {x, y} such
that v ∈ F(R′

N ). Because F satisfies unanimity, F(R′
i (x, y), R′

N\{i}) = {y}. Because
(y, v) ∈ P ′

i , it follows that (min R′
i |F(R′

i (x, y), R′
N\{i}), min R′

i |F(R′
N )) ∈ P ′

i , which
is a contradiction. ��
Lemma 5.5 Let F be an E P P or E B P X strategy-proof SCC satisfying neutrality
and unanimity. If there exists a preference profile RN and an agent i ∈ N such that
max Ri �∈ F(RN ), then, for any y ∈ F(RN ), for any preference profile R∗

N such that
max R∗

j = y for all j ∈ N \{i}, we have F(R∗
N ) = {y}.
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Proof Let y be an element of F(RN ) and let x = max Ri . Let R′
N denote the prefer-

ence profile constructed in Lemma 5.4. Then Lemma 5.4 shows that F(R′
N ) = {y}.

First, we show that for any R′′
i ∈ L, we have F(R′′

i , R′−i ) = {y}. Suppose on the

contrary that there exists R̂i ∈ L such that F(R̂i , R′−i ) �= {y}. Let v be any element

of F(R̂i , R′−i ) with v �= y. There are two cases to consider.

Case 1: v = x . In this case,

• max R′
i |F(R̂i , R′−i ) = x = max R′

i , and
• max R′

i |F(R′
N ) = y �= max R′

i .

Therefore, (max R′
i |F(R̂i , R′−i ), max R′

i |F(R′
N )) ∈ P ′

i , which is a contradiction with
Lemma 5.1.
Case 2: v �= x . By the neutrality of F , F(R′

N (x, v)) = {y}. Because max R′
j (x, v) =

max R′
j = y for all j ∈ N \{i}, Lemma 5.2 shows that F(R′

i (x, v), R′−i ) = {y}. Note
that

• max R′
i (x, v)|F(R̂i , R′−i ) = v = max R′

i (x, v) and
• max R′

i (x, v)|F(R′
i (x, v), R′−i ) = y �= max R′

i (x, v).

Therefore, (max R′
i (x, v)|F(R̂i , R′−i ), max R′

i (x, v)|F(R′
i (x, v), R′−i )) ∈ P ′

i (x, v),
which is a contradiction.

Second, we prove that for any preference profile R∗
N such that max R∗

j = y for all
j ∈ N \{i}, we have F(R∗

N ) = {y}. By the first part of the proof, F(R∗
i , R′−i ) = {y}.

Because F(R∗
i , R′−i ) = {max R′

j } = {max R∗
j } for all j ∈ N \{i}, Lemma 5.2 shows

that F(R∗
N ) = {y}. ��

Remark 5.1 Let F be an E P P or E B P X strategy-proof SCC satisfying neutrality and
unanimity. If there exists a preference profile RN and an agent i ∈ N such that
max Ri �∈ F(RN ), then, for any z ∈ X , for any preference profile R′

N such that
|{ j ∈ N | max R′

j = z}| ≥ n − 1, we have F(R′
N ) = {z}.

Proof Let y be any element of F(RN ). First, we show that for any R∗
N such that

|{ j ∈ N | max R∗
j = y}| ≥ n − 1, we have F(R∗

N ) = {y}. If |{ j ∈ N | max R∗
j =

y}| = n, then F(R∗
N ) = {y} directly follows from unanimity. So, suppose that |{ j ∈

N | max R∗
j = y}| = n − 1. Let h be the element of N \{ j ∈ N | max R∗

j = y}.
Let σ be the permutation of N interchanging i and h. Then, by anonymity, max Rσ

h =
max Ri �∈ F(RN ) = F(Rσ

N ). Because y ∈ F(Rσ
N ), Lemma 5.5 implies F(R∗

N ) = {y}.
Second, let z be any element of X and let R′

N be any preference profile such that
|{ j ∈ N | max R′

j = z}| ≥ n − 1. Then, F(R′
N ) = {z} follows from above argument

and neutrality. ��
Lemma 5.6 Let F be an E P P or E B P X strategy-proof SCC satisfying neutrality and
unanimity. Then for every i ∈ N and for every preference profile RN , max Ri ∈ F(RN )

holds.

Proof We prove this Lemma with the aid of the impossibility theorem of Benoît
(2002). An alternative proof can be found in Sato (2007).
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Table 2 The profile RN in the
proof of Theorem 3.1

Agent Best Worst
1 x|X | x1 · · · x2

N\{1} x1 x2 · · · x|X |

In the following, we describe a slightly weaker version of the impossibility theorem
by Benoît to avoid unnecessary complexity. For the precise statement of the theorem,
see the original article. For each linear order R on X , a weak order � on X is said to
satisfy the B condition if for any A ∈ X ,

(i) A �= {max A} ⇒ {max A} � A,

(ii)

[
A �= max A

A �= {max A, max(A\{max A})}
]

⇒ {max A, max(A\{max A})} � A,

(iii)

⎡
⎣ A �= max A

A �= {max A, max(A\{max A})}
A �= max(A\{max A})

⎤
⎦ ⇒ max(A\{max A}) � A, and

(iv) A �= min A ⇒ A � min A.

Then, Benoît’s impossibility theorem (his Theorem 1) shows that there is no SCC F
such that

(i) F is E strategy-proof, where the extension rule E is such that for each R ∈ L,
any � ∈ E(R) satisfies the B condition, and

(ii) for any x ∈ X and for any RN such that |{i ∈ N | max Ri = x}| ≥ n − 1,
F(RN ) = {x}.

We call this the B theorem. (Remember that this is a weaker version of, not the precise
statement of, Benoît’s theorem.)

Now, we prove our Lemma. Let F be an E P P or E B P X strategy-proof SCC satis-
fying neutrality and unanimity. Suppose on the contrary that there exists i ∈ N such
that max Ri �∈ F(RN ). Then, by Remark 5.1, the second condition of the B theorem
is satisfied. It can be seen that both E P P and E B P X satisfy the first condition. Thus,
F satisfies both conditions of the B theorem, which is a contradiction. ��
Proof of Theorem 3.1 Suppose on the contrary that there exists an E P P strategy-
proof SCC F satisfying anonymity, neutrality, and the range condition. Let X =
{x1, x2, . . . , x|X |} and let RN a preference profile described in Table 2.

Then, by Lemma 5.6, {x1, x|X |} ⊂ F(RN ).
Now, we show that x2 ∈ F(RN ). Suppose on the contrary that x2 �∈ F(RN ). Let

R′
2 be a linear order such that max R′

2 = x2. Then, {x1, x2, x|X |} ⊂ F(R′
2, R−2).

By the definition of �top
2 , it can be seen that F(R′

2, R−2) �top
2 F(RN ), which is a

contradiction with E P P strategy-proofness. Thus, x2 ∈ F(RN ).
Therefore, {x1, x2, x|X |} ⊂ F(RN ). Now, let R′

1 be a linear order such that
max R′

1 = x1. By Lemma 5.5, F satisfies unanimity, and hence F(R′
1, R−1) = {x1}.

Therefore,

F(R′
1, R−1) �bot

1 F(RN ),

which is a contradiction with E P P strategy-proofness. ��
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Proof of Theorem 3.2 In the proof of Theorem 3.1, replace �top
2 with �max

2 and
replace �bot

1 with �min
1 . ��
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