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Abstract It is known that Dodgson’s rule is computationally very demanding.
Tideman (Soc Choice Welf 4:185–206, 1987) suggested an approximation to it but
did not investigate how often his approximation selects the Dodgson winner. We show
that under the Impartial Culture assumption the probability that the Tideman winner
is the Dodgson winner converges to 1 as the number of voters increase. However we
show that this convergence is not exponentially fast. We suggest another approxima-
tion—we call it Dodgson Quick—for which this convergence is exponentially fast.
Also we show that the Simpson and Dodgson rules are asymptotically different.

1 Introduction

Condorcet proposed that a winner of an election is not legitimate unless a majority of
the population prefer that alternative to all other alternatives. However such a winner
does not always exist. A number of voting rules have been proposed which select the
Condorcet winner if it exists, and otherwise selects an alternative that is in some sense
closest to being a Condorcet Winner. A prime example of such as rule is the rule that
was proposed by Dodgson (1876).
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312 J. C. McCabe-Dansted et al.

Bartholdi et al. (1989) proved that finding the Dodgson winner is, unfortunately,
an NP-hard problem. Hemaspaandra et al. (1997) refined this result by proving that it
is Θ

p
2 -complete and hence is not NP-complete unless the polynomial hierarchy col-

lapses. As Dodgson’s rule is hard to compute, it is important to have simple and fast
approximations to it. Shah (2003) would not have included a statistical analysis of
Dodgson’s rule if Tideman’s approximation was not available.

We investigate the asymptotic behaviour of simple approximations to the Dodgson
rule as the number of agents gets large. Tideman (1987) suggested an approximation
but did not investigate its convergence to Dodgson. We prove that under the assump-
tion that all votes are independent and each type of vote is equally likely (the Impartial
Culture (IC) assumption), the probability that the Tideman (1987) approximation picks
the Dodgson winner asymptotically converges to 1, but not exponentially fast.

We propose a new social choice rule, which we call Dodgson Quick. The Dodgson
Quick approximation does exhibit exponential convergence to Dodgson. The proof
of this is based on the discovery of a large class of profiles for which it is certain
that the Dodgson Quick winner is also the Dodgson winner. As it is possible to verify
whether a profile is a member of this class in polynomial time, this provides us with
an easy way to verify that the Dodgson Quick approximation has picked the same
winner. Even if we only consider results that can be verified in this way to be correct,
the proof still demonstrates exponential convergence. This, together with its simplic-
ity and other nice properties, makes our new approximation useful in computing the
Dodgson winner. Despite its simplicity, our approximation picked the correct win-
ner in all of 1,000,000 elections with 85 agents and 5 alternatives (McCabe-Dansted
2006), each generated randomly according to the Impartial Culture assumption. Our
approximation can also be used to develop an algorithm to determine the Dodgson
winner with O(ln n) expected running time for a fixed number of alternatives and
n agents.

A result independently obtained by Homan and Hemaspaandra (2005) has a lot in
common with our result formulated in the previous paragraph, but there are important
distinctions as well. They developed a “greedy” algorithm that, given a profile, finds
the Dodgson winner with certain probability. Under the Impartial Culture assump-
tion this probability also approaches 1 as we increase the number of agents. However
the Dodgson Quick rule is simpler and, unlike their algorithm, the Dodgson Quick
rule requires only the information in the weighted majority relation. This makes the
Dodgson Quick rule easier to study and compare to other simple rules such as the
Tideman rule. Also unlike their rule, the scores of the Dodgson Quick rule are lower
bounds for the Dodgson scores; this makes the Dodgson Quick scores useful for
quickly identifying alternatives that cannot be Dodgson winners (McCabe-Dansted,
2006).

Our experimental results (McCabe-Dansted and Slinko 2006) showed that
Simpson’s and Dodgson’s rules are very close. However, in the present paper we
discover that under the Impartial Culture assumption, the frequency that the Simpson
rule picks the Dodgson winner does not converge to one.

Whereas this paper defines closeness in terms of probabilities, other papers have
defined closeness such that two close rules will always pick similar rankings of the
alternatives; under this definition of closeness it is hard to find an approximation for
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the Dodgson rule. For scoring rules we may rank the alternatives according to their
scores. Klamler (2004) found that there exist profiles such that the Borda rule picks the
reverse ranking to the Dodgson ranking. Ratliff (2001, 2002) found that the Dodgson
winner may appear in any position in the ranking of the Kemeny rule and of any posi-
tional rule. It is not known whether there exists any polynomial time approximation
to the Dodgson rule that always chooses a similar ranking to the Dodgson ranking.

2 Preliminaries

Let A and N be two finite sets of cardinality m and n respectively. The elements of A
will be called alternatives, the elements of N agents. We assume that the agents have
preferences over the set of alternatives represented by (strict) linear orders. By L(A)

we denote the set of all linear orders on A. The elements of the Cartesian product

L(A)n = L(A) × · · · × L(A) (n times)

are called profiles. The profiles represent the collection of preferences of an n-element
society of agents N . A family of mappings F = {Fn}, n ∈ N,

Fn : L(A)n → A,

is called a social choice function (SCF).
Let P = (P1, P2, . . . , Pn) be a profile. If a linear order Pi ∈ L(A) represents the

preferences of the i th agent, then by a Pi b, where a, b ∈ A, we denote that this agent
prefers a to b. We say that the i th agent ranks b directly above a if and only if a Pi b and
there does not exist c different from a, b such that a Pi c and cPi b. We say that a pair
of alternatives is neighbouring iff a is ranked directly above b or b is ranked directly
above a. We define nxy to be the number of linear orders in P that rank x above y, i.e.,
nxy = #{i | x Pi y}. The approximations we consider depend upon the information
contained in the matrix NP , where (NP )ab = nab. A function WP : A × A → Z

given by WP (a, b) = nab −nba for all a, b ∈ A, will be called the weighted majority
relation on P . It is obviously skew symmetric, i.e., WP (a, b) = −WP (b, a) for all
a, b ∈ A.

Many of the rules to determine the winner use the numbers

adv(a, b) = max(0, nab − nba) = (nab − nba)+,

which will be called advantages.
A Condorcet winner is an alternative a for which adv(b, a) = 0 for all other alter-

natives b. A Condorcet winner does not always exist. The rules we consider below
attempt to pick an alternative that is in some sense closest to being a Condorcet winner.
These rules will always pick the Condorcet winner when it exists; such rules are called
Condorcet consistent rules.

The social choice rules we consider are based on calculating the vector of scores
and the alternative with the lowest score wins. Let the lowest score be s. It is possible
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that more than one alternative has a score of s. In this case we may have a set of winners
with cardinality greater than one. Strictly speaking, to be a social choice function, a
rule has to output a single winner. Rules are commonly modified to achieve this by
splitting ties. One of the most popular methods of splitting ties is to split ties accord-
ing to the preferences of the first agent. However we will usually study the set of tied
winners rather than the single winner output from a tie-breaking procedure, as this
will allow us to empirically detect smaller differences between the rules.

The Dodgson score (Dodgson 1876, see e.g., Black 1958, Tideman 1987), which
we denote as Sd(a), of an alternative a is the minimum number of neighbouring alter-
natives that must be swapped to make a a Condorcet winner. We call the alternative(s)
with the lowest Dodgson score the Dodgson winner(s).

The Simpson score (Simpson 1969, see e.g., Laslier 1997) Ss(a) of an alternative
a is

S s(a) = max
b �=a

adv(b, a).

We call the alternative(s) with the lowest Simpson score the Simpson winner(s). That
is, the alternative with the smallest maximum defeat is the Simpson winner. This is
why the rule is often known as the Maximin or Minimax rule.

The Tideman score (Tideman 1987) St(a) of an alternative a is

St(a) =
∑

b �=a

adv(b, a).

We call the alternative(s) with the lowest Tideman score the Tideman winner(s).
Tideman (1987) suggested the rule based on this score as an approximation to
Dodgson.

The Dodgson Quick (DQ) score Sq(a) of an alternative a, which we introduce in
this paper, is

Sq(a) =
∑

b �=a

F(b, a),

where

F(b, a) =
⌈

adv(b, a)

2

⌉
.

We call the alternative(s) with the lowest Dodgson Quick score the Dodgson Quick
winner(s) or DQ-winner.

The difference between the DQ and Tideman rules may appear trivial. Simply divid-
ing the advantages by two would not result in different winner. The DQ and Tideman
winners only differ because the result is rounded up. Despite the similarity between
the DQ and Tideman rules, DQ is a much better approximation. The DQ scores are
usually exactly the same as the Dodgson scores (Theorem 5). This makes the DQ
rule a very close approximation to the Dodgson rule. Although the Tideman rule is
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quite close to the Dodgson rule (McCabe-Dansted and Slinko 2006), it may favour
an alternative that is defeated by many other alternatives by small margins where the
Dodgson rule would not (see Example 2). This small difference is enough to prevent
the Tideman rule from converging exponentially quickly (Theorem 17).

The Impartial Culture assumption (IC) stipulates that all possible profiles P ∈
L(A)n are equally likely to represent the collection of preferences of an n-element
society of agents N , i.e., all agents are independent and they choose their linear orders
from the uniform distribution on L(A). This assumption is of course does not accu-
rately reflect the voting behaviour of most voting societies. Worse, we have found that
the choice of probability model for the population can affect the similarities between
approximations to the Dodgson rule (McCabe-Dansted and Slinko 2006). However
the IC is the most simplifying assumption available. As noted by Berg (1985), many
voting theorists have chosen to focus their research upon the IC. Thus an in depth study
of the approximability of Dodgson’s rule under the Impartial Culture assumption is a
natural first step.

The Impartial Culture assumption leads to the following m!-dimensional multino-
mial distribution. Let us enumerate all m! linear orders in some way. Let P ∈ L(A)n

be a random profile. Let X be a vector where each Xi , for i = 1, 2, . . . , m!, rep-
resents the number of occurrences of the i th linear order in the profile P . Then,
under the IC, the vector X is (n, k, p)-multinomially distributed with k = m! and
p = 1k/k = ( 1

k , 1
k , . . . , 1

k ).

3 Dodgson Quick, a new approximation

In this section, we work under the Impartial Culture assumption.

Definition 1 We define D(b, a) as the number of agents who rank b directly above
a, in our profile P .

Lemma 2 The probability that D(x, a) > F(x, a) for all x converges exponentially
fast to 1 as the number of agents n tends to infinity.

Proof As nba and D(b, a) are binomially distributed with means of n/2 and
n/m, respectively, from Chomsky’s large deviation theorem (see Dembo and Zeitouni
1993), we know that for a fixed number of alternatives m there exist β1 > 0 and
β2 > 0 such that

P

(
D(b, a)

n
<

1

2m

)
≤ e−β1n, P

(
nba

n
− 1

2
>

1

4m

)
≤ e−β2n .

We can rearrange the second equation to involve F(b, a),

P

(
nba

n
− 1

2
>

1

4m

)
= P

(
2nba

n
− 1 >

1

2m

)
= P

(
nba − nab

n
>

1

2m

)

= P

(
adv(b, a)

n
>

1

2m

)
.
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Since adv(b, a) ≥ F(b, a),

P

(
nba

n
− 1

2
>

1

4m

)
≥ P

(
F(b, a)

n
>

1

2m

)
.

Thus we have

P

(
F(b, a)

n
>

1

2m

)
≤ e−β2n, P

(
D(b, a)

n
<

1

2m

)
≤ e−β1n,

and so for β = min(β1, β2) we obtain

P

(
F(b, a)

n
>

1

2m
or

D(b, a)

n
<

1

2m

)
≤ e−β1n + e−β2n ≤ 2e−βn .

Hence

P

(
∃x

F(x, a)

n
>

1

2m
or

D(x, a)

n
<

1

2m

)
≤ 2me−βn .

Using P(Ē) = 1 − P(E), we find that

P

(
∀x

F(x, a)

n
<

1

2m
<

D(x, a)

n

)
≥ 1 − 2me−βn .

Lemma 3 The DQ-score Sq(a) is a lower bound for the Dodgson Score Sd(a) of a.

Proof Let P be a profile and a ∈ A. Suppose we are allowed to change linear orders
in P , by repeatedly swapping neighbouring alternatives. Then to make a a Condorcet
winner we must reduce adv(x, a) to 0 for all x and we know that adv(x, a) = 0 if
and only if F(x, a) = 0. Swapping a over an alternative b ranked directly above a
will reduce nba − nab by two, but this will not affect nca − nac where a �= c. Thus
swapping a over b will reduce F(b, a) by one, but will not affect F(c, a) where b �= c.
Therefore, making a a Condorcet winner will require at least Σb F(b, a) swaps. This
is the DQ-Score Sq(a) of a.

Lemma 4 If D(x, a) ≥ F(x, a) for every alternative x, then the DQ-Score Sq(a) of
a is equal to the Dodgson Score Sd(a) and the DQ-Winner is equal to the Dodgson
Winner.

Proof If D(b, a) ≥ F(b, a), we can find at least F(b, a) linear orders in the profile
where b is ranked directly above a. Thus we can swap a directly over b, F(b, a)

times, reducing F(b, a) to 0. Hence we can reduce F(x, a) to 0 for all x , making a a
Condorcet winner, using Σx F(x, a) swaps of neighbouring alternatives. In this case,
Sq(a) = Σb F(b, a) is an upper bound for the Dodgson Score Sd(a) of a. From
Theorem 3 above, Sq(a) is also a lower bound for Sd(a). Hence Sq(a) = Sd(a).
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Theorem 5 The probability that the DQ-Score Sq(a) of an arbitrary alternative a
equals the Dodgson Score Sd(a), converges to 1 exponentially fast.

Proof From Lemma 4, if D(x, a) ≥ F(x, a) for all alternatives x then Sq(a)= Sd(a).
From Lemma 2, the probability of this event converges exponentially fast to 1 as
n → ∞.

Corollary 6 The probability that the DQ-Winner is the Dodgson Winner converges
to 1 exponentially fast as we increase the number of agents.

Although Bartholdi et al. (1989) showed that for a fixed number of alternatives,
the amount of time required to compute the Dodgson winner is polynomial, the order
of this polynomial can be large and the order grows with the number of alternatives.
Below it will be shown that the Dodgson winner can be found in expected time that is
logarithmic with respect to the number of agents, under the IC assumption.

Corollary 7 Suppose that the number of alternatives m is fixed. Then there exists an
algorithm that computes the Dodgson score of an alternative a taking as input the
frequency of each linear order in the profile P with expected running time logarithmic
with respect to the number of agents (i.e., is O(ln n)).

Proof The are at most m! distinct linear orders in the profile. Hence for a fixed number
of alternatives the number of distinct linear orders is bounded. Hence we may find the
DQ-score and check whether D(x, a) ≥ F(x, a) for all alternatives x using a fixed
number of additions. Additions can be performed in time linear with respect to the
number of bits and logarithmic with respect to the magnitude of the operands. So we
have used an amount of time that is at worst logarithmic with respect to the number
of agents.

If D(x, a) ≥ F(x, a) for all alternatives x , we know that the DQ-score is the
Dodgson score and we do not need to go further. Bartholdi et al. (1989) proposed an
algorithm for finding the Dodgson score in a polynomial amount of time; the expected
amount of time spent in this algorithm declines to zero because we know that the
probability that D(x, a) < F(x, a) for some alternative x declines exponentially fast
(Lemma 2).

Corollary 8 There exists an algorithm that computes the Dodgson winner taking as
input the frequency of each linear order in the profile P with expected running time
that is logarithmic with respect to the number of agents.

4 Tideman’s rule

In this section, we focus our attention on the Tideman rule which was defined in Sect. 2.
We continue to use the Impartial Culture assumption.

Lemma 9 Given an even number of agents, the Tideman winner and the DQ-winner
will be the same.

123
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Proof Since n is even, nab − nba is even for each pair of alternatives a and b. From
this, and adv(a, b) ≡ (nab − nba)+ it is clear that all advantages will also be even.
Since adv(a, b) will always be even, 
adv(a, b)/2� will be exactly half adv(a, b) and
so the DQ-score will be exactly half the Tideman score. Hence the DQ-winner and
the Tideman winner will be the same.

Corollary 10 Let P be a profile for which the Tideman winner is not the DQ-winner.
Then the profile has an odd number of agents and all non-zero advantages are odd.

Lemma 11 There is no profile with three alternatives such that the Tideman winner
is not the DQ-winner.

Proof The Tideman and Dodgson Quick rules both pick the Condorcet winner when
it exists, so if a Condorcet winner exists the Tideman winner and DQ-winner will be
the same. It is well known that the absence of a Condorcet winner on three alterna-
tives means that we can rename these alternatives a, b and c so that adv(a, b) > 0,
adv(b, c) > 0, and adv(c, a) > 0. These advantages must be odd from the previ-
ous corollary. Hence there exist integers i, j, k ∈ Z such that adv(a, b) = 2i − 1,
adv(b, c) = 2 j − 1, and adv(c, a) = 2k − 1. The DQ-Scores and Tideman scores of
a, b, c are k, i, j and 2k −1, 2i −1, 2 j −1 respectively. From here the result is clear,
since if i > j > k then 2i − 1 > 2 j − 1 > 2k − 1.

Lemma 12 For a profile with four alternatives there does not exist a pair (a, b) of
alternatives such that a is a DQ-winner but not a Tideman winner, and b is a Tideman
winner but not a DQ-winner.

Proof By way of contradiction assume that such alternatives a, b exist. Consider the
relationship between the Tideman score St(c) and the DQ-score Sq(c) of some alter-
native c:

St(c) =
∑

d∈A

adv(d, c) = 2
∑

d∈A

⌈
adv(d, c)

2

⌉
− #{d : adv(d, c) /∈ 2Z}

= 2Sq(c) − #{d : adv(d, c) /∈ 2Z}.

Since the set of Tideman winners and DQ-winners differ, n must be odd and hence all
non-zero advantages must be odd. It follows that:

#{d : adv(d, c) /∈ 2Z} = #{d : adv(d, c) > 0}

As the Tideman winner is not the DQ winner, there is no Condorcet winner, and so for
each alternative c there are one to three alternatives d such that adv(d, c) > 0. Thus,
2Sq(c) − 3 ≤ St(c) ≤ 2Sq(c) − 1, and, in particular,

St(a) ≤ 2Sq(a) − 1, 2Sq(b) − 3 ≤ St(b).

Given that a is DQ-winner and b is not, we know that Sq(a) ≤ Sq(b) − 1. Thus by
substitution, St(a) ≤ 2(Sq(b) − 1) − 1 = 2Sq(b) − 3 ≤ St(b). This shows that if b is
a Tideman winner, so is a. By contradiction the result must be correct.
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Theorem 13 There exists a profile that generates a weighted tournament W if and
only if all weights in W have the same parity (Debord 1987, see also Klamler 2004).

Example 1 There do exist profiles with four alternatives where the set of tied Tideman
winners differs from the set of tied DQ-winners. By Theorem 13, we know we may
construct a profile whose weighted majority relation has the following advantages:

1

1

13

5

5

Scores a b c
Tideman 5 3 5 3

3DQ 3 2 3

x

Here x, b are tied Tideman winners, but b is the sole DQ-winner.

Example 2 There do exist profiles with five alternatives where there is a unique
Tideman winner that differs from the unique DQ-winner. By Theorem 13, we know we
may construct a profile whose weighted majority relation has the following advantages:

1

1

1

1
1

19

9

9

5

1

1

1

1
1

19

9

9

5

Scores a b c x y
Tideman 10 10 9 4

DQ 6 6 5 4 3
5

Here x is the sole Tideman winner, but y is the sole DQ-winner.

Theorem 14 For any m ≥ 5 there exists a profile with m alternatives and an odd
number of agents, where the unique Tideman winner is not the unique DQ-winner.

In Example 2 we gave an example of a profile with m = 5 alternatives for which the
Tideman winner is not the Dodgson Quick winner. To extend this example for larger
numbers of alternatives, we may add additional alternatives who lose to all of a, b, c,
x , y by an odd margin of defeat.

Theorem 15 If the number of agents is even, the probability that all of the advantages

are 0 does not converge to 0 faster than O(n− m!
4 ).

Proof Let P be a random profile, V = {v1, v2, . . . , vm!} be an ordered set containing
all m! possible linear orders on m alternatives, and X be a random vector, with elements
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Xi representing the number of occurrences of vi in P . Under the Impartial Culture
assumption, X is distributed according to a multinomial distribution with n trials and
m! possible outcomes. Let us group the m! outcomes into m!/2 pairs Si = {vi , v̄i }.
Denote the number of occurrences of v as n(v). Let the random variable Y 1

i be n(vi )

and Y 2
i be n(v̄i ). Let Yi = Y 1

i + Y 2
i .

It is easy to show that, given Yi = yi for all i , each Y 1
i is independently binomially

distributed with p = 1/2 and yi trials. It is also easy to show that for an arbitrary
integer n > 0, a (2n, 0.5)-binomial random variable X has a probability of at least

1√
2n

of equaling n; thus if yi is even then the probability that Y 1
i = Y 2

i is at least 1
2
√

yi
.

Combining these results we get

P(∀i Y
1
i = Y 2

i | ∀i Yi = yi ∈ 2Z) ≥
∏

i

1

2
√

yi
≥

∏

i

1

2
√

n
= 2− m!

2 n− m!
4 .

It is easy to show that for any k-dimensional multinomially distributed random vector,
the probability that all k elements are even is at least 2−k+1; hence the probability that
all Xi are even is at least 2−k+1 where k = m!/2. Hence

P(∀i Xi,1 = Xi,2) ≥
(

2− m!
2 +1

) (
2− m!

2 n− m!
4

)
= 21−m!n− m!

4 .

If for all i , Xi,1 = Xi,2 then for all i , n(vi ) = n(v̄i ), i.e., the number of each type of
vote is the same as its complement. Thus

nba =
∑

v∈{v:bva}
n(v) =

∑

v̄∈{v̄:av̄b}
n(v̄) =

∑

v∈{v:avb}
n(v) = nab,

so adv(b, a) = 0 for all alternatives b and a.

Lemma 16 The probability that the Tideman winner is not the DQ-winner does not

converge to 0 faster than O(n− m!
4 ) as the number of agents n tends to infinity.

Let P be a random profile from L(A)n for some odd number n. Let |C | be the size
of the profile from Theorem 14. Let us place the first |C | agents from profile P into
sub-profile C and the remainder of the agents into sub-profile D. There is a small
but constant probability that C forms the example from Theorem 14, resulting in the
Tideman winner of C differing from its DQ-winner. As n and |C | are odd, |D| is even.
Thus from Theorem 15 the probability that the advantages in D are zero does not

converge to 0 faster than O(n− m!
4 ). If all the advantages in D are zero then adding

D to C will not affect the Tideman or DQ-winners. Hence the probability that the

Tideman winner is not the DQ-winner does not converge to 0 faster than O(n− m!
4 ).

Theorem 17 The probability that the Tideman winner is not the Dodgson winner does

not converge to 0 faster than O(n− m!
4 ) as the number of agents n tends to infinity.

Proof From Corollary 6, the DQ-winner converges to the Dodgson winner exponen-

tially fast. However, the Tideman winner does not converge faster than O(n− m!
4 ) to
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the DQ-winner, and hence also does not converge faster than O(n− m!
4 ) to the Dodgson

winner.

Below it will be shown that, under the Impartial Culture assumption, the probability
that the Tideman winner and Dodgson winner coincide converges asymptotically to 1.

Definition 18 We define the adjacency matrix M , of a linear order v, as follows:

Mi j =
⎧
⎨

⎩

1 if iv j
−1 if jvi
0 if i = j

.

Lemma 19 Suppose that v is a random linear order chosen from the uniform distri-
bution on L(A). Then its adjacency matrix M is an m2-dimensional random variable
satisfying the following equations for all i, j, r, s ∈ A.

E[M] = 0

covMi j Mrs = E[Mi j Mrs]

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if i = r �= j = s,
1/3 if i = r, but i, j, s distinct ∨ j = s, others distinct,
−1/3 if i = s, others distinct ∨ j = r, others distinct,
0 if i, j, r, s distinct ∨ i = j ∨ r = s,
−1 if i = s �= j = r.

Proof Clearly, E[Mi j ] = (1)+(−1)
2 = 0. As cov(X, Y ) = E[XY ] − E[X ]E[Y ] (see

e.g., Walpole and Myers 1993, p. 97), cov(Mi j , Mrs) = E[Mi j Mrs] − (0)(0) =
E[Mi j Mrs]. Note that for all i �= j we know that Mii Mii = 0, Mi j Mi j = 1, and
Mi j M ji = −1. If i = r and i, j, s are all distinct then the sign of Mi j Mis for each
permutation of i, j and s is as shown below.

i i j j s s
j s i s i j
s j s i j i

Mi j + + − − + −
Mis + + + − − −
Mi j Mis + + − + − +

Thus, E[Mi j Mrs] = +1+1−1+1−1+1
6 = 1

3 .
If i, j, r, s are all distinct then there are six linear orders v where iv j and rvs, six

linear orders v where iv j and svr , six linear orders v where jvi and rvs, and six linear
orders v where jvi and svr . Hence,

E[Mi j Mrs] = 6(1)(1)+6(1)(−1)+6(−1)(1)+6(−1)(−1)
24 = 0 .

We may prove the other cases for cov(Mi j , Mrs) in much the same way.
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We note that as var(X) = cov(X, X) we also have, var(Mi j ) = 1 if i �= j , and
var(Mi j ) = 0 if i = j .

Example 20 For example, for m = 4 the covariances with M12 are shown in the matrix

L =

⎡

⎢⎢⎣

0 1 1/3 1/3

−1 0 −1/3 −1/3
−1/3 1/3 0 0
−1/3 1/3 0 0

⎤

⎥⎥⎦ ,

where Li j = cov(Mi j , M12).

Define Y to be a collection of random normal variables indexed by i, j for 1 ≤ i <

j ≤ m each with mean of 0, and covariance matrix Ω , where

Ωi j,rs = cov(Yi j , Yrs) = cov(Mi j , Mrs),

We may use the fact that i < j, r < s implies i �= j , r �= s, (s = i ⇒ r �= j) and
(r = j ⇒ s �= i) to simplify the definition of Ω as shown below:

Ωi j,rs =

⎧
⎪⎪⎨

⎪⎪⎩

1 if (r, s) = (i, j),
1/3 if r = i, s �= j or s = j, r �= i,
−1/3 if s = i or r = j,
0 if i, j, r, s are all distinct.

Lemma 21 Let P = (P1, P2, . . . , Pn) be a profile chosen from the uniform distribu-
tion on L(A)n. Let Mi be the adjacency matrix of Pi . Then, as n approaches infinity,∑n

i=1 Mi/
√

n converges in distribution to

⎡

⎢⎢⎢⎢⎢⎣

0 Y12 Y13 · · · Y1m

−Y12 0 Y23 · · · Y2m

−Y13 −Y23 0 · · · Y3m
...

...
...

. . .
...

−Y1m −Y2m −Y3m · · · 0

⎤

⎥⎥⎥⎥⎥⎦
,

where Y is a collection of random normal variables indexed by i, j for 1 ≤ i < j ≤ m
each with mean of 0, and covariance matrix Ω , where

Ωi j,rs = covYi j Yrs = covMi j Mrs .

Proof As M1, M2, . . . , Mn are independent identically-distributed (i.i.d.) random
variables, we know from the multivariate central limit theorem (see e.g., Ander-
son 1984; p. 81) that

∑n
i=1 Mi/

√
n converges in distribution to the multivariate nor-

mal distribution with the same mean and covariance as the random matrix M from
Lemma 19. As MT = −M and Mii = 0, we have the result.
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Lemma 22 Ω is non-singular.

Proof Consider Ω2 with elements

(Ω2)i j,kl =
∑

1≤r<s≤m

Γi j,kl(r, s),

where Γi j,kl(r, s) = Ωi j,rsΩrs,kl .
If i, j, r, s distinct, then

Γi j,i j (i, j) = Ωi j,i jΩi j,i j = (1)(1) = 1,

Γi j,i j (r, j) = Ωi j,r jΩr j,i j = (1/3)(1/3) = 1/9,

Γi j,i j (i, s) = Ωi j,isΩis,i j = (1/3)(1/3) = 1/9,

Γi j,i j (r, i) = Ωi j,riΩri,i j = (−1/3)(−1/3) = 1/9,

Γi j,i j ( j, s) = Ωi j, jsΩ js,i j = (−1/3)(−1/3) = 1/9,

Γi j,i j (r, s) = Ωi j,rsΩi j,rs = 0.

Let us consider the case (i, j) = (k, l). If (i, j) = (k, l) then

Γi j,i j (r, s) = Ωi j,rsΩrs,i j =

⎧
⎪⎪⎨

⎪⎪⎩

(1)2 if (r, s) = (i, j),
(1/3)2 if r = i, s �= j or s = j, r �= i,
(−1/3)2 if s = i, (r �= j) or r = j, (s �= i),
0 if i, j, r, s are all distinct.

Recall that r < s, i < j and r, s ∈ [1, m]. Consider for how many values of (r, s)
each of the above cases occur:

– (r, s) = (i, j): This occurs for exactly one value of (r, s).
– r = i, s �= j : Combining the fact that r < s and r = i we get i < s. Thus

s ∈ (i, j) ∪ ( j, m], and there are ( j − i − 1) + (m − j) = (m − i − 1) possible
values of s. As there is only one possible value of r this means that there are also
(m − i − 1) possible values of (r, s).

– s = j, r �= i : Combining the fact that r < s and s = j we get r < j . Thus
r ∈ [1, i) ∪ (i, j), and there are (i − 1) + ( j − i − 1) = ( j − 2) possible values
of (r, s).

– s = i : Here we want r �= j , however r < s = i < j , so explicitly stating r �= j is
redundant. Combining the fact that r < s and s = i we get r < i . Hence r ∈ [1, i]
and there are i − 1 possible values for (r, s).

– r = j : Here we want s �= i , however i < j = r < s, so explicitly stating
that s �= i is redundant. From here on we will not state redundant inequalities.
Combining the fact that r < s and r = j we get j < s. Hence s ∈ ( j, m] and
there are m − j possible values for (r, s).
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Hence,

∑

1≤r<s≤m

Γi j,i j (r, s) = (1)(1) + ((m − i − 1) + ( j − 2))

(
1

3

)2

+ ((i − 1) + (m − j))

(−1

3

)2

= 1 + (m + j − i − 3)

(
1

9

)
+ (m + i − j − 1)

(
1

9

)

= (9 + (m + j − i − 3) + (m + i − j − 1))/9

= 2m + 5

9
.

Let us consider now the case i = k, j �= l. Then

Γi j,il(r, s) = Ωi j,rsΩrs,il =

⎧
⎪⎪⎨

⎪⎪⎩

1Ωrs,il if (r, s) = (i, j),
1/3Ωrs,il if r = i, s �= j or s = j, r �= i,
−1/3Ωrs,il if s = i or r = j,
0 if i, j, r, s are all distinct.

More precisely,

Γi j,il(r, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)(1/3) = 1/3 if (i, j) = (r, s),
(1/3)(1) = 1/3 if r = i, s = l �= j,
(1/3)(1/3) = 1/9 if r = i, s �= j, s =�= l,
(1/3)(0) = 0 if s = j �= l, r �= i,
(−1/3)(−1/3) = 1/9 if s = i,
(−1/3)(1/3) = −1/9 if r = j, s = l,
(−1/3)(0) = 0 if r = j, s �= l,
0 = 0 if i, j, r, s are all distinct,

hence,

∑

1≤r<s≤m

Γi j,il(r, s) = 1

3
+ 1

3
+

∑

1≤r<s≤m,r=i,s �= j,s=�=l

1

9
+

∑

1≤r<s≤m,s=i

1

9
− 1

9

= 1

3
+ 1

3
+

∑

i<s≤m

1

9
− 2

9
+

∑

1≤r<i

1

9
− 1

9

= 1

3
+ (m − i)

1

9
+ (i − 1)

1

9
= m + 2

9
.
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Similarly for i �= k, j = l, we may show (Ω2)i j,k j = m+2
9 . If j = k then

(Ω2)i j,kl = −1

3
− 1

3
+ 1

9
−

∑

1≤r<i,r �=i

1

9
−

∑

j<s≤m,s �=l

1

9
,

= −m + 2

9
,

similarly for l = i . If i, j, k, l are all distinct, (Ω2)i j,kl equals 0. Consequently

Ω2 =
(

m + 2

3

)
Ω −

(
m + 1

9

)
I.

Since the matrix Ω satisfies Ω2 = αΩ + β I with β �= 0 it has an inverse, hence Ω

is not singular.

Theorem 23 The probability that the Tideman winner and Dodgson winner coincide
converges asymptotically to 1 as n → ∞.

Proof We will prove that the Tideman winner asymptotically coincides with the
Dodgson Quick winner. The Tideman winner is the alternative a ∈ A with the minimal
value of

G(a) =
∑

b∈A

adv(b, a),

while the DQ-winner has minimal value of

F(a) =
∑

b∈A

⌈
adv(b, a)

2

⌉
.

Let aT be the Tideman winner and aQ be the DQ-winner. Note that G(c) − m ≤
2F(c) ≤ G(c) for every alternative c. If for some b we have G(b) − m > G(aT ),
then 2F(b) ≥ G(b) − m > G(aT ) ≥ 2F(aT ) and so b is not a DQ-winner. Hence,
if G(b) − m > G(aT ) for all alternatives b distinct from aT , then aT is also the
DQ-winner aQ . Thus,

P(aT �= aQ) ≤ P(∃a �=b |G(a) − G(b)| ≤ m)

= P

(
∃a �=b

∣∣∣∣
G(a) − G(b)√

n

∣∣∣∣ ≤ m√
n

)
,

thus for any ε > 0 and sufficiently large n, we have

P(aT �= aQ) ≤ P

(
∃a �=b

∣∣∣∣
G(a) − G(b)√

n

∣∣∣∣ ≤ ε

)
.
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We will show that the right-hand side of the inequality above converges to 0 as n tends
to ∞. All probabilities are non-negative so 0 ≤ P(aT �= aQ). From these facts and
the sandwich theorem it will follow that limn→∞ P(aT �= aQ) = 0.

Let

G j =
∑

i< j

(
Yi j

)+ +
∑

k> j

(−Y jk
)+

,

where variables Yi j come from the matrix (1) to which
∑n

i=1 Mi/
√

n converges by
Lemma 21. Thus,

lim
n→∞ P

(
∃a �=b

∣∣∣∣
G(a) − G(b)√

n

∣∣∣∣ ≤ ε

)
= P

(∃i �= j
∣∣Gi − G j

∣∣ ≤ ε
)

Since ε > 0 is arbitrary,

lim
n→∞ P(aT �= aQ) ≤ P(∃i �= j Gi = G j ).

For fixed i < j we have

Gi − G j = −Yi j +
∑

k<i

(−Yki )
+ +

∑

k>i,k �=i

(Yik)
+ −

∑

k< j,k �=i

(
Ykj

)+ −
∑

k> j

(−Y jk
)+

.

Define v so that Gi −G j = −Yi j +v. Then P(Gi = G j ) = P(Yi j = v) = E[P(Yi j =
v | v)]. Since Y has a multivariate normal distribution with a non-singular covariance
matrix Ω , it follows that P(Yi j = v | v) = 0. That is, P(Gi = G j ) = 0 for any i, j
where i �= j . Hence P(∃i �= j Gi = G j ) = 0. As discussed previously in this proof, we
may now use the sandwich theorem to prove that limn→∞ P(aT �= aQ) = 0.

In Sect. 5 numerical results are presented which show that the limiting probability
of the Simpson rule and Tideman winners differ under the IC assumption is not zero.
An outline of a formal proof that these rules do not converge is presented below:

Lemma 24 The probability that the Simpson and Tideman winners differ under IC
does not converge to zero as n → ∞ under the IC assumption.

3

3

3
7

7

5

Scores a b c x
Simpson 5 7 7 3
Tideman 5 7 7 9
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Table 1 Number of occurrences per 10,000 Elections with 5 alternatives that the Dodgson winner was not
chosen

Voters 3 5 7 9 15 17 25 85 257 1025

DQ 1.5 1.9 1.35 0.55 0.05 0.1 0 0 0 0

Tideman 1.5 2.3 2.7 3.95 6.05 6.85 7.95 8.2 5.9 2.95

Simpson 57.6 65.7 62.2 57.8 48.3 46.6 41.9 30.2 23.4 21.6

Table 2 Number of occurrences per 10,000 Elections with 5 alternatives that the set of Dodgson winners
is not chosen

Voters 3 5 7 9 15 17 25 33 85 257 1025

DQ 4.31 4.41 3.21 1.94 0.27 0.08 0.04 0 0 0 0

Tideman 4.31 5.57 7.31 8.43 12.73 13.15 15.46 16.35 15.18 10.2 5.4

We see that a is the unique Tideman winner, while x is the Simpson winner. From
Lemma _ we know that the limiting distribution of nab−nba√

n
for each unordered pair

of alternatives {a, b} converges to a non-degenerate multivariate normal distribution
as n → ∞ under the IC assumption. There exists a point on this multivariate distri-
bution where advantages have the same ratios as above. Clearly there exists an open
neighborhood around that point where the unique Tideman winner differs from the
unique Simpson winner. Therefore, the limiting probability that the Tideman winner
differs from the Simpson winner is not zero.

5 Numerical results

In this section, we present Tables 1 to 5 demonstrating the rate of convergence to
Dodgson of the Dodgson Quick rule introduced in this paper in comparison to the
Tideman rule. These tables show that the convergence of the Tideman winner to
the Dodgson Winner occurs much slower than the exponential convergence of the
DQ-Winner. We also study the asymptotic limit of the probability that the Simpson win-
ner is the Dodgson winner as we increase the number of agents. The C, MATLAB and
R code used to generate these tables is availiable upon request from the authors.

In these 10,000 simulations we were breaking ties according to the preferences of
the first agent. In Table 2 we present the results of another 10,000 simulations in which
we consider the rules as social choice correspondences and do not break ties.

Another question is how well does Dodgson Quick approximate the Dodgson rule
when the number of alternatives is different from 5 or when the number of agents
is not large in comparison to the number of agents. From Table 3, it appears that
the DQ-approximation is still reasonably accurate under these conditions. This table
was generated by averaging 10,000 simulations, and splitting ties according to the
preferences of the first agent.

To give meaning to these figures, let us compare them with the figures in
Tables 4 and 5. We see that even where the number of agents is not very large, the
Dodgson Quick rule seems to do a slightly better job of approximating the Dodgson
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Table 3 Frequency that the DQ-winner is the Dodgson winner

No. of alternatives No. of agents

3 5 7 9 15 25 85

3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 0.9984 0.9976 0.9980 0.9992 0.9999 1.0000 1.0000

7 0.9902 0.9875 0.9879 0.9933 0.9980 0.9995 1.0000

9 0.9792 0.9742 0.9778 0.9837 0.9924 0.9978 0.9999

15 0.9468 0.9327 0.9338 0.9412 0.9571 0.9743 0.9988

25 0.8997 0.8718 0.8661 0.8731 0.8971 0.9265 0.9840

Table 4 Frequency that the Tideman winner is the Dodgson winner

No. of alternatives No. of agents

3 5 7 9 15 25 85

3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 0.9984 0.9974 0.9961 0.9972 0.9936 0.9917 0.9930

7 0.9902 0.9864 0.9852 0.9868 0.9845 0.9805 0.9847

9 0.9792 0.9730 0.9724 0.9731 0.9718 0.9760 0.9815

15 0.9468 0.9292 0.9263 0.9273 0.9379 0.9485 0.9649

25 0.8997 0.8691 0.8620 0.8625 0.8833 0.9113 0.9534

Table 5 Frequency that the Simpson winner is the Dodgson winner

No. of alternatives No. of agents

3 5 7 9 15 25 85

3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 0.9433 0.9307 0.9339 0.9398 0.9493 0.9575 0.9714

7 0.8734 0.8627 0.8689 0.8786 0.9018 0.9153 0.9404

9 0.8256 0.8153 0.8167 0.8251 0.8562 0.8808 0.9124

25 0.5895 0.5772 0.6147 0.6322 0.7114 0.7529 0.7957

rule than Tideman’s approximation. We also see that Simpson’s rule does a particu-
larly poor job of approximating the Dodgson winner when the number of alternatives
is large.

It appears that Simpson’s rule is not a very accurate approximation of Dodgson’s
Rule. The probability that the Simpson winner does not equal the Dodgson winner is
much greater than for Tideman or DQ. We may ask, does the Simpson rule eventually
converge to the Dodgson rule as we increase the number of voters, and, if not, how
close does it get?

From Lemma 2 and Theorem 23 we know that the Dodgson winner, Dodgson Quick
winner, and Tideman winner all asymptotically converge as we increase the number
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Table 6 Number of occurrences per 1,000 Elections that the Simpson winner is not the Dodgson winner.
(Limit as n → ∞)

No. of alternatives 3 4 5 6 7 8 9 10 11 15 25 50

#(DO �= SI) 0 7.14 17.47 28.7 39.9 50.4 60.7 70.2 79.2 109 160 225

of agents. Hence we may compute the asymptotic probability that the Simpson win-
ner is equal to the Dodgson winner, by computing the asymptotic probability that the
Simpson winner equals the Tideman winner.

From Lemma 21 we know that the matrix of advantages converges to a multi-
variate normal distribution as we increase the number of agents. We have generated
10,000,000 samples from this distribution for each value of m to produce Table 6.

Note that as the number of agents approaches infinity, the probability of a tie
approaches 0, and so tie breaking is irrelevant in this table. In Table 6, we see that
even with an infinite number of voters, the Simpson rule is not especially close to the
Dodgson rule.

6 Conclusion

In this paper we showed that under the Impartial Culture assumption the Tideman rule
approximates Dodgson’s rule and converges to it, when the number of agents tends
to infinity. However we discovered that a new rule, which we call Dodgson Quick,
approximates Dodgson’s rule much better and converges to it much faster. We also
show that Simpson’s rule does not converge to Dodgson’s rule asymptotically despite
often selecting the same winner. The Dodgson Quick rule is computationally very
simple. However, in our simulations, Dodgson Quick picked the Dodgson winner in
all of 1,000,000 elections with 85 agents and 5 alternatives. We give numerical results
illustrating the rate of convergence of Dodgson Quick to Dodgson.

These results, the simplicity of Dodgson Quick’s definition and the ease with which
its winner can be computed make Dodgson Quick an effective tool for theoretical and
numerical study of Dodgson’s rule under the Impartial Culture assumption. Despite
the popularity of the Impartial Culture as a simplifying assumption, it is unrealistic
and our theorems do not apply if the slightest deviation from impartiality occurs.
Our previous numerical results (McCabe-Dansted and Slinko 2006) suggest that if
homogeneity is introduced this may cause these approximations to diverge from the
Dodgson rule.

The most interesting question for further research that this paper rises is whether or
not the Dodgson Quick rule approximates Dodgson’s rule under the Impartial Anon-
ymous Culture assumption and other models for the population.
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