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Abstract A tournament can be viewed as a majority preference relation without ties
on a set of alternatives. In this way, voting rules based on majority comparisons are
equivalent to methods of choosing from a tournament. We consider the size of sev-
eral of these tournament solutions in tournaments with a large but finite number of
alternatives. Our main result is that with probability approaching one, the top cycle
set, the uncovered set, and the Banks set are equal to the entire set of alternatives in a
randomly chosen large tournament. That is to say, each of these tournament solutions
almost never rules out any of the alternatives under consideration. We also discuss
some implications and limitations of this result.

1 Introduction

A tournament on a set of alternatives is a complete and asymmetric binary relation.
While tournaments arise in many areas, their importance in social choice theory stems
from the fact that the majority preference relation of an odd number of voters with
linear preference orders is always a tournament. Thus, aggregating the preferences in
a society can be viewed as choosing from a tournament.

When there is no outcome that is majority preferred to every other outcome (a
Condorcet winner), there is no straightforward notion of a “best” alternative. A large
literature is devoted to the question of designing some principles for selecting such a set
of “best” alternatives. These tournament solutions include the top cycle set (Schwartz
1972; Miller 1977), the uncovered set (Miller 1980), the Banks set (Banks 1985), the
minimal covering set (Dutta 1988), the tournament equilibrium set (Schwartz 1990),
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and others. Axiomizations of and connections between these sets have been established
by Fishburn (1977); Moulin (1986); Laffond et al. (1995), and Laslier (1997).

In this paper, we investigate the size of several standard tournament solutions. This
question is important because if a tournament solution contains many alternatives, it
does not do much to narrow down the choice. Indeed, this point has driven much of
the research on tournament solutions, as theorists have strived to devise ever smaller
solutions. For good reason, it is taken as given in the literature that “smaller is better.”

While authors have frequently considered whether one tournament solution is al-
ways smaller or larger than another solution; they have not, for the most part, addressed
the absolute size of a given tournament solution.1It is easy to find examples of tour-
naments with a large number of alternatives for which several common tournament
solutions are small. And it is just as easy to give examples in which these sets are equal
to the entire set of alternatives. Given that both conclusions are possible, what can be
said about the “typical” large tournament? We show that with probability approaching
one, the top cycle set, the uncovered set, and the Banks set are equal to the entire set
of alternatives in a randomly chosen tournament. In other words, these tournament
solutions almost never narrow the set of social choices.

Similar questions have been asked regarding majority preference in a continuous
(multidimensional) setting with spatial individual preference, although with some-
what different results. Plott (1967) showed that the set of Condorcet winners is almost
always empty. McKelvey (1976) showed that the top cycle set is almost always the
whole space of alternatives and later established that is not the case for the uncovered
set (McKelvey 1986). In addition, De Donder (2000) showed through simulations that
several tournament solutions including the uncovered set and the bipartisan set give
sharp predictions in a setting with spatial preferences. Our result on random tourna-
ments, with no additional assumptions on the preferences of individuals, stands in
contrast to these latter results for the standard spatial model of voting with spatial
preferences. One way to understand this difference is that the set of large tournaments
is generically inconsistent with the assumption of spatial preferences.

In the case of tournaments on a finite set of alternatives, initial results have been
obtained by Bell (1981). As he discussed, if all tournaments are equiprobable then
earlier results from graph theory imply that the top cycle is almost surely the whole
set of alternatives. He then showed that if a random tournament is obtained by inde-
pendently selecting a linear preference order for each voter and forming the resulting
majority preference relation, the same result holds.

Our main result is that the probability that every alternative is in the Banks set
in a random tournament goes to one as the number of alternatives goes to infinity.
This implies that several other common tournament solutions such as the top cycle set
and the uncovered set also fail to place any additional constraints on social choices.
Moreover, by using an axiomization of the uncovered set by Moulin (1986), we are
able to show that this negative result holds for any tournament satisfying three axioms.
We also point out that some tournament solutions, such as the Copeland winner, do

1 One exception is Miller (1980), who points out that the top cycle may be the whole set of alternatives, in
which case, “the set of possible or desirable decisions is not narrowed down at all.” (p. 71)
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not have this negative property and conclude with some directions for further work on
additional tournament solutions.

The format of the paper is straightforward. We introduce the notation and defini-
tions in Sect. 2. We prove our main result in Sect. 3. In Sect. 4, we consider some other
tournament solutions and suggest some avenues for future work.

2 Notation and definitions

2.1 Tournaments

We are interested in choosing from a large but finite tournament. So let n denote the
number of alternatives in the set X = {x1, . . . , xn}. 2 Let T be a complete and asym-
metric binary relation on X . For example, T could represent the majority preference
relation of an odd number of voters with linear preferences. In any case, we say that
T is a tournament on X , which we sometimes refer to as a tournament of order n.
In particular, for any pair of distinct alternatives a and b, exactly one of aT b or bT a
holds. As usual, if aT b holds, we say alternative a “beats” alternative b. For a subset
Y ⊆ X of alternatives, we write aT Y if, for all y ∈ Y , aT y. If V = T ∩ (Y × Y ) for
some Y ⊆ X , then V is a tournament on Y and V is a subtournament of X . We say
that V is the restriction of T to Y , which we denote by V = T | Y .

For a fixed alternative x ∈ X , the preferred-to set is defined as

T (x) = {y ∈ X | yT x}

and, similarly,

T −1(x) = {y ∈ X | xT y}.

It follows that X = T (x)∪{x}∪T −1(x). The Copeland score of x , denoted as s(x), is
the number of alternatives that x beats. Thus, s(x) = | T −1(x) |. Similarly, the number
of alternatives that beat x is given by t (x) = | T (x) | = n − s(x) − 1.

2.2 Tournament solutions

We are interested in several sets determined by the majority preference relation on
X called tournament solutions. Formally, a tournament solution is a correspondence
S that, for any tournament T , selects a nonempty subset of X . 3 Some well-known
tournament solutions are the following. 4 The top cycle of T , denoted as TC(T ), is the
set of alternatives that directly or indirectly beat every other alternative. The uncovered
set of T , UC(T ), is the set of alternatives that are not covered by any other alternatives,

2 That is, | X | = n, where | · | denotes the cardinality of a set.
3 Thus, the set of Condorcet winners is not a tournament solution because it may be empty.
4 Formal definitions can be found in the survey by Laslier (1997).
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where x covers y if xT y and for all z ∈ X , yT z implies xT z. Further, we can con-
sider iterations of the uncovered set. Let UC1(T ) = UC(T ) and define the solutions
UCk(T ) inductively by UCk+1(T ) = UC(T | UCk(T )). The ultimate uncovered set,
denoted by UC∞(T ), is the set for which no further reduction can occur (Miller 1980).
Formally, UC∞(T ) = UCk(T ) for k such that UCk+1(T ) = UCk(T ).

In order to define the Banks set, we first define a chain. In a tournament T , a chain
is a (nonempty) subset H of X such that T restricted to H is transitive. That is, for
all x, y, z ∈ H , xT y and yT z imply xT z. For this reason, a chain is also called a
transitive subtournament of T (Moon 1968). If | H | = k holds for a chain H , we say
that it is a chain of order k. A maximal chain is a chain that is not a subset of some
other chain. For a chain H , an alternative x ∈ H is top-ranked in H if it beats every
other alternative in H . Clearly, for each chain, such an alternative always exists. The
Banks set is the set of alternatives that are top-ranked in maximal chains (Banks 1985).
Formally,

B(T ) = {y ∈ X | y is top-ranked in some maximal chain M}.

We can also inductively define Bk(T ) and B∞(T ) in the same way as we defined
UCk(T ) and UC∞(T ). The fundamental relationship between these concepts is given
by the inclusions B(T ) ⊆ UC(T ) ⊆ TC(T ) and, from this, it follows that Bk(T ) ⊆
UCk(T ) and B∞(T ) ⊆ UC∞(T ).

2.3 Random tournaments

In the next section, we prove results that apply to almost all large tournaments. Specif-
ically, we show that the probability that a random tournament has a particular property
goes to one as the number of alternatives goes to infinity. To do so, we must define
precisely our notion of a random tournament. For each integer n ≥ 3, let Tn denote
the set of possible tournaments on n alternatives. It is easy to see that this set contains
2(n

2) distinct tournaments. We take this set to be the sample space from which we draw
a random tournament.

The probability model that we investigate in this paper assigns each tournament in
Tn the same probability, namely, 2−(n

2). It is useful to note that an equivalent formu-
lation of this probability model is that a random tournament T ∈ Tn is obtained by
choosing independently, for each pair of alternatives x, y ∈ X , x �= y, either xT y or
yT x with equal probability.

Alternatively, we could suppose that a (linear) preference order is randomly chosen
for each voter. In particular, each voter is equally likely to have one of the n! possi-
ble preference orders. The resulting majority preference relation determined by these
assignments would then be a random tournament in the model. This is the approach
investigated by Bell (1981). We conjecture that similar results would hold in this
model, but we leave this to future work.
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3 The main result

In this section, we present our main result and discuss some of its implications. Our
main result states that with probability approaching one, the Banks set is equal to the
entire set of alternatives in a randomly chosen large tournament. As is standard in the
literature of random graphs (Bollobás 2001), we say a property Q holds for almost
all tournaments if the probability that a random tournament has property Q goes to
one as the number of alternatives, n, goes to infinity. In what follows, we denote this
probability by P[Q].
Theorem 1 In almost all tournaments, B(T ) = X.

It is important to note the order of quantifiers in this theorem. It does not state that
in every tournament, almost all alternatives are in the Banks set. Rather, it says that
every alternative is in the Banks set in almost all tournaments.

Before proceeding with the proof of the theorem, we present several useful lemmas.
The first lemma is a key element in our proof. It presents the Chernoff inequality for
a binomial random variable (Chernoff 1952). This inequality is a strong upper bound
on the probability of obtaining a very large number of successes in a binomial random
variable. Specifically, we will use a version of the Chernoff inequality due to Okamoto
(1958). 5

Lemma 1 (Okamoto 1958; Theorem 1) If X is a random variable with a binomial
distribution B(n, p) and c is a positive constant, then

P[X − np ≥ cn] < e−2nc2
.

Our next lemma is a simple implication of Markov’s inequality.

Lemma 2 Let Y1, Y2, . . . be a sequence of nonnegative, integer-valued random vari-
ables. If limn→∞ E[Yn] = 0, then limn→∞ P[Yn = 0] = 1.

Proof of Lemma 2 By Markov’s inequality, P[Yn ≥ 1] ≤ E[Yn]. The result follows.

�

Moon (1968) proved that every tournament of order n contains a chain of order at
least �log2 n + 1, where �x is the largest integer less than or equal to x . The next
lemma is an extension of this fact.

Lemma 3 Let k = �log2 n. Then every tournament of order n contains at least
�2k−1/k disjoint chains of order k.

Proof of Lemma 3 Let T be a tournament of order n. Let k = �log2 n and r =
�2k−1/k. Then n ≥ 2k and rk ≤ 2k−1.

Moon (1968) showed that there is a chain H in T with at least k + 1 elements. Pick
any k element subset of H and call it H1. Now consider the tournament T1 = T \ H1

5 See also Johnson et al. (1992).
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of order n − k. Depending on whether �log2(n − k) equals k or k − 1, there is a chain
H in T1 with k +1 or k elements. Again, select any k element subset and call it H2. By
construction, H1 and H2 are disjoint. Now let T2 = T1 \ H2 and repeat this selection
to form H3.

How many times can we repeat this procedure and be assured of finding a chain
of order at least k? After r times, the remaining tournament Tr has n − rk elements.
From the above,

n − rk ≥ 2k − 2k−1 = 2k−1.

Therefore, Tr (and all earlier ones) have a k element chain. Thus, this procedure yields
H1, H2, . . . , Hr , which are disjoint chains of order k. 
�

Our final lemma gives a useful characterization of alternatives contained in the
Banks set.

Lemma 4 x ∈ B(T ) if and only if there exists some chain H ⊆ T −1(x) such that, for
every y ∈ T (x), hT y holds for some h ∈ H.

Proof of Lemma 4 (⇒) Let H = M \ {x}, where M is a maximal chain with x
top-ranked. Then H ⊆ T −1(x) and the remainder of the condition follows from
maximality of M .

(⇐) Assume that a chain H exists with the above property. Then H ′ = H
⋃{x}

is a chain in X . Thus, it must be contained in some maximal chain M . Suppose that
M contains some y ∈ T (x). Then transitivity of M implies yT h for all h ∈ H . This
is a contradiction. So M ⊆ T −1(x)

⋃{x}. This implies that x is top-ranked in M , so
x ∈ B(T ). 
�

We are now ready to prove our main result.

Proof of Theorem 1 For each tournament T in Tn , let

Y (T ) = | {y ∈ X | y ∈ X \ B(T )} |.

Then P[Y (T ) = 0] is the probability that a random tournament has the property that
B(T ) = X . By Lemma 2, in order to show that almost all tournaments have B(T ) = X ,
it suffices to show that E(Y ) → 0 as n becomes large.

We can write Y as Y = ∑n
i=1 Yi , where

Yi (T ) =
{

1 if xi /∈ B(T ),

0 if xi ∈ B(T ).

In this case, E[Yi ] = E[Y j ] and therefore E[Y ] = n E[Yi ], where E[Yi ] is just the prob-
ability that xi is not in the Banks set of a random tournament. We will now construct
an upper bound for this probability, which we denote as P[xi /∈ B(T )].

As noted in the final part of Sect. 2, choosing a random tournament from Tn is
equivalent to constructing a tournament by independently choosing xT y or yT x with
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probability 1/2, for each pair of alternatives x and y. As these choices are independent,
the number of alternatives in a random tournament that beat xi , t (xi ) is a binomial
random variable with distribution B(n − 1, 1/2). Now fix a constant 0 < c < 1/2
and let qn = 1 − e−2(n−1)c2

. Then by Lemma 1, with probability greater than qn ,
t (xi ) ≤ (1/2 + c)(n − 1).

We begin our calculation of P[xi /∈ B(T )] with the following trivial bound:

P[xi /∈ B(T )] ≤ (1 − qn)(1) + qn P[xi /∈ B(T ) | t (xi ) ≤ (1/2 + c)(n − 1)].

In order to evaluate the last term in this expression, we suppose that t (xi ) ≤ (1/2 +
c)(n − 1) in what follows. Let L = log2(1/2 − c)(n − 1) and k = �L. Viewing
T −1(xi ) as a tournament by itself, we know by Lemma 3 that T −1(xi ) contains at
least �2k−1/k disjoint chains of order k. In particular, there are at least 2k−2/k such
chains. For a given alternative x ∈ T (xi ) and a given chain H ⊆ T −1(xi ) of order k,
the probability that xT H does not hold is 1 − 2−k . Thus, the probability that xT H
does not hold for any x ∈ T (xi ) is

(1 − 2−k)t (xi ) > (1 − 2−(L−1))(1/2+c)(n−1)

=
[(

1 − 2/(1/2 − c)

n − 1

)n−1
]1/2+c

→ e−2 1+2c
1−2c as n → ∞.

As 0 < c < 1/2, there is a constant 0 < d < 1 such that, for sufficiently large n, the
probability that xT H does not hold for any x ∈ T (xi ) is greater than 1 − d. Thus, the
probability that at least one x ∈ T (xi ) beats a given H is less than d.

So to complete the calculation of P[xi /∈ B(T ) | t (xi ) ≤ (1/2 + c)(n − 1)], we
observe that by Lemma 4, this probability is less than or equal to the probability that
the above holds for each of the 2k−2/k disjoint chains of order k in T −1(xi ). That is,

P[xi /∈ B(T ) | t (xi ) ≤ (1/2 + c)(n − 1)] ≤ d2k−2/k ≤ d
(1/2−c)(n−1)

8 log2(1/2−c)(n−1) ,

using the fact that 2k−2/k ≥ 2L−3/L .
We conclude that

E[Y ] = n P[xi /∈ B(T )]
≤ n(1 − qn) + nqn P[xi /∈ B(T ) | t (xi ) ≤ (1/2 + c)(n − 1)]
≤ ne−2(n−1)c2 + n

(
1 − e−2(n−1)c2

)
d

(1/2−c)(n−1)
8 log2(1/2−c)(n−1) .

As this bound goes to zero as n goes to infinity, the proof is complete. 
�
Using the nestedness of the top cycle, the uncovered set, and the Banks set, the

following corollary is an immediate consequence of Theorem 1.

Corollary 1 In almost all tournaments, TC(T )=UC(T )=UC∞(T )=B∞(T )= X.
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The last claim follows from the fact that Bk(T ) = X implies Bk+1(T ) = X .
More generally, we can use Theorem 1 to evaluate the size of any tournament solu-

tion that satisfies certain axioms. Moulin (1986) proved that the uncovered set is the
finest tournament solution that satisfies Condorcet consistency, neutrality, and expan-
sion. 6 It then follows that any tournament solution satisfying these three axioms will
equal the entire set of alternatives in almost all tournaments.

4 Other tournament solutions

In the previous section, we have shown that a number of common tournament solutions
almost surely fail to reduce the number of choices. But the literature contains many
other tournament solutions that are not covered by our main result. In this section, we
briefly address these other tournament solutions.

In order to show that our main result does not hold for all tournament solutions,
consider the set of Copeland winners, C(T ). This is the set of alternatives with the
highest Copeland score. If C(T ) = X were to hold, then every alternative must have
the same Copeland score. It it easy to see that in a tournament of order n, the sum of the
Copeland scores must equal

(n
2

) = n(n−1)/2. So if C(T ) = X , then s(x) = (n−1)/2
for every x ∈ X . This is obviously impossible if n is even. If n is odd, as the Copeland
score of a given alternative is binomially distributed with mean (n − 1)/2, it follows
that the probability that it occurs in a random tournament of odd order goes to zero as
n gets large. This simple analysis shows that in almost all tournaments, C(T ) �= X .7

Although this analysis is useful to demonstrate that Theorem 1 does not apply to all
tournament solutions, we must caution against viewing this result as claiming suprem-
acy for the Copeland solution. Indeed, it is easy to show that the Copeland score of a
Copeland winner in a large tournament will almost always be “close” to the Copeland
score of a nonwinner. To put this more formally, if s(1)(T ) is the largest Copeland score
of T and s(2)(T ) is the second largest Copeland score of T , then for every constant
c > 0, P[s(1) − s(2) < cn] goes to zero as n goes to infinity. Thus, any claim that an
alternative with maximal Copeland score is significantly “better” than an alternative
with the second highest Copeland score is unpersuasive in large tournaments. 8

More generally, the size of other tournament solutions in large tournaments remains
an open question. Some initial investigations suggest that the minimal covering set
(Dutta 1988) is almost always equal to the whole set of alternatives, but we have not
yet proved this conjecture. A resolution of this conjecture could aid in investigating
whether refinements of the minimal covering set such as the bipartisan set (Laffond
et al. 1993) are almost always equal to the whole set of alternatives. Likewise, fur-
ther work remains to be done on whether refinements of the Banks set such as the
tournament equilibrium set (Schwartz 1990) also have this property.

6 See Laslier (1997) for the formal definition and discussion of these axioms.
7 This result casts a new light on some claims made about the attributes of the Copeland tournament solu-
tion. In particular, Moulin (1986) argued that Copeland winners may be poor choices because, for some
tournaments, C(T ) is outside TC(UC(T )). However, it is immediate from our results and the fact that
UC∞(T ) ⊆ TC(UC(T )) that the former is almost always a proper subset of the latter.
8 However, see Grofman et al. (1987) for arguments in favor of the Copeland rule in a spatial setting.
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Choosing from a large tournament 309

As a final avenues for future work, it would be interesting to modify our conception
of a random tournament to that of a random preference order, as mentioned at the end
of Sect. 2. We conjecture that our results will still hold in this model. The complica-
tion raised by this alternative assumption is that we lose independence of the majority
preference across pairs of alternatives. To deal with this problem, Bell (1981) used a
result from Niemi and Weisberg (1968) that approximates the votes from a random
preference order with a multivariate normal. It may be possible to apply a similar
technique to address the question of choosing from a large tournament raised here.
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