
Soc Choice Welfare (2008) 31:15–39
DOI 10.1007/s00355-007-0260-1

ORIGINAL PAPER

Judgment aggregation without full rationality

Franz Dietrich · Christian List

Received: 4 September 2006 / Accepted: 6 June 2007 / Published online: 31 July 2007
© Springer-Verlag 2007

Abstract Several recent results on the aggregation of judgments over logically
connected propositions show that, under certain conditions, dictatorships are the only
propositionwise aggregation functions generating fully rational (i.e., complete and
consistent) collective judgments. A frequently mentioned route to avoid dictatorships
is to allow incomplete collective judgments. We show that this route does not lead
very far: we obtain oligarchies rather than dictatorships if instead of full rationality we
merely require that collective judgments be deductively closed, arguably a minimal
condition of rationality, compatible even with empty judgment sets. We derive sev-
eral characterizations of oligarchies and provide illustrative applications to Arrowian
preference aggregation and Kasher and Rubinstein’s group identification problem.

1 Introduction

Sparked by the “discursive paradox”, the problem of judgment aggregation has recently
received much attention. The paradox consists in the fact that, if a group of individuals
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16 F. Dietrich, C. List

Table 1 A discursive paradox
a b a ∧ b

Individual 1 True True True

Individual 2 True False False

Individual 3 False True False

Majority True True False

takes majority votes on logically connected propositions, the resulting collective judg-
ments may be inconsistent, even when all individual judgments are consistent (Pettit
2001, extending Kornhauser and Sager 1986). Condorcet’s famous paradox of cyclical
majority preferences is a special case of the “discursive paradox”, applied to judgments
of binary preferability of the form “x is preferable to y”, “y is preferable to z” and so
on (List and Pettit 2004). A simple example of the general problem is given in Table 1,
where a and b are atomic propositions and a ∧ b is their conjunction.

From subsequent impossibility results we know that majority voting is not alone
in its failure to ensure rational collective judgments on interconnected propositions,
where rationality is understood as the conjunction of two requirements. Consistency:
the set of accepted propositions must not entail a contradiction; and completeness: it
must contain a member of every proposition-negation pair under consideration. The
generic finding is that dictatorships are the only propositionwise aggregation functions
generating consistent and complete collective judgments and satisfying some minimal
conditions (List and Pettit 2002; Pauly and van Hees 2006; Dietrich 2006; Gärdenfors
2006; Nehring and Puppe 2002, 2005; van Hees 2007; Dietrich 2007; Mongin 2005;
Dokow and Holzman 2005; Dietrich and List 2007a; the precise conditions differ from
result to result). This finding is broadly analogous to Arrow’s theorem for preference
aggregation.1

A frequently mentioned way to avoid this impossibility is to drop the completeness
requirement at the collective level and thus to allow the group to make no judgment on
some propositions. Examples of aggregation functions that ensure consistency at the
expense of incompleteness are unanimity and certain supermajority functions, where
a proposition—and similarly its negation—is collectively accepted if and only if a
particular supermajority or all of the individuals accept it (List and Pettit 2002; List
2004; Dietrich and List 2007b; the latter paper contains an analysis of anonymous
judgment aggregation without full rationality).

The most forceful critique of requiring completeness has been made by Gärdenfors
(2006), in line with his influential theory of belief revision (Alchourron et al. 1985).
Describing completeness as a “strong and unnatural assumption”, Gärdenfors has
argued that neither individuals nor a group need to hold complete judgments and
that “the [existing] impossibility results are consequences of an unnaturally strong
restriction on the outcomes of a voting function”. Gärdenfors has also proved the
first impossibility result on judgment aggregation without completeness. His result

1 Precursors to this recent literature are Wilson’s (1975) and Rubinstein and Fishburn’s (1986) contributions
on abstract aggregation theory. A related literature in artificial intelligence is also concerned with merging
sets of propositions, but without aiming at propositionwise aggregation (e.g., Konieczny and Pino-Perez
2002).
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Judgment aggregation without full rationality 17

shows that, under certain conditions, any aggregation function generating consistent
and deductively closed (but not necessarily complete) collective judgments is weakly
oligarchic: there is a smallest subgroup of individuals—the oligarchs—whose joint
individual acceptance of any proposition is sufficient (though perhaps not necessary)
for its collective acceptance. Deductive closure is the requirement that any proposi-
tion under consideration that is entailed by other accepted propositions must also be
accepted (List and Pettit 2002).

In this paper, we continue this line of research and investigate judgment aggregation
without the completeness requirement. We drop this requirement, first at the collective
level and later at the individual one, replacing it with the weaker requirement of merely
deductively closed judgments, not even demanding consistency. Under standard con-
ditions on the aggregation function and tight conditions on the agenda of propositions
under consideration, we characterize (strong) oligarchies:2 under such an aggregation
function, there is a subgroup of individuals—the oligarchs—whose joint acceptance
of any proposition is necessary and sufficient for its collective acceptance. Thus the
set of collectively accepted propositions is simply the set of propositions unanimously
accepted by the oligarchs. Our main result also implies a characterization of the una-
nimity function,3 which is the only anonymous oligarchy. Further corollaries are new
variants of existing characterizations of dictatorships (but using no consistency con-
dition). We provide illustrative applications of our results to Arrowian preference
aggregation problems and Kasher and Rubinstein’s group identification problem.

Our results strengthen Gärdenfors’s results in three respects. First, they impose
weaker conditions on aggregation functions. Second, they show that strong and not
merely weak oligarchies are implied by these conditions and in fact fully characterize
them. Third, they do not require the logically rich and infinite agenda of propositions
Gärdenfors assumes. They reinforce Gärdenfors’s arguments, however, in showing
that, under surprisingly mild conditions, we are restricted to oligarchic aggregation
functions.

In judgment aggregation, one can distinguish between impossibility results (like the
results in List and Pettit 2002; Pauly and van Hees 2006; Dietrich 2006; Gärdenfors
2006) and characterizations of impossibility agendas (like the present results and the
results cited below). The former show that, for certain agendas of propositions, aggre-
gation in accordance with certain conditions is impossible or severely restricted (e.g.,
to dictatorships or oligarchies). The latter characterize the precise class of agendas
for which such an impossibility or restriction arises (and thereby also the class of
agendas for which it does not arise). Characterizations of impossibility agendas have
the merit of identifying precisely which kinds of decision problems are subject to the
impossibility results in question and which are free from them. Notoriously, preference
aggregation problems are subject to most such impossibility results. There has been
much recent progress on such characterizations. Nehring and Puppe (2002) were the
first to prove such results (originally in the context of the theory of strategy-proof social

2 These oligarchies have no default. For truth-functional agendas, Nehring and Puppe (2005) have charac-
terized oligarchies with a default, which are distinct from the (strong or weak) oligarchies considered by
Gärdenfors’s (2006) and us. Oligarchies with a default by definition generate complete collective judgments.
3 Again without a default, thus with possibly incomplete outcomes.
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choice on generalized single-peaked domains). Subsequent results have been derived
by Dokow and Holzman (2005), Dietrich (2007) and Dietrich and List (2007a). But
so far all characterizations of impossibility agendas assume fully rational collective
judgments. We here give the first characterizations of impossibility agendas without
requiring complete or even consistent collective judgments.4

2 The model

We model a group of individuals who seek to make collective judgments on some
propositions. Let us go through the components of our model.

2.1 Propositions and logic

We represent propositions as sentences in some logic (Dietrich 2007, generalizing List
and Pettit 2002, 2004). The logic is given by:

(i) a set of sentences (called propositions), defined as a set L �= ∅ closed under
negation (i.e., if p ∈ L then ¬p ∈ L, with ¬ as negation symbol);
and in order to represent logical relationships between propositions:

(ii) an entailment relation, defined as a binary relation � between sets of proposi-
tions and propositions, where A � p is read as “A entails p” (with A ⊆ L and
p ∈ L).5

In standard propositional logic, L contains propositions such as a, b, a ∧ b, a ∨ b,
¬(a → b) (where ∧,∨, → denote “and”, “or”, “if-then”, respectively) and � satisfies
{a, a → b} � b, {a} � a ∨ b, but not a � a ∧ b.

We call a set A ⊆ L inconsistent if A � p and A � ¬p for some p ∈ L, and con-
sistent otherwise. The logic is assumed to satisfy four axioms.6 Apart from standard
propositional logic, examples of such logics include predicate, modal and conditional
logics.

We call a proposition p ∈ L a tautology if {¬p} is inconsistent, a contradiction if
{p} is inconsistent, and contingent if it is neither a tautology nor a contradiction.

4 For closely related results, see Dokow and Holzman (2006), as referenced in the acknowledgement note.
5 Formally, �⊆ P(L) × L.
6 L1 (self-entailment): For any p ∈ L, {p} � p. L2 (monotonicity): For any p ∈ L and any A ⊆ B ⊆ L,
if A � p then B � p. L3 (completability): ∅ is consistent, and each consistent set A ⊆ L has a consistent
superset B ⊆ L containing a member of each pair p, ¬p ∈ L. L4 (non-paraconsistency): For any A ⊆ L and
any p ∈ L, if A ∪{¬p} is inconsistent then A � p. In L4, the converse implication also holds given L1-L3.
So, under L1-L4, the notions of entailment and inconsistency are interdefinable. It follows that we could
alternatively use as the primitive notion the system I of inconsistent sets Y ⊆ L rather than the entailment
relation �. The axioms are then: L1*: Every pair {p, ¬p} ⊆ L is inconsistent. L2*: Supersets of inconsistent
sets are inconsistent. L3*: Identical to L3. Then we define entailment by A � p ⇔ A ∪ {¬p} ∈ I for all
p ∈ L and A ⊆ L (so that L4 holds by definition). Under the axioms, using � or I as the primitive notion
is equivalent; the former is more common in logic. For more details, see Dietrich (2007).
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Judgment aggregation without full rationality 19

2.2 The agenda

The set of propositions on which judgments are to be made is called the agenda.
Formally, it is a non-empty subset X ⊆ L expressible as X = {p,¬p : p ∈ X∗}
for a set X∗ ⊆ L of unnegated propositions. For simplicity, double negations in the
agenda cancel each other out, i.e., ¬¬p stands for p.7 In our introductory example,
X is {a,¬a, b,¬b, a ∧ b,¬(a ∧ b)} in standard propositional logic. Informally, the
agenda captures a particular decision problem; the generality of the logical framework
allows the representation of various realistic decision problems.

2.3 Individuals and their judgments

The individuals are represented by the set N = {1, 2, . . . , n}(n ≥ 2). Each individual
i’s judgment set is the set Ai ⊆ X of propositions that individual i accepts. On the
standard interpretation, to accept a proposition means to believe it (but it could alter-
natively mean to desire it). A profile is an n-tuple (A1, . . . , An) of individual judgment
sets. A judgment set Ai ⊆ X is

• consistent if it is a consistent set in L,
• complete if, for every proposition p ∈ X , p ∈ Ai or ¬p ∈ Ai ,
• deductively closed if, for every proposition p ∈ X , if Ai � p then p ∈ Ai .

The conjunction of consistency and completeness (“full rationality”) implies deduc-
tive closure (List 2004; Dietrich 2007). Deductive closure is a much weaker require-
ment than full rationality; it can be met by small, even empty, judgment sets.

2.4 Aggregation functions

A (judgment) aggregation function is a function F that assigns to each admissible
profile (A1, . . . , An) a collective judgment set F(A1, . . . , An) = A ⊆ X , defined
analogously to an individual one and interpreted as the set of propositions that the
group accepts. The set of admissible profiles (the domain) is denoted Dom(F). We
call F

• universal if Dom(F) is the “universal” domain of all profiles of consistent and
complete individual judgment sets;

• consistent, complete, deductively closed if it generates, respectively, a consistent,
complete, deductively closed collective judgment set F(A1, . . . , An) for every
profile (A1, . . . , An) ∈ Dom(F).

Examples of aggregation functions are majority voting, where, for each (A1, . . . ,

An) in the universal domain,

F(A1, . . . , An) = {p ∈ X : |{i ∈ N : p ∈ Ai }| > |{i ∈ N : p /∈ Ai }|}

7 To be precise, when we use the negation symbol ¬ hereafter, we mean a modified negation symbol ∼,
where ∼p := ¬p if p is unnegated and ∼p := q if p = ¬q for some q.
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and a dictatorship of individual i ∈ N , where, for each (A1, . . . , An) in the universal
domain,

F(A1, . . . , An) = Ai .

As the “discursive paradox” shows, majority voting, while universal, is neither
consistent nor deductively closed; it is complete when n is odd. Dictatorships are
consistent, complete and deductively closed (as well as universal).

3 Main results

As noted above, standard impossibility results on judgment aggregation establish the
difficulty of finding appealing aggregation functions if we demand consistent and
complete collective judgment sets. Are there any appealing aggregation functions if
we weaken this requirement to deductive closure alone and thus allow incomplete out-
comes? The answer to this question depends on two factors: first, the conditions we
impose on the aggregation function (in addition to universality and deductive closure),
and second, the richness of the logical interconnections between the propositions in
the agenda.

3.1 Conditions on an aggregation function

Our results share with previous results the requirement of propositionwise aggrega-
tion: the group “votes” independently on each proposition, as captured by the following
condition.

Independence. For any p ∈ X and any (A1, . . . , An), (A∗
1, . . . , A∗

n) ∈ Dom(F), if
[for all i ∈ N , p ∈ Ai ⇔ p ∈ A∗

i ] then p ∈ F(A1, . . . , An) ⇔ p ∈ F(A∗
1, . . . , A∗

n).

Interpretationally, independence requires the group judgment on any given propo-
sition p ∈ X to “supervene” on the individual judgments on p (List and Pettit 2006).
This reflects a “local” notion of democracy, which could for instance be viewed as
underlying direct democratic systems that are based on referenda on various proposi-
tions. If we require the group not only to vote independently on the propositions, but
also to use the same voting method for each proposition (a neutrality condition), we
obtain the following stronger condition, required by some of our results.

Systematicity. For any p, q ∈ X and any (A1, . . . , An), (A∗
1, . . . , A∗

n) ∈ Dom(F), if
[for all i ∈ N , p ∈ Ai ⇔ q ∈ A∗

i ] then p ∈ F(A1, . . . , An) ⇔ q ∈ F(A∗
1, . . . , A∗

n).

Some of our results also require the following responsiveness condition.

Monotonicity. For any (A1, . . . , An) ∈ Dom(F), we have F(A∗
1, . . . , A∗

n) =
F(A1, . . . , An) for all (A∗

1, . . . , A∗
n) ∈ Dom(F) arising from (A1, . . . , An) by replac-

ing one Ai by F(A1, . . . , An).
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Judgment aggregation without full rationality 21

Monotonicity states that changing one individual’s judgment set towards the pres-
ent outcome (collective judgment set) does not alter the outcome.8 Finally, throughout
the paper, we use the very weak condition of unanimity preservation.

Unanimity preservation. For any unanimous (A, . . . , A) ∈ Dom(F), we have
F(A, . . . , A) = A.

3.2 Agenda richness

Interesting impossibility results on judgment aggregation never apply to all agendas
X . Typically, impossibilities using the strong condition of systematicity apply to most
agendas of interest, while impossibilities using the weaker condition of independence
apply to a class of agendas that both includes and excludes many interesting agendas.
Our present results confirm this picture. We use three agenda conditions: two relatively
undemanding ones for the systematicity result and one more demanding one for the
independence result.

The first two conditions allow a simpler expression for a finite agenda or compact9

logic. For expositional ease, we therefore state their simplified form for the finite or
compact case here. The general form, valid in all cases, is stated in the appendix. All
our results hold, and are proved, in full generality. Call a set of propositions Y minimal
inconsistent if it is inconsistent and every proper subset Z � Y is consistent. So here
are the first two conditions in the finite or compact case:

(i) There is a minimal inconsistent set Y ⊆ X with |Y | ≥ 3 (a standard condition
with a precursor in abstract aggregation theory, the non-median space condition
in Nehring and Puppe 2002).

(ii) There is a minimal inconsistent set Y ⊆ X such that (Y\Z) ∪ {¬p : p ∈ Z} is
consistent for some subset Z ⊆ Y of even size (even-number negation condition
in Dietrich (2007) and Dietrich and List (2007a); equivalent, for finite X , to
Dokow and Holzman’s 2005 non-affineness).

For any p, q ∈ X , we write p �∗ q (p conditionally entails q) if {p} ∪ Y � q
for some Y ⊆ X consistent with p and with ¬q. For instance, for the agenda X =
{a,¬a, b,¬b, a ∧ b,¬(a ∧ b)}, we have a ∧ b �∗ a (take Y = ∅) and a �∗ ¬b (take
Y = {¬(a ∧ b)}).
(iii) For every contingent p, q ∈ X , there exist p1, p2, . . . , pk ∈ X (with p = p1

and q = pk) such that p1 �∗ p2, p2 �∗ p3, . . . , pk−1 �∗ pk (path-connected-
ness, a close variant of Nehring and Puppe (2002) total blockedness, equivalent
for finite X ).

8 This is a judgment-set-wise monotonicity condition, which differs from a propositionwise one (e.g.,
Dietrich and List 2007b,c). Similarly, our condition of unanimity-preservation is judgment-set-wise rather
than proposition-wise. One may consider this as an advantage, since a flavour of independence is avoided,
so that the conditions in the characterization are in the inutitive sense “orthogonal” to each other.
9 A logic (L, �) is compact if, for all A ⊆ L and p ∈ L, A � p implies that B � p for some finite
subset B ⊆ A. Equivalently, given L1–L4, (L, �) is compact if every inconsistent set A ⊆ L has a finite
inconsistent subset B ⊆ A.
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Conditions (i) and (ii) are relatively undemanding; they are met by most standard
agendas in the judgment aggregation literature. For instance, if X contains propo-
sitions a, b, a ∧ b as in the example of Table 1, then in (i) and (ii) we can take
Y = {a, b,¬(a∧b)}, where in (ii) Z = {a, b}. If X contains propositions a, a → b, b,
then in (i) and (ii) we can take Y = {a, a → b,¬b}, where in (ii) Z = {a,¬b}. In
Sects. 4 and 5, we show that the conditions are also met by agendas representing Arrow-
ian preference aggregation or Kasher and Rubinstein’s group identification problem.
Condition (iii) is more demanding. The agenda X = {a,¬a, b,¬b, a ∧ b,¬(a ∧ b)},
for example, violates it: for a negated proposition (¬a or ¬b or ¬(a ∧ b)), there is no
path of pairwise conditional entailments to a non-negated one. The agendas for rep-
resenting preference aggregation or group identification problems, however, satisfy
(iii), as discussed in Sects. 4 and 5.

3.3 Results

We call an aggregation function F a (strong) oligarchy (dropping “strong” whenever
there is no ambiguity) if it is universal and given by

F(A1, . . . , An) = ∩i∈M Ai for each profile (A1, . . . , An), (1)

where M ⊆ N is a fixed non-empty set (of oligarchs). A weak oligarchy is a universal
aggregation function F such that, among all non-empty sets M ⊆ N that satisfy (1)
with “=” replaced by “⊇”, there exists a smallest one (the set of weak oligarchs).10

An oligarchy (respectively, weak oligarchy) accepts all (respectively, at least all) prop-
ositions unanimously accepted by the oligarchs. While an oligarchy is uniquely deter-
mined by the set M of oligarchs, a weak oligarchy is not, because F(A1, . . . , An) can
be any superset of ∩i∈M Ai . Further, while oligarchies are independent and incomplete
(unless there is a single oligarch or no contingent proposition), weak oligarchies need
not satisfy independence, and can be complete.

Theorem 1 Let the agenda X satisfy (i) and (ii).

(a) The oligarchies are the only universal, deductively closed, unanimity-preserving
and systematic aggregation functions.

(b) Part (a) continues to hold if the agenda condition (ii) is dropped and the aggre-
gation condition of monotonicity is added.

Theorem 2 Let the agenda X satisfy (ii) and (iii).

(a) The oligarchies are the only universal, deductively closed, unanimity-preserving
and independent aggregation functions.

10 The term “oligarchy” (without further qualification) refers to a strong oligarchy, whereas in Gärdenfors’s
(2006) it refers to a weak one. A distinct oligarchy notion is Nehring and Puppe’s (2005) “oligarchy with
a default”, which always generates complete collective judgment sets by reverting to a default on each pair
p, ¬p ∈ X on which the oligarchs disagree. Thus oligarchies with a default are special complete weak
oligarchies.
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(b) Part (a) continues to hold if the agenda condition (ii) is dropped and the aggre-
gation condition of monotonicity is added.

Proofs are given in the Appendix. Theorems 1 and 2 provide four characterizations
of oligarchies. They differ in the conditions imposed on aggregation functions and
the agendas permitted. Part (a) of Theorem 2 is perhaps the most surprising result, as
it characterizes oligarchies on the basis of the logically weakest set of conditions on
aggregation functions. We later apply this result to Arrowian preference aggregation
problems and Kasher and Rubinstein’s group identification problem.

In each characterization, adding the condition of anonymity—i.e., the requirement
that F(A1, . . . , An) = F(A∗

1, . . . , A∗
n) whenever (A1, . . . , An) and (A∗

1, . . . , A∗
n) are

permutations of each other—eliminates all oligarchies except the unanimity function
(i.e., the oligarchy with the set of oligarchs N ), and adding the condition of com-
pleteness eliminates all oligarchies except dictatorships (i.e., oligarchies with a single
oligarch). So we obtain characterizations of the unanimity function and of dictator-
ships.

Corollary 1 (a) In each part of Theorems 1 and 2, the unanimity function is the only
aggregation function satisfying the specified conditions and anonymity.

(b) In each part of Theorems 1 and 2, dictatorships are the only aggregation functions
satisfying the specified conditions and completeness.

Note that none of the characterizations of oligarchic, dictatorial or unanimity func-
tions uses a collective consistency condition: consistency follows from the other condi-
tions, as is seen from the consistency of oligarchic, dictatorial or unanimity functions.

As mentioned in the introduction, our results strengthen Gärdenfors’s (2006) oligar-
chy results. We discuss the exact relationship in Sect. 6, when we relax the requirement
of completeness not only at the collective level but also at the individual one.

Part (b) of Corollary 1 is also related to the characterizations of dictatorships by
Nehring and Puppe (2002), Dokow and Holzman (2005), Dietrich (2007) and Dietrich
and List (2007a). To be precise, the dictatorship corollaries derived from parts (a) of
Theorems 1 and 2 are variants (without a collective consistency condition) of Dokow
and Holzman’s (2005) and Dietrich and List’s (2007a) characterizations of dictator-
ships.11 The dictatorship corollaries derived from parts (b) of Theorems 1 and 2 are
variants (again without a collective consistency condition) of Nehring and Puppe’s
(2002) characterizations of dictatorships.

As announced in the introduction, we seek to characterize impossibility agendas.
While Theorems 1 and 2 establish the sufficiency of our agenda conditions for the
present oligarchy results, we also need to establish their necessity. This is done by
the next result. The proof consists in the construction of appropriate non-oligarchic
counterexamples, given in the Appendix.12

Theorem 3 Suppose n ≥ 3 (and X contains at least one contingent proposition).

11 For finite X , our agenda conditions are equivalent to those of the mentioned other dictatorship charac-
terizations.
12 Part (c) still holds for n = 2. It could also be shown using an aggregation function specified by Nehring
and Puppe (2002). For finite X , part (b) could also be shown using Dokow and Holzman’s (2005) parity rule.
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(a) If the agenda condition (i) is violated, there is a non-oligarchic aggregation func-
tion that is universal, deductively closed, unanimity-preserving, systematic and
monotonic.

(b) If the agenda condition (ii) is violated, there is a non-oligarchic (in fact, non-
monotonic) aggregation function that is universal, deductively closed, unanim-
ity-preserving and systematic.

(c) If the agenda condition (iii) is violated, and the agenda is finite or belongs to
a compact logic, there is a non-oligarchic (in fact, non-systematic) aggregation
function that is universal, deductively closed, unanimity-preserving, independent
and monotonic.

Each part of Theorem 3 continues to hold if consistency is added as a further
condition on the aggregation function.

4 Application I: preference aggregation

We apply Theorem 2 to the aggregation of (strict) preferences, specifically to the case
where a profile of fully rational individual preference orderings is to be aggregated
into a possibly partial collective preference ordering.

To represent this aggregation problem in the judgment aggregation model, consider
the preference agenda (Dietrich and List 2007a; see also List and Pettit 2004), defined
as X = {x Py,¬x Py ∈ L : x, y ∈ K with x �= y}, where

(i) L is a simple predicate logic, with
• a two-place predicate P (representing strict preference), and
• a set of constants K = {x, y, z, . . . , } (representing alternatives);

(ii) for each S ⊆ L and each p ∈ L, S � p if and only if S ∪ Z entails p in
the standard sense of predicate logic, with Z defined as the set of rationality
conditions on strict preferences.13

We claim that strict preference orderings can be formally represented as judgments
on the preference agenda. Call a binary preference relation � on K a strict partial
ordering if it is asymmetric and transitive, and call � a strict ordering if it is in addition
connected. Notice that (i) the mapping that assigns to each strict partial ordering �
the judgment set A = {x Py,¬y Px ∈ X : x � y} ⊆ X is a bijection between the
set of all strict partial orderings and the set of all consistent and deductively closed
(but not necessarily complete) judgment sets; and (ii) the restriction of this mapping
to strict orderings is a bijection between the set of all strict orderings and the set of all
consistent and complete (hence deductively closed) judgment sets.

To apply Theorem 2, we observe that the preference agenda for three or more
alternatives satisfies the agenda conditions of Theorem 2.

Lemma 1 If |K | ≥ 3, the preference agenda satisfies (ii) and (iii).

13 Z contains (∀v1)(∀v2)(v1 Pv2 → ¬v2 Pv1) (asymmetry), (∀v1)(∀v2)(∀v3)((v1 Pv2 ∧ v2 Pv3) →
v1 Pv3) (transitivity), (∀v1)(∀v2)(¬ v1=v2 → (v1 Pv2 ∨ v2 Pv1)) (connectedness) and, for each pair of
distinct contants x, y ∈ K , ¬ x=y.

123



Judgment aggregation without full rationality 25

Proof Let X be the preference agenda with |K | ≥ 3. To see that X satisfies (ii)
(using the simplified form), take Y = {x Py, y Pz, z Px} (for distinct alternatives
x, y, z ∈ K ), and Z = {x Py, y Pz}. It is shown in Dietrich and List (2007a) that X
satisfies (iii) (Nehring 2003 has proved this result for the weak preference agenda). ��
Corollary 2 For a preference agenda with |K | ≥ 3, the oligarchies are the only
universal, deductively closed (and also consistent), unanimity-preserving and inde-
pendent aggregation functions.

We have bracketed consistency since the result does not need the condition, although
the interpretation offered above assumes it. In the terminology of preference aggrega-
tion, Corollary 2 shows that the oligarchies are the only preference aggregation func-
tions with universal domain (of strict orderings) generating strict partial orderings and
satisfying the weak Pareto principle and independence of irrelevant alternatives. Here
an oligarchy is a preference aggregation function such that, for each profile of strict
orderings (�1, . . . ,�n), the collective strict partial ordering � is defined as follows:
for any alternatives x, y ∈ K , x � y if and only if x �i y for all i ∈ M , where
M ⊆ N is an antecedently fixed non-empty set of oligarchs.

This corollary is closely related to Gibbard’s (1969) classic result showing that, if
the requirement of transitive social orderings in Arrow’s framework is weakened to
that of quasi-transitive ones (requiring transitivity only for the strong component of
the social ordering, but not for the indifference component), then oligarchies (suitably
defined for the case of weak preference orderings) are the only preference aggregation
functions satisfying the remaining conditions of Arrow’s theorem. The relationship to
our result lies in the fact that the strong component of a quasi-transitive social ordering
is a strict partial ordering, as defined above.

5 Application II: group identification

Here we apply Theorem 2 to Kasher and Rubinstein’s (1997) problem of “group
identification” (see also Samet and Schmeidler 2003). A set N = {1, 2, . . . , n} of
individuals (e.g., a population) each make a judgment Ji ⊆ N on which individuals
in that set belong to a particular social group, subject to the constraint that at least one
individual belongs to the group but not all individuals do (formally, each Ji satisfies
∅ � Ji � N ).14 The individuals then seek to aggregate their judgments (J1, . . . , Jn)

on who belongs to the social group into a resulting collective judgment J , subject to
the same constraint (∅ � J � N ). Thus Kasher and Rubinstein analyse the case in
which the group membership status of all individuals must be settled definitively.

By contrast, we apply Theorem 2 to the case in which the membership status of
individuals can be left undecided: i.e., some individuals are deemed members of the
group in question, others are deemed non-members, and still others are left undecided

14 This constraint can be interpreted as the conjunction of two feasibility constraints: it is not feasible for
the social group in question to be empty, and it is not feasible for it to be universal. This may be plausible if
citizenship of a country or membership of a club is at issue. We make some remarks below on what happens
if we relax one of these two feasibility constraints.
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with regard to group membership, subject to the very minimal “deductive closure” con-
straint that if all individuals except one are deemed non-members, then the remaining
individual must be deemed a member, and if all individuals except one are deemed
members, then the remaining individual must be deemed a non-member.

To represent this problem in our model (drawing on a construction in List 2007),
consider the group identification agenda, defined as X = {a1,¬a1, . . . , an,¬an},
where

(i) L is a simple propositional logic, with atomic propositions a1, . . . , an and the
standard connectives ¬,∧,∨;

(ii) for each S ⊆ L and each p ∈ L, S � p if and only if S ∪ Z entails p in the the
standard sense of propositional logic, where Z = {a1∨· · ·∨an,¬(a1∧· · ·∧an)}.

Informally, a j is the proposition that “individual j is a member of the social group”,
and S |� p means that S implies p relative to the constraint that the disjunction of
a1, . . . , an is true and their conjunction false. The mapping that assigns to each J
(with ∅ � J � N ) the judgment set A = {a j : j ∈ J } ∪ {¬a j : j /∈ J } ⊆ X is a
bijection between the set of all fully rational judgments in the Kasher and Rubinstein
sense and the set of all consistent and complete judgment sets in our model. A merely
deductively closed judgment set A ⊆ X represents a judgment that possibly leaves the
membership status of some individuals undecided, as outlined above and illustrated
more precisely below.

To apply Theorem 2, we observe that the group identification agenda for three or
more individuals (n ≥ 3) satisfies the agenda conditions of Theorem 2.

Lemma 2 If n ≥ 3, the group identification agenda satisfies (ii) and (iii).

Proof Let X be the group identification agenda with n ≥ 3. To see that X satisfies (ii)
(using the simplified form), take Y = {a j : j ∈ N }, and let Z be an arbitrary binary
subset of Y . It is shown in List (2007) that X satisfies (iii). ��
Corollary 3 For a group identification agenda with n ≥ 3, the oligarchies are the only
universal, deductively closed (and consistent), unanimity-preserving and independent
aggregation functions.

In group identification terms, the oligarchies are the only group identification func-
tions with universal domain generating possibly incomplete but deductively closed
group membership judgments and satisfying unanimity and independence.15 Here an
oligarchy is a group identification function such that, for each profile (J1, . . . , Jn)

of fully rational individual judgments on group membership, the collective judgment
is given as follows: the set of determinate group members is

⋂
i∈M Ji , the set of

determinate non-members is
⋂

i∈M (N\Ji ), and the set of individuals with undecided

15 If the feasibility constraint on membership is relaxed so as to allow either an empty group or a universal
one, then other group identification functions satisfying the conditions become available: for example,
oligarchies with the default of non-membership (if an empty group is allowed) or with the default of mem-
bership (if a universal group is allowed). However, our systematicity result (part (a) of Theorem 1) continues
to apply under the weakened feasibility constraints.
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membership status is the complement of these two sets in N , where M ⊆ N is an
antecedently fixed non-empty set of oligarchs.16

6 The case of incomplete individual judgments

As argued by Gärdenfors (2006), it is natural to relax the completeness requirement
not only at the collective level, but also at the individual one. Do the above impos-
sibilities disappear if individuals can withhold judgments on some or even all pairs
p,¬p ∈ X? The answer to this question is negative, even if the conditions of inde-
pendence or systematicity are weakened by allowing the collective judgment on a
proposition p ∈ X to depend not only on the individuals’ judgments on p but also
on those on ¬p. Such weaker independence or systematicity conditions are arguably
more defensible than the standard conditions: ¬p is intimately related to p, and thus
individual judgments on ¬p should be allowed to matter for group judgments on p.
As the weakened conditions are equivalent to the standard ones under individual com-
pleteness, all the results in Sect. 3 continue to hold for the weakened independence
and systematicity conditions.

Formally, call F universal* if Dom(F) is the “extended” universal domain of all
profiles of consistent and deductively closed (but not necessarily complete) individual
judgment sets (this is a superdomain of the original universal domain). An oligarchy* is
the universal* variant of an oligarchy as defined above. Following Gärdenfors (2006),
call F weakly independent if, for any p ∈ X and any (A1, . . . , An), (A∗

1, . . . , A∗
n) ∈

Dom(F), if [for all i ∈ N , p ∈ Ai ⇔ p ∈ A∗
i and ¬p ∈ Ai ⇔ ¬p ∈ A∗

i ] then
p ∈ F(A1, . . . , An) ⇔ p ∈ F(A∗

1, . . . , A∗
n). Likewise, call F weakly systematic if,

for any p, q ∈ X and any (A1, . . . , An), (A∗
1, . . . , A∗

n) ∈ Dom(F), if [for all i ∈ N ,
p ∈ Ai ⇔ q ∈ A∗

i and ¬p ∈ Ai ⇔ ¬q ∈ A∗
i ] then p ∈ F(A1, . . . , An) ⇔ q ∈

F(A∗
1, . . . , A∗

n).
We now give analogues of parts (a) of Theorems 1 and 2, proved in the Appendix.

Theorem 1∗ Let the agenda X satisfy (i) and (ii). The oligarchies* are the only
universal*, deductively closed, unanimity-preserving and weakly systematic aggrega-
tion functions.

Theorem 2∗ Let the agenda X satisfy (ii) and (iii). The oligarchies* are the only
universal*, deductively closed, unanimity-preserving and weakly independent aggre-
gation functions.

In analogy with Theorems 1 and 2, these characterizations of oligarchies* do not
contain a collective consistency condition (but require individual consistency). In
each of Theorems 1∗ and 2∗, adding the collective completeness requirement (respec-
tively, anonymity) narrows down the class of aggregation functions to dictatorial ones

16 The set of individuals whose group membership status is to be decided need not coincide with the set of
individuals who submit judgments on who is a member. More generally, the set N can make judgments on
which individuals in another set K (|K | ≥ 3) belong to a particular social group, subject to the constraint
stated above. K can be infinite. Corollary 3 continues to hold since the corresponding group identification
agenda (for a suitably adapted logic) still satisfies (ii) and (iii). Interestingly, if K is infinite the agenda
belongs to a non-compact logic.
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(respectively, the unanimity function), extended to the domain of all profiles of con-
sistent and deductively closed individual judgment sets. So Theorems 1∗ and 2∗ imply
characterizations of the latter functions on the extended universal domain. Further,
our applications of Theorem 2 to the preference and group identification agendas in
Sects. 4 and 5 can accommodate the case of incomplete individual judgments by using
Theorem 2∗ instead of Theorem 2.

We can finally revisit the relationship of our results with Gärdenfors’s results.
Theorem 2, Corollary 1 and Theorem 2∗ strengthen Gärdenfors’s oligarchy results.
First, they do not require Gärdenfors’s “social consistency” condition.17 Second, they
show that the conditions on aggregation functions imply (and in fact fully character-
ize) strong and not merely weak oligarchies (respectively, oligarchies*). Third, they
weaken Gärdenfors’s assumption that the agenda has the structure of an atomless
Boolean algebra, replacing it with the weakest possible agenda condition under which
the oligarchy result holds, i.e., (ii) and (iii).18

Our results reinforce the observation that, if we seek to avoid the standard impossi-
bility results on judgment aggregation by allowing incomplete judgments while pre-
serving the requirements of deductive closure and (weak) independence, this route does
not lead very far. To obtain genuine possibilities, deductive closure must be relaxed
or—perhaps better—independence must be given up in favour of non-propositionwise
aggregation functions.

A Appendix: proofs

We first introduce some notation. Let C be the set of all consistent and complete judg-
ment sets A ⊆ X , and C∗ the set of all consistent and deductively closed (but not
necessarily complete) ones.

For all B ⊆ X ,

• if B is consistent let AB ⊆ X be any consistent and complete judgment set such
that B ⊆ AB (AB is a “completion” of B and exists by L1–L3);

• let B := {p ∈ X : B � p} (B is the “deductive closure” of B);
• let B¬ := {¬p : p ∈ B}.

Also, for any sets Z ⊆ Y , let Y¬Z denote the set (Y\Z) ∪ {¬p : p ∈ Z}, which
arises from Y by negating the propositions in Z .

Further, when we consider a profile (A1, . . . , An), we often write Np for the set
{i : p ∈ Ai } of individuals accepting p ∈ X .

17 Gärdenfors’s “social logical closure” is equivalent to our “deductive closure”, where entailment in
Gärdenfors’s Boolean algebra agenda X should be defined as follows: a set A ⊆ X entails p ∈ X if and
only if (∧q∈A0 q) ∧ ¬p is the contradiction for some finite A0 ⊆ A.
18 It is easily checked that Gärdenfors’s agenda satisfies (ii) and (iii), where paths involving at most two
conditional entailments exist between any two contingent propositions. To be precise, our present gen-
eralization of Gärdenfors’s Corollary 3 applies to the case of a finite number of individuals. A similar
generalization can be given for the infinite case.

123



Judgment aggregation without full rationality 29

Finally, for any W ⊆ P(N ) (which can be arbitrary, even empty), let FW be the
universal aggregation function given by

F(A1, . . . , An) = {p ∈ X : Np ∈ W} for each profile (A1, . . . , An) ∈ Cn .

Let us first state conditions (i) and (ii) in full generality.

(i) There is an inconsistent set Y ⊆ X with pairwise disjoint subsets Z1, Z2, {p}
such that Y¬Z1 , Y¬Z2 and Y¬{p} are consistent.

(ii) There is an inconsistent set Y ⊆ X with disjoint subsets Z , {p} such that Y¬Z ,
Y¬{p} and Y¬(Z∪{p}) are consistent.

The following lemma illuminates their logical relationship with the simplified
expressions stated in the main text, which we now relabel (imain text) and (iimain text),
respectively.

Lemma 3 (a) If X is finite or belongs to a compact logic, (i) is equivalent to
(imain text), and (ii) is equivalent to (iimain text).

(b) In general, (imain text) implies (i), and (iimain text) implies (ii).

Proof To prove (a) and (b), we show the implications (i)⇒(imain text), (imain text)⇒
(i), (ii)⇒(iimain text), and (iimain text)⇒(ii), where in the first and third implication we
assume that X is finite or the logic is compact.

(i)⇒(imain text). Let Y, Z1, Z2, p be as in (i), and Y ′ ⊆ Y a minimal inconsistent set
(which exists by the assumption of a finite X or compact logic). As by (i) Y ′ intersects
with each of Z1, Z2, {p}, |Y ′| ≥ 3, implying (imain text).

(imain text)⇒(i). Let Y be as in (imain text), and Z1, Z2, {p} disjoint singleton subsets
of Y .

(ii)⇒(iimain text). Let Y, Z , p be as in (ii). (iimain text) holds for a minimal inconsis-
tent set Y ′ ⊆ Y (which exists by the assumption of a finite X or compact logic) and
the subset Z ∩ Y ′ or (Z ∩ Y ′) ∪ {p} (whichever has even size).

(iimain text)⇒(ii). Let Y be as in (ii main text), and choose a Z ⊆ Y of smallest even
size such that Y¬Z is consistent. If Y¬Z ′ is consistent for a Z ′ ⊆ Z of size |Z |− 1, one
easily checks that (ii) holds for Y with disjoint subsets Z ′, {p} = Z\Z ′. Now assume

Y¬Z ′ is inconsistent for all Z ′ ⊆ Z of size |Z | − 1. (2)

Then |Z | ≥ 4, as |Z | is even, not zero (otherwise Y¬Z = Y , which is inconsistent) and
not 2 (otherwise, by Y ’s minimal inconsistency, Y¬Z ′ would be consistent for subsets
Z ′ ⊆ Z of size |Z |−1 = 1). So Y contains no pair r,¬r (something we will implicitly
use), and contains distinct p, q ∈ Z . Let

Z̃ := (Z\{p, q})¬, Y ′ := (Y\Z) ∪ Z̃ ∪ {p}.

We show (ii) for the set Y ′ with disjoint subsets {p}, Z̃ .
First, Y ′ is inconsistent as Y ′ ∪ {q} and Y ′ ∪ {¬q} are inconsistent: Y ′ ∪ {q} =

Y¬(Z\{p,q}) by Z ’s minimality property, and Y ′ ∪ {¬q} = Y¬(Z\{p}) by (2).
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Second, Y ′
¬Z̃

= Y\{q} and Y ′
¬({p}∪Z̃)

= Y¬{p}\{q} are consistent by Y ’s minimal

inconsistency; and Y ′¬{p} is so by Y ′¬{p} ⊆ Y¬Z and Y¬Z ’s consistency. ��
The next two lemmas have simple proofs, which we leave to the reader.

Lemma 4 The intersection of deductively closed judgment sets is deductively closed.
In particular, oligarchies are deductively closed.

Lemma 5 (a) F is universal and systematic if and only if F = FW for some W ⊆
P(N ).

(b) F is oligarchic if and only if F = F{C⊆N :M⊆C} for some ∅ �= M ⊆ N.
(c) Let X contain a contingent proposition. Then, for all W,W ′ ∈ P(N ),

• if W �= W ′ then FW �= FW ′;
• FW is unanimity-preserving if and only if N ∈ W and ∅ /∈ W;
• FW is monotonic if and only if

C ∈ W&C ⊆ C∗ ⊆ N ⇒ C∗ ∈ W . (3)

The next two lemmas are the essential steps towards Theorem 1.

Lemma 6 Let X satisfy (ii). For all W ⊆ P(N ), if FW is unanimity-preserving and
deductively closed, then (3) holds, i.e., FW is monotonic by Lemma 5.

Proof Assume (ii). Let W ⊆ P(N ), and suppose F := FW is unanimity-preserving
and deductively closed. We assume C ∈ W&C ⊆ C∗ ⊆ N and show C∗ ∈ W . Let
Y, Z , p be as specified in (ii). A profile (A1, . . . , An) can be defined (using the above
notation) by

Ai =
⎧
⎨

⎩

AY¬{p} if i ∈ C
AY¬Z if i ∈ N\C∗
AY¬(Z∪{p}) if i ∈ C∗\C,

where we used that Y¬{p}, Y¬Z and Y¬(Z∪{p}) are consistent sets by (ii). Now F(A1, . . . ,

An) contains all q ∈ Z by Nq = C ∈ W , and all q ∈ Y\(Z ∪ {p}) by Nq = N ∈ W .
So Y\{p} ⊆ F(A1, . . . , An). By Y ’s inconsistency (and L4), Y\{p} � ¬p, whence
F(A1, . . . , An) � ¬p. So, by deductive closure, ¬p ∈ F(A1, . . . , An). Hence
N¬p ∈ W , i.e., C∗ ∈ W , as desired. ��
Lemma 7 Let X satisfy (i). For all ∅ �= W ⊆ P(N ) satisfying (3), FW is deductively
closed if and only if W = {C ⊆ N : M ⊆ C} for some M ⊆ N.

Proof Let X and W be as specified. Let F := FW .
First, suppose W = {C ⊆ N : M ⊆ C} for some M ⊆ N . If M �= ∅, then

F is oligarchic by Lemma 5(b), hence deductively closed by Lemma 4. If M = ∅,
then W = P(N ) by (3), whence F always generates the full set X , hence is again
deductively closed.

Second, suppose F is deductively closed. Note that, to show that W = {C ⊆ N :
M ⊆ C} for some M ⊆ N , it suffices (by W �= ∅ and (3)) to show that W is closed
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under taking finite intersections. Let W, W ′ ∈ W , and let us show that W ∩ W ′ ∈ W .
Let Y, Z1, Z2, {p} be as in (i), and consider the profile (A1, . . . , An) given (in the
above notation) by

Ai =
⎧
⎨

⎩

AY¬Z1
if i ∈ N\W

AY¬Z2
if i ∈ W\W ′

AY¬{p} if i ∈ W ∩ W ′,

where we use that Y¬Z1 , Y¬Z2 and Y¬{p} are each consistent by (i). Then F(A1, . . . , An)

contains all q ∈ Z1 by Nq = N\(N\W ) = W ∈ W , contains all q ∈ Z2 by
Nq = N\(W\W ′) ⊇ W ′ ∈ W and (3), and contains all r ∈ Y\(Z1 ∪ Z2 ∪ {p}) by
Nr = N ∈ W . So Y\{p} ⊆ F(A1, . . . , An). By Y ’s inconsistency (and L4), Y\{p} �
¬p. Hence F(A1, . . . , An) � ¬p, so that by deductive closure ¬p ∈ F(A1, . . . , An).
Hence N¬p ∈ W , i.e., W ∩ W ′ ∈ W , as desired. ��
Proof of Theorem 1 We prove first part (b) and then part (a).

(b) Let (i) hold. As noted above, oligarchies satisfy the specified conditions. Now
suppose F satisfies the conditions. By Lemma 5(a), F = FW for some W ⊆ P(N ),
where by Lemma 5(c) W satisfies (3), ∅ /∈ W and N ∈ W . Hence Lemma 7 applies,
so that W = {C ⊆ N : M ⊆ C} for some M ⊆ N . As ∅ /∈ W , M �= ∅. So, by
Lemma 5(b), F is oligarchic.

(a) Let (i) and (ii) hold. Again, as noted, oligarchies have the specified properties.
Suppose now that F has these properties. By Lemma 5(a), F = FW for some W ⊆
P(N ). By Lemma 6, F is monotonic. So, by part (b), F is oligarchic. ��

Theorem 2 follows from Theorem 1 with the help of two further lemmas. The first
lemma is similar to a proof step in Dietrich and List (2007c), and the second lemma
shows that a standard argument, first made by Nehring and Puppe (2002), requires
neither completeness and consistency, nor monotonicity.

Lemma 8 If X satisfies (iii) and contains a contingent proposition, (i) holds.

Proof Let X be as specified. Then there are a contingent q ∈ X , and propositions
q = p1, p2, . . . , pk = ¬q ∈ X such that pt �∗ pt+1 for all t ∈ {1, . . . , k − 1}. We
first show that pt �� pt+1 for some t ∈ {1, . . . , k − 1}. Assume the contrary holds.
As {p1} = {q} is consistent and p1 � p2, {p1, p2} is consistent. So, as p2 � p3,
{p1, p2, p3} is consistent. Repeating this procedure, {p1, . . . , pk} is consistent. But
then {p1, pk} = {q,¬q} is consistent, a contradiction.

As just shown, there is a t ∈ {1, . . . , k − 1} with pt �� pt+1. As pt �∗ pt+1, we
have {pt } ∪ Y ∗ � pt+1 for a Y ∗ ⊆ X consistent with each of pt and ¬pt+1. It follows
that

{pt ,¬pt+1} ∪ Y ∗ is inconsistent, (4)

{pt , pt+1} ∪ Y ∗ and {¬pt ,¬pt+1} ∪ Y ∗ are each consistent. (5)

By pt �� pt+1, we have Y ∗ �= ∅. Since {pt ,¬pt+1} is consistent, {pt ,¬pt+1} ∪ B
is consistent for some set B consisting of exactly one member of each pair r,¬r in
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{r,¬r : r ∈ Y ∗}. Now we define Y := {pt ,¬pt+1} ∪ Y ∗, p := pt , Z1 := {¬pt+1},
and we let Z2 be the subset of Y ∗ for which Y ∗¬Z2

= B. Then, as required in (i),
Y = {pt ,¬pt+1} ∪ Y ∗ is inconsistent (by (4)), and Z1, Z2, {p} are pairwise disjoint
subsets of Y , where the three sets Y¬{p} = {¬pt ,¬pt+1}∪Y ∗

t , Y¬Z1 = {pt , pt+1}∪Y ∗
t

and Y¬Z2 = {pt ,¬pt+1} ∪ B are consistent (in the first two cases by (5)). ��
Call C ⊆ N semi-winning for p ∈ X (under F) if p ∈ F(A1, . . . , An) for all

profiles (A1, . . . , An) in the domain with {i : p ∈ Ai } = C .

Lemma 9 Let F be universal, deductively closed, independent and unanimity-
preserving.

(a) For all p, q ∈ X, if C ⊆ N is semi-winning for p and p �∗ q then C is
semi-winning for q.

(b) If X satisfies (iii), F is systematic.

Proof Let F be as specified.

(a) Consider p, q ∈ X . Suppose C ⊆ N is semi-winning for p and p �∗ q. By
p �∗ q, there is a Y ⊆ X such that {p} ∪ Y � q, and {p} ∪ Y and {¬q} ∪ Y are
consistent. So, as {p,¬q} ∪ Y is inconsistent, {p, q} ∪ Y and {¬p,¬q} ∪ Y are
each consistent. Let (A1, . . . , An) be the profile given (in the above notation) by

Ai =
{

A{p,q}∪Y if i ∈ C
A{¬p,¬q}∪Y if i /∈ C.

As Np = C and C is semi-winning for p, p ∈ F(A1, . . . , An). From unanimity-
preservation and independence it follows that Y ⊆ F(A1, . . . , An). So {p} ∪
Y ⊆ F(A1, . . . , An). Hence, by {p} ∪ Y � q and deductive closure, q ∈
F(A1, . . . , An). So, by Nq = C and independence, C is semi-winning for q,
as desired.

(b) Let X satisfy (iii). To show systematicity, consider any p, q ∈ X and any
(A1, . . . , An), (A∗

1, . . . , A∗
n) ∈ Cn such that C := {i : p ∈ Ai } = {i : q ∈ A∗

i }.
We suppose that p ∈ F(A1, . . . , An) and prove that q ∈ F(A∗

1, . . . , A∗
n). The

latter holds if C = N : if C = N then, using unanimity-preservation and inde-
pendence, it follows that q ∈ F(A∗

1, . . . , A∗
n), as desired. Now let C �= N . We

have C �= ∅, because otherwise, again by unanimity-preservation and indepen-
dence, we have p /∈ F(A1, . . . , An), a contradiction. As C is neither N nor ∅, p
and q are each contingent (by individual rationality). Hence, by (iii), there are
p = p1, p2, . . . , pk = q ∈ X such that p1 �∗ p2, p2 �∗ p3, . . . , pk−1 �∗ pk .
By C = {i : p ∈ Ai }, p ∈ F(A1, . . . , An) and independence, C is semi-winning
for p = p1. So a simple induction using part (a) tells us that C is semi-winning
for pk = q, as desired. ��

We base come to the proof of Theorems 1∗, which we derive from Theorem 1 using
two lemmas.

Lemma 10 For all A ⊆ X, the “deductive closure” A (= {r ∈ X : A � r}) is
deductively closed, and it is consistent if A is consistent.
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Proof Let A ⊆ X .
To show that A is deductively closed suppose for a contradiction that r ∈ X with

A � r but r /∈ A. Then A �� r . So, by L4, {¬r} ∪ A is consistent, hence extendible to
a complete and consistent B ⊆ X with {¬r} ∪ A ⊆ B. As B is deductively closed,
A ⊆ B. So {¬r} ∪ A ⊆ B. So {¬r} ∪ A is consistent. Hence A �� r , a contradiction.

Now let A be consistent. Then A is extendible to a complete and consistent set
B ⊆ X . As B is deductively closed, A ⊆ B. So A is consistent. ��

For all C, C ′ ⊆ N , we call C semi-winning against C ′ for p ∈ X (under F) if
p ∈ F(A1, . . . , An) for all profiles (A1, . . . , An) in the domain with {i : p ∈ Ai } = C
and {i : ¬p ∈ Ai } = C ′; and we call C simply semi-winning against C ′ (under F) if
C is semi-winning against C ′ for every p ∈ X . Note that a weakly systematic aggre-
gation function F is uniquely given by its set of pairs (C, C ′) ∈ (P(N ))2 for which
C is semi-winning against C ′.

Lemma 11 Let F be universal*, deductively closed, unanimity-preserving and weakly
systematic. Let C ⊆ N be semi-winning against C̃ ⊆ N, with C ∩ C̃ = ∅.

(a) If X satisfies (ii), C is semi-winning against all C ′ ⊆ C̃.
(b) If X satisfies (i) and (ii), C is semi-winning against all C ′ ⊆ N, i.e., is semi-

winning.

Proof Let X, F, C, C̃ be as specified.
(a) Assume (ii) holds, and consider any C ′ ⊆ C̃ . By (ii) there are pairwise disjoint

sets Y ∗, Z , {p} ⊆ X such that
(*) Y ∗ ∪ Z ∪ {p} is inconsistent,
(**) Y ∗ ∪ Z ∪ {¬p}, Y ∗ ∪ Z¬ ∪ {p} and Y ∗ ∪ Z¬ ∪ {¬p} are consistent.
Consider the profile (A1, . . . , An) given (in our notation) by

Ai =

⎧
⎪⎪⎨

⎪⎪⎩

Y ∗ ∪ Z ∪ {¬p} if i ∈ C

Y ∗ ∪ Z¬ if i ∈ C̃\C ′
Y ∗ ∪ Z¬ ∪ {p} if i ∈ C ′
Y ∗ if i /∈ C ∪ C̃ .

This profile is in (C∗)n , by Lemma 10 and (**). We have Y ∗ ⊆ F(A1, . . . , An) because
N is winning against ∅ by unanimity-preservation and weak systematicity. Further, for
all z ∈ Z , as by (**) Y ∗ is consistent with z and with ¬z, Y ∗ contains neither z nor ¬z;
and so Nz = C and N¬z = C̃ , whence Z ⊆ F(A1, . . . , An) as C is winning against
C̃ . By Y ∗ ∪ Z ⊆ F(A1, . . . , An) and (*), F(A1, . . . , An) � ¬p, whence by deductive
closure ¬p ∈ F(A1, . . . , An). As by (**) Y ∗ and Y ∗ ∪ Z¬ are each consistent with
p and with ¬p, none of Y ∗ and Y ∗ ∪ Z¬ contains p or ¬p; and so Np = C ′ and
N¬p = C . So, using weak systematicity, C is semi-winning against C ′, as desired.

(b) Let X satisfy (i) and (ii), and consider any C ′ ⊆ N . We show that C is semi-
winning against C ′. This is vacuously true if C ∩ C ′ �= ∅ (using universality*). Now
suppose C ∩ C ′ = ∅. As C ′ ⊆ N\C , it suffices by part (a) to show that C is winning
against N\C .
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By (i) there are pairwise disjoint sets Y ∗, Z1, Z2, {p} ⊆ X such that
(*) Y ∗ ∪ Z1 ∪ Z2 ∪ {p} is inconsistent;
(**) Y ∗ ∪ Z¬

1 ∪ Z2 ∪ {p}, Y ∗ ∪ Z1 ∪ Z¬
2 ∪ {p} and Y ∗ ∪ Z1 ∪ Z2 ∪ {¬p} are

consistent.
Let (A1, . . . , An) be the profile given by

Ai =
{

Y ∗ ∪ Z1 ∪ Z2 ∪ {¬p} if i ∈ C
Y ∗ ∪ {p} if i ∈ N\C .

As in part (a), this profile belongs to (C∗)n (using Lemma 10 and (**)), and Y ∗ ⊆
F(A1, . . . , An) (as N is winning against ∅ by unanimity-preservation and weak sy-
stematicity). Further, for all z ∈ Z1 ∪ Z2, Y ∗ ∪ {p} is by (**) consistent with z and
with ¬z, whence Y ∗ ∪ {p} contains neither z nor ¬z, and so Nz = C and N¬z = ∅.
So, as C is by part (a) winning against ∅, Z1 ∪ Z2 ⊆ F(A1, . . . , An). By Y ∗ ∪ Z1 ∪
Z2 ⊆ F(A1, . . . , An) and (*), F(A1, . . . , An) � ¬p, so that by deductive closure
¬p ∈ F(A1, . . . , An). So, by N¬p = C and Np = N\C and by weak systematicity
C is winning against N\C , as desired. ��

Proof of Theorem 1∗ Let X be as specified. Oligarchies satisfy all properties men-
tioned (using Lemma 4). Now let F have these properties. As F is weakly systematic,
F is given, for all (A1, . . . , An) ∈ (C∗)n , by

F(A1, . . . , An) = {p ∈ X : Np is semi-winning against N¬p}.

So F is oligarchic* if there is a non-empty set M ⊆ N such that

C is semi-winning against C ′ ⇔ M ⊆ C , for all disjoint C, C ′ ⊆ N . (6)

To show this, note first that the aggregation function F |Cn , obtained by restricting F
to the domain Cn , is by part (a) of Theorem 2 oligarchic, say with set of oligarchs M .
We show that this set M satisfies (6). For any disjoint C, C ′ ⊆ N , C is semi-winning
against C ′ if and only if C is semi-winning against N\C , by Lemma 11 (and using
that (i) holds by Lemma 8). The latter is equivalent to C being semi-winning under
F |Cn (using that N¬p = N\Np for all (A1, . . . , An) ∈ Cn and all p ∈ X ), which is in
turn equivalent to M ⊆ C as F |Cn is the M-oligarchy. ��

Theorem 2∗ follows from Theorem 1∗ with the help of Lemma 8 (which ensures that
X satisfies (i)) and the following lemma (which ensures that F is weakly systematic).

Lemma 12 Let F be universal*, deductively closed, unanimity-preserving and weakly
independent.

(a) For all p, q ∈ X, if C ⊆ N is semi-winning against C ′ ⊆ N for p, and p �∗ q,
then C is semi-winning against C ′ for q.

(b) If X satisfies (iii), F is weakly systematic.
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Proof (with similarities to the proof of Lemma 9). Let F be as specified.
(a) Consider p, q ∈ X . Suppose C ⊆ N is semi-winning for p against C ′ ⊆ N and

p �∗ q. If C ∩ C ′ �= ∅, it is vacuously true that C is semi-winning against C ′ for q.
Now let C ∩ C ′ = ∅. By p �∗ q, there is a Y ⊆ X such that {p} ∪ Y � q, and {p} ∪ Y
and {¬q} ∪ Y are consistent. So, as {p,¬q} ∪ Y is inconsistent,

(*) {p, q} ∪ Y and {¬p,¬q} ∪ Y are consistent.
Let (A1, . . . , An) be the profile given (in the above notation) by

Ai =
⎧
⎨

⎩

{p, q} ∪ Y if i ∈ C
{¬p,¬q} ∪ Y if i ∈ C ′
Y if i /∈ C ∪ C ′.

This profile is in (C∗)n , by (*) and Lemma 10. Further, Y contains none of p,¬p, q,¬q:
otherwise Y would be inconsistent with (another) one of them, violating (*). It fol-
lows that Np = Nq = C and N¬p = N¬q = C ′. So, as C is semi-winning against
C ′ for p, p ∈ F(A1, . . . , An). By unanimity-preservation and weak independence,
Y ⊆ F(A1, . . . , An). So {p} ∪ Y ⊆ F(A1, . . . , An). Hence, by {p} ∪ Y � q and
deductive closure, q ∈ F(A1, . . . , An). So, as Nq = C and N¬q = C ′, and by weak
independence, C is semi-winning against C ′ for q, as desired.

(b) Let X satisfy (iii). To show weak systematicity, consider any p, q ∈ X and
(A1, . . . , An), (A∗

1, . . . , A∗
n) ∈ (C∗)n such that C := {i : p ∈ Ai } = {i : q ∈ A∗

i }
and C ′ := {i : ¬p ∈ Ai } = {i : ¬q ∈ A∗

i }. We suppose that p ∈ F(A1, . . . , An) and
prove that q ∈ F(A∗

1, . . . , A∗
n) (the converse being analogous).

First suppose that p or q is non-contingent, i.e., a tautology or contradiction. Then,
as all Ai and A∗

i are consistent and deductively closed, one of C, C ′ is N and the other
one is ∅. It is not possible that C = ∅ and C ′ = N : otherwise p /∈ F(A1, . . . , An),
since ∅ is not semi-winning against N for p by unanimity-preservation and weak
independence. So C = N and C ′ = ∅. Then, as desired, q ∈ F(A∗

1, . . . , A∗
n), because

N is semi-winning against ∅ for q, again by unanimity-preservation and weak inde-
pendence.

Now let p and q be contingent. Then, by (iii), there are p = p1, p2, . . . , pk =
q ∈ X such that p1 �∗ p2, p2 �∗ p3, …, pk−1 �∗ pk . By p ∈ F(A1, . . . , An) and
weak independence, C is semi-winning against C ′ for p = p1. So a simple induc-
tion using part (a) tells us that C is semi-winning against C ′ for pk = q. Hence
q ∈ F(A∗

1, . . . , A∗
n), as desired. ��

We now give constructive proofs of each part of Theorem 3.

Proof of Theorem 3 Let n ≥ 3 and let X contain a contingent proposition.
(a) Now let F := FW where W is defined as W = {C ⊆ N : {1, 3} ⊆ C or {2, 3} ⊆

C}. Then, by Lemma 5, F is non-oligarchic, universal, systematic, unanimity-preserv-
ing, and monotonic. We assume that F is not deductively closed, i.e., there is a profile
(A1, . . . , An) ∈ Cn and a q ∈ X\F(A1, . . . , An), such that F(A1, . . . , An) � q. We
prove that (i) holds for

Y := F(A1, . . . , An) ∪ {¬q}, p := ¬q,

Zi := {r ∈ X : Nr ∩ {1, 2, 3} = {i, 3}} for i = 1, 2.
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First, Y is inconsistent, as F(A1, . . . , An) � q.
Second, we show the pairwise disjointness of the sets Z1, Z2, {p}. Obviously, Z1 ∩

Z2 = ∅. As F(A1, . . . , An) ⊆ A3, we have (9). Now {p} is disjoint with each Zi ,
because otherwise p ∈ Zi , hence p ∈ F(A1, . . . , An), so that F(A1, . . . , An) would
entail p and also entail q = ¬p, in contradiction to (9).

Finally, we have to show the consistency of each of Y¬Z1 , Y¬Z2 and Y¬{p}. As
Y = F(A1, . . . , An) ∪ {p} is a disjoint union (by an argument like the previous one),

Y¬{p} = F(A1, . . . , An) ∪ {¬p} = F(A1, . . . , An) ∪ {q}.

By F(A1, . . . , An) ⊆ A3 and F(A1, . . . , An) � q, we have F(A1, . . . , An) ∪ {q} ⊆
A3, i.e., Y¬{p} ⊆ A3. Hence Y¬{p} is consistent. Further, as 3 ∈ Nq and (by q /∈
F(A1, . . . , An)) Nq /∈ W , we have 1, 2 /∈ Nq , whence

1, 2 ∈ N¬q = Np. (7)

Letting Z3 := {r ∈ X : Nr ∩ {1, 2, 3} = {1, 2, 3}}, we have Y = Z1 ∪ Z2 ∪ Z3 ∪ {p},
where this is a disjoint union (by an argument like the one above). So

Y¬Z1 = {¬r : r ∈ Z1} ∪ Z2 ∪ Z3 ∪ {p}. (8)

Here, r ∈ Z1 implies r /∈ A2, which implies ¬r ∈ A2. Using this and (7), the relation
(8) implies that Y¬Z1 ⊆ A2, whence Y¬Z2 is consistent. For analogous reasons, Y¬Z2

is consistent.
(b) Let F be FW where W := {N , N\{1, 2}}. By Lemma 5, F is non-monotonic

(hence non-oligarchic), universal, systematic, and unanimity-preserving (the latter
uses that ∅ /∈ W by n ≥ 3). The crucial claim is that, if (ii) is violated, F is deductive
closed. We suppose F is not deductively closed and prove (ii).

By assumption, there is a profile (A1, . . . , An) ∈ Cn and a q ∈ X\F(A1, . . . , An),
such that F(A1, . . . , An) � q. We prove that (ii) hods for

Y := {r ∈ X : Nr = N\{1, 2} or Nr = N } ∪ {¬q} (= F(A1, . . . , An) ∪ {¬q})
Z := {r ∈ X : Nr = N\{1, 2}}, p := ¬q.

First, Y is inconsistent as F(A1, . . . , An) � q.
Second, we show that {p} (= {¬q}) and Z are disjoint. Note that

F(A1, . . . , An) is consistent, (9)

as F(A1, . . . , An) ⊆ ∩k∈N\{1,2} Ak . If {p} and Z were not disjoint, we would have
p ∈ Z , hence p ∈ F(A1, . . . , An); so F(A1, . . . , An) would entail both p (= ¬q)
and q, violating (9).

Finally, we show that Y¬Z and Y¬(Z∪{¬q}) are consistent. Note that ∩k∈N\{1,2} Ak �
q by F(A1, . . . , An) � q and F(A1, . . . , An) ⊆ ∩k∈N\{1,2} Ak . Hence for each
k ∈ N\{1, 2}, Ak entails q, hence contains q. So N\{1, 2} ⊆ Nq . Hence, as Nq is
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(by q /∈ F(A1, . . . , An)) neither N nor N\{1, 2}, Nq is either N\{1} or N\{2}. We
assume that

Nq = N\{1}, and hence N¬q = {1} (10)

(the case of Nq = N\{2} being analogous). Note that

Z ∪ {p} = {¬q} ∪ {r ∈ X : Nr = N\{1, 2}}
Y = {¬q} ∪ {r ∈ X : Nr = N\{1, 2}} ∪ {r ∈ X : Nr = N },

where these are unions of pairwise disjoint sets by N¬q = {1}. So

Y¬Z = ({¬q} ∪ {r ∈ X : Nr = N\{1, 2}}∪{r ∈ X : Nr = N }})¬{r∈X :Nr=N\{1,2}}
= {¬q} ∪ {¬r ∈ X : Nr = N\{1, 2}} ∪ {r ∈ X : Nr = N },

Y¬(Z∪{p}) = ({¬q}∪{r ∈ X : Nr = N\{1, 2}}∪{r ∈ X : Nr = N })¬({¬q}∪{r∈X :Nr=N\{1,2}})
= {q} ∪ {¬r ∈ X : Nr = N\{1, 2}} ∪ {r ∈ X : Nr = N }.

It follows that Y¬Z ⊆ A1 and Y¬(Z∪{p}) ⊆ A2, in both cases using (10) and Nr =
N\{1, 2} ⇔ N¬r = {1, 2}. So Y¬Z and Y¬(Z∪{p}) are consistent.

(c) Suppose X violates (iii). Then there is a contingent r ∈ X with no �∗-path to
some s ∈ X . Write X = X1 ∪ X2, where

X1 := {s ∈ X : there is a �∗ -path from r to s} and X2 := X\X1.

Let F be the universal aggregation function given, for all (A1, . . . , An) ∈ Cn , by

F(A1, . . . , An) := (X1 ∩ A1) ∪ [X2 ∩ (∩i∈N Ai )] ;

i.e., within X1 person 1 is a dictator and within X2 the unanimity function is used.
F is non-oligarchic (by X1 �= ∅ and X2 �= ∅), universal, unanimity-preserving, and
independent.

To see monotonicity, let (A1, . . . , An), (A∗
1, . . . , A∗

n) ∈ Cn be such that A∗
i = Ai

for all individuals i except from, say, individual j , who has A∗
j = F(A1, . . . , An). To

show that F(A∗
1, . . . , A∗

n) and F(A1, . . . , An) are identical, we show that they have
the same intersections with X1 and with X1. Regarding the intersection with X2, we
have

X2 ∩ F(A∗
1, . . . , A∗

n) = X2 ∩ (∩i∈N A∗
i

)

= X2 ∩ F(A1, . . . , An) ∩ (∩i∈N\{ j} Ai
)

= X2 ∩ F(A1, . . . , An),

as desired. Regarding the intersection with X1, we have again

X1 ∩ F(A∗
1, . . . , A∗

n) = X1 ∩ A∗
1 = X1 ∩ F(A1, . . . , An),
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where the last equality follows from A∗
1 = F(A1, . . . , An) if j = 1, and from X1 ∩

A∗
1 = X1 ∩ A1 = X1 ∩ F(A1, . . . , An) if j �= 1.
We finally show deductive closure. We suppose for a contradiction that there is a pro-

file (A1, . . . , An) ∈ Cn and a q ∈ X\F(A1, . . . , An), such that F(A1, . . . , An) � q.
By F(A1, . . . , An) ⊆ A1, we have (9), and we have A1 � q, hence q ∈ A1. So
q ∈ X2: otherwise q would be in X1 ∩ A1, hence in F(A1, . . . , An), hence entailed
by F(A1, . . . , An). As X is finite or the logic compact, F(A1, . . . , An) has a minimal
subset Z that entails q. There is a p ∈ Z ∩ X1: otherwise Z ⊆ X2, hence Z ⊆ ∩i∈N Ai ,
so that ∩i∈N Ai � q, whence (by Lemma 4) q ∈ ∩i∈N Ai ⊆ F(A1, . . . , An), a contra-
diction.

We show that p �∗ q, a contradiction by p ∈ X1 and q ∈ X2. Putting Y := Z\{p},
we have {p} ∪ Y = Z � q, where Y is consistent with ¬q (otherwise Y � q) and with
p (as Z is consistent by Z ⊆ F(A1, . . . , An)). ��
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