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Abstract We describe Abello’s acyclic sets of linear orders [SIAM J Discr
Math 4(1):1–16, 1991] as the permutations visited by commuting equivalence
classes of maximal reduced decompositions. This allows us to strengthen
Abello’s structural result: we show that acyclic sets arising from this construc-
tion are distributive sublattices of the weak Bruhat order. This, in turn, shows
that Abello’s acyclic sets are, in fact, the same as Chameni-Nembua’s distribu-
tive covering sublattices (S.T.D.C s). Fishburn’s alternating scheme is shown to
be a special case of the Abello/Chameni-Nembua acyclic sets. Any acyclic set
that arises in this way can be represented by an arrangement of pseudolines,
and we use this representation to derive a simple closed form for the cardinal-
ity of the alternating scheme. The higher Bruhat orders prove to be a natural
mathematical framework for this approach to the acyclic sets problem.

1 Introduction

Majority voting is one of the most commonly accepted and widely practiced
methods for aggregating preferences. First observed by the Marquis de
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Condorcet (1785), today it is well known that social preferences determined
by majority voting on every pair of alternatives may be intransitive. On the
other hand, if voters’ preferences are restricted to lie within certain domains,
the problem of intransitivity can be avoided. Social choice theorists have found
several such domain restrictions (Ward 1965; Sen 1966), and this has led to
the question: Given n alternatives, what is the cardinality of the largest do-
main of linear orders that still guarantees transitive social preferences under
pairwise majority voting?1 Such a domain is called an acyclic set of linear
orders.2

The question of finding maximum cardinality acyclic sets has proven to
be one of the most difficult combinatorial questions in social choice theory
Fishburn (2002). While several upper and lower bounds have been found,
and others conjectured (Abello 1991; Craven 1996; Fishburn 1997, 2002; Raz
2000), the only successful attempts to study the structure of “large” acyclic
sets are Abello’s (1991) and Chameni-Nembua’s (1989). Abello showed that
a maximal chain in the weak Bruhat order forms an acyclic set.3 Moreover,
any maximal acyclic set containing a maximal chain is an upper semimodular
sublattice of the weak Bruhat order (Abello 1991, Theorem 3.3). Chameni-
Nembua showed that covering distributive sublattices of the weak Bruhat or-
der (abbreviated S.T.D.C. for sous-treillis distributif couvrant) always form
acyclic sets. These S.T.D.C. lattices can always be extended (while remain-
ing S.T.D.C.s) to contain the identity permutation and its reverse
(Chameni-Nembua 1989, Theorems 3.6 and 3.7). We show that such extended
lattices are exactly the acyclic sets considered by Abello. Part of the point of
our work is to explain these Chameni-Nembua/Abello distributive lattices as
the lattices of order ideals of particularly simple posets. We also show that Fish-
burn’s alternating scheme (Fishburn 1997, 2002) is a special case of the Chameni-
Nembua/Abello lattices. Our approach is based on results on the higher Bruhat
orders (Ziegler 1993; Felsner and Ziegler 2001). Placing Fishburn’s alternating
scheme in this formal framework allows us to derive an explicit formula for its
cardinality.

In Sect. 2 we define the combinatorial objects we will use, and discuss the
relationships among them. In Sect. 3 we describe explicitly the maximal acyclic
sets that contain a maximal chain in the weak Bruhat order, and show how the
alternating scheme fits in that framework. We derive the formula enumerating
the alternating scheme in Sect. 3.1.

1 We assume throughout that the number of voters is at least 3. This question can be posed with-
out reference to the number of voters because if a preference profile results in intransitive social
preferences under majority voting, then it contains three preferences that would, by themselves,
result in such intransitivity (Sen 1966).
2 Henceforth acyclic sets.
3 An early study by Blin describes Abello’s “pseudo-chains” as “multidimensionally consistent”
sets (Blin 1972).
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2 Definitions

Let R be the set of all total, transitive, reflexive and antisymmetric binary rela-
tions (i.e. linear orders) on a finite set A of social alternatives. The finite set of
agents will be denoted by I, and their preferences (Ri)i∈I are from R. Under
majority voting, social preferences RM are defined by: for all a, b ∈ A,

aRMb ⇐⇒ |{i ∈ I : aRib}| ≥ |{i ∈ I : bRia}|. (1)

For simplicity, we identify the n-set A with the set [n] := {1, 2, . . . , n} under
an arbitrary, fixed ordering of A, and we represent individual preferences as
permutations of [n]. A permutation π : [n] → [n] will be identified with the
linear order

π−1(1) > π−1(2) > · · · > π−1(n), (2)

and will be written as π−1(1) π−1(2) · · · π−1(n). The set of permutations is
denoted by Sn.

Definition 1 A set T ⊆ Sn is acyclic if for all i, j, k ∈ [n], at most two of the
orders ijk, jki, kij appear as a restriction to {i, j, k} of some order in T.

Ward (1965) introduced this condition as latin squarelessness,4 and showed
that with an odd number of voters it guarantees transitive majority. Sen (1966)
introduced this condition for the setting where indifference in individual prefer-
ences is allowed, and called it the “assumption of value-restricted preferences.”
He showed that in that setting it guarantees transitive majority. While a profile
of preferences that is not acyclic may produce a transitive social preference
under majority voting, acyclicity is clearly necessary in the following sense: if a
domain of preferences always produces a transitive majority regardless of how
many agents have each particular preference relation, then this domain must
be acyclic.5

Abello (1991) and Chameni-Nembua (1989) used the structure imposed on
the set Sn of linear orders by the weak Bruhat order to construct acyclic sets.
Since then significant work has been done on the higher Bruhat orders (Yu et al.
1986, 1989; Ziegler 1993; Felsner and Ziegler 2001). Some of these results are
central to our approach, so we present them as we give the following definitions.

For any permutation π ∈ Sn, let

inv(π) := {{i, j} : i < j and π(i) > π(j)} (3)

denote the inversion set of π . For example, inv(2143) = {{1, 2}, {3, 4}}. Let
B(n, 1) := {inv(π) : π ∈ Sn}.

4 Ward comments on the term: “awkward, but there is a suggestive rhythmic harmony with its
predecessor, single peakedness” (Ward 1965).
5 Notice that acyclicity is a property of a set of preferences, not of a profile of preferences. It is for
this reason that we do not discuss restrictions on the parity of the number of agents, although, for
any particular preference profile, it is important.
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Fig. 1 The weak Bruhat
order B(3, 1)
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Definition 2 The weak Bruhat order B(n, 1) is the partial order on B(n, 1) de-
fined by the transitive closure of single step set inclusion. That is, we decree for
two permutations σ and π that inv(π) is less than inv(σ ) when inv(π) ⊆ inv(σ )

with |inv(π)| + 1 = |inv(σ )|, and then we take the transitive closure of this
relation.

The weak Bruhat order is a lattice, and it is the same as B⊆(n, 1), the set
B(n, 1) partially ordered by set inclusion6 (Guilbaud and Rosenstiehl 1963).

Since every permutation of [n] can be uniquely identified by its inversion set,
the weak Bruhat order can also be viewed as a partial order on permutations.
For example, part (b) of Fig. 1 shows the weak Bruhat order B(3, 1), while part
(a) shows it as a partial order on S3.

A maximal chain in B(n, 1) is a sequence of permutations (π1, π2, . . . , πl) such
that πi+1 covers πi for i = 1, . . . , l−1, and π1 is the identity while πl is its reverse.
These conditions force that the length l of this sequence will be

(n
2

)
. A maximal

chain can be identified by the sequence of transpositions that generates it. For
example, we could identify the maximal chain

1234, 2134, 2314, 2341, 3241, 3421, 4321 (4)

by saying: transpose the first and the second element, then the second and the
third, etc. Since we always transpose adjacent elements, naming just the position
of the left element to be transposed suffices. Denoting the transpositions of the
ith and the i + 1st element by si, we could describe the above sequence as

1234
s1−→ 2134

s2−→ 2314
s3−→ 2341

s1−→ 3241
s2−→ 3421

s1−→ 4321. (5)

In fact, we may even omit the permutations—we could always recover them
from the sequence of transpositions: s1s2s3s1s2s1. We assume, implicitly, that
the sequence of permutations always starts with the identity. Such a sequence
of increasing adjacent transpositions si, resulting in the reverse of the identity,

6 The lattice property has been generalized to the weak order on finite Coxeter groups (Björner
and Brenti 2005, Sect. 3.2).
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is called a maximal reduced decomposition (Björner et al., 1993, Sect. 6.4).7 The
permutations visited by a maximal reduced decomposition are the permutations
in the maximal chain it corresponds to in the weak Bruhat order. For example,
the permutations visited by s1s2s3s1s2s1 above are

id = 1234 (6)

s1 = 2134

s1s2 = 2314

s1s2s3 = 2341

s1s2s3s1 = 3241

s1s2s3s1s2 = 3421

s1s2s3s1s2s1 = 4321.

A maximal reduced decomposition can also be viewed as a permutation of([n]
2

)
, the 2-subsets of [n]. Since it starts with the identity and ends with its

reverse, every pair must be transposed, and since it is reduced, every pair must
be transposed exactly once. The sequence of these transpositions gives us a
permutation of (unordered) pairs. In fact, a structure that generalizes the weak
Bruhat order can be imposed on the set of all such permutations of pairs. More
precisely, the higher Bruhat order B(n, 2) is defined8 on the inversion sets of
certain permutations of

([n]
2

)
.

Definition 3 (Ziegler 1993) A permutation π of
([n]

2

)
is admissible if the

2-subsets of any 3-subset of [n] appear either in lexicographic or in reversed
lexicographic order in it. That is, for any 1 ≤ i < j < k ≤ n, the sets
{i, j}, {i, k}, {j, k} appear in π either in the order {i, j}, {i, k}, {j, k} or in the order
{j, k}, {i, k}, {i, j}. The inversion set inv(π) ⊆ ([n]

3

)
of an admissible permutation

π is the set of 3-subsets of [n] whose 2-subsets appear in reversed lexicographic
order in π .

For example, inv({1, 2}{3, 4}{1, 4}{2, 4}{1, 3}{2, 3}) = {{1, 3, 4}, {2, 3, 4}}.

Definition 4 (Ziegler 1993) Let

B(n, 2) :=
{

inv(π) : π is an admissible permutation of
([n]

2

)}
. (7)

7 Maximal because it starts with the identity and ends with its reverse, and reduced because it has
minimum length (namely

(n
2
)
) among all the ones that start with the identity and end with its reverse.

The latter requirement is equivalent to allowing only increasing transpositions: . . . ij . . . → . . . ji . . .
with i < j.
8 The higher Bruhat orders B(n, k) are defined analogously on the set of permutations of k-subsets
of [n] (see Ziegler (1993)). Since we use only B(n, 2), we specialize the definitions to k = 2.
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Fig. 2 The weak Bruhat
order B(4, 1)
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The higher Bruhat order B(n, 2) is the partial order on B(n, 2) defined by the
transitive closure of single step set inclusion.9

Notice that the order is defined on inversion sets, not on the permutations
themselves. While the inversion set (a set of 2-subsets of [n]) of a permutation
of [n] determines the permutation uniquely, the inversion set (a set of 3-subsets
of [n]) of a permutation of

([n]
2

)
determines an equivalence class of permutations,

as illustrated below.
A maximal chain in the weak Bruhat order, when viewed as a permutation of

2-subsets, is admissible (Ziegler, 1993, Lemma 2.4). Moreover, every admissible
permutation of

([n]
2

)
can be naturally identified with a maximal chain in the weak

Bruhat order (Ziegler 1993, Theorem 4.1(A) Manin and Schechtmann 1989).
Since maximal chains in B(n, 1) can be thought of as maximal reduced decompo-
sitions, we have that admissible permutations of

([n]
2

)
, maximal chains in B(n, 1)

and maximal reduced decompositions are essentially equivalent objects. How
can we identify admissible permutations (or maximal chains in B(n, 1), or max-
imal reduced decompositions) that have the same inversion sets and thus are
mapped to the same element of B(n, 2)? Lemma 2.2 in Ziegler (1993) answers
this question: two admissible permutations of

([n]
2

)
have the same inversion set

if, and only if, they are equivalent in the equivalence relation induced by the
notion of elementary equivalence:

9 The higher Bruhat order B(n, 2) is the same as B⊆(n, 2), the set B(n, 2) partially ordered by set
inclusion Felsner and Weil (2000). Note, however, that the analogous statement does not hold for
all B(n, k) Ziegler (1993). Higher Bruhat orders have been shown to be closely related to other
combinatorial structures, such as hyperplane arrangements, tilings, and wiring diagrams.
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Fig. 3 The correspondences among permutations of
([n]

2
)
, maximal chains, and maximal reduced

decompositions

Definition 5 (Ziegler 1993, Definition 2.1; Manin and Schechtmann 1989, Defi-
nition 2.2) Two admissible permutations of

([n]
2

)
are elementarily equivalent if

they differ by an interchange of two disjoint neighbors.10

To summarize, we illustrate the correspondences among permutations of
2-subsets, maximal reduced decompositions, and maximal chains in the weak
Bruhat order.11 The weak Bruhat order B(4, 1) is shown in Fig. 2. Four maxi-
mal chains with their corresponding permutations of

([n]
2

)
and maximal reduced

decompositions are shown in Fig. 3, which the reader may find a useful reference
in later discussions as well. These four permutations of

([n]
2

)
are, in fact, equiva-

lent—they all have {{1, 3, 4}, {2, 3, 4}} as their inversion set. The union of the four
maximal chains is the subposet of B(4, 1) highlighted in Fig. 2. The permuta-
tions visited by the four maximal reduced decompositions are the permutations
in this highlighted subposet. When a set of maximal reduced decompositions
correspond to an equivalence class of permutations of

([n]
2

)
, we will call them

an equivalence class of maximal reduced decompositions. Theorem 1 states that
the permutations visited by an equivalence class of maximal reduced decompo-
sitions form an acyclic set.

Since equivalence classes of maximal reduced decompositions turn out to be
the central objects in our analysis, we would like to have a concise representa-
tion of them. In fact, an equivalence class of maximal reduced decompositions
can be represented in a particularly useful way as an arrangement of pseudolines.

10 The Lemma and the Definition are originally formulated for permutations of
([n]

k
)
, k ≥ 1, though

here we consider only the case k = 2. In general, the neighbors to be interchanged must have at
most k − 2 common elements.
11 See also Felsner (1997) on the correspondences among these objects.
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Fig. 4 The arrangement of
pseudolines corresponding to
s1s2s3s1s2s1
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2.1 Arrangements of pseudolines

We illustrate how one can represent an equivalence class of maximal reduced
decompositions as an arrangement of pseudolines12 by demonstrating it on the
example used in (6): s1s2s3s1s2s1. We associate a (pseudo-)line with each of the
numbers 1, 2, 3 and 4, and represent the starting permutation, 1234, by placing
them in that order. The numbers 4, 3, 2, 1 on the right indicate that the pseud-
olines will end up in that order after we carry out all the transpositions. The
first transposition, s1, corresponds to crossing the first and second pseudolines
(see Fig. 4). The next transposition is s2, so we cross the second and the third
pseudolines.13 Continuing this way, we cross the third and fourth pseudolines to
represent s3. In general, for si we cross the ith and i+1st pseudoline from the top.
After we carry out all the transpositions in the maximal reduced decomposition
s1s2s3s1s2s1, we get the arrangement of pseudolines shown in Fig. 4.

It is easy to see that, given a maximal reduced decomposition, one can con-
struct from it an arrangement of pseudolines the way we did above. But will
distinct maximal reduced decompositions result in distinct arrangements? The
example above reveals that the answer must be “no.” The maximal reduced
decomposition s1s2s1s3s2s1 would result in exactly the same arrangement—in
other words, switching the adjacent s1 and s3 does not change the arrangement.
In general, the maximal reduced decompositions that correspond to the same
arrangements of pseudolines are equivalent (Goodman and Pollack 1984). Thus
we can represent an equivalence class of maximal reduced decompositions as
an arrangement of pseudolines. It will be significant in Sect. 3.1 that the inver-
sion set I ∈ B(n, 2) corresponding to the equivalence class can be identified in
the arrangement as follows. The restriction of the arrangement to any triple
i < j < k will either look like an upward pointing triangle or like a downward
pointing triangle (Fig. 5). In the first case {i, j, k} is an inversion, while in the
second case it is not.

Though it is implicit in the above construction, we emphasize that the per-
mutations visited by an equivalence class of maximal reduced decompositions

12 The arrangements we consider are, in fact, simple numbered arrangements of pseudolines. For
more on arrangements and their relation to maximal chains See (Björner et al., 1993, Sect. 6.4) and
Grünbaum (1972), and for the correspondence between arrangements and elements of B(n, 2) see
Felsner and Weil(2000, p. 122).
13 Notice that we did not cross the pseudoline that is labelled 2, but, rather, the second pseudoline
from the top of the diagram, labelled 1 (with the third). See Fig. 4.
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Fig. 5 The set {i, j, k} is an
inversion in a but not in b
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can be recovered from its corresponding arrangement. Each such permuta-
tion corresponds to an additional pseudoline added to the arrangement, i.e. a
new pseudoline that crosses every other pseudoline exactly once. The permu-
tation corresponding to such a pseudoline is obtained by carrying out all the
transpositions that correspond to the vertices to the left of the new pseudo-
line. For example, the pseudoline in Fig. 6 corresponds to s1s2s1, i.e. to 3214.
Equivalently we could describe the permutation as the order in which the new
pseudoline crosses the four original pseudolines: first it crosses pseudoline 3,
then pseudoline 2, pseudoline 1 and pseudoline 4.

Another way to describe this idea is through defining a natural partial order
on the crossings of the arrangement of pseudolines.

Definition 6 Let Vn be the set of crossings of an arrangement of pseudolines A
on n strings. The natural partial order PA on the crossings Vn is the transitive
closure of the relation P0

A defined by

ij P0
A kl ⇐⇒ {i, j} ∩ {k, l} 	= ∅ (8)

and ij is to the left of kl on the pseudoline connecting them.

For example, the arrangement in Fig. 4 has V = {12, 13, 14, 23, 24, 34} as its
crossing set, and its natural partial order is the transitive closure of:

12 P0
W 13 (9)

13 P0
W 14

12 P0
W 23

23 P0
W 24

13 P0
W 23
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Fig. 7 The natural partial
order on the crossings of an
arrangement
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Figure 7 illustrates how the natural partial order is constructed. Drawing a new
pseudoline, as above, now determines an order ideal in the natural partial order.
For example, the new pseudoline drawn in Fig. 6 corresponds to the ideal gen-
erated by the crossing 23. Thus, in general, the lattice of ideals of the natural
partial order can be thought of as a partial order on the permutations visited by
the equivalence class of maximal reduced decompositions corresponding to the
arrangement. Moreover, as we show in Theorem 2, this lattice is a sublattice of
the weak Bruhat order.

3 “Large” acyclic sets

Abello (1991) and Fishburn Fishburn (1997, 2002) constructed “large” acyclic
sets using seemingly different approaches. We will show that both construc-
tions are based on the same basic idea, namely that permutations visited by
an equivalence class of maximal reduced decompositions form an acyclic set
(Theorem 1). Moreover, we show that the acyclic sets implicitly defined by
Abello are exactly the S.T.D.Cs described by Chameni-Nembua (Theorem 2).
In Theorem 3 we show that Fishburn’s alternating scheme is the set of per-
mutations visited by the equivalence class of a particular maximal reduced
decomposition, and we conjecture that it is the largest acyclic set obtainable
via this construction. Before we state our results, we describe the alternating
scheme and a useful generalization.

Fishburn (1997) noted that a set of permutations is acyclic if, and only if,
every triple 1 ≤ i < j < k ≤ n satisfies a never constraint of the form “a is never
bth in the restriction to {i, j, k},” where a ∈ {i, j, k} and b ∈ {1, 2, 3}.14 A never
constraint is written as

aNbijk. (10)

The alternating scheme is a set of such never constraints:

14 It is easy to see that this is equivalent to acyclicity (Definition 1).
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Definition 7 The alternating scheme is the following set of never constraints:15

for all 1 ≤ i < j < k ≤ n, jN3ijk if j is even (11)

jN1ijk if j is odd.

The following generalization of the alternating scheme will be useful.

Definition 8 Let U ⊆ ([n]
3

)
. The set of U-constraints is the following set of never

constraints:

for all 1 ≤ i < j < k ≤ n, jN3ijk if {i, j, k} /∈ U (12)

jN1ijk if {i, j, k} ∈ U.

In particular, the alternating scheme is the set of UA-constraints, where

UA = {{i, j, k}|1 ≤ i < j < k ≤ n and j is odd} . (13)

Every acyclic set described in this paper will satisfy a set of U-constraints
for some U ∈ B(n, 2). The following two theorems restate Abello’s (1991)
Theorem 3.2 (see also his Concluding Remarks), with a slight extension.
Theorem 1 is also easily deduced from Chameni-Nembua’s (1989) Theorem
3.6. For our purposes, it is useful to state and to prove these results using the
language of maximal reduced decompositions.

Theorem 1 The permutations visited by an equivalence class of maximal reduced
decomposition form an acyclic set.

Proof As discussed before and after Definition 5, equivalent maximal reduced
decompositions correspond16 to permutations of

([n]
2

)
with the same inversion

set. That is, all the maximal reduced decompositions in the equivalence class
can be written as permutations of

([n]
2

)
with the same inversion set, say I ⊆ ([n]

3

)
.

We will show that the permutations visited by this equivalence class of maximal
reduced decompositions satisfy the set of I-constraints. Suppose {i, j, k} ∈ I,
with 1 ≤ i < j < k ≤ n. Since {i, j, k} is an inversion, in any maximal reduced
decomposition in the equivalence class it must be that j and k are transposed
before i and j are. That is, any permutation visited by the equivalence class
satisfies the never constraint jN1ijk. A similar argument shows that for any
{i, j, k} /∈ I, with 1 ≤ i < j < k ≤ n, the never constraint jN3ijk is satisfied by all
permutations visited by the equivalence class. Thus these permutations satisfy
a set of never constraints and so they form an acyclic set. ��

Theorem 1 provides an explicit construction of large acyclic sets—but are
these the maximal acyclic sets that contain a maximal chain in the weak

15 Fishburn defines two “dually equivalent” Fishburn (1997) alternating schemes. For simplicity,
we introduce only one of these.
16 See Fig. 3.



256 Á. Galambos, V. Reiner

Bruhat order? Theorem 2 shows that they are. It also slightly strengthens
Abello’s result: a maximal acyclic set that contains a maximal chain in the weak
Bruhat order forms not only an upper semimodular sublattice of the weak
Bruhat order, but, in fact, a distributive sublattice. This proves that Abello’s
acyclic sets are the same as Chameni-Nembua’s S.T.D.Cs.

Theorem 2 Let C be a maximal chain in the weak Bruhat order B(n, 1) (consid-
ered as a partial order on permutations). The largest acyclic set of permutations
containing C is the set of permutations visited by the equivalence class of the
maximal reduced decomposition corresponding to C. This acyclic set forms a
distributive sublattice of B(n, 1).

Proof Let I ∈ B(n, 2) be the inversion set corresponding to C. We have shown
in Theorem 1 that the set of permutations visited by the equivalence class of
the maximal reduced decomposition corresponding to C form an acyclic set. In
particular, all these permutations satisfy the set of I-constraints. The following
Claim shows that no other permutation satisfies all the I-constraints.

Claim Let U ⊆ ([n]
3

)
be an element of the higher Bruhat order B(n, 2) (i.e. U

is an inversion set). If a permutation π of [n] satisfies the set of U-constraints,
then it is one of the permutations visited by the commuting equivalence class of
maximal reduced decompositions that corresponds to U. That is, it is a permuta-
tion of some maximal reduced decomposition that corresponds to an admissible
permutation (of

([n]
2

)
) with inversion set U.

proof of Claim By Lemma 2.2 of Ziegler (1993) we only need to show that
the inversion set I ⊆ ([n]

2

)
of π constitutes an ideal in the poset Q that is the

intersection of all admissible orders with inversion set U. It is easy to see that
Q is the transitive closure of the following relations: for all 1 ≤ i < j < k ≤ n,

{i, j}Q{i, k} and {i, k}Q{j, k} if {i, j, k} /∈ U, (14)

{j, k}Q{i, k} and {i, k}Q{i, j} if {i, j, k} ∈ U. (15)

By Lemma 2.4 in Ziegler (1993), for all 1 ≤ i < j < k ≤ n, the inversion set of
any permutation can include only an initial or a final segment of {i, j}, {i, k}, {j, k}.
Since π satisfies the set of U-constraints, its inversion set must include an initial
segment of {i, j}, {i, k}, {j, k} if {i, j, k} /∈ U, and a final segment of {i, j}, {i, k}, {j, k}
if {i, j, k} ∈ U. Since Q is defined by (14) and (15), this proves that the inversion
set of π is indeed an ideal in Q.

To show the second claim in the Theorem, consider the arrangement of pseud-
olines representing the equivalence class of maximal reduced decompositions.
The permutations visited by the equivalence class correspond to ideals of the
natural partial order of this arrangement. Thus the lattice of ideals is a par-
tial order (a lattice) on these permutations. By definition, this lattice orders
the inversion sets of the permutations by inclusion, so it is a sublattice of the
weak Bruhat order. Since it is a lattice of ideals, by Birkhoff’s Theorem it is
distributive. ��
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Fig. 8 The alternating
scheme
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2

14

3

2

1

Theorem 2 and its proof suggest a new algorithm for constructing acyclic
sets of the Abello/Chameni-Nembua kind. Start with a maximal chain in the
weak Bruhat order; derive the natural partial order from its corresponding
arrangement of pseudolines; construct the lattice of ideals of the natural partial
order.

Now we show that the alternating scheme also fits naturally in the framework
just described.

Theorem 3 The alternating scheme is the set of permutations visited by an equiv-
alence class of maximal reduced decompositions.

Proof Recall that the alternating scheme is the set of UA constraints, where

UA = {{i, j, k}|1 ≤ i < j < k ≤ n and j is odd} . (16)

We will show that UA ∈ B(n, 2). In light of Theorems 1 and 2 and their proofs,
this will prove the Theorem. Part of Ziegler’s main theorem in Ziegler (1993,
Theorem 4.1, part B) provides a simple characterization17 of subsets of

([n]
3

)
that

are elements of B(n, 2): a set of three-subsets U ⊆ ([n]
3

)
is an element of B(n, 2)

if, and only if, for any {p, q, r, s} with 1 ≤ p < q < r < s ≤ n the intersection of
U with the quadruple ({p, q, r}, {p, q, s}, {p, r, s}, {q, r, s}) is either a beginning or
an ending segment of the quadruple. We now show that this holds for UA: if q
and r are even, the intersection is empty; if they are both odd, the intersection
is all four elements; if q is odd, but r even, then the intersection is the first two
elements; in the symmetric case it is the last two. Thus we have verified that
UA ∈ B(n, 2). ��

We illustrate the above results with the alternating scheme for n = 4. The
arrangement of pseudolines corresponding to it is shown in Fig. 8.

We can find the inversion set (and thus the element of the higher Bruhat
order B(n, 2)) that this arrangement corresponds to: the pseudolines 1, 3 and 4
make a triangle that points up (Fig. 9), and so {1, 3, 4} is part of the inversion
set corresponding to any maximal reduced decomposition represented by this
arrangement. Similarly, {2, 3, 4} is an inversion. On the other hand, the pseudo-
lines 1, 2 and 4 make a downward pointing triangle (Fig. 10), and {1, 2, 4} is not

17 Ziegler’s characterization is for higher Bruhat orders B(n, k) — we state it for B(n, 2) only.
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Fig. 9 Strings 1, 3 and 4 make
an upward pointing triangle

1

1

2

3

4

2

3

4

Fig. 10 Strings 1, 2 and 4
make a downward pointing
triangle

1

2

3

4

2

3

4

1

Fig. 11 The natural partial
order on the set of crossings

1

2

3

4

2

1

3

4

an inversion. Similarly, {1, 2, 3} is not an inversion. Thus this arrangement cor-
responds to the element {{1, 3, 4}, {2, 3, 4}} of B(n, 2). The natural partial order
of this arrangement is shown in Fig. 13, and Fig. 11 shows it embedded in the
arrangement.

The lattice of ideals of the natural partial order is shown in part (b) of Fig. 12.
Part (a) of Fig. 12 illustrates that each ideal may be identified with the initial seg-
ment of a (non-unique) maximal reduced decomposition corresponding to the
arrangement. As shown above, the maximal reduced decompositions identified
with the top element in part (a) of the figure constitute an equivalence class. If
we replace the initial segments of the maximal reduced decompositions with the
permutations they generate, i.e. if we identify each element of the lattice with a
permutation, we get the sublattice of the weak Bruhat order B(4, 1) described
in Theorem 2—this sublattice is shown in part (c) of Fig. 12 and is highlighted
in Fig. 2.
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Fig. 12 The lattice of ideals of the natural partial order

3.1 Enumerating the alternating scheme

Our method of enumerating the permutations that satisfy the alternating scheme
of Fishburn (2002) amounts to deriving the cardinality of the lattice of ide-
als of the natural partial order of the arrangement of pseudolines that corre-
sponds to the inversion sets UA (see (13)). For example, the arrangement in
Fig. 8 corresponds to the inversion set of the alternating scheme when n = 4:
{{1, 3, 4}, {2, 3, 4}}. Thus we can enumerate the permutations satisfying the alter-
nating scheme by counting the ideals of the poset in Fig. 13. There are nine
such ideals, and, indeed, the cardinality of the alternating scheme is nine when
n = 4. Because the natural partial order of an arrangement of pseudolines cor-
responding to the alternating scheme is very regular, we can pursue the same
strategy to derive a general formula.

We illustrate the approach for n = 8. The arrangement corresponding to
the alternating scheme is shown in Fig. 14. The regularity of the diagram is not
coincidental: every arrangement corresponding to the alternating scheme for
even n will look like this. To see why, notice that even numbered pseudolines
must move up first, because they are in the middle of non-inversions. Then
they must cross every smaller pseudoline before they cross any of the larger
ones. Odd pseudolines must move down first, because they are in the middle

Fig. 13 The natural partial
order

s1

s
2

s3

s1 s3

s2

a) b)

23

1324

14

3412
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1
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6
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4
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1

Fig. 14 The arrangement for the alternating scheme when n = 8. The natural partial order is
highlighted. An ideal can be identified by its upper boundary

of inversions. Then they must cross every larger pseudoline before they cross
any of the smaller ones. The natural partial order is highlighted in Fig. 14. To
enumerate the alternating scheme, we must count the ideals of this poset. An
ideal can be identified by its upper boundary, as shown in Fig. 14.

The empty ideal, however, cannot be represented by such a boundary, and
neither can any of the ideals consisting of fewer than four of the elements in the
bottom rank. To correct this, we add two extra ranks at the bottom, extending
the arrangement and the natural partial order as in Fig. 15. We can represent
the empty ideal by the boundary shown in Fig. 15. Now every ideal may be rep-
resented by its boundary, that is, by a lattice path in the arrangement that starts
on the top and proceeds downward until it reaches the bottom. In other words,
every ideal corresponds to a path from one of the circled points on the top to
one of those circled on the bottom (Fig. 16). This means that enumerating the
set of permutations that satisfy the alternating scheme amounts to counting the
paths from top to bottom in the extended version of the natural partial order of

Fig. 15 The natural partial
order, extended so that the
empty ideal can be
represented as a lattice path
(drawn thick)
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Fig. 16 Representing ideals
as paths

the arrangement. We use standard lattice path enumeration techniques to sum
these paths, and then manipulate the resulting sums to obtain the formula in
the following Theorem.

Theorem 4 The cardinality of the alternating scheme is

An = 2n−3 (n + 3) −
⎧
⎨

⎩

(n−2
n
2 −1

) (
n − 3

2

)
for even n

(n−1
n−1

2

) (
n−1

2

)
for odd n

(17)

Proof We will prove the theorem for even n—the case of odd n is very similar.
The extended version of the natural partial order of the arrangement for n even
will be just like that shown in Fig. 16, with n

2 + 1 circled starting points on the
top (and the same number of ending points on the bottom). The length of a
path will be n − 2. Using standard lattice path counting techniques (explained
below), we will obtain

An = A1
n − A2

n − A3
n (18)

where

A1
n :=

n
2 +1∑

i=1

n
2 +1∑

j=1

(
n − 2

n
2 − 1 + |i − j|

)
(19)

A2
n :=

n
2 +1∑

i=1

n
2 +1∑

j=1

(
n − 2

n
2 + i + j − 2

)

A3
n :=

n
2 +1∑

i=1

n
2 +1∑

j=1

(
n − 2

n
2 + n − i − j + 3

)
.

A1
n counts the paths that start from some crossing on the top and end at a

crossing on the bottom. We must subtract A2
n and A3

n, the cardinalities of the
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paths that go beyond the diagram (Fig. 16) on the right or on the left. The above
formulae for A2

n and A3
n follow from the reflection principle (Stanton and White

1986, p. 130).
Each of these can be summed using two consequences of the Binomial

Theorem (for even N):

N∑

k= N
2 +1

(
N
k

)
= 1

2

[
2N −

(
N
N
2

)]
(20)

and
N∑

k= N
2 +1

k
(

N
k

)
= N

2
2N−1. (21)

We now derive the formula for A1
n:

A1
n =

n
2 +1∑

i=1

n
2 +1∑

j=1

(
n − 2

n
2 − 1 + |i − j|

)
(22)

= −
(n

2
+ 1

) (
n − 2
n
2 − 1

)
+

n
2∑

k=0

2
(n

2
+ 1 − k

) (
n − 2

n
2 − 1 + k

)

where here we have used the fact that |i − j| takes on each value k in the range
[0, n

2 ], and it takes on each such value k (except for k = 0) exactly 2
(n

2 + 1 − k
)

times. Continuing, one has

A1
n = −

(n
2

+ 1
) (

n − 2
n
2 − 1

)
+

n−2∑

l= n
2 +1

2 (n − l)
(

n − 2
l

)

= −
(n

2
+ 1

) (
n − 2
n
2 − 1

)
+ 2n

(
2n−3 + 1

2

(
n − 2
n
2 − 1

))

− (n − 2) 2n−3 − (n − 2)

(
n − 2
n
2 − 1

)

= 2n−3 (n + 2) +
(

1 − n
2

)(
n − 2
n
2 − 1

)
.

Similar algebraic manipulation gives us

A2
n =

(
n
4

− 1
2

) (
n − 2
n
2 − 1

)
(23)

A3
n = 2n−3

(n
2

− 1
)

− n
4

(
2n−2 −

(
n − 2
n
2 − 1

))
. (24)
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Thus we have

An = A1
n − A2

n − A3
n (25)

= 2n−3 (n + 3) −
(

n − 2
n
2 − 1

)(
n − 3

2

)
.

��

3.2 A conjecture and some comments on upper and lower bounds

Fishburn conjectured (Fishburn 1997, Conjecture 2) that among acyclic sets that
do not use an N2 (or “never second”) constraint, the alternating scheme has
maximum cardinality. The following conjecture is a weakening of his.

Conjecture 1 Among acyclic sets that are the permutations visited by some
equivalence class of maximal reduced decompositions, the alternating scheme
has maximum cardinality.

This conjecture is based on intuition from enumerating the alternating
scheme in the particular way we described above. Fishburn has shown that
for n ≤ 6, the alternating scheme achieves maximum cardinality, which implies
Conjecture 1 above for those cases. We have checked that Conjecture 1 also
holds for n = 7.

Abello showed Abello (1991) that, for n alternatives, acyclic sets containing
a maximal chain in the weak Bruhat order B(n, 1) have cardinality less than
Cn = 1

n+1

(2n
n

)
, the nth Catalan number. If our Conjecture 1 is true, the max-

imum cardinality of such acyclic sets is much smaller; in fact, asymptotically
An/Cn → 0. (Using Stirling’s Approximation, it is easy to see that asymptoti-

cally An ≈ 2nn(1 −
√

2
πn ) ≈ 2nn, while Cn ≈ 4n

√
πn

3
2

.)

The best lower bound known is due to Fishburn (1997). Suppose we have
an acyclic set of cardinality K on k alternatives. Fishburn showed in Fishburn
(1997)18, using the replacement scheme, that for all large n, an acyclic set of

cardinality
(

K
1

k−1

)n
can be constructed. Listing An up to 25 with the corre-

sponding factors (An)
1

n−1 , he concludes that the best known lower bound is

given by (A11)
1
10 = 2.17082: acyclic sets of cardinality 2.17082n can be con-

structed for all large n. Using (17), we can confirm that this is indeed the best
lower bound obtainable from the alternating scheme using Fishburn’s method.
It is easy to see that An+2/An is between 4 and 5, quickly approaching 4. Thus

the factor (An)
1

n−1 is monotonically decreasing after n = 11, where it achieves
its maximum.

18 See also Craven (1994).
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