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Abstract We consider 3-candidate elections under a general scoring rule and
derive precise conditions for a given voting situation to be strategically manip-
ulable by a given coalition of voters. We present an algorithm that makes use
of these conditions to compute the minimum size M of a manipulating coali-
tion for a given voting situation. The algorithm works for any voter preference
model — here we present numerical results for IC and for IAC, for a selection
of scoring rules, and for numbers of voters up to 150. A full description of the
distribution of M is obtained, generalizing all previous work on the topic. The
results obtained show interesting phenomena and suggest several conjectures.
In particular we see that rules “between plurality and Borda” behave very
differently from those “between Borda and antiplurality”.

1 Introduction

Following the proofs by Gibbard (1973) and Satterthwaite (1975) that every rea-
sonable voting rule can be manipulated, several authors have tried to quantify
the probability of such an event, under various assumptions on the distribution
of voter opinions. These papers have differences in: the definition of manipu-
lability; the measure of manipulability; the assumptions on voter preferences;
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whether the answers sought are exact (either derived via numerical computation
or via an analytic formula for a fixed number of voters) or asymptotic (as the
number of voters grows large). They also differ markedly in their generality
and mathematical sophistication.

The present article considers in detail the problem of coalitional manipula-
tion of a positional voting rule. Our aims throughout are generality, simplicity
and rigour. We consider a general positional voting rule, derive linear equations
and inequalities describing exactly whether or not a given voting situation is
manipulable by a given subset of the voters, and use these to show how to
efficiently compute the minimum size of a manipulating coalition. We present
numerical results based on enumeration of the manipulable voting situations,
for positional voting rules in the 3-alternative case. This allows a complete
picture of the distribution of the size of a minimum manipulating coalition
for moderate numbers of voters, and suggests various conjectures about the
asymptotic behaviour.

The layout of the paper is as follows. In the remainder of this section, we
outline in detail our basic assumptions and definitions. In Sect. 2 we derive the
linear systems mentioned above, and solve them analytically as far as possible.
In Sect. 3 we describe our enumeration algorithm and its implementation. In
Sect. 4 we present a selection of interesting numerical results obtained using
our program. In Sect. 5 we further discuss the significance of these results and
discuss the relationship between our work and that of other authors. Finally, in
Sect. 6 we discuss possible extensions and future work.

Impatient readers may wish to jump straight to the linear conditions in Fig. 1,
read Theorem 2.3, peruse the tables and graphs in Sect. 4 and then go on to the
open problems in Sect. 6.

1.1 Basic definitions

We suppose that there are m alternatives or candidates a1, . . . , am for an elec-
tion. We deal fully only with the case of m = 3 alternatives, but much of our
methodology carries over to general m (however when m ≥ 4, exhaustive com-
putation of exact results rapidly becomes infeasible for even moderate values
of n). We usually write a, b, c instead of a1, a2, a3.

Definition 1 A profile is specified by giving an opinion or preference (a linear
ordering of the alternatives) for each voter.

There are m! different possible opinions, which in our case we order lexico-
graphically in the usual way: for m = 3 this is abc, acb, bac, bca, cab, cba.

Definition 2 The above ordering of opinions induces a partition of the set V of
voters into subsets V1, . . . , Vm!. We write νi for the cardinality of Vi. For each
subset X ⊆ V , the above partition of V induces a corresponding partition of X,
and we write xi for the cardinality of Xi := V ∩ X. The m!-tuple (ν1, . . . , νm!) is
called the voting situation corresponding to the voters’ preferences. The set of
all possible voting situations we denote by S.
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Remark 1 The cardinality of S is given by the binomial coefficient
(n+m!−1

n

)
,

where n = |V| is the number of voters. For m = 3 this number is asymptotically
of order n5, whereas the number of profiles is n!.

For voting rules which are anonymous (invariant under all permutations of
the set V of voters), we need only consider voting situations, not profiles. We
shall do this throughout.

Definition 3 A positional or scoring rule is defined for a given m by a real
m-tuple w whose entries are in (not necessarily strictly) decreasing order. Alter-
native k receives score wi from a voter v if and only if k is in position i of v’s
preference order. The total score |k| of k is obtained by summing the scores
given to k by each voter. The alternative with highest total score wins.

Definition 4 The scoreboard associated to a voting situation σ is the m-tuple
of scores (|a1|, . . . , |am|). We denote by α the score map sending an element of
S to the associated scoreboard.

Remark 2 In the case m = 3 we have

|a| = w1(ν1 + ν2) + w2(ν3 + ν5) + w3(ν4 + ν6);

|b| = w1(ν3 + ν4) + w2(ν1 + ν6) + w3(ν5 + ν2); (1)

|c| = w1(ν5 + ν6) + w2(ν2 + ν4) + w3(ν1 + ν3).

1.2 Tie-breaking for positional rules

All positional rules contain the possibility of tied scores for first place. In this
event, a separate tie-breaking rule will be needed. One common tie-break-
ing rule is to resort to a pre-determined arbitrary order (for example, lexi-
cographic order, or the French practice of allowing the oldest candidate to
prevail). Though simple to implement, this is not always so convenient for anal-
ysis. Another method is to give one of the voters a casting vote. However, this is
even less tractable from a theoretical point of view, as it means that the winner
can no longer always be determined from the voting situation only, but may
require consultation of the full profile.

Here we will use the random tie-breaking method. That is, in the event of a
tie, the winner will be chosen at random, with all candidates with the maximum
score being equally likely to be chosen. This method complicates the voting
by introducing probabilistic considerations, and of course does not yield a vot-
ing rule in the classical deterministic sense. However, it has the great advantage
that it preserves the symmetry among candidates (such rules are called neutral).
This is important for the large-scale computational studies undertaken in this
paper, as the symmetry can be exploited to reduce the amount of work required.
Furthermore, it can be strongly argued that such a tie-breaking method is fairer
than any method that breaks the symmetry between candidates.



490 G. Pritchard, M. C. Wilson

1.3 Manipulation

We present below the basic definitions used throughout this article. There are
many other concepts of manipulability; we discuss this further in Sect. 5.

Definition 5 Fix a voting rule. We define manipulability of a voting situation in
stepwise fashion as follows.

– Let π be a profile. We say that π ′ is preferred to π by voter v if for each
k = 1, . . . , m the probability of electing one of v’s most-favoured k candi-
dates under π ′ is no less than under π . (If π ′ �= π , the condition implies
that this probability will be strictly greater for some k.)

– a subset X ⊆ V is a manipulating coalition at the profile π if and only if
there is a profile π ′ �= π which agrees with π on V \ X and is preferred to
π by all members of X;

– a rule is manipulable at the profile π if and only if there exists a manipulating
coalition at this profile;

– A rule is manipulable at a voting situation σ if and only if there exists a
profile π giving rise to σ , at which the rule is manipulable.

Note in particular that a voter will never prefer to increase the probability
of electing the candidate he favours least, or to decrease the probability of
electing the candidate he favours most. In three-candidate elections, these two
conditions constitute a full description of the preference rule.

Remark 3 Note that if π and π ′ yield clear winners a and a′ respectively, then
v prefers π ′ to π if and only if v prefers a′ to a. The extra generality in our defi-
nition is necessary because of the symmetric tie-breaking rule we are using. In
standard probability language, π ′ is preferred to π if and only if the probability
distribution on candidates associated with π ′ dominates that associated with π

in the sense of stochastic order.

Example 1 (manipulation) Consider the plurality rule defined by the weight
vector (1, 0, 0), and an election in which sincere preferences are such that four
voters have the opinion abc, three have the opinion bca, and two have the
opinion cab. The scoreboard is then (4, 3, 2) and a is the sincere winner.

The subset consisting of all the bca and cab voters can manipulate. Indeed, if
the bca voters vote strategically as cba and the cab voters continue to vote cab,
then the original winner a is replaced by c. Each of the types of voters in the
coalition prefers the new election outcome to the sincere one.

Note that no manipulation in favour of b is possible in this situation, since
the only voters preferring b to a are already contributing the maximum score
to b and the minimum to a.

Example 2 (manipulation involving ties) Consider the Borda rule, defined by
the weight vector (2, 1, 0), and an election in which sincere preferences are such
that one voter has the opinion abc, three voters have the opinion acb, four
voters have opinion bac, and three voters have opinion cba. The scoreboard is
then (12, 12, 9).
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Table 1 Manipulation of three-candidate elections

Sincere outcome Manipulated outcome Possible? Coalition member types Type

1. |a| > |b| ≥ |c| (i) b wins Yes bac, bca, cba (prefer b to a) I
(ii) a, b tie Yes bac, bca, cba (prefer b to a) I
(iii) c wins Yes cab, cba, bca (prefer c to a) I
(iv) a, c tie Yes cab, cba, bca (prefer c to a) I
(v) b, c tie No
(vi) 3-way tie No

2. |a| = |b| > |c| (i) a wins Yes abc, acb, cab (prefer a to b) II
(ii) b wins Yes bac, bca, cba (prefer b to a) II
(iii) c wins No
(iv) a, c tie Yes cba, cab, acb (prefer c to b) III
(v) b, c tie Yes cab, cba, bca (prefer c to a) III
(vi) 3-way tie No

3. |a| = |b| = |c| Any No

The subset consisting of all acb and cba voters can manipulate. If all of them
change their votes to cab, then the new scoreboard becomes (12, 9, 12). Note
that all members of the coalition prefer c to b and hence prefer this election
outcome in the sense of stochastic order. The winning probability distribution
on the candidates has changed from (1/2, 1/2, 0) to (1/2, 0, 1/2).

Example 3 (minimal manipulation) Consider the rule with weight vector
(4, 3, 0) and the voting situation in which the opinion acb is held by one voter,
and the opinions abc, bac, cab, and cba are each held by two voters. The score-
board is (24, 20, 19). A manipulating coalition can be formed by the two cba
voters and one of the bac voters (who all change their vote to bca, thus handing
victory to b). The reader may verify that this coalition is minimal, that is, that no
coalition with fewer than three members can manipulate. (A coalition of one
cba and one bac could achieve a 3-way tie, but this is not a preferred outcome
for the bac voter.)

2 Manipulation of scoring rules in the three-alternative case

For a fixed scoring rule defined by its weight vector w, a fixed voting situation σ ,
and a fixed subset X ⊆ V , we shall determine whether X is a valid manipulating
coalition with the power to change the outcome of the election. Without loss
of generality, the voting situation σ is such that the candidates’ scores are in
non-decreasing order: |a| ≥ |b| ≥ |c|. The possible types of manipulations are
itemized in Table 1.

We note that there are three essentially different kinds of manipulation possi-
ble. In cases 1(i), 1(ii), 1(iii), and 1(iv), there is a clear winner, and manipulation
is in favour of one of the other candidates, who is promoted to clear or joint
winner. These manipulations we call Type I. In cases 2(i) and 2(ii), there is a
tie for first place, and one of the tied candidates is promoted to sole winner by
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manipulation. These we call Type II manipulations. In cases 2(iv), 2(v), there is
a tie for first place, and the bottom candidate is promoted to tie with one of the
original winners. These we call Type III manipulations.

As noted in Table 1, some types of manipulations never occur. We deal with
these first.

Theorem 2.1 For a three-candidate positional voting rule, no valid coalition can
ever manipulate the outcome in any of the following ways.

(i) If a is the sincere winner: creation of a tie between the other two candidates
b and c.

(ii) If the sincere outcome is a tie between a and b: promotion of the third
candidate c to the status of sole winner.

(iii) If the sincere outcome is a tie between all three candidates: creation of any
other outcome.

(iv) Under any circumstances: creation of a tie between all three candidates.

Proof Suppose that a is the sincere winner. A coalition to create a tie between
b and c must consist entirely of voters who prefer both b and c to a (types bca
and cba). Other voter types will not prefer the b, c tie to a clear win for a in the
sense of stochastic order, because it has a higher probability of electing their
least-favoured candidate. These voters are already contributing w3 (the mini-
mum possible) to the score of a, so no strategic voting by them can decrease the
score of a. Similarly, they are already contributing (w1 + w2)/2 (the maximum
possible) to the average score of b and c, so no strategic voting by them can
increase that average score. Hence, they are unable to bring about any situation
in which the average score of b and c exceeds the score of a. In particular, the
scores of b and c cannot be made equal and greater than a’s score.

The other cases are handled by similar arguments. For (ii), the only possible
coalition members are those who prefer c to both a and b. For (iii), there are
two sub-cases. Making any single candidate the sole winner will be preferred
only by voters who rank that candidate first, while creation of any two-way tie
will be preferred only by voters who rank the other candidate in last place. For
(iv), if there is a sincere sole winner then the three-way tie will be preferred only
by voters who ranked that candidate last. If the sincere outcome is a two-way
tie, the three-way tie will be preferred only by voters who ranked the other
candidate first. ��

2.1 Linear conditions describing manipulability

We now turn to the class of possible manipulations described in Table 1. We
shall derive linear systems of equations and inequalities that describe exactly
which voting situations are manipulable. Each of the types I–III need only be
analysed once, since the other cases of the same type are obtained by applying an
appropriate transposition of the candidates. We consider the type I case where
|a| > |b| ≥ |c| and manipulation is in favour of b, the type II case |a| = |b| > |c|
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Fig. 1 Integer linear systems describing type I and type II manipulability by a given coalition. The
coalition X can manipulate if and only if there exist y1, y2 satisfying these conditions

where manipulation is in favour of b, and the type III case |a| = |b| > |c| where
manipulation is in favour of c.

To save space we shall write wi − wj as wij from now on. Suppose that a
manipulating coalition X contains xi voters of type i (i = 1, . . . , 6). We first
consider the type I and type II manipulations — the results are displayed in
Fig. 1. All members of X must prefer b to a, so we have x1 = x2 = x5 = 0. It
is clear that if manipulation is possible at all, it is certainly achievable by each
voter ranking b first (this is a dominant strategy for such voters).

Let y1, y2 denote the numbers of voters who strategically vote bac, bca. The
strategic scores then become |a|′, |b|′, |c|′, where

|a|′ = |a| + (y1 − x3)w2 + (y2 − x4)w3 − x6w3;

|b|′ = |b| + (y1 − x3)w1 + (y2 − x4)w1 − x6w2;

|c|′ = |c| − (y1 − x3)w3 + (y2 − x4)w2 − x6w1.

For b to become the sole winner, or tie with a, it is necessary and sufficient that
the inequalities |b|′ ≥ |a|′, |b|′ > |c|′ be satisfied. We also know that y1 + y2
equals the size of the coalition. These conditions immediately yield the first
system shown in Fig. 1. The type II analysis is very similar and yields the second
system of Fig. 1.

The other cases may be obtained by applying a permutation: a ↔ b induces
the permutation x1 ↔ x3, x2 ↔ x4, x5 ↔ x6, while the transposition b ↔ c
induces the permutation x1 ↔ x2, x3 ↔ x5, x4 ↔ x6.

The manipulations denoted in Table 1 as “Type III” are more complex.
These are rare manipulations in which a tie is replaced with another tie (see
Example 2). Members of a coalition manipulating in this way have no obvious
dominant strategy: since the goal is to match two candidates’ scores exactly, any
of the six possible candidate orderings could potentially be a useful strategic
vote. We shall see below (Theorem 2.2) that for the purposes of this article
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we may ignore type III manipulations. However, we record the defining linear
system in Section 6 for possible future use.

It turns out that we need never consider type III manipulations to determine
whether a situation is manipulable, or to compute the minimum size of a manip-
ulating coalition. We now prove this.

Lemma 1 If w = (1, 0, 0) (plurality rule) or w = (1, 1, 0) (antiplurality rule), type
III manipulations are never possible.

Proof By symmetry we need only consider the case where the sincere result is
|a| = |b| > |c| and we seek to being about a result |a| = |c| > |b|. Only voters
with opinions cab, cba or acb would prefer the manipulated outcome. First con-
sider plurality. No strategic action by these voters can increase (|a| + |c|)/2 or
decrease |b|. Similarly in the antiplurality case, none of the willing voters can
decrease (|a| + |b|)/2 or increase |c|. Thus in no case can c be promoted above
b to tie with a. ��
Theorem 2.2 If a voting situation is type III-manipulable by a coalition X, then
it is also type II-manipulable by a subset of X.

Proof We may assume by Lemma 1 that we are dealing with neither plural-
ity nor antiplurality. By symmetry we need only consider the situation when
|a| = |b| > |c| and we seek to bring about a tie between a and c, with b the clear
loser. Suppose that X is a coalition that can manipulate the outcome by means
of type III manipulations. We have x1 = x3 = x4 = 0.

If x6 �= 0 then the coalition consisting of a single cba from X may strategically
vote bca, promoting b to sole winner. Similarly if x5 �= 0 then a single cab may
vote acb, promoting a to sole winner. Finally, we cannot have x6 = x5 = 0, since
no strategic action by voters of type acb can increase |a| − |b|. ��

2.2 Minimum coalition size

In the present article, we are chiefly interested in whether a given situation is
manipulable by some coalition, and if so, what is the minimum size of a manip-
ulating coalition. As we have seen, these questions may be reduced to integer
linear programs of the form

min f (x)

s.t. (x, y) ∈ R2

x ∈ Z
M, y ∈ Z

N , (I(Z, Z))

where f (x) = ∑M
i=1 xi, R2 is a linear polytope, and for three candidates M = 6

and N = 2. (The linear conditions defining R2 may include both strict and non-
strict inequalities.) The situation is manipulable (in the particular way being
considered) if and only if I(Z, Z) is feasible; the optimal value of I(Z, Z) gives
the minimum coalition size.
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Exact solution of such problems requires substantial computation in the
worst case. Of course, we are dealing with a very small problem. However, sev-
eral such problems must be solved for each voting situation, so it is important
that they be solved as efficiently as possible. We shall now discuss this issue in
detail.

Consider I(Z, Z). To begin with, define the following simpler problem.

min f (x)

s.t. x ∈ R1

x ∈ R
M, (P(R))

where R1 = {x ∈ R
M | ∃y ∈ R

N with (x, y) ∈ R2}. Geometrically, R1 is the
projection of the polytope R2 onto the subspace where all yj are zero, and so it
is also a linear polytope. The problem P(R) is thus a linear program; a relatively
tractable problem. It is possible to derive R1 from R2 using the Fourier–Motzkin
algorithm Schrijver (1986).

We now list some obvious but useful relations between the integer program
I(Z, Z) and the projection P(R). In the Lemma below, note that the optimum
of P(R) may not be attained if there are strict inequalities in the definition of
R1; if the optimum is attained then its value is of course m.

Lemma 2 (relation between I(Z, Z) and P(R)) The following facts hold.

1. If P(R) is infeasible, then so is I(Z, Z).
2. Suppose that P(R) is feasible and let p = inf{f (x) : x ∈ R1}. Let (x, y) ∈ R2

be an integer point. If either of the following conditions hold, then (x, y) is
optimal for I(Z, Z).
– P(R) attains its optimal value and f (x) = �x�
– P(R) does not attain its optimal value and f (x) ≤ p + 1

Proof Clear from the definitions. ��

We now derive explicit descriptions of R1 and R2. The results are summarized
in the following theorem.

Theorem 2.3 (constraints defining P) Let X be a manipulating coalition for
a given voting situation. Let xi be the number of members of X of type i, for
i = 1, . . . , 6. Then

1. if |a| > |b| ≥ |c|, then

0 = x1 = x2 = x5

|a| − |b| ≤ w23x3 + w12x6

|a| − 2|b| + |c| < 3w12x6 (PROJ: Ib)
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or

0 = x1 = x2 = x3

|a| − |c| ≤ w23x5 + w12x4

|a| − 2|c| + |b| < 3w12x4 (PROJ: Ic)

2. if |a| = |b| > |c|, then

0 = x1 = x2 = x5

0 < w23x3 + w12x6 (PROJ: IIb)

or

0 = x3 = x4 = x6

0 < w23x1 + w12x5 (PROJ: IIa)

3. it cannot be the case that |a| = |b| = |c|.
Proof We derive the conditions on x in each case by systematically applying
Fourier–Motzkin elimination.

Consider the constraints for Case 1(i)/1(ii) displayed in (P:Ib). First use the
equality constraint to eliminate y2. This yields the equivalent system

|a| − |b| ≤ w23x3 + w12x6 + w32y1 (IP: I’b)

|c| − |b| < w32x3 + 2w12x6 + w23y1

0 ≤ x3 + x4 + x6 − y1

0 ≤ xi ≤ νi for 1 ≤ i ≤ 6 (2)

0 ≤ y1

all xi and y1 are integers.

We now relax the condition on y1 to y1 ∈ R. For each pair of inequalities
where the coefficient of y1 occurs with different signs, we form a new inequal-
ity not involving y1 by forming the appropriate positive linear combination of
inequalities. This yields

|a| − |b| ≤ w23x3 + w12x6

|c| − |b| < w23x4 + (2w12 + w23)x6

|a| − 2|b| + |c| < 3w12x6

0 ≤ x3 + x4 + x6

0 ≤ xi ≤ νi for 1 ≤ i ≤ 6

all xi are integers.
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The second and fourth inequalities are redundant since |b| > |c| and all xi are
nonnegative. Thus we obtain the stated system (PROJ: Ib). The Case 1(iii)/(iv)
conditions are derived similarly and displayed in (PROJ: Ic).

Now consider Case 2(ii), whose integer linear system is displayed in (IP: II’b).
A completely analogous argument to the previous case yields the inequalities
in (PROJ: IIb). We obtain the equivalent system

0 < w23x3 + w12x6 + w32y1 (IP: II’b)

|c| − |b| < w32x3 + 2w12x6 + w23y1

0 ≤ x3 + x4 + x6 − y1

0 ≤ xi ≤ νi for 1 ≤ i ≤ 6 (3)

0 ≤ y1

all xi and y1 are integers.

and then the system (PROJ: IIb) by Fourier–Motzkin elimination. Similarly,
Case 2(i) yields the system (PROJ: IIa). ��

The linear programs in Theorem 2.3, along with Lemma 2 can be used
as a shortcut to solve the integer programs of form I(Z, Z). However, cau-
tion is required: a feasible point for P(R), even if it has integral coordinates,
need not correspond to any feasible point for I(Z, Z). Indeed, it is possible
for a solution to P(R) (with integral coordinates) to exist even when the
original problem I(Z, Z) is infeasible, as demonstrated by Example 4 below.
This has apparently not been noticed by previous authors, perhaps because of
Theorem 2.4 below, which covers the three most commonly studied rules,
namely the plurality, antiplurality and Borda rules.

Example 4 (P(R) feasible but I(Z, Z) infeasible) Consider the weight vector
(4, 3, 0) and the voting situation in which three voters have sincere preference
bac, 1 voter acb, and 1 voter cab. The scores are |a| = 16, |b| = 12, |c| = 7.
The coalition consisting of the three bac voters (x3 = 3 and all other xi = 0)
satisfies the first set of necessary conditions given in Theorem 2.3, suggesting
that it might be possible to manipulate in favour of b (Case 1(i)/(ii)). But the
necessary and sufficient conditions (IP: Ib) require the existence of integers y1,
y2 such that

y1 + 4y2 ≥ 7, 4y1 + y2 > 7, and y1 + y2 = 3,

which leads to the impossible condition 4 ≤ 3y2 < 5.

Example 5 (optimality gap between I(Z, Z) and P(R)) Consider the voting rule
(8, 7, 0) and the voting situation in which four voters have sincere preference
abc, 1 voter acb, 3 voters bac, 6 voters bca, and 6 voters cab. The scores are
|a| = 103, |b| = 100, and |c| = 97. Suppose we are interested in Type I manip-
ulations in favour of c. Solving the linear program (PROJ: Ic) produces an
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optimum at the corner x5 = 3/7, x4 = 3. The nearest feasible point with integer
coordinates is x5 = 1, x4 = 4, but this is infeasible for the original problem
(I(Z, Z)). Indeed, a coalition of one cab and four bca voters cannot manipulate;
the best scoreboard they can produce (by all voting cba) is (96, 103, 101), leaving
c still in second place.

If a fifth bca voter is added to the coalition, the scoreboard becomes
(96, 102, 102), but this is not a valid manipulation either, as the new outcome
(a bc tie) is not preferred to an outright win for a by the cab voter. Adding
the sixth bca voter to the coalition produces an outright win for c (scoreboard
(96, 101, 103)). This seven-member coalition is not minimal, however. A coa-
lition of the six bca voters may also manipulate, producing the scoreboard
(103, 94, 103) (note that all coalition members prefer the ac tie to an outright
win for a).

The indivisibility of votes plays an important role in this situation. If frac-
tional votes were permitted, only 3.44 votes (3.01 bca and 0.43 cab) would need
to be changed to produce the scoreboard (99.99, 100, 100.01) and an outright
win for c.

Remark 4 Example 5 shows that the minimum coalition size can be more than
the ceiling of the optimum of P(R).

2.3 Computing the minimum coalition size

We now consider the various cases in detail, and simplify the integer program-
ming problems analytically as far as possible. We make liberal use of Lemma 2.

First we treat the case |a| = |b| > |c|. The relaxation (and hence the original
IP) is infeasible if w23ν3 = 0 = w12ν6. From now on we assume that it is
nonempty. Note that inf P(R) = 0.

Suppose first that w12ν6 > 0. Then optimality is attained at x3 = 0, x6 = 1,
which is the projection of the feasible point y1 = 0, y2 = 1, x3 = 0 = x4, x6 = 1
satisfying (IP: IIb).

On the other hand, suppose that w12ν6 = 0 but w23ν3 > 0. From (IP: II’b),
we see that −w23x3 < w23y1 < |b| − |c| − w23x3 must hold. Since also y1 ≥ 0,
this yields the constraint 0 < w23x3 < |b| − |c|. If these last inequalities have
no integer solution for x3 = 1, the problem is infeasible. Otherwise, we can set
y1 = 0, y2 = 1, x4 = 0, x3 = 1, x6 = 0 in (IP: IIb) and obtain a solution that
projects to a feasible point of P(R), which is optimal as above.

In summary, in this case the minimum size of a coalition that can manipulate
in favour of b is 1 when such manipulation is possible. Such manipulation is
impossible precisely when w12ν6 = 0 and either w23 = 0 or w23 ≥ |b| − |c|. A
similar argument deals with manipulation in favour of a, and we already know
that no manipulation in favour of c is possible. Thus the minimum size of a
manipulating coalition when |a| = |b| > |c| is 1, and we have precise conditions
in terms of w and the scoreboard for when this is possible.

We now move on to the type I cases, where |a| > |b|. We need only consider
case 1(i)/(ii), where b but not c has the maximum score after manipulation. That
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(a) (b)

Fig. 2 The easy and hard cases of Type I manipulation

is, the feasible region of P(R) is given by (PROJ: Ib) and the feasible region of
I(Z, Z) by (IP: Ib).

If 3w12ν6 ≤ |a|−2|b|+|c| or w23ν3 +w12ν6 < |a|−|b|, then P(R) is infeasible
and hence so is I(Z, Z).

Otherwise, P(R) is feasible. We may then consider two subcases: w12 ≥ w23
(“easy”) and w12 ≤ w23 (“hard”); see Fig. 2.

First, the easy case. Note that we have w12 > 0. If w12ν6 ≥ |a|−|b| then letting
t := (|a| − |b|)/w12, the optimal value of P(R) corresponds to the point (0, t);
this optimal value is precisely t. By Lemma 2 we see that an optimal solution of
I(Z, Z) is given by x6 = t = y2, with all other xi and yj equal to 0. The optimal
value is thus �t�. Similarly, if ν6 < t (note that this implies w23 > 0), then, letting
s = w12(t − ν6)/w23, the optimal value of P(R) corresponds to the point (s, ν6),
and we see by Lemma 2 that an optimal solution of I(Z, Z) is given by x3 = �s�,
x6 = ν6, y1 = 0, and y2 = x3 + x6. Note that in this easy case, I(Z, Z) is feasible
if and only if P(R) is.

Now for the hard case. If w23ν3 + (|a| − 2|b| + |c|)+/3 < |a| − |b| (note this
implies w12 > 0), then the point (ν3, (|a| − 2|b| + |c|)+/(3w12)) does not sat-
isfy the first inequality of (IP: Ib), so R1 is a triangle and the optimal value of
P(R) corresponds to the point (ν3, (|a| − |b| − w23ν3)/w12). We can then use
Lemma 2 to verify that an optimal solution of I(Z, Z) is given by x3 = ν3,
x6 = �(|a| − |b| − w23ν3)/w12�, y1 = 0, and y2 = x3 + x6.

If, on the other hand, w23ν3 +(|a|−2|b|+|c|)+/3 ≥ |a|−|b|, then the optimal
value of P(R) corresponds to a point on the lower edge of R1, as depicted in
Fig. 2b. (It is worth noting that the point (0, (|a| − 2|b| + |c|)+/(3w12)) never
satisfies the first inequality of (IP: Ib).) There does not seem to be an exact
expression for the minimum coalition size in this case, but we have the fol-
lowing fast method for computing it. The least possible value of x6 is x∗

6 =
(1 + �(|a| − 2|b| + |c|)/(3w12)�)+ (or 0 if w12 = 0). Consider in turn the val-
ues x6 = x∗

6, . . . , ν6. For a given value of x6, the least possible value of x3 is
x3 = �(|a|− |b|−w12x6)/w23�; if this is strictly less than (|b|− |c|+2w12x6)/w23,
then these values of x3 and x6 along with y1 = 0 and y2 = x3 + x6 are a feasible
point of I(Z, Z). Moreover, the first feasible point found by this method will
be optimal for I(Z, Z). This is easy to see. Suppose that another point (x′

3, x′
6)

with x′
6 > x6 and x′

3 + x′
6 < x3 + x6 is also the projection of a feasible point for
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(I(Z, Z)). Then

w23x′
3 + w12x′

6 ≤ w23x3 + w12x6 + w23(x′
3 − x3 + x′

6 − x6)

≤ w23x3 + w12x6 − w23

< |a| − |b|,

since (x3 − 1, x6) is infeasible for P(R).
In this hard case, I(Z, Z) may be infeasible even if P(R) is feasible (an exam-

ple is given in Example 4); the iterative method of the previous paragraph will
then reach x6 = ν6 without finding any solution.

The analysis above yields the following result.

Theorem 2.4 If w12 ≥ w23 or w12 = 0, then there is a solution to (IP: Ib) if and
only if there is a solution to (PROJ: Ib). Furthermore, the optimal value of (IP:
Ib) is the greatest integer not exceeding the optimal value of (PROJ: Ib).

Proof If w12 ≥ w23, this follows from the easy-case arguments above.
For w12 = 0 (the anti-plurality rule), we must consider the hard case. Without

loss of generality, w23 = 1. If |a| − 2|b| + |c| ≥ 0 or ν3 < |a| − |b|, P(R) is infea-
sible. Otherwise, P(R) is feasible, and we must apply the iterative algorithm
discussed above. We begin with x6 = x∗

6 = 0 and corresponding x3 = |a| − |b|;
since this is less than |b| − |c|, we have immediately found an optimal solution
of I(Z, Z). The optimal value for both I(Z, Z) and P(R) is |a| − |b|. ��

3 Description of the algorithm

Our exact results are of course based on enumeration of voting situations. How-
ever, our tie-breaking methods allow us to make use of symmetry to reduce the
search space, as we now describe.

The group G of all permutations of the candidates acts on the set S of vot-
ing situations in a natural way. Whether a voting situation is manipulable is
invariant under permutations of the candidates, so is a property of an orbit of
G on S.

Clearly, we would like to examine only one representative from each G-orbit
on S. However, a simple rule for carrying this out is not apparent. Below we
give a simple rule that in most cases chooses a single representative, but in the
worst case may choose the entire orbit.

Theorem 3.1 Let F = {σ ∈ S : |a| ≥ |b| ≥ |c|}, the set of voting situations for
which the candidates are ranked in alphabetical order. Define γ : S → Z by

γ (x) =
{

m!∏
i li! where the li are the multiplicities of the distinct scores, if x ∈ F;

0 otherwise.
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Then for each G-invariant function µ on S, we have

∑

x∈S
γ (x)µ(x) =

∑

x∈S
µ(x).

Proof The group G acts naturally on the scoreboards, and the score map tak-
ing voting situations to scoreboards commutes with the action of G. Thus each
G-orbit O on S is mapped onto a G-orbit of scoreboards.

Now O contains at least one element x such that its scoreboard s is in nonin-
creasing order, |a| ≥ |b| ≥ |c|. The size of the G-orbit of s is precisely c(x). Also
O is the disjoint union of fibres α−1(t) of the score map, and there are γ (x) of
these. Furthermore all fibres have the same cardinality. Thus we have

∑

z∈O
γ (z)µ(z) = µ(x)

∑

z∈O
γ (z) = µ(x)

∑

z∈O,α(z)=s

γ (z)

= µ(x)γ (x)|α−1(s)| = µ(x)|O| =
∑

z∈O
µ(z),

and summing over all G-orbits gives the result. ��

Example 6 Consider an election under the Borda rule. If the voting situation is
(1, 0, 0, 1, 1, 0), its G-orbit has size 2 and each element has scoreboard (3, 3, 3),
so has γ = 1. If the voting situation is (0, 1, 2, 0, 0, 0), then its G-orbit has size
6. There are two elements, namely (0, 1, 2, 0, 0, 0) and (2, 0, 0, 0, 1, 0), that have
scoreboard (4, 4, 1), and each has γ = 3. The voting situation (2, 1, 0, 0, 0, 0) has
G-orbit of size 6 and scoreboard (6, 2, 1), and receives the value γ = 6.

We shall apply Theorem 3.1 with µ equal to the indicator function of manip-
ulability (when counting manipulable situations), and also with µ equal to the
minimum size of a manipulating coalition.

Note that we need only consider voting situations whose scoreboard satisfies
|a| ≥ |b| ≥ |c|. Thus our algorithm makes use of the theorem to cut the num-
ber of voting situations that must be examined, by a factor slightly less than 6.
Voting situations are generated systematically. For each situation, we compute
the scoreboard and the value of γ above. If the scoreboard is not decreasing
(γ = 0), we move to the next voting situation. If γ �= 0, we compute the mini-
mum coalition size, or report that manipulation is infeasible. This computation
follows the description in Sect. 2.2. We consider type II or type I manipulations
depending on whether |a| = |b| or not. We need to compute only the standard
manipulations (for type I, this is manipulation making b a winner), and apply
the appropriate permutation to reduce others to this case.

We have implemented the algorithm in C++ (code is available from the
authors on request).



502 G. Pritchard, M. C. Wilson

4 Selected numerical results

To gain an overview of manipulability, we must make some assumption as to
which voting situations are the most likely to occur. We will use two of the most
common models for this:

– IAC (Impartial Anonymous Culture): all voting situations are equally likely.
– IC (Impartial Culture): all profiles are equally likely. Note that a voting

situation (ν1, . . . , νm!) (with a total of n voters) represents n!/(ν1! · · · νm!!)
profiles.

The IC model can be described probabilistically: voters act independently, and
each voter is equally likely to choose any of the possible preference orders. In
all but the smallest electorates, this means (due to the law of large numbers)
that most of the probability is placed on voting situations where all candidates
have roughly equal support, and the margin of victory is small. Such situations
are often the most prone to manipulation. In contrast, the IAC model places
more probability on voting situations where the margin of victory is relatively
large, and manipulation may be more difficult.

The algorithm described in Sect. 3 allows us to compute, for each voting
situation, whether the situation can be manipulated by a coalition of voters, and
the minimum size of such a manipulating coalition.

With our culture model (IAC or IC) and a voting rule chosen, let fn(k)

denote the probability that an election involving n voters and three candidates
is manipulable by a coalition of k or fewer voters. Previous work on manipula-
tion has focused mainly on the extremes k = 1 (manipulation by individuals)
and k = n (manipulation by any coalition); we will consider all values of k. Thus
we compute the full probability distribution function fn of the random variable
M, which equals the minimal coalition size (or ∞ if manipulation is not possi-
ble). We restrict to k ≤ n/2 because in every example we have seen, increasing
k does not lead to any change in the probability (we do not have a formal proof
of the plausible statement that the minimum size of a manipulating coalition is
always at most n/2).

Tables 2 and 3 give the values of fn(k) for small numbers of voters, for several
positional voting rules. These tables of fn(k) for small n show that the like-
lihood of manipulation in small committees is high. Furthermore we see that
some rules are completely dominated by others (in the sense that for each k and
n, fn(k) ≤ gn(k)). It turns out that each n ≤ 12, there is often a single dominant
rule among the six rules displayed here. These are shown in Tables 4 and 5. We
also include extra information in these tables for discussion in the next section.

Note that under IAC, the rule specified by (3, 2, 0) is completely dominated
by Borda, plurality and the (3, 1, 0) rule over the entire range n ≤ 12. Plural-
ity also dominates the (10, 9, 0) and antiplurality over this range. It seems that
under IAC, the “easy” case rules are much superior to the “hard” ones. The
reverse is true (to a less extent) under IC however: for 6 ≤ n ≤ 12, plural-
ity is dominated by antiplurality. However, note that again the (3, 2, 0) rule is
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Table 2 Probability under IAC that an n-voter, 3-alternative election is manipulable by a coalition
of k or fewer voters

n k Plurality (3,1,0) Borda (3,2,0) (10,9,0) Anti-plurality

2 1 0.000000 0.428571 0.142857 0.142857 0.142857 0.428571
3 1 0.000000 0.000000 0.321429 0.321429 0.321429 0.214286
4 1 0.214286 0.333333 0.190476 0.357143 0.357143 0.404762

2 0.214286 0.428571 0.190476 0.357143 0.357143 0.404762
5 1 0.214286 0.238095 0.309524 0.333333 0.261905 0.452381

2 0.214286 0.333333 0.380952 0.404762 0.285714 0.452381
6 1 0.155844 0.227273 0.233766 0.324675 0.305195 0.305195

2 0.207792 0.305195 0.350649 0.441558 0.474026 0.305195
3 0.207792 0.344156 0.350649 0.441558 0.474026 0.305195

7 1 0.242424 0.219697 0.250000 0.280303 0.303030 0.393939
2 0.242424 0.310606 0.340909 0.393939 0.424242 0.484848
3 0.242424 0.363636 0.363636 0.401515 0.431818 0.484848

8 1 0.205128 0.202797 0.223776 0.282051 0.247086 0.396270
2 0.263403 0.291375 0.340326 0.421911 0.340326 0.466200
3 0.286713 0.347319 0.386946 0.473193 0.349650 0.466200
4 0.286713 0.361305 0.386946 0.473193 0.349650 0.466200

9 1 0.194805 0.182817 0.224775 0.236763 0.260739 0.299700
2 0.224775 0.272727 0.332667 0.359640 0.419580 0.353646
3 0.224775 0.323676 0.404595 0.410589 0.488511 0.353646
4 0.224775 0.350649 0.416583 0.422577 0.488511 0.353646

10 1 0.209790 0.185814 0.196803 0.248751 0.251748 0.349650
2 0.257742 0.273726 0.304695 0.387612 0.395604 0.471528
3 0.281718 0.336663 0.362637 0.463536 0.457542 0.511489
4 0.293706 0.374625 0.388611 0.481518 0.461538 0.511489
5 0.293706 0.382617 0.388611 0.481518 0.461538 0.511489

11 1 0.200549 0.170330 0.200549 0.225275 0.221154 0.343407
2 0.250000 0.258242 0.302198 0.353022 0.335165 0.442308
3 0.266484 0.318681 0.384615 0.432692 0.380495 0.475275
4 0.266484 0.357143 0.427198 0.457418 0.385989 0.475275
5 0.266484 0.370879 0.434066 0.462912 0.385989 0.475275

12 1 0.180349 0.160957 0.180349 0.209438 0.223497 0.276341
2 0.231739 0.247253 0.286037 0.336458 0.372818 0.356820
3 0.255495 0.307369 0.361183 0.421299 0.462993 0.383969
4 0.269069 0.351002 0.414512 0.463963 0.501778 0.383969
5 0.275856 0.374273 0.429056 0.472689 0.501778 0.383969
6 0.275856 0.379121 0.429056 0.472689 0.501778 0.383969

uncompetitive, being dominated by Borda for n ≤ 11, and by at least one other
“easy case” rule for each n ≤ 12.

We now move on to larger values of n. Tables 6 and 7 consider manipulability
in elections with 150 voters. In Fig. 3 we plot Pr(M < ∞) for n ≤ 50. In Fig. 4,
we graph fn(k) against k for n = 48, n = 49, n = 50. The mod-3 periodicity
evident for smaller n is still very clear for the hard case rules but not in the easy
case. Integer effects are more important in the hard case, as we saw in Sect. 2.3.
Once again, the easy case rules seem to outperform the hard case ones when
IAC is assumed, but the reverse is true when IC is assumed.

A rough explanation of this behaviour is as follows. It arises largely because
these models emphasize different kinds of voting situations. Under IAC, much
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Table 3 Probability under IC that an n-voter, 3-alternative election is manipulable by a coalition
of k or fewer voters

n k Plurality (3,1,0) Borda (3,2,0) (10,9,0) Anti-plurality

2 1 0.000000 0.500000 0.166667 0.166667 0.166667 0.333333
3 1 0.000000 0.000000 0.250000 0.250000 0.250000 0.111111
4 1 0.333333 0.472222 0.291667 0.402778 0.402778 0.296296

2 0.333333 0.555556 0.291667 0.402778 0.402778 0.296296
5 1 0.370370 0.339506 0.324074 0.408951 0.258488 0.375000

2 0.370370 0.416667 0.416667 0.462963 0.281636 0.375000
6 1 0.246914 0.353652 0.331147 0.362011 0.329604 0.175412

2 0.308642 0.453961 0.423740 0.516332 0.507073 0.175412
3 0.308642 0.471965 0.423740 0.516332 0.507073 0.175412

7 1 0.462106 0.357082 0.336077 0.380187 0.384538 0.347951
2 0.462106 0.477109 0.471858 0.514168 0.510867 0.394762
3 0.462106 0.537873 0.503365 0.518669 0.515368 0.394762

8 1 0.384088 0.348330 0.335002 0.368809 0.273773 0.374200
2 0.468107 0.466357 0.478134 0.546550 0.335787 0.397005
3 0.484111 0.522369 0.525145 0.610565 0.341789 0.397005
4 0.484111 0.525120 0.525145 0.610565 0.341789 0.397005

9 1 0.384088 0.327300 0.330050 0.327725 0.322297 0.204703
2 0.432099 0.468557 0.479260 0.498189 0.502649 0.214991
3 0.432099 0.549576 0.545525 0.582808 0.571465 0.214991
4 0.432099 0.578457 0.556777 0.594061 0.571465 0.214991

10 1 0.434099 0.335768 0.324503 0.348929 0.341792 0.354003
2 0.498114 0.469403 0.479018 0.533352 0.505874 0.434432
3 0.522119 0.547713 0.570539 0.613724 0.561002 0.443863
4 0.526120 0.572677 0.597545 0.624477 0.562669 0.443863
5 0.526120 0.573327 0.597545 0.624477 0.562669 0.443863

11 1 0.418585 0.328479 0.317480 0.331406 0.268390 0.362999
2 0.535945 0.481467 0.471247 0.528225 0.357605 0.406740
3 0.554282 0.566568 0.574720 0.634460 0.375834 0.411521
4 0.554282 0.613192 0.613168 0.673160 0.377323 0.411521
5 0.554282 0.624003 0.616720 0.676140 0.377323 0.411521

12 1 0.399025 0.307993 0.310184 0.300434 0.299059 0.218128
2 0.465040 0.461212 0.464178 0.472296 0.478058 0.240433
3 0.489490 0.551249 0.579748 0.589853 0.575725 0.242694
4 0.496825 0.598379 0.632886 0.640546 0.603008 0.242694
5 0.497803 0.614579 0.644148 0.650861 0.603008 0.242694
6 0.497803 0.614724 0.644148 0.650861 0.603008 0.242694

Table 4 Best rules for n ≤ 12, by various measures, under IAC

Number of voters 2 3 4 5 6 7 8 9 10 11 12

Dominant rule Plur Plur Borda Plur Plur None None None None None None
Pr(M = 1) least Plur Plur Borda Plur Plur (3, 1, 0) (3, 1, 0) (3, 1, 0) (3, 1, 0) (3, 1, 0) (3, 1, 0)

Pr(M < ∞) least Plur Plur Borda Plur Plur Plur Plur Plur Plur Plur Plur

of the weight is placed on voting situations where the winner has a sizeable
margin of victory, and the best rules are those which prevent manipulation in
such situations. For example, under three-candidate IAC with a large electorate
(n → ∞), the asymptotic probability that one candidate has an absolute major-
ity of first preferences is 9/16 ≈ 0.56. This condition is sufficient to prevent any
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Table 5 Best rules for n ≤ 12, by various measures, under IC

Number of voters 2 3 4 5 6 7 8 9 10 11 12

Dominant rule Plur Plur Borda (10, 9, 0) Antip None (10, 9, 0) Antip None (10, 9, 0) Antip
Pr(M = 1) least Plur Plur Borda (10, 9, 0) Antip Borda (10, 9, 0) Antip Borda (10, 9, 0) Antip
Pr(M < ∞) least Plur Plur Borda (10, 9, 0) Antip Antip (10, 9, 0) Antip Antip (10, 9, 0) Antip

Table 6 Probability under IAC of manipulability of a 150-voter, three-alternative election

n k Plurality (3,1,0) Borda (3,2,0) (10,9,0) Anti-plurality

150 1 0.028768 0.019740 0.020304 0.024294 0.027861 0.041790
10 0.156653 0.141459 0.137456 0.184919 0.232361 0.248109
20 0.231809 0.240621 0.253923 0.329686 0.390713 0.395509
50 0.289056 0.402909 0.474906 0.531345 0.536958 0.504149
∞ 0.291722 0.425031 0.496558 0.537954 0.537175 0.504149

Table 7 Probability under IC of manipulability of a 150-voter, three-alternative election

n k Plurality (3,1,0) Borda (3,2,0) (10,9,0) Anti-plurality

150 1 0.16 7757 0.108331 0.100657 0.105540 0.108635 0.140902
10 0.819020 0.695129 0.590518 0.641616 0.570225 0.407870
20 0.975120 0.937504 0.874442 0.894358 0.729099 0.413466
50 0.981641 0.994959 0.996119 0.994388 0.830657 0.413468
∞ 0.981641 0.994975 0.996128 0.994389 0.830657 0.413468

manipulation of the plurality rule, and hence the probability of non-manipu-
lability for plurality is quite high (asymptotically 17/24 ≈ 0.71). This does not
hold for other rules, such as (for example) antiplurality.

In contrast, the IC model places most of the weight on voting situations in
which candidates are evenly matched, and the margin of victory (under any
positional rule) is narrow. The antiplurality rule, and others similar to it, are
able to prevent manipulation in these situations — despite plenty of voters who
would prefer the losing candidates — by exploiting the problem of inadvertent
promotion of third candidates. However the plurality rule and others like it do
not have this ability to the same degree.

5 Comparison with the existing literature

The present article is the first to provide exact (computational) results for
positional rules other than the standard three (plurality, Borda, antiplurality).
Very few authors have considered quantitative measures of manipulability for
a general positional rule. Furthermore our random tiebreaking has not been
commonly used. Thus, though we believe our approach to be superior to those
undertaken by previous authors, direct comparison with existing results is not



506 G. Pritchard, M. C. Wilson

Fig. 3 Probability of the occurrence of a manipulable situation, as a function of the number of
voters

easy. Below we discuss a few cases in which such comparison can be profitably
made. We discuss both results and methodology.

Previous authors have usually considered one or more rules, which need not
be positional; the positional rules chosen have been limited to plurality, Borda,
and antiplurality. Furthermore, they

– use various definitions of manipulability;
– consider various measures of manipulability;
– give statistical results for these measures that are either

– asymptotic (as the number of voters tends to ∞);
– exact analytic (given by a formula for finite n);
– exact computational (derived by an algorithm, as in the present article);
– based on random sampling;
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Fig. 4 Manipulability by coalitions of various sizes, for 48, 49, or 50 voters

– consider various probability distributions on voter preferences (of which the
Impartial Culture and Impartial Anonymous Culture models are the most
common by far).

We discuss each of these issues except the last in more detail below. Results
for the three standard positional rules (and other non-positional rules) for more
general preference models are presented by Lepelley and Valognes (2003). In
Chamberlin (1985) a so-called spatial model of voting is used. Apart from these,
to our knowledge all papers have dealt with IC or IAC only, and we confine our
discussion to these cases.

5.1 Definitions of manipulability

Various definitions of manipulability are used in the literature (and we discuss
them below). Small differences in such definitions, and issues such as tiebreak-
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ing, will not affect our results substantially when the number n of voters is large,
although tiebreaking does affect numerical results for small n. Most previous
authors have used lexicographical tiebreaking.

There are two main distinctions to make. First, there is individual manipu-
lation (in other words, by a coalition of size 1) versus more general coalitional
manipulation. Individual manipulation only was studied in earlier papers while
recently coalitional manipulation has been more studied. Second, there is a big
difference between naive manipulation (when the manipulating voters ignore
any possible game-playing by other voters) and the more sophisticated type of
manipulation that allows for the possibility of reversals or counterthreats. The
only quantitative works on manipulability in the latter case of which we are
aware are (Lepelley and Mbih 1999; Favardin and Lepelley 2006), which also
consider naive manipulation; all others (including ourselves) use only the naive
concept.

Some authors (for example Saari 1990) have studied a different concept
under the name of manipulation, which we do not consider to be a valid manip-
ulation in general. Namely, one can consider the easier problem of promoting
b ahead of a, without worrying that c may thereby overtake b. This is called
threshold manipulability in Pritchard and Slinko (2006) and is simpler to ana-
lyse.

Technically, our random tiebreaking does not specify a voting rule. A rule is
called resolute if it always produces a unique winner from each voting situation.
Ties can be handled by considering non-resolute rules. In Taylor (2005) sev-
eral different definitions of manipulation of non-resolute rules are presented.
It is not at all clear to us which, if any, of these definitions coincides with our
definition.

5.2 Measures of manipulability

Several measures or indices of manipulability are used in Aleskerov and Kur-
banov (1999), Chamberlin (1985), Kelly (1993)and Smith (1999) all of which
deal only with IC and use random sampling (the first three cited articles deal
only with individual manipulation). These include such measures as the number
of candidates in whose favour manipulation is possible, the “margin of error”
of an attempted manipulation, and the number of voters who can individually
manipulate. All these measures can be computed in a straightforward way by
modifying our program; however we have not implemented these additional
capabilities.

To our knowledge all other papers fit into the following framework. Let M be
the minimal size of a manipulating coalition. Early papers considered the prob-
ability Pr(M = 1); that is, they considered only manipulability by a single voter.
Later papers have considered the logical possibility of coalitional manipulation;
that is, Pr(M < ∞). In Chamberlin (1985) the average minimum coalition size
(conditional on manipulation being possible, that is, E[M | M < ∞]) was stud-
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ied. The average threshold coalition size was discussed (Pritchard and Slinko
2006).

Our analysis in the present article yields the full probability distribution of
the minimum coalition size, since we can compute Pr(M ≤ k) for each k. Thus
we can readily compute any of the above statistics if desired.

5.3 Statistical results

We summarize some known results in Tables 8 and Table 9. A question mark
“?” means that we do not know whether the relevant entry is known; by “exact
formula” we mean a formula for finite n.

Exact results are found in a few papers. Results obtained by random sam-
pling under IC are presented in Aleskerov and Kurbanov (1999), Nitzan (1985),
Smith (1999). The latter two articles cover Borda and plurality. Several papers
(Favardin and Lepelley 2006; Favardin et al. 2002; Lepelley and Mbih 1987,
1994, 1999; Lepelley and Valognes 2003) present exact analytic and computa-
tional results for IAC, for the three standard positional rules.

We first consider Pr(M = 1). The results of the above-mentioned papers
sometimes vary substantially from ours. In Smith (1999), for Borda and n = 11
the value 0.2321 is given, whereas we obtain 0.3175; for n = 50 the correspond-
ing values are 0.1159 and 0.1701. However, it is easily seen that the probability
of manipulability under our random tiebreaking assumption will always exceed
that computed under the assumption of lexicographic tiebreaking, so these
results are consistent.

Under IC, for every positional rule except antiplurality, Pr(M < ∞) ap-
proaches 1 exponentially fast as n → ∞, while it approaches 1/2 in the case
of antiplurality. This convergence is certainly consistent with Table 7. When
n = 21, the paper (Chamberlin 1985) gives Pr(M < ∞) as 0.810 for plurality
and 0.960 for Borda, whereas we obtain 0.640 and 0.780 respectively. We do not
have an explanation for this discrepancy; it is certainly true that our tiebreaking
assumptions are not exactly the same.

By contrast, under IAC Pr(M < ∞) converges to a constant C between 0
and 1. These constants do not depend on the tie-breaking procedure, since the
set of tied situations has asymptotically negligible probability. Our results agree
well with these limits for Pr(M < ∞). For example, when n = 150 we have
0.2917, 0.4966, 0.5041 for plurality, Borda, antiplurality respectively. Note that
convergence for the latter is slower, as may be expected.

The other statistic that has been used is E[M|M < ∞], the expected minimum
size of a manipulating coalition. This was introduced in Chamberlin (1985). The
numerical results presented there are not easily verified, because a slightly
different measure is computed. See Sect. 6 for more discussion of this measure.

6 Extensions and future work

There are many areas for further study, and we now list some.



510 G. Pritchard, M. C. Wilson

Ta
bl

e
8

P
ro

ba
bi

lit
ie

s
of

m
an

ip
ul

ab
ili

ty
un

de
r

IA
C

R
ul

e
lim

n
Pr

(M
<

∞
)

E
xa

ct
fo

rm
ul

a?
Pr

(M
=

1)
E

xa
ct

fo
rm

ul
a?

Po
si

ti
on

al
0

≤
C

≤
1

no
O

(n
−1

)
(S

lin
ko

20
06

)
N

o
P

lu
ra

lit
y

7/
24

≈
0.

29
17

Y
es

∼
(5

5/
18

)n
−1

Y
es

(L
ep

el
le

y
an

d
M

bi
h

19
87

)
(L

ep
el

le
y

an
d

M
bi

h
19

87
)

(L
ep

el
le

y
an

d
M

bi
h

19
99

)
B

or
da

≈
0.

50
25

N
o

∼
(2

5/
12

)n
−1

Y
es

(F
av

ar
di

n
et

al
.2

00
2)

(F
av

ar
di

n
et

al
.2

00
2)

A
nt

ip
lu

ra
lit

y
14

/
27

≈
0.

51
85

Y
es

?
?

(H
ua

ng
an

d
C

hu
a

20
00

)



Manipulability of positional voting rules 511

Table 9 Probabilities of manipulability under IC

Rule Pr(M < ∞) Exact formula? Pr(M = 1) Exact formula?

Positional → 1 exp. fast No O(n−1/2) Slinko (2002) No
Plurality → 1 ? ? ?
Borda → 1 ? ? ?
Antiplurality → 1/2 ? ? ?

(Kim and Roush 1996)

1. One obvious area is to understand better the type III manipulations. Here
we derive the appropriate linear system and record it for possible future
use. Consider Case 2(iv). The coalition members must prefer c to b, so we
have x1 = x3 = x4 = 0. Let y1, y2, y3, y4, y5, and y6 denote the numbers of
coalition members who strategically vote abc, acb, bac, bca, cab, and cba
respectively. The conditions to be satisfied are then derived as above:

0 = |b| − |c| + w21x2 + w12x5 + w13x6 + w13y1 + w12y2

+w23y3 + w32y4 + w21y5 + w31y6

0 < |c| − |b| + w32x2 + w31x5 + w21x6 + w32y1 + w23y2

+w31y3 + w21y4 + w13y5 + w12y6

0 = x2 + x5 + x6 − y1 − y2 − y3 − y4 − y5 − y6

0 ≤ xi ≤ νi for 1 ≤ i ≤ 6

0 ≤ yj for 1 ≤ j ≤ 6

all xi, yj are integers. (IP:IIIc)

Case 2(v) can be obtained from 2(iv) by transposing a and b.
2. The measure Pr(M < ∞) can of course be computed for a given n by our

methods, since it is just the maximum value of fn(k). If a more analytic result
is required, we can easily derive one by specializing our linear systems.
Explicitly, for each case listed in Table 1, there is a maximal coalition con-
sisting of all voters with incentive to participate in a coalition. Since some
of these can still vote sincerely if they so desire, it follows that a situation
is manipulable if and only if it is manipulable by the appropriate maximal
coalition. Algebraically, this means that the x’s in systems such as (IP: Ib)
are replaced by the corresponding ν’s. We can also express the scores in
terms of the ν’s by (1). This yields integer linear conditions in the ν’s and y’s
only, which are necessary and sufficient for manipulation to be achievable.
The problem now reduces to one of counting lattice points inside a convex
region, to which standard techniques can be applied.
Some such conditions have been derived in various special cases by previous
authors. One could attempt to perform such a computation for a general
positional rule.
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3. The results for small n immediately suggest conjectures about asymptotic
behaviour of rules. For example,
– plurality asymptotically minimizes Pr(M < ∞) for IAC;
– some easy case rule other than plurality or Borda minimizes Pr(M = 1)

asymptotically under IAC;
– Borda is the rule for which Pr(M < ∞) converges fastest to 1 under

IC.
4. The measures Pr(M = 1) and Pr(M < ∞) are the most commonly used in

the literature. The measure E[M|M < ∞] was introduced in Chamberlin
(1985). In Pritchard and Slinko (2006) several results were derived for a
general positional rule under IC. It was shown that this measure is asymp-
totically equal to C(p)n1/2 where C depends on p := (w1 − w2)/(w1 − w3).
Furthermore, for easy case rules (p ≥ 1/2), C behaves continuously in p.
But for the hard case, even though C(0) is a finite constant, there is a discon-
tinuity of C at p = 0: limp→0 C(p) = ∞. Thus the closer a rule approaches
antiplurality, the larger is E[M | M < ∞]. Hence this measure is probably
not all that useful, assuming IC. However, under IAC we expect the measure
to be of order n, and it may be of more use.

5. We note that for many non-positional voting rules we can use the same
methodology of deriving linear systems to describe manipulability. Simi-
larly, the type of linear systems derived here also occur in other areas of
voting theory.
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