
Soc Choice Welfare (2007) 29:369–382
DOI 10.1007/s00355-006-0210-3

O R I G I NA L PA P E R

Cost sharing in a job scheduling problem

Debasis Mishra · Bharath Rangarajan

Received: 18 January 2006 / Accepted: 20 October 2006 / Published online: 17 November 2006
© Springer-Verlag 2006

Abstract A set of jobs need to be served by a server which can serve only one
job at a time. Every job has a processing time and incurs cost due to waiting
(linear in its waiting time). The jobs share their costs using monetary transfers.
We provide an axiomatic characterization of the Shapley value solution for this
problem.

1 Introduction

In a scheduling problem, a set of jobs needs to be served by a server, which can
process only one job at a time. Each job has a finite processing time and a per
unit time waiting cost. Efficiency directs us to serve the jobs in decreasing order
of the ratio of per unit time waiting cost and processing time. To compensate
for waiting cost of jobs, monetary transfers to jobs are allowed. How should the
jobs share the cost in a fair manner amongst themselves (through transfers)?
The Shapley value solution is considered to be an appropriate solution for the
fair division problem in general (Moulin 1992a), and for the scheduling problem
in particular (Chun 2004a; Katta and Sethuraman 2005; Maniquet 2003; Moulin
2004).

In this work, we characterize the Shapley value solution for the schedul-
ing problem. A paper by Maniquet (2003) is the closest to our model, and is
the motivation behind our work. Maniquet (2003) studies a model where he

D. Mishra (B)
Planning Unit, Indian Statistical Institute, 7, S.J.S. Sansanwal Marg, New Delhi 110 016, India
e-mail: dmishra@isid.ac.in

B. Rangarajan
Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
e-mail: bharathr@me.umn.edu

370 D. Mishra, B. Rangarajan

assumes all jobs to have unit processing times, and characterizes the Shapley
value solution. Using a different definition of worth of coalitions, Chun (2004a)
derives a “reverse” rule for the same model.

The key difference between our model and the models in Maniquet (2003)
and Chun (2004a) is that ours is a two dimensional model. In the one dimen-
sional model discussed in Chun (2004a) and Maniquet (2003), all orderings are
efficient if and only if all the jobs are identical, i.e., have the same parameters.
In the two dimensional model, all orderings are efficient even if the jobs are
not identical. For this reason, the axioms for the one dimensional model are
insufficient for our two dimensional model. To deal with the cost sharing in the
two dimensional model, we introduce new axioms. We characterize the Shapley
value solution for this equal priority case (i.e., the case when all orderings are
efficient) using these axioms. Using this as the springboard, we are able to char-
acterize the Shapley value solution for the general instances of non-identical
jobs.

Independent of our work, Chun (2004b) has developed a characterization of
the Shapley value solution for the scheduling problem. Our characterization is
different from his characterization in two aspects: (1) we do not make use of
consistency and monotonicity axioms, the focus of his characterizations, (2) we
do not assume binary transfers between jobs (jobs pay each other) like he does.

Another stream of literature is on “sequencing games”, first introduced by
Curiel et al. (1989). The model in Curiel et al. (1989) is similar to ours. Their
notion of the worth of a coalition is very different from the one we consider
here. They focus on sharing the savings in costs from a given initial ordering to
the optimal ordering (also see Hamers et al. 1996).

Strategic aspects of queueing problems have also been studied (Mitra 2002;
Suijs 1996). The general result in these studies is that incentive compatible,
efficient, and budget-balanced cost sharing is possible only for linear cost func-
tions, like in our scheduling problem. The Shapley value solution discussed in
this work is not incentive compatible. However, Moulin (2004) studies strategic
concepts such as splitting and merging in scheduling problems with equal per
unit time waiting costs, and shows that the Shapley value solution is merge-
proof, but not split-proof.

1.1 Our contribution

Our focus is the Shapley value solution and its axiomatic characterization in the
scheduling problem. We show that the Shapley value of a job in the scheduling
problem is the average of the cost it inflicts on other jobs and the cost inflicted
to it by other jobs.

Our contribution lies in extending the characterizations of Maniquet (2003)
for the one dimensional model to the general model of the scheduling problem.
Our objective is to use, with appropriate generalizations, as many axioms as
possible from Maniquet (2003). The axioms in Maniquet (2003) can be divided
into two types: (1) classical axioms such as efficiency, Pareto indifference etc.

Cost sharing in a job scheduling problem 371

and (2) axioms specific to the scheduling problem (we call these axioms Ma-
niquet’s axioms). To characterize the Shapley value solution axiomatically for
the general case, we first provide a set of axioms that characterize the Shapley
value solution for the case when every ordering is efficient. This is a key step in
our characterization for the general case. We achieve this by imposing an upper
bound on the cost share of every job. We call this the expected cost bound
(ECB) axiom. A classical axiom, equal treatment of equals, used by Maniquet
(2003) is insufficient in our model, and is replaced by by the ECB axiom. The
other classical axioms that we use, which are also used in Maniquet (2003), are
efficiency and Pareto indifference. Efficiency and ECB characterize the Shapley
value solution for the equal priority case.

Once the characterization for the equal priority case is achieved, we need
appropriate generalizations of the following Maniquet’s axioms along with
Pareto indifference to characterize the Shapley value solution for our prob-
lem. The independence axioms: cost share of a job is independent of preceding
jobs’ per unit time waiting cost and following jobs’ processing time. Broadly,
the independence axioms say that the cost share of a job should not change
if the parameters of other jobs are changed in a way such that its “external-
ity” (the cost it inflicts to other jobs and the cost it incurs due to other jobs)
is unchanged. The proportional responsibility axioms: the transfer of an addi-
tional job removed from the end (beginning) of a queue is shared by the jobs
before (after) it in proportion to their processing times (per unit time waiting
costs). The proportionate responsibility axioms are generalizations of the equal
responsibility axiom in Maniquet (2003). We characterize the Shapley value
solution in three different ways using these axioms. In all the characterizations
efficiency, Pareto indifference, and ECB are imposed. Besides these, we either
need the independence axioms or one of the proportional responsibility axioms
in place of one of the independence axioms. This shows that these axioms are
substitutable in the presence of efficiency, Pareto indifference, and ECB.

The rest of the paper is organized as follows. Section 2 describes the model
and Sect. 3 discusses the Shapley value solution for the model. In Sect. 4, we
discuss our axioms. The characterization results involving axioms appear in
Sect. 5.

2 The model

There are n jobs waiting to be served by a server. The server can process only
one job at a time. The set of jobs are denoted as N := {1, . . . , n}. An order-
ing of the jobs is given by a one to one map σ : N → N and σi denotes
the position of job i in that order. Given an ordering σ , define the follow-
ers of job i by Fi(σ) := {j ∈ N : σj > σi} and the predecessors of job i by
Pi(σ) := { j ∈ N : σj < σi}. We assume that for any i ∈ N and any σ , if Fi(σ) or
Pi(σ) is the empty set, then any summation over such sets gives zero value.

Every job i is identified by two parameters: (pi, θi), where pi is the processing
time and θi is the per unit time waiting cost of job i. Thus, a queueing problem

372 D. Mishra, B. Rangarajan

is defined by a list q = (N, p, θ) ∈ Q, where Q is the set of all possible lists. We
will denote γi = θi/pi. We call γi, the priority of job i. Given an ordering of jobs
σ , the waiting cost incurred by job i is given by ci(σ) = θi

∑
j∈Pi(σ)

pj. The total
waiting cost incurred by all jobs due to an ordering σ can be thought of in two
ways: (1) by summing the cost incurred by every job and (2) by summing the
costs inflicted by a job on jobs behind it due to its own processing time.1

C(N, σ) =
∑

i∈N

ci(σ) =
∑

i∈N

[
θi

∑

j∈Pi(σ)

pj

]
.

=
∑

i∈N

[
pi

∑

j∈Fi(σ)

θj

]
.

An efficient ordering σ ∗ is one that minimizes the total cost incurred by all
jobs. So, C(N, σ ∗) ≤ C(N, σ) ∀ σ ∈ �, where � is the set of all orderings. For
notational simplicity, we will write the total cost in an efficient ordering of jobs
from N as C(N)whenever it is not confusing. Sometimes, we will deal only with
a subset of jobs S ⊆ N. The ordering σ will then be defined only on the jobs in S
and we will write C(S) for the total cost from an efficient ordering of jobs in S. It is
well known that jobs are ordered in non-increasing priority in an efficient order-
ing. This is also known as the weighted shortest processing time rule (Smith 1956).

An allocation for q = (N, p, θ) ∈ Q has two components: an ordering σ and
a transfer ti for every job i ∈ N. The payment received by job i is denoted by
ti. Given a transfer ti and an ordering σ , the cost share of job i is defined as,
πi = ci(σ)− ti = θi

∑
j∈Pi(σ)

pj − ti.
An allocation (σ , t) is efficient for q = (N, p, θ) whenever σ is an efficient

ordering and
∑

i∈N ti = 0. σ ∗(q) will be used to denote an efficient ordering
of jobs in queue q (σ ∗ will be used when q is understood from the context).
It is easy to see that for two different efficient orderings, the cost share vector
in one efficient allocation is possible to achieve in the other by appropriately
modifying the transfers.

Depending on the transfers, the cost shares in different efficient allocations
may differ. An allocation ruleψ associates with every q ∈ Q a non-empty subset
ψ(q) of allocations.

3 Cost sharing using the Shapley value

In this section, we define the cost of a coalition of jobs and find the Shapley
value of this game. Given a problem q ∈ Q, the cost of a coalition of S ⊆ N jobs
in the queue is defined as the cost incurred by jobs in S if these are the only jobs
served in the queue using an efficient ordering. Formally, the cost of a coalition
S ⊆ N is,

1 Since a job is responsible for its own processing cost, we assume that this cost component of a
job is not shared with other jobs. For this reason, we do not consider the processing costs of jobs in
the total cost.

Cost sharing in a job scheduling problem 373

C(S) =
∑

i∈S

θi

∑

j∈Pi(σ ∗)
pj,

where σ ∗ (= σ ∗(S)) is an efficient ordering considering jobs from S only. The
worth of a coalition of S jobs is just −C(S). This way of defining the worth of a
coalition assumes that each job in a coalition S is served before any job outside
of S is. In a sense, it puts a natural lower bound on the cost share of a coalition
of jobs.2

The Shapley value (or cost share) of a job i is defined as (Shapley 1953),

Shi =
∑

S⊆N\{i}

|S|!(|N| − |S| − 1)!
|N|!

[
C(S ∪ {i})− C(S)

]
. (1)

The Shapley value rule says that jobs are ordered using an efficient ordering
and transfers are assigned to jobs such that the cost share of job i is given by
Eq. (1), which can be simplified further for the scheduling problem.

Lemma 1 Let σ be an efficient ordering of jobs in the set N. For all i ∈ N the
Shapley value of i is given by,

Shi = 1
2

[∑

j∈Fi(σ)

piθj +
∑

j∈Pi(σ)

θipj

]
.

Proof The proof follows from an alternative interpretation of the Shapley value
solution, where we choose a uniform random ordering and the cost share of a
job is the marginal increase in the cost of jobs preceding it due to its presence.
The expected cost from such a randomized allocation rule is exactly the Shapley
value solution.

The marginal cost due to i for coalition S ⊆ (N \ {i}), assuming σ ′ to be an
efficient ordering of jobs in S ∪ {i}, can be written as:

C(S ∪ {i})− C(S) =
∑

j∈Fi(σ ′)
piθj +

∑

j∈Pi(σ ′)
θipj.

If we choose any set of agents S ⊆ (N \ {i}) uniformly at random, for any j 	= i,
Probability(j ∈ S) = Probability(j /∈ S) = 1

2 . So, taking expectation over all
S ⊆ (N \ {i}), we get the desired result.
�

Another easy method to prove Lemma 1 is to use the inductive formula of the
Shapley value. Denote Shi(S) as the Shapley value of job i when jobs in S ⊆ N
(i ∈ S) only are present. Then Shi(N) = 1

n [C(N)−C(N\{i})]+ 1
n

∑
j 	=i Shi(N\{j}).

A straightforward induction argument proves Lemma 1.

2 In Chun (2004a), the worth of a coalition is calculated by assuming that the jobs in the coalition
are served after the jobs not in the coalition, which puts a natural upper bound on the cost share of
a coalition.

374 D. Mishra, B. Rangarajan

By Lemma 1, the transfer corresponding to the Shapley value of job i is given
by,

ti = 1
2

[∑

j∈Pi(σ)

pjθi −
∑

j∈Fi(σ)

piθj

]
. (2)

4 The axioms

In this section, we will define several axioms on fairness and later characterize
the Shapley value rule using them. For a given q ∈ Q, we will denote ψ(q) as
the set of allocations from allocation rule ψ . Also, we will denote the cost share
vector associated with an allocation rule (σ , t) as π and that with allocation rule
(σ ′, t′) as π ′ etc.

Our axioms fall into three classes: (1) classical axioms (efficiency, Pareto
indifference, and equal treatment of equals); (2) new axioms; and (3) axioms
generalized from Maniquet (2003).

4.1 Classical axioms

First, we define the efficiency axiom. It states that an efficient ordering should
be selected and the transfers of jobs should add up to zero (budget balance).

Definition 1 An allocation ruleψ is efficient if for every q ∈ Q and (σ , t) ∈ ψ(q),
(σ , t) is an efficient allocation.

The second axiom says that the allocation rule should not discriminate be-
tween two allocations which are equivalent to each other in terms of cost shares
of jobs.

Definition 2 An allocation ruleψ satisfies Pareto indifference if for every q ∈ Q,

(σ , t) ∈ ψ(q), if there exists another allocation (σ ′, t′) such that
[
πi = π ′

i ∀ i ∈ N
]
,

then (σ ′, t′) ∈ ψ(q).
The next axiom is classical in literature and says that two jobs with equal

parameters should be compensated such that their cost shares are also equal.

Definition 3 An allocation rule ψ satisfies equal treatment of equals (ETE) if
for all q ∈ Q, (σ , t) ∈ ψ(q), i, j ∈ N, then

[
pi = pj; θi = θj

]
⇒

[
πi = πj

]
.

ETE directs us to share costs equally between jobs if they have identical
set of parameters. At the same time, it is silent about the cost shares of two
jobs i and j that are indistinguishable with respect to an efficient ordering (with

Cost sharing in a job scheduling problem 375

γi = γj) but have different parameters ((pi, θi) 	= (pj, θj)). We introduce some
new axioms to resolve this gap.

4.2 New axioms

We would like to introduce the idea of merging jobs with respect to job i when
all jobs have equal priority.3 Suppose job i is in position σi in an ordering σ of
the queue. There are two costs by which it interacts with the rest of the system.
First is the waiting cost of job i that appears due to the processing times of jobs
before it and second is the contribution to the waiting cost of jobs placed behind
job i due to the processing time of job i. When we consider the waiting cost
of job i, it is immaterial how job i came to wait that length of time: whether it
was due to a single job with large processing time or multiple jobs with smaller
processing times. In the same vein, the cost job i imposes on the jobs behind it
depends only on the sum of their per unit time waiting costs and not on how
these per unit time waiting costs were distributed among those jobs. Hence, as
far as job i is concerned we can merge all jobs before it with a processing time of∑

j∈Pi(σ)
pj and all jobs behind it with a per unit time waiting cost of

∑
j∈Fi(σ)

θj.
By merging, we would like to think of these merged jobs as a single job with
the above specified processing time (or per unit time waiting cost). However, to
preserve the priority (γ) of jobs that we started out with we set the per unit time
waiting cost of the merged unit before as

∑
j∈Pi(σ)

θj and processing time of the
merged unit after as

∑
j∈Fi(σ)

pj. This means that the relative ordering remains
intact; the jobs before (after) job i that were merged can be placed before (after)
job i. Since in the modified queue set up (with only three jobs) the “world view”
of job i with respect to its waiting cost or the cost it inflicts does not change (i.e.,
the “externalities” of job i is unchanged), we would expect that it still preserves
its cost share. The remaining jobs receive a transfer together that must then be
shared by all of them internally. This is the idea captured by our next axiom.
We can generalize this idea of merging (with the same justification as above) to
account for merging any subset of the jobs that are placed before or after i. We
now present the technical definitions and details.

When any set of consecutive jobs S ⊆ N are merged, they are treated like
a single job with processing time pS := ∑

i∈S pi and per unit time waiting cost
θS := ∑

i∈S θi. We will denote the new (merged) job as < S >. Assume that we
are given an efficient ordering σ and a job i ∈ N. We will only consider mergers
of consecutive jobs S ⊆ Fi(σ) (or T ⊆ Pi(σ)). A merger S (or T) is said to be a
valid merger, if the new jobs are created by merging consecutive jobs and they
have the parameters:

∑
j∈S θj and

∑
j∈S pj (or

∑
j∈T θj and

∑
j∈T pj). A queue

instance created by a particular choice of S and T (S or T can be ∅) is denoted
by q(S, T) and M(σ , i) denotes the set of all such queue instances created using
valid mergers. We recall here that (under the equal priority assumption) the

3 For a strategic treatment of the merging concept, see (Moulin 2004), who considers a model
where jobs have equal θ .

376 D. Mishra, B. Rangarajan

choice of parameters for the new job ensures that γi = γ<S> = γ<T> and hence
the relative ordering still remains efficient.4

Definition 4 An allocation ruleψ satisfies independence of valid merging (IVM)
if for all q = (N, p, θ) ∈ Q with γ1 = . . . = γn, (σ , t) ∈ ψ(q), i ∈ N, q(S, T) ∈
M(σ , i), and (σ ′, t′) ∈ ψ(q(S, T)), we have πi = π ′

i , where πi is the cost share of
job i in (σ , t) and π ′

i is the cost share of job i in (σ ′, t′).

To motivate our next axiom, let us consider the case of two jobs with equal
γ . There are only two possible orderings σ with σi = i for i ∈ {1, 2} and the
reverse ordering, denoted by σ ′. In both the orderings the waiting cost of the
second job is the same (p1θ2 in σ and p2θ1 = p1θ2 in σ ′) and the first job does
not incur any waiting cost. Both the jobs are equivalent in the sense that they
each can inflict the same waiting cost on the other job when placed first in the
queue. Our next axiom says that in this case the jobs should equally divide this
externality, i.e., their cost shares should be equal.

Definition 5 An allocation rule ψ satisfies equal division for two equal priority
jobs (ED2) if for all q = (N, p, θ) ∈ Q with N = {1, 2} and γ1 = γ2, for any
(σ , t) ∈ ψ(q), we have c1(σ)− t1 = c2(σ)− t2.

The following Lemma characterizes the cost share of jobs when they have
equal priority under efficiency, IVM, and ED2.

Lemma 2 Consider q ∈ Q such that γ1 = · · · = γn. In an efficient alloca-
tion rule ψ satisfying IVM and ED2, for every i ∈ N the cost share of i is
1
2θi

∑
j 	=i pj = 1

2

[
θi

∑
j∈Pi(σ̂)

pj + pi
∑

j∈Fi(σ̂)
θj

]
, where σ̂ is any ordering of jobs

in N.

Proof Consider the allocation (σ , t) ∈ ψ(q). Let i be the first job in σ . Now,
perform a valid merging of jobs in Fi(σ) to form the new queue q′ with jobs i
and < Fi(σ) >. The equal γ case is preserved by the valid merging as the new
job < Fi(σ) > has a processing time of

∑
j 	=i pj and per unit time waiting cost

of
∑

j 	=i θj and γi =
∑

j 	=i θj∑
j 	=i pj

. By ED2, the cost share of job i in any allocation in

ψ(q′) is 1
2 pi

∑
j 	=i θj. By IVM, the cost share of job i is same in every allocation

in ψ(q) and ψ(q′). So, the cost share of job i is 1
2 pi

∑
j 	=i θj.

Similarly, if k is the last job in σ , we can merge jobs in Pk(σ), and use
IVM and ED2 to show that its cost share equals 1

2 p<Pk(σ)>θk = 1
2θk

∑
j 	=k pj.

For any arbitrary job k that is not the fist or the last job in σ , we can merge
jobs in Pk(σ) and Fk(σ) to form a queue with three jobs: < Pk(σ) >, k, and
< Fk(σ) >. The cost share of jobs < Pk(σ) > and < Fk(σ) > (the first job and

4 Even if the jobs are not of equal priority, then also such merging of jobs results in an ordering
that is efficient. In fact our valid merging axiom holds in the Shapley value solution for the general
case when jobs are not of equal priority. But to characterize the Shapley value solution, we only
need it to hold for the equal priority case.

Cost sharing in a job scheduling problem 377

the last job in the new queue) can be computed as before, and they are respec-
tively 1

2 p<Pk(σ)>[θk + θ<Fk(σ)>] and 1
2θ<Fk(σ)>[pk + p<Pk(σ)>]. Hence the total

cost share of the first job and the last job is p<Pk(σ)>θ<Fk(σ)> + 1
2 pkθ<Fk(σ)> +

1
2θkp<Pk(σ)>. By efficiency and IVM, the cost share of job k in the original queue
is 1

2 pkθ<Fk(σ)> + 1
2θkp<Pk(σ)> = 1

2

[
pk

∑
j∈Fk(σ)

θj + θk
∑

j∈Pk(σ)
pj

]
.
�

Lemma 2 is the stepping stone to our axiomatic characterization results for
the general two parameter case. It characterizes the cost share of jobs for the
equal priority case. Observe that in the model where all jobs have the same
processing time, the equal priority case reduces to the identical job case for
which, by the ETE axiom, the total cost is shared equally among the jobs.

We present an alternative, but an intuitive, axiom to characterize the cost
shares of jobs when γ1 = · · · = γn and hence prove a lemma analogous to
Lemma 2. If transfers were not allowed, then a fair allocation rule in this setting
would be to choose every ordering with equal probability. In such a case, the
cost incurred by every job i is 1

2θi
∑

j 	=i pj. We impose this as an upper bound
on cost share when transfers are allowed. Such bounds on cost shares (utilities)
are often imposed through individual rationality axioms in many cost sharing
problems (see individual rationality axioms in ? as an example).

Definition 6 An allocation rule ψ satisfies expected cost bound (ECB) if for all
q ∈ Q with γ1 = · · · = γn, for every i ∈ N, for any (σ , t) ∈ ψ(q), πi ≤ 1

2θi
∑

j 	=i pj,
where πi is the cost share of job i in allocation (σ , t).

Expected cost bound can be thought as a generalization of the ED2 axiom from
the two job case to any number of jobs case. Using ECB, we can immediately
obtain a lemma analogous to Lemma 2.

Lemma 3 Let γ1 = · · · = γn. In an efficient allocation rule ψ satisfying ECB,

for every i ∈ N, the cost share of i is πi = 1
2 pi

∑
j 	=i θj = 1

2

[
θi

∑
j∈Pi(σ̂)

pj +
pi

∑
j∈Fi(σ̂)

θj

]
, where σ̂ is any ordering of jobs in N.

Proof By definition, πi is just the average of job i’s waiting costs over all order-
ings, when transfers are ruled out. In the equal γ case, each of these orderings
is efficient. So,

∑
i∈N πi must be the cost of an efficient queue. Therefore, any

efficient allocation ψ satisfying ECB must have cost share of job i equal to

πi = 1
2

[
θi

∑
j∈Pi(σ̂)

pj + pi
∑

j∈Fi(σ̂)
θj

]
, where σ̂ is any ordering of jobs in N.
�

There are other axioms that one can impose to arrive at the Shapley value
solution for the equal priority case. For example, observe that the cost inflicted
by the first job in the queue to the remaining jobs is equal to the cost incurred
by the last job in the queue from the preceding jobs in the equal priority case.
We say an allocation rule satisfies zero-sum extreme transfers (ZET) if the
transfers of the first and last jobs in the queue add up to zero (i.e., the transfer
received by the last job in the queue equals the transfer paid by the first job in

378 D. Mishra, B. Rangarajan

the queue) in the equal priority case. Using ZET in place of ECB, it is possible
to arrive at a Lemma analogous to Lemma 3 (Mishra and Rangarajan 2005a).
ZET and some other axioms that can provide Lemmas analogous to Lemma 3
are discussed in detail in Mishra and Rangarajan (2005a).

4.3 Generalization of Maniquet’s axioms

Next, we generalize the axioms in Maniquet (2003). These axioms, like the
axioms in Sect. 4.2, are specific to the scheduling problem.

In an axiom called equal responsibility, Maniquet (2003) says that, under
equal processing time assumption, if a job is removed from the end of the queue,
then the remaining jobs are equally responsible for the waiting cost of the last
job and should share the transfer of the removed job equally. Since processing
times are not equal in our problem, such an axiom needs an appropriate gener-
alization. In our problem, jobs are responsible for the waiting cost of the last job
in proportion to their processing times. To capture this proportional share in
waiting cost of the last job, we consider the case when the last job quits the queue.
Then, it is not necessary to change the ordering. But the transfer of the last job
needs to be redistributed amongst the remaining jobs. Proportionate responsi-
bility of p requires that we do this in proportion to their processing times.

Definition 7 An allocation rule ψ satisfies proportionate responsibility of p
(PRp) if for all q ∈ Q, for all (σ , t) ∈ ψ(q), k ∈ N such that σk = |N|, q′ =
(N \ {k}, p′, θ ′) ∈ Q, such that for all i ∈ N \ {k}: θ ′

i = θi, p′
i = pi, there exists

(σ ′, t′) ∈ ψ(q′) such that for all i ∈ N \ {k}: σ ′
i = σi and

t′i = ti + tk
pi

∑
j 	=k pj

.

Analogously, the waiting cost inflicted by the first job due to its processing
time influences the following jobs in proportion to their θ values. If we remove
the first job from the system, the ordering of rest of the jobs do not change,
but the transfer of the removed job needs to be redistributed amongst the
remaining jobs. The following axiom says that the transfer needs to be shared
in proportion to their θ values.5

Definition 8 An allocation rule ψ satisfies proportionate responsibility of θ
(PRθ) if for all q ∈ Q, for all (σ , t) ∈ ψ(q), k ∈ N such that σk = 1, q′ =
(N \ {k}, p′, θ ′) ∈ Q, such that for all i ∈ N \ {k}: θ ′

i = θi, p′
i = pi, there exists

(σ ′, t′) ∈ ψ(q′) such that for all i ∈ N \ {k}: σ ′
i = σi − 1 and

t′i = ti + tk
θi

∑
j 	=k θj

.

5 Maniquet (2003) does not use this axiom in his characterizations. But it is a natural generalization
of his equal responsibility axiom.

Cost sharing in a job scheduling problem 379

The next set of axioms are a generalization of independence axioms in
Maniquet (2003). Roughly, these axioms say that if the parameter of a job
is changed, then the cost share of every job whose “interaction cost” (i.e., the
cost it inflicts on other jobs and the cost it incurs due to other jobs) is unchanged
remains the same. In some sense, these axioms say that the cost share of a job
depends only on the interaction cost.

The waiting cost of a job does not depend on the per unit time waiting cost
of its preceding jobs. So, if we increase the per unit time waiting cost of a job
served before job i, without changing parameters of other jobs, then waiting
cost of job i is unchanged. Our first axiom says that in such a case the cost share
of job i remains unchanged.

Definition 9 An allocation rule ψ satisfies independence of preceding jobs’ θ
(IPJθ) if for all q = (N, p, θ), q′ = (N, p′, θ ′) ∈ Q, (σ , t) ∈ ψ(q), (σ ′, t′) ∈ ψ(q′),
if for all k ∈ N, i ∈ N \ {k}: θi = θ ′

i , pi = p′
i and γk < γ ′

k, pk = p′
k, then for all

j ∈ Fk(σ): πj = π ′
j , where π is the cost share in (σ , t) and π ′ is the cost share in

(σ ′, t′).

Similarly, the waiting cost inflicted by a job to its following jobs is independent
of the processing times of the following jobs. So, if we increase the processing
time of a job following job i, without changing parameters of other jobs, then
waiting cost of job i is unchanged. This argument points to an axiom analogous
to the previous axiom.

Definition 10 An allocation rule ψ satisfies independence of following jobs’ p
(IFJp) if for all q = (N, p, θ), q′ = (N, p′, θ ′) ∈ Q, (σ , t) ∈ ψ(q), (σ ′, t′) ∈ ψ(q′),
if for all k ∈ N, i ∈ N \ {k}: θi = θ ′

i , pi = p′
i and γk > γ ′

k, θk = θ ′
k, then for all

j ∈ Pk(σ): πj = π ′
j , where π is the cost share in (σ , t) and π ′ is the cost share in

(σ ′, t′).

5 The characterization results

In this section, we propose three different ways to characterize the Shapley
value solution using our axioms. All our characterizations involve efficiency,
Pareto indifference, ECB (or, IVM with ED2 in place of ECB). Additionally,
we use IPJθ with either of IFJp or PRp, or we use IFJp with either IPJθ or
PRθ . Results in this section are built on Lemma 3, which in itself is a nontrivial
extension of the ETE axiom in Maniquet (2003) to a more general case where
jobs are indistinguishable in any efficient ordering, but are not identical.

Theorem 1 The following statements are equivalent.

1. An allocation rule is the Shapley value rule.
2. An efficient allocation rule satisfies Pareto indifference, ECB, IPJθ , and IFJp.
3. An efficient allocation rule satisfies Pareto indifference, ECB, IPJθ , and PRp.
4. An efficient allocation rule satisfies Pareto indifference, ECB, IFJp, and PRθ .

380 D. Mishra, B. Rangarajan

Proof From the definitions, the Shapley value satisfies all the axioms in (2), (3),
and (4).

Now, define for any i, j ∈ N, θ i
j = γipj and pi

j = θj
γi

. Assume without loss of
generality that σ is an efficient ordering with σi = i ∀ i ∈ N for q = (N, p, θ).

(2) implies (1): Consider the following q′ = (N, p′, θ ′) corresponding to job
i with p′

j = pj if j ≤ i and p′
j = pi

j if j > i, θ ′
j = θ i

j if j < i and θ ′
j = θj if j ≥ i.

Observe that all jobs have the same γ : γi and thus, every ordering is efficient.
By Pareto indifference and efficiency (σ , t′) ∈ ψ(q′) for some set of transfers
t′. Using Lemma 3, we get cost share of i from (σ , t′) as πi = 1

2θi
∑

j 	=i pj =
1
2

[
θi

∑
j<i pj +pi

∑
j>i θj

]
. Now, for any j < i, if we change θ ′

j to θj without chang-

ing processing time, the new γ of j is γj ≥ γi. Applying IPJθ , the cost share of
job i should not change. Similarly, for any job j > i, if we change p′

j to pj without
changing θj, the new γ of j is γj ≤ γi. Applying IFJp, the cost share of job i
should not change. Applying this procedure for every j < i with IPJθ and for
every j > i with IFJp, we reach q = (N, p, θ) and the payoff of i does not change
from πi. Using this argument for every i ∈ N and using the expression for the
Shapley value in Lemma 1, we get the Shapley value solution.

(3) implies (1): Consider a queue with jobs in set K = {1, . . . , i, i + 1}, where
i < n. Define q′ = (K, p, θ ′), where θ ′

j = θ i+1
j ∀ j ∈ K. Define σ ′

j = σj ∀ j ∈ K.
σ ′ is an efficient ordering for q′. By Pareto indifference and efficiency for some
transfers t′ we have (σ ′, t′) ∈ ψ(q′). By Lemma 3 the cost share of job i + 1

in any allocation rule in ψ must be πi+1 = 1
2

[∑
j<i+1 pjθi+1

]
. Now, consider

q′′ = (K, p, θ ′′) such that θ ′′
j = θ i

j ∀ j ≤ i and θ ′′
i+1 = θi+1. σ ′ remains an

efficient ordering in q′′ and by IPJθ the cost share of i + 1 remains πi+1. In
q′′′ = (K \ {i + 1}, p, θ ′′), we can calculate the cost share of job i using Lemma 3
as πi = 1

2
∑

j<i pjθi. So, using PRp we get the new cost share of job i in q′′ as

π ′
i = πi + ti+1

pi
∑

j<i+1 pj
= 1

2

[∑

j<i

pjθi + piθi+1

]
. (3)

Now, we can set K = K ∪ {i + 2} and consider q̂ = (K, p, θ̂), where θ̂j = θ i
j

∀ j ≤ i and θ̂j = θj for j ∈ {i + 1, i + 2}. As before, using Pareto indifference,
efficiency, Lemma 3, and IPJθ , we can find cost share of i + 2 in the queue θ̂ as

πi+2 = 1
2

[∑
j<i+2 pjθi+2

]
. The cost share of i in the queue q′′ = (K \ {i + 2}, p, θ̂)

is 1
2

[∑
j<i pjθi + piθi+1

]
(Equation 3). Using PRp we get the new cost share of

job i in the queue q̂ as πi = 1
2

[∑
j<i pjθi + piθi+1 + piθi+2

]
. This process can be

repeated till we add job n at which point cost share of i is 1
2

[∑
j<i pjθi+∑

j>i piθj

]
.

Then, we can adjust the θ of preceding jobs of i to their original value to get the
original queue (N, p, θ), and the payoffs of jobs i through n will not change due

Cost sharing in a job scheduling problem 381

to IPJθ . This gives us the Shapley values of jobs i through n. Setting i = 1, we
get cost shares of all the jobs from ψ as their respective Shapley values.

(4) implies (1): This proof mirrors the proof of (3) implies (1). We provide
a short sketch. As before, θs are kept equal to original data and processing
times are initialized to pi+1

j . This allows us to use IFJp. Also, we consider
K = {i, i + 1, . . . , n} and repeatedly add jobs to the beginning of the queue
maintaining the same efficient ordering. So, we add the cost components of
preceding jobs to the cost share of jobs in each iteration and arrive at the
Shapley value solution.
�

Some comments about our characterization results and the characterization
of Maniquet (2003) for the case of p1 = · · · = pn = 1 are in order. Observe that
we do not use the ETE axiom in our characterizations. But Maniquet uses the
ETE axiom for his model. It is clear that identical jobs ought to have identical
bargaining power (ETE axiom). But it is not clear as how bargaining power is
distributed among jobs of equal priority. We have tried to establish this through
IVM with ED2 or ECB. In a sense, the ETE axiom in Maniquet’s model makes
the cost share of a job single-valued when every ordering of jobs is efficient. This
cannot be achieved in our model using the ETE axiom. But it is achieved using
ECB (Lemma 3) or IVM with ED2 (Lemma 3) for our model. The “identical
preferences lower bound” axiom used in Maniquet (2003) is not satisfied by the
Shapley value solution in our model. So, no characterization is possible using it.

Acknowledgements Most of this research was done when the authors were visiting Center for
Operations Research and Econometrics (CORE), Belgium. The authors thank two anonymous
referees and an associate editor for their comments. The authors are also grateful to François
Maniquet, Hervé Moulin, Eilon Solan, Rakesh Vohra, Anna Bogomolnaia, Sidartha Gordon, Jay
Sethuraman, and the seminar participants at CORE, Stony Brook, and Caen for their feedback
on this work. Few results from this work has appeared as an extended abstract in the sixth ACM
conference on Electronic Commerce (Mishra and Rangarajan 2005b).

References

Chun Y (2004a) A note on Maniquet’s characterization of the Shapley value in queueing problems.
Working Paper, Rochester University

Chun Y (2004b) Consistency and monotonicity in sequencing problems. Working Paper, Seoul
National University

Curiel I, Pederzoli G, Tijs S (1989) Sequencing games. Eur J Oper Res 40:344–351
Hamers H, Suijs J, Tijs S, Borm P (1996) The split core for sequencing games. Games Econ Behav

15:165–176
Katta A-K, Sethuraman J (2005) Cooperation in queues. Working Paper, Columbia University
Maniquet F (2003) A characterization of the Shapley value in queueing problems. J Econ Theory

109:90–103
Mishra D, Rangarajan B (2005a) Cost sharing in a job scheduling problem. Technical report, CORE,

Discussion Paper 2005-53
Mishra D, Rangarajan B (2005b) Cost sharing in a job scheduling problem using the Shapley Value.

In: Proceedings of 6th ACM conference on electronic commerce (EC’ 05)
Mitra M (2002) Achieving the first best in sequencing problems. Rev Econ Des 7:75–91
Moulin H (1992a) An Application of the Shapley value to fair division with money. Econometrica

6(60):1331–1349

382 D. Mishra, B. Rangarajan

Moulin H (2004) On scheduling fees to prevent merging, splitting and transferring of jobs. Working
Paper, Rice University

Shapley LS (1953) Contributions to the theory of games II. In: Kuhn HW, Tucker AW (eds) Value
for n-person games. Annals of mathematics studies, pp 307–317, chapt A

Smith WE (1956) Various optimizers for single-stage production. Naval Res Logistics Quarterly
3:59–66

Suijs J (1996) On incentive compatibility and budget balancedness in public decision making. Econ
Des 2:193–209

	Cost sharing in a job scheduling problem
	Abstract
	Introduction
	Our contribution
	The model
	Cost sharing using the Shapley value
	The axioms
	Classical axioms
	New axioms
	Generalization of Maniquet's axioms
	The characterization results
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

