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Abstract In this paper I examine single member, simple plurality elections
with n ≥ 3 probabilistic voters and show that the maximization of expected
vote share and maximization of probability of victory are “generically differ-
ent” in a specific sense. More specifically, I first describe finite shyness (Anderson
and Zame in Adv Theor Econ 1:1–62, 2000), a notion of genericity for infinite
dimensional spaces. Using this notion, I show that, for any policy x∗ in the inte-
rior of the policy space and any candidate j, the set of n-dimensional profiles
of twice continuously differentiable probabilistic voting functions for which x∗
simultaneously satisfies the first and second order conditions for maximization
of j’s probability of victory and j’s expected vote share at x∗ is finitely shy with
respect to the set of n-dimensional profiles of twice continuously differentiable
probabilistic voting functions for which x∗ satisfies the first and second order
conditions for maximization of j’s expected vote share.

1 Introduction

In this paper, I examine the question of equivalence of two different objective
(or payoff) functions that political candidates may seek to maximize in an elec-
tion: expected vote share or the probability of victory. I restrict attention to
single winner, simple plurality elections with probabilistic voters and inquire
as to whether optimal candidate strategies and equilibrium policy positions are
different under these two objective functions. The main finding of this paper
is that expected vote share and probability of victory are “generically” differ-
ent in the sense that satisfaction of the first and second order conditions for
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maximization of expected vote share by an electoral platform generally does
not imply satisfaction of the first and second order conditions for maximization
of probability of victory.

The question of equivalence between different candidate objectives, first seri-
ously studied in the 1970s (Aranson et al. 1974; Hinich 1977; Ledyard 1984), has
been the subject of renewed interest recently (Duggan 2000; Patty 2000, 2001).
At issue is whether candidates who seek to maximize their vote share should
adopt the same strategies as candidates who seek to maximize the probability
of winning the election. In this paper I prove that the answer to this question
for single member, simple plurality elections with probabilistic voters is, in a
precise sense, “almost always” no.

There are two types of equivalence that have interested scholars of electoral
strategy, best response and equilibrium equivalence. If the optimal strategies
of the candidates are identical under the two objective functions, regardless of
their opponents’ policy choices, then the objective functions are said to exhibit
best response equivalence. Equilibrium equivalence of two objectives holds if
the two objectives yield identical sets of Nash equilibria. This paper speaks to
both types of equivalence. More to the point, the paper illustrates that either
type of equivalence between vote-maximization and probability of victory max-
imization is nongeneric. In other words, one can confidently expect candidate
behavior to differ under vote-maximization and probability of victory maximi-
zation, regardless of whether the object of interest is individual incentives or
equilibrium behavior.

The main point of this paper’s results is that the optimal strategies for
expected-vote-maximizing and probability-of-victory-maximizing candidates
usually differ. This result is of theoretical and substantive importance for a
number of reasons: first, there is no reason to assume a priori that the predic-
tions of models of electoral competition are invariant to which of these two
objectives motivate candidates’ choices of platforms. Secondly, a probability of
victory-maximizing candidate will not generally choose a platform in a man-
ner such that the expected behaviors of all voters are treated “equally”: the
responsiveness of a voter’s behavior is weighted by the probability of his or her
vote being pivotal in the election when the candidate calculates the marginal
benefit of a deviation in platforms. Finally, a pre-election poll of expected vote
choices is a sufficient statistic for expected vote share (so long as voters respond
to the poll truthfully) – these results indicate that there is no reason to assume
without further restrictions that such a poll also provides a sufficient statistic
for the candidates’ probabilities of winning the election.

A review of the relevant literature is provided in Sect. 2. The model is defined
in Sect. 3. In Sect. 4 we present a notion of genericity for infinite dimensional
spaces, shyness, due to Hunt et al. (1992), and recently generalized by Anderson
and Zame (2000). In Sect. 5 I present several lemmas and the main result of
the paper: generically, a policy that satisfies the first and second order necessary
conditions for maximization expected vote share does not satisfy the first and
second order necessary conditions for maximization of probability of victory.
The final section concludes.
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2 Related work

Aranson et al. (1974) offer an equivalence result which rests on assumptions
regarding perturbations of the candidate’s objective functions, perhaps repre-
senting forecast errors. Their result, however, requires that these forecast errors
are unbiased and, more importantly, that the errors are uncorrelated with the
strategies chosen by the candidates. As the authors point out, this assumption
is untenable, since the value of the objective functions (even after the errors
are taken into account) must fall between zero and one. A second equivalence
result obtained by Aranson et al. requires that the votes received in a two
candidate election be distributed according to a multivariate normal distribu-
tion. This obviously requires that negative vote totals be a positive probability
event. Aranson et al. were unable to offer any equivalence results between
expected plurality and probability of victory based on assumptions regarding
the primitives of the model.

Hinich (1977) provides justification for examining expected vote share in
place of probability of victory which depends only on the Central Limit The-
orem. Hinich’s equivalence result states that the two objective functions con-
verged in 2 candidate elections without abstention. This finding was extended
by Ledyard (1984) to include 2 candidate elections in which abstention is
allowed.

Patty (2001) examines expected vote share maximization, expected plurality
maximization, and maximization of probability of victory and provides coun-
terexamples to Hinich’s and Ledyard’s results as well as providing sufficient
conditions for best response equivalence in two candidate elections without
abstention. Duggan (2000) examines the question of local equilibrium equiv-
alence in two candidate elections without abstention. Restricting attention to
a voter behavior rationalizable by an additive utility bias model of random
utility maximization, Duggan proves that a strengthened version of local con-
cavity of voter preferences at a policy profile is a sufficient condition for local
equilibrium equivalence between maximization of expected vote share and
maximization of probability of victory. Patty (2000) provides a related notion
of local equilibrium equivalence and essentially extends Duggan’s findings to
general models of probabilistic voting as well as elections with more than two
candidates.

To date, research on the question of equivalence has successfully provided
several sufficient conditions for both best response and local equilibrium equiv-
alence. The literature has been relatively silent, however, on the question of
necessary conditions. Indeed, it is the author’s impression that most scholars
consider the occurrence of best response equivalence to be a rare event. This
intuition has not yet been formalized in the literature. This paper attempts to
offer a rigorous examination of this issue within models of probabilistic voting
and single member, simple plurality elections.
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3 The model

Let N denote a finite set of voters, with |N| = n ≥ 3, and J denote the set of
candidates, with the cardinality of J being denoted as usual by |J|. Each candidate
j ∈ J simultaneously chooses a point xj in some compact policy space X ⊂ R

K,
with K < ∞, possessing nonempty interior. I denote a J-dimensional vector of
policy proposals by x and the space of all such vectors of policy proposals by
Y = X |J|. The vector of all announced policies, other than the policy announced
by candidate j, is denoted by x−j, and the space of all such vectors by Y−j.

Each voter i chooses one candidate, denoted by ai ∈ J.1 The vector of all
choices, (a1, . . . , aN), is denoted by a. The space of all such vectors is denoted
by A. Each candidate j possesses an objective function uj : A → R. For any
a ∈ A and j ∈ J, I denote the vote total of candidate j by vj(a) = ∑N

i=1 1[ai = j]
and let w(a) ∈ {j ∈ J|vj(a) ≥ maxl∈J vl(a)} denote the winning candidate at s.
In the case of a tie, the winner is assumed to be determined by a fair lottery
between all candidates j for which vj(a) = maxl∈J vl(a). I denote the set of such
candidates by W(a). Thus, I am restricting attention to single winner, simple
plurality rule systems with a fair tie-breaking rule.

This paper considers elections with probabilistic voters (see Coughlin 1992
for an explication and survey of the theory of probabilistic voting). Accord-
ingly, each voter i ∈ N is characterized by a twice continuously differentiable
response function, pi : Y → �(J), where �(J) denotes the |J| − 1 dimensional
simplex: the set of |J|-dimensional vectors π for which

∑
j∈J π j = 1 and π j ≥ 0

for all j ∈ J. I denote the probability an alternative j ∈ J receives voter i’s
vote, conditional on policy proposal vector x, by pj

i(x). I denote the vector of all
voters’ response functions by p.

I assume that each pi(x) characterizes an independent multinomial random
variable ai(x), meaning that, given a policy profile x ∈ Y, all voters’ votes are
independent. This is stated formally below.

Assumption 1 (Independence) Conditional on a vector of policy proposals, x ∈
Y, the set of ai(x) are independent random variables, each distributed according
to pi(x), respectively, for all i ∈ N.

I now use the set of response functions, p, to define two candidate objective
functions, expected vote share and probability of victory. Given any profile of
policy proposals x ∈ Y, any vector of response functions p, and for any vector
of vote choices a, we write Pr[a|p(x)] = ∏

i∈N pai
i (x) to denote the probability

that the vote vector a is realized.
Given opponents’ pure strategies x−j, an expected vote share maximizing

candidate j ∈ J seeks to maximize

Vj(x) = 1
N

N∑

i=1

pj
i(x)

1 I do not examine abstention in this paper.
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and a probability of victory maximizing candidate j ∈ J seeks to maximize

Rj(x) =
∑

a∈A

(
1

|W(a)|1[j ∈ W(a)] Pr[a|p(x)]
)

.

I define an electoral game as �=(J, N, X, p, u), where u is a J-dimensional vector
of candidate objective functions such that uj ∈{Vj, Rj} for each candidate j∈J.2

In words, best response equivalence holds whenever two objective functions
prescribe an identical optimal (pure) strategy regardless of the strategieschosen
by the opponents.3 Such equivalence is essentially a decision-theoretic concern,
as the strategic effects of other players’ motivations are inconsequential to
the player in question. A second, weaker, form of equivalence is equilibrium
equivalence. Equilibrium equivalence holds whenever the set of Nash equilibria
under two different objective functions are identical. It is straight-forward to
show that best response equivalence implies equilibrium equivalence, so that
equilibrium equivalence is a necessary condition for best response equivalence.4

This paper offers insight into both of these questions in the case where each
voter’s behavior is a twice continuously differentiable function of the policy
choices of the candidates by examining the satisfaction of the necessary first
and second order conditions for maximization of the two objectives.

4 Shyness and finite shyness

Finite shyness, as defined by Anderson and Zame (2000), provides a rigorous
notion of genericity in infinite-dimensional spaces.5 It is intended to behave in
ways similar to measure-theoretic notions of genericity (i.e., a notion of “almost
everywhere”) in finite dimensional spaces. The space of interest in this paper is
the space of twice continuously differentiable functions from a compact set Y to
the n-fold Cartesian product of |J| − 1 dimensional simplices, �(J)n. This space
is infinite-dimensional, leading to our interest in the notion of finite shyness. I
now proceed to define this notion.

For any finite dimensional subspace V ⊂ X, let λV denote Lebesgue measure
on V and, analogously, write λRk for Lebesgue measure on Rk.6

2 The candidates are not required to share the same objective: some may maximize expected vote
while others maximize probability of victory.
3 Throughout this paper, attention is restricted to pure strategies by the candidates. A discussion of
best response equivalence in the space of mixed strategies is contained in Chapter 2 of Patty (2000).
4 For a more detailed discussion of this, see Aranson et al. (1974, p. 144–145).
5 Finite shyness is an extensions of the notion of shyness, as defined by Hunt et al. (1992). Finite
shyness is a stronger version of shyness.
6 As noted by Anderson and Zame (2000) (p. 13, footnote 11), for any finite dimensional space V
there exists a continuous linear isomorphism T : V → R

k for some positive integer k. Given T, one
can define λV (A) = λRk (T(A)) for each Borel set A ⊂ V. While this derived measure depends on
the choice of isomorphism T, all measures derived in this way are mutually absolutely continuous,
so that for two isomorphisms T and T′, λRk (T(A)) = 0 ⇒ λRk (T′(A)) = 0 for any Borel set
A ⊂ V. We are concerned only with sets of Lebesgue measure zero, so any choice of isomorphism
T is without loss of generality for the purposes of this paper.
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Definition 1 Let Q be a topological vector space and let U be a convex subset of
Q that is completely metrizable in the relative topology induced by Q. A Borel
subset E ⊂ U is finitely shy in (or relative to) U if there is a finite-dimensional
subspace V ⊂ Q such that λV(U + a) > 0 for some a ∈ Q and λV(E + q) = 0 for
every q ∈ Q. An arbitrary subset F ⊂ Q is finitely shy in U if it is contained in a
finitely shy Borel set. If E is finitely shy in U, then U \ E is referred to as finitely
prevalent.

A useful fact is that the finite union of finitely shy sets is itself finitely shy.
Before presenting the analysis and results I note that, throughout the paper,

the ambient topological vector space (i.e., the topological vector space Q in the
above definitions) is taken to be the space of twice continuously differentiable
functions from Y to (R|J|)n, endowed with the topology of C2 uniform conver-
gence.7 This space, which is complete, separable, and metrizable (Mas-Colell
1985, p. 50), is denoted by C2 throughout the paper. The space of n-dimensional
vectors of twice continuously differentiable response functions is denoted by
P(Y), a closed subset of C2.

5 Analysis and results

In this section it is first shown that, for any policy profile x∗ in the interior of
Y and any candidate j, the set of n-dimensional vectors of twice differentiable
response functions that lead to simultaneous satisfaction of the first and sec-
ond order necessary conditions for maximization of Vj and Rj at x∗ is shy in
the set of n-dimensional vectors of twice differentiable response functions that
satisfy the first and second order necessary conditions for maximization of Vj
at x∗. This then immediately implies (the much weaker result) that the set of
n-dimensional vectors of twice differentiable response functions that exhibit
best response equivalence is shy in the set of all n-dimensional vectors of twice
differentiable response functions.8

The results are stated in what may appear to be a strange fashion. In particu-
lar, a profile of platforms is fixed and the sets of response functions which exhibit
equivalence at that point are examined. This method is motivated by applica-
tion; typically, the question of equivalence is dealt with when a modeler seeks
to verify that, for example, the equilibrium derived under one objective func-
tion is also an equilibrium under the other objective. Thus, the results provided
here state that, supposing that x∗ ∈ Y satisfies the necessary conditions to be

7 Denoting the ith derivative of a function f by f i, the topology of Cr uniform convergence is the
topology generated by the semimetric

dr(f , g) = max
0≤i≤r

[

sup
y∈Y

||f i(y) − gi(y)||
]

,

where ||x|| = (
∑

s x2
s )1/2 denotes the usual Euclidean metric.

8 I thank a referee for clarifying my thinking regarding, and the exposition of, this point.
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a best response under V, it is “generally not the case” that x∗ also satisfies the
necessary conditions to be a best response under R.

5.1 Generic failure of equivalence

For any electoral game with differentiable response functions p, any candidate
j ∈ J, and any policy profile x ∈ Y, the first derivative of candidate j’s expected
vote with respect to j’s policy choice is

Dxj Vj(x) =
∑

i∈N

Dxj p
j
i(x).

Define the pivot probability of voter i with respect to candidate l, given a
policy profile x ∈ Y and other voters’ response functions p−i, as

δl
i(p−i(x)) =

∑

a∈D(i;l)

⎡

⎣ 1
|W(a)|

∏

j 
=i

p
aj
j (x)

⎤

⎦ , (1)

where D(i; j) ⊂ A denotes the set of vote vectors in which voter i is decisive
(or pivotal) for candidate j. That is, D(i; j) is the set of outcomes in which voter
i’s vote for candidate j either created a tie between j and some other candi-
date(s) or broke a tie between j and some other candidate(s). The following
result (proved in the appendix) uses the pivot probability to express the first
derivative of a candidate’s probability of victory with respect to her own policy
choice.

Lemma 1 For any electoral game with differentiable response functions p, any
candidate j ∈ J, and any policy profile x ∈ Y,

Dxj Rj(x) =
∑

i∈N

δ
j
i(p−i(x))Dxj p

j
i(x).

For any point x∗ ∈ Int(Y), define PV(x∗) ⊂ P(Y) as the set of n-dimensional
vectors of twice continuously differentiable response functions such that, for all
j ∈ J,

DVj(x∗) =
n∑

i=1

Dpj
i(x

∗) = 0

and

D2Vj(x∗) =
n∑

i=1

D2pj
i(x

∗) is negative semidefinite (n.s.d),
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where Dpj
i(x∗) denotes the evaluation at x∗ of the first derivative of voter

i’s probability of voting for candidate j with respect to candidate j’s policy
announcement and where D2pj

i(x∗) denotes the evaluation at x∗ of the matrix
of second partial derivatives of voter i’s probability of voting for candidate j
with respect to candidate j’s policy announcement. Similarly, let PR(x∗) denote
the set of n-dimensional vectors of twice continuously differentiable response
functions such that, for all j ∈ J,

DRj(x∗) =
N∑

i=1

δ
j
i(p−i(x∗))Dpj

i(x
∗) = 0.

and

D2Rj(x∗) is negative semidefinite.

Finally, let PV,R(x∗) denote the intersection of PV(x∗) and PR(x∗).
Before continuing, it should be noted that, while the definition of the set

takes x∗ as an argument, this is appropriate for the purposes of this paper in
two respects: first, the main result of the paper is that any pure strategy that
satisfies the first and second order conditions for maximization of expected
vote share maximization is extremely unlikely to also satisfy the first and second
order conditions for maximization of probability of victory and, second, the
results do not use any special characteristics of x∗ other than the fact that it is
in the interior of Y.9

The main result in this section is that PV,R(x∗) is finitely shy in PV(x∗) for
any x∗ ∈ Int(Y). First, several lemmas are proved. The first two lemmas jointly
demonstrate that the set of function profiles in PV,R(x∗) such that there exists
at least one voter i and one candidate j for which

δ
j
i(p−i(x∗))Dpj

i(x
∗) 
= 0

is finitely prevalent in the PV(x∗). This is demonstrated by showing (1) that the
set of function profiles in PV(x∗) in which pi(x∗) 
∈ Int(�(J)) for some i ∈ N is
finitely shy in PV(x∗), which implies that the set of function profiles in PV(x∗)
such that there exists a voter i and a candidate j for which

δ
j
i(p−i(x∗)) = 0

9 The analysis would be much more complicated if boundary policy profiles were considered. I
conjecture that the results stated here would still hold, however, so long as the policy space is
convex, since any policy on the boundary that maximizes an objective function must satisfy the first
and second order conditions relative to the interior of the policy space.
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is finitely shy in PV(x∗), and (2) that the set of function profiles in PV(x∗) such
that, for all voters i and candidates j, it is the case that

Dpj
i(x

∗) = 0,

is finitely shy in PV(x∗).

Lemma 2 Choose any point x∗ ∈ Int(Y) and define

B(x∗) =
{

p ∈ PV(x∗) : ∃j ∈ J, i ∈ N such that pj
i(x

∗) = 0
}

.

The set B(x∗) is finitely shy in PV(x∗).

Proof Note that all closed sets are completely metrizable in the relative topol-
ogy induced from the topology of C2 uniform convergence on P(Y) (Aliprantis
and Border 1994, p. 73). It can be shown that PV(x∗) is a closed and convex
subset of P(Y) and, hence, completely metrizable in the topology of C2 uniform
convergence on P(Y). Similarly, it may be verified that B(x∗) is closed and
therefore a Borel subset in the topology of C2 uniform convergence.

Consider the following function, which is constant with respect to Y:

p(·|α) = (α, (1 − α)/(|J| − 1), . . . , (1 − α)/(|J| − 1)),

and let h(·|α) = (p(·|α), . . . , p(·|α)) denote a n-dimensional profile of identical
response functions. Define H as the following one dimensional subspace of
P(Y): H = {h(·|α)|α ∈ R}. Since 0 ≤ α ≤ 1 implies that h(·|α) ∈ PV(x∗), it
follows that λH(PV(x∗)) > 0. We now show that λH(B(x∗) + g) = 0 for any
g ∈ C2. Consider any a, b ∈ R and s, t ∈ B(x∗) such that

s + g = h(·|a)

t + g = h(·|b).

It must be the case then Dh(·|a) = Ds + Dg and Dh(·|b) = Dt + Dg. Since
Dh(x|a) = Dh(x|b) = 0 for all x ∈ Y and any real numbers a and b, it follows
that Ds(x) = −Dg(x) and Dt(x) = −Dg(x) for all x ∈ Y, so that Ds = Dt.
Therefore, if sj

i(x∗) = 0 and tji(x∗) = 0 for some i ∈ N and j ∈ J, then it must be
the case that h(·|a) = g(x∗) = h(·|b), which implies that a = b.10

Fixing g ∈ C2, it follows that for each pair (i, k), with i ∈ N and k ∈ J, there
is at most one real number a and one function s ∈ B(x∗) such that sk

i (x∗) = 0
and s + g = h(·|a). There are at most |J|n such pairs for any given g ∈ C2. In
other words, for any g ∈ C2, (B + g) ∩ H contains at most |J|n elements. Since
the Lebesgue measure of any finite set is zero, we have that λH(B + g) = 0, so
that B is finitely shy relative to PV(x∗), as was to be shown. �

10 In particular, if sj
i(x

∗) = tji(x
∗) for j = 1, then a = g1

i (x∗) = b. If sj
i(x

∗) = tji(x
∗) for j 
= 1, then

a = 1 − (|J| − 1)g1
i (x∗) = b.
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Lemma 3 Choose any point x∗ ∈ Int(Y) and define

Z(x∗) =
{

p ∈ PV(x∗) : ∀j ∈ J, ∀i ∈ N, Dpj
i(x

∗) = 0
}

.

The set Z(x∗) is finitely shy in PV(x∗).

Proof It has already been shown that PV(x∗) is a completely metrizable convex
subset of P(Y). To see that Z(x∗) is a Borel subset in the topology of C2 uniform
convergence, note that Z is closed.

Choose a function f : X → (0, 1) such that f is twice continuously differen-
tiable and, for all x ∈ X, Dxf (x) 
= 0. Then define

p1(x|φ) =
(

φf (x1), φ(1 − f (x1)),
1 − φ

|J| − 2
, . . . ,

1 − φ

|J| − 2

)

,

p2(x|φ) =
(

φ(1 − f (x1)), φf (x1),
1 − φ

|J| − 2
, . . . ,

1 − φ

|J| − 2

)

,

p3(x) =
(

1
|J| , . . . ,

1
|J|

)

, and

h(·|φ) = (p1(·|φ), p2(·|φ), p3(·), . . . , p3(·)) ,

with φ ∈ R.
The set H = {h(·|φ)|φ ∈ R} is a one-dimensional subspace of P(Y). Con-

sider any φ in the open interval (0, 1). By construction, p1(·|φ), p2(·|φ), and p3(·)
are twice continuously differentiable response functions. Furthermore, Vk(x) is
constant for each candidate k ∈ J and all policy profiles x ∈ Y.11 From these
facts it follows that λH(PV(x∗)) > 0. It is now shown that λH(Z(x∗)+ g) = 0 for
any g ∈ C2. Suppose that, for some g ∈ C2, (Z(x∗) + g) ∩ H contains more than
one element. Then it must be the case that there exist distinct scalars a, b ∈ R

and distinct vectors of response functions s, t ∈ Z(x∗) such that

s + g = h(·|a),

t + g = h(·|b).

This would imply that Ds(x) = Dh(x|a) − Dg(x) and Dt(x) = Dh(x|b) − Dg(x)

for any x ∈ Y. By definition, s, t ∈ Z(x∗) implies that Ds(x∗) = Dt(x∗) = 0, so
that

Dh(x∗|a) = Dg(x∗) = Dh(x∗|b).

In particular, considering the strategy of candidate 1, it must be the case that

Dx1 h(x∗|a) = Dx1 g(x∗) = Dx1h(x∗|b).

11 Specifically, Vk(x) = n/|J| for all candidates k and all policy profiles x.
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Where, since h(x∗|·) and g(x∗) are n × |J| matrices, the differentiation denoted
by Dx1h(x∗|a), Dx1 h(x∗|b), and Dx1g(x∗) is performed component-wise in each
case. Accordingly, this differentiation results in the following:

Dx1 h(x∗|a) = (aDf (x∗), −aDf (x∗), 0, . . . , 0) and

Dx1 h(x∗|b) = (bDf (x∗), −bDf (x∗), 0, . . . , 0),

with Df (x∗) 
= 0. It follows then that Dh(x∗|a) = Dh(x∗|b) implies a = b, con-
tradicting the supposition that a and b are distinct. Therefore, since (Z(x∗)+g)∩
H contains at most one element, it must be the case that λH(Z(x∗) + g) = 0 for
all g ∈ C2. Hence, Z(x∗) is finitely shy relative to PV(x∗), as was to be shown. �

The next lemma establishes that a finitely prevalent subset of the
n-dimensional profiles of twice continuously response functions for which x∗
maximizes expected vote share is characterized by all voters having different
pivot probabilities for any given candidate in J.

Before proceeding to formally stating and proving the lemma, it is illustrative
to describe the logic of the proof. The first recognition is that it is sufficient to
consider any pair of voters (say, voters 1 and 2) and any candidate (say, candi-
date 1) and show that the set of profiles of response functions that lead to equal
pivot probabilities for those two voters for that candidate is a finitely shy subset
of P(x∗). The set of profiles of response functions such that, for any candidate,
the pivot probabilities for that candidate for more than one pair of voters are
equal is a subset of the set of response functions at which at least one pair of
voters have equal pivot probabilities for some candidate. Since the numbers of
voters and candidates are each finite and the union of finitely many finitely shy
sets is itself finitely shy, this approach is sufficient to show that the result holds.

The second fact motivating the proof of the result is that the pivot probability
for voter 1 (for example) is a function of all other voters’ behaviors at x∗ (i.e.,
p−1(x∗)) and not his or her own behavior (i.e., p1(x∗)). In addition, this prob-
ability is a function only of the value of all other voters’ response functions at
x∗. This greatly simplifies the problem in the sense that one can deal only with
constant response functions (or, in other words, one can identify each response
function with a unique vector in �(J)). Using these facts, the proof essentially
holds the response functions of voters 3, 4, . . . , n constant (after translation
by g ∈ C2) and then considers whether p1(x∗) restricts the set of p2(x∗) such
that δ

j
1(p−1(x∗)) = δ

j
2(p−2(x∗)) for some candidate j to a subspace with empty

interior relative to �(J). If this is the case, then the lemma follows.
Broadly speaking, the proof consists of four steps. The first step, after con-

structing a subspace of constant response functions, is the expression of voter
1’s pivot probability for candidate 1 as a linear function of voter 2’s response
function, holding the response functions of the other n − 2 voters constant.
The logic of this step is that, in most cases (in terms of the other n − 2 voters’
response functions), any perturbation of voter 2’s response function will result
in a different pivot probability for candidate 1. The second step of the proof is
demonstrating that this is indeed the case. The third step of the proof deals with
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situations in which perturbing voter 2’s response function will not alter voter
1’s pivot probability. These cases are rare, but important. This case is dealt with
by considering voter 3 and perturbing his or her behavior.12 This step is slightly
complicated by the fact that then the n−3 remaining voters’ behaviors are held
fixed. If these n − 3 response functions match up in a very specific way (which
can not be ruled out), then we must go further, considering voters 4, 5, and so
on. The final step of the proof is showing that this process need include no more
than the smallest strict majority of the voters. At this point, it is impossible
for the response functions of the other (n − 3)/2 voters13 to match up so that
perturbing the (n + 1)/2th voter’s14 response function does not affect voter 1’s
pivot probability for candidate 1.

The proof, while complicated in some ways, has a fairly straightforward logic
behind it. Any voter’s pivot probability for a given candidate is simply a sum of
the product of the other voters’ response functions over a subset of the possible
vote profiles (namely, the vote profiles in which that voter’s vote for the candi-
date in question is decisive). Lemma 2 allows us to consider only cases in which
all of these response functions are in the strict interior of the |J|−1 dimensional
simplex. This turns out to guarantee that varying one of the voters’ response
functions will generally change this sum of products. The complicated steps
involve ensuring that the special cases where this is not the case are nongeneric.

Lemma 4 For any point x∗ ∈ Int(Y), the set

T(x∗) =
{

p ∈ PV(x∗) \ B(x∗) : ∃i ∈ N, k ∈ N \ {i}, j ∈ J, δj
i(p−i(x∗))

= δ
j
k(p−k(x∗))

}

is finitely shy relative to PV(x∗).

Proof It has been demonstrated previously that PV(x∗) is a completely metr-
izable convex subset of P(Y). To see that T(x∗) is a Borel subset, note that it
is a closed set intersected with the complement of a Borel set (since B(x∗) is a
Borel set).

Let h(·|α1, . . . , αn) = (h1(·|α1), h2(·|α2), . . . , hn(·|αn)) = (α1, . . . , αn), for
α1, . . . , αn ∈ R

|J| (in other words, each voter’s response function is a constant
function on X). Let O(J) = {α ∈ R

J :
∑|J|

j=1 αj = 1} and denote by H the

n(|J| − 1)-dimensional subset of C2 generated by h:

H = {h(·|α1, . . . , αn) : αi ∈ O(J); ∀i ∈ N} .

12 An example of such a situation with three voters and two candidates is when voter 3 votes
for candidate 1 with probability 1/2 and candidate two with probability 1/2. In this case, voter 1’s
pivot probability for either candidate is 1/2, regardless of voter 2’s behavior. If voter 3’s behavior is
perturbed slightly, then this is no longer the case. I thank a referee for suggesting this example.
13 Or, n/2 − 1 voters if n is even.
14 Or, the n/2 + 1th voter if n is even.
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Let α = (α1, . . . , αn). It is clear that λH(PV(x∗)) > 0 since h(·|α) ∈ PV(x∗) for
all α such that α

j
i ≥ 0, for all i ∈ N and all j ∈ J.

Fix g ∈ C2 and let h−1(x∗|a−1) − g−1(x∗) denote the vector of functions
(h2(·|a2) − g2, h3(·|a3) − g3, . . . , hn(·|an) − g2), evaluated at x∗, and similarly for
h−2(x∗|a−2) − g−2(x∗), h−3(x∗|a−3) − g−3(x∗), etc. Now define

Ag(i, j, k) =
{

a ∈ (O(J))n : δk
i (h−i(x∗|a−i) − g−i(x∗))

= δk
j (h−j(x∗|a−j) − g−j(x∗))

}
.

Ag(i, j, k) is the set of a ∈ (O(J))n such that

s + g = h(·|a)

for some s ∈ T(x∗). Accordingly, if λH(Ag(i, j, k)) = 0 for arbitrary g ∈ C2,
i 
= j ∈ N, and k ∈ J, it follows that T(x∗) is finitely shy in PV(x∗).

I now consider voters 1 and 2 and candidate 1 (without loss of generality)
and derive voter 1’s pivot probability as a function of voter 2’s behavior (i.e.,
a2), holding the behavior of the remaining voters (i.e., a3, . . . , an) constant.

Given g ∈ C2, suppose that s ∈ PV(x∗) \ B(x∗), with s = h(·|a) − g for
some a ∈ O(J)n, and that voter 1 and voter 2 have equal pivot probabilities for
candidate 1:

δ1
1(h−1(x

∗|a−1) − g−1(x
∗)) = δ1

2(h−2(x∗|a−2) − g−2(x∗)).

Now express δ1
1(h−1(x∗|a−1) − g−1(x∗)) as a function of h2 − g2 as follows:

δ1
1(h−1(x

∗|a−1) − g−1(x
∗)) =

∑

j∈J

(hj
2(x

∗|a2) − gj
2(x

∗))K1
1,2(j, h − g),

where Kk
i,l(j, q) is the probability that voter i is pivotal for candidate k, condi-

tional on voter l voting for candidate j and the n-dimensional profile of response
functions q.15 Substituting hj

2(x
∗|a2) = aj

2, this becomes

15 While K1
1,2(j, h − g) is conditional on the action of voter 2, the construction of Kk

i,l implicitly
includes the response functions of the n − 2 voters other than 1 and 2 (i.e., a3, . . . , an). By holding
Kk

i,l fixed, we are supposing that these n − 2 response functions are held fixed. Below, we define
versions of K that are conditioned on the actions of more voters (i.e., voters 3, 4, and so on). The
logic of those conditional probabilities is analogous to that of K1

1,2(j, h − g).
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δ1
1(h−1(x

∗|a−1) − g−1(x
∗)) =

∑

j∈J

(aj
2 − gj

2(x
∗))K1

1,2(j, h − g).

Note that voter 2’s pivot probability for candidate 1, δ1
2, is not a function

of voter 2’s behavior, h2 − g2. By supposition, δ1
1(h−1(x∗|a−1) − g−1(x∗)) =

δ1
2(h−2(x∗|a−2) − g−2(x∗)). Therefore, we need to show that

δ1
2(h−2(x∗|a−2) − g−2(x∗)) =

∑

j∈J

(aj
2 − gj

2(x
∗))K1

1,2(j, h − g) (2)

holds for a subset of O(J) possessing Lebesgue measure zero.
There are two cases to consider. The first case (Case I) is if there exists two

candidates j, k ∈ J such that K1
1,2(j, h − g) 
= K1

1,2(k, h − g). This case holds
“most” of the time. The second case (Case II) is when, for all pairs of can-
didates j, k ∈ J, we have that K1

1,2(j, h − g) = K1
1,2(k, h − g). I deal with the

cases in order. Since K1
1,2(j, h − g) is a function of a3, . . . , an, these two cases

correspond to different configurations of behavior by the remaining n−2 voters.

Case I There exist two candidates j, k ∈ J such that K1
1,2(j, h−g) 
= K1

1,2(k, h−g).
In this case, the set of a2 that satisfy Eq. (2) possess dimension no greater

than |J| − 2, which is strictly less than the dimensionality of O(J) (which is
|J| − 1), implying that this subset possesses Lebesgue measure zero in O(J).
The Cartesian product of this subset and O(J)n−1 lies within O(J)n. Since the
subset defined by Eq. (2) has measure zero, Fubini’s theorem [Halmos (1974),
Theorem A, p. 147], then implies the set of a ∈ Ag(1, 2, 1) such that Case I holds,
defined as

Ag(1, 2, 1) =
{

a ∈ Ag(1, 2, 1) : ∃j, k ∈ J s.t. K1
1,2(j, h − g) 
= K1

1,2(k, h − g)
}

,

possesses Lebesgue measure zero in O(J)n.

Case II For all pairs of candidates j, k ∈ J, K1
1,2( j, h − g) = K1

1,2(k, h − g) holds.
In this second case, voter 2’s behavior (i.e., a2) does not affect voter 1’s pivot

probability for candidate 1.16 Therefore, I now consider voter 3 and expand
Eq. (2) to include voter 3’s behavior, obtaining the following:

δ1
2(h−2(x∗|a−2) − g−2(x∗))

=
∑

j∈J

(aj
2 − gj

2(x
∗))

∑

j3∈J

(aj3

3 − gj3

3 (x∗))K1
1,2,3( j, j3, h − g),

where K1
1,2,3( j, j3, h−g) is defined in a manner analogous to K1

1,2(j, h−g), above:
it is the probability that voter 1 is pivotal for candidate 1, conditional on voter

16 Similarly, voter 1’s behavior (i.e., a1) does not affect voter 2’s pivot probability for candidate 1.
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2 voting for candidate j, voter 3 voting for candidate j3, and the n-dimensional
profiles of response functions h − g. Now consider varying a3. If there exists
some j, k, j3 ∈ J such that

K1
1,2,3(j, j3, h − g) 
= K1

1,2,3(k, j3, h − g), (3)

then the set of a3 for which case II holds possesses Lebesgue measure zero in
O(J). To see this, first note that

K1
1,2(j, h − g) − K1

1,2(k, h − g)

=
∑

j3∈J

(aj3

3 − gj3

3 (x∗))K1
1,2,3(j, j3, h − g) −

∑

j3∈J

(aj3

3 − gj3

3 (x∗))K1
1,2,3(k, j3, h − g)

=
∑

j3∈J

(aj3

3 − g3(x∗))[K1
1,2,3(j, j3, h − g) − K1

1,2,3(k, j3, h − g)].

Then, supposing that K1
1,2,3(1, q, h − g) 
= K1

1,2,3(2, q, h − g) for some q ∈ J,

K1
1,2(j, h − g) − K1

1,2(k, h − g) = 0 implies that

0 =
∑

j3∈J

(aj3

3 − g3(x∗))
[
K1

1,2,3(1, j3, h − g) − K1
1,2,3(2, j3, h − g)

]
, (4)

Since K1
1,2,3(1, q, h − g) − K1

1,2,3(2, q, h − g)] 
= 0, this implies that (holding
a1, a2, a4, . . . , an constant) the set of a3 that solves Eq. (4) is of dimensionality
no greater than |J| − 2. This fact plus Fubini’s theorem implies that, the set
of solutions in O(J)n to Eq. (4) must possess dimensionality no greater than
n(|J| − 1) − 1, which implies that the Lebesgue measure (in O(J)n, which is of
dimensionality n(|J| − 1) of this set must be zero.

To finish this step of the proof, suppose that Eq. (3) does not hold for any
j, j3, k ∈ J. The above argument for voter 3 can be applied iteratively, remov-
ing (i.e., conditioning upon the actions of) additional voters one at a time and
checking a condition analogous to Eq. (3). Specifically, if we remove voters as
ordered by their subscript,17 and are considering voter l > 3, the analogue to
Eq. (3) is

K1
1,2,...,l(j, j3, . . . , jl−1, jl, h − g) 
= K1

1,2,...,l(j, j3, . . . , ĵl−1, jl, h − g) (5)

17 This choice of order is unnecessary, but convenient.
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for some jl−1, ĵl−1, jl ∈ J.18 If, at any voter l, Eq. (5) holds, then the set of al such
that K1

1,2(j, h − g) = K1
1,2(k, h − g) for all j, k ∈ J possesses Lebesgue measure

zero in O(J). (The process of proving this involves an extended version of the
argument derived following Eq. (4))

Now let l = (n + 3)/2 (or n/2 + 2 if n is even). In this case, it turns out
that Eq. (5) must be satisfied. To see this, consider the case where n is odd19

and j = j3 = · · · = jl−1 = jl = 1. In this case, the probability of voter 1 being
pivotal for candidate 1, conditional upon voters 2, 3, . . . , (n + 3)/2 (i.e., a strict
majority of the voters) voting for candidate 1 is 0, as voter 1’s vote choice can
not affect the outcome of the election. If, on the other hand, voter l votes for
(say) candidate 2 (i.e., jl = 2), then voter 1’s pivot probability for candidate
1 is positive by the supposition that no voter’s response function assigns any
candidate zero probability (i.e., h − g ∈ T(x∗) ⇒ h − g 
∈ B(x∗)).

Writing this formally, it is the case that

K1
j,j3,...,jl ,1 =

{
κ > 0 if jl 
= 1
0 otherwise.

For our purposes, we do not need to know the exact value of κ (which may
depend upon the value of jl).20 Our sole interest in κ is that it is strictly greater
than zero for any jl 
= 1.

I now claim that the set of al such that Eq. (5) does not hold must possess
Lebesgue measure zero in O(J). To see this, note that

K1
1,2,...,l−1(1, 1, . . . , jl−1 = 1, h − g)=

∑

jl∈J

(ajl

l − gjl

l (x∗))K1
1,2,...,l(1, 1 . . . , 1, jl, h − g)

=
∑

jl∈J\{1}
(ajl

l − gjl

l (x∗))K1
1,2,...,l(j, j2 . . . , jl, h − g)

18 Note that the order of subscripts does not matter: one could, for example, phrase this condition
as

K1
1,2,...,l(j, j3, . . . , jl−1, jl, h − g) 
= K1

1,2,...,l(j, ĵ3, . . . , jl−1, jl, h − g) (6)

for some j3, ĵ3, jl ∈ J. This is because the simple plurality rule considered here is anonymous.
19 The case where n is even is analogous.
20 It is easily derived though: the actual value of K1

j,j3,...,jl−1,1
for jl−1 
= 1 is 0.5 multiplied by the

probability of all n/2 − 1 remaining voters voting for jl−1 if n is even. If n is odd, then it is 0.5
multiplied by the probability of all (n − 1)/2 remaining voters voting for some candidate other than
jl−1 (including candidate 1). While these might obviously be very small numbers, they are not zero,
by the requirement that h − g 
∈ B(x∗).



Simple plurality elections with probabilistic voters 165

(this step follows because K1
j,j3,...,jl−1,jl=1,1

= 0) and that

K1
1,2,...,l−1(1, 1, . . . , jl−1 = 2, h − g)=

∑

jl∈J

(ajl

l − gjl

l (x∗))K1
1,2,...,l(1, 1 . . . , 2, jl, h − g),

so that

K1
1,2,...,l−1(1, 1, . . . , jl−1 = 1, h − g) − K1

1,2,...,l−1(1, 1, . . . , jl−1 = 2, h − g)

=
∑

jl∈J

[
(ajl

l − gjl

l (x∗)) − (ajl

l − gjl

l (x∗))
]

K1
1,2,...,l(1, 1 . . . , 1, jl, h − g).

Then, letting

K̂(jl) = K1
1,2,...,l(1, 1, . . . , 1, jl, h − g) − K1

1,2,...,l(1, 1, . . . , 2, jl, h − g),

it follows that

K1
1,2,...,l−1(1, 1, . . . , jl−1 = 1, h − g) = K1

1,2,...,l−1(1, 1, . . . , jl−1 = 2, h − g)

holds only if,

∑

jl∈J

(ajl

l − gjl

l (x∗))K̂(jl) = 0

∑

jl∈J\{1}

(ajl

l − gjl

l (x∗))K̂(jl)

K1
1,2,...,l(1, 1 . . . , 2, 1, h − g)

+ g1
l (x

∗) = a1
l (7)

and, since h − g 
∈ B(x∗), it follows that K1
1,2,...,l(1, 2, . . . , 2, jl) > 0 for all jl.

Since a1
l is determined uniquely in Eq. (7), the set of al satisfying Eq. (7) must

possess Lebesgue measure zero in O(J).21 Thus, the set of a1, . . . , an such that
K1

1,2(j, h − g) = K1
1,2(k, h − g) possesses Lebesgue measure zero in O(J)n.

Letting

Ag(1, 2, 1) = Ag(1, 2, 1) \ Ag(1, 2, 1),

denote the subset of A(1, 2, 1) in which Case II holds, it follows that Ag(1, 2, 1)

possesses Lebesgue measure zero in O(J)n, further implying (once again by
Fubini’s theorem) that Ag(1, 2, 1) possesses Lebesgue measure zero in O(J)n.

21 The process described here, more generally, can be thought of as rewriting δ1
1(h−1(x∗|a−1) −

g−1(x∗)) as a function of a |J|× |J|× · · ·× |J| “hypermatrix.” Each voter reduces the dimensionality
of this hypermatrix. Hopefully the derivation in terms of sums makes the logic more transparent.
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To conclude the proof, first note that the Lebesgue measure of Ag(1, 2, 1) in
O(J)n is less than or equal to the sum of its Lebesgue measure in Cases I and II:

λH(Ag(1, 2, 1)) ≤ λH(Ag(1, 2, 1)) + λH(Ag(1, 2, 1)).

Thus, the Lebesgue measure of Ag(1, 2, 1) in O(J)n must be zero. Finally, note
that the choice of candidates and voters is arbitrary, thus proving the result for
Ag(i, j, k), i, j ∈ N, and k ∈ J. Hence, T(x∗) is finitely shy relative to PV(x∗), as
was to be shown. �

The final lemma states that, given any point x∗ ∈ Int(Y), the set of profiles of
response functions p ∈ (PV(x∗) \ (B(x∗) ∪ Z(x∗) ∪ T(x∗))) that simultaneously
satisfy, for each candidate k ∈ J, the necessary first and second order conditions
for maximization of expected vote share and the necessary first order conditions
for maximization of probability of victory at x∗ is finitely shy with respect to the
set of profiles of response functions that satisfy, for each candidate k ∈ J, the
necessary first and second order conditions for expected vote share maximiza-
tion. This result is used to prove the paper’s main results, which state that the
set of profiles of response functions which simultaneously satisfy the necessary
first and second order conditions for maximization of both objective functions
is finitely shy with respect to the set of profiles that satisfy the first and second
order conditions under expected vote share maximization.

Lemma 5 For any point x∗ ∈ Int(Y), the set

R1(x∗) = {
p ∈ PV(x∗) \ (Z(x∗) ∪ B(x∗) ∪ T(x∗)) : DRj(x∗) = 0 ∀j ∈ J

}

is finitely shy relative to PV(x∗).

Proof That PV(x∗) is a completely metrizable convex subset of P(Y) has been
demonstrated previously. It is easily verified that R1(x∗) is a Borel subset (it is
the intersection of a Borel set with a closed set).

Let f : X → (−1/(2|J|), 1/(2|J|)) be a twice continuously differentiable func-
tion with f (x∗

1) = 0 and Dxf (x∗
1) = 1.22 Define

hi(y|αi, βi) = (αif (x1) + βi, 1/|J| − αif (x1) − βi, 1/|J|, . . . , 1/|J|)

for all i ∈ N, with αi and βi each assumed to be real numbers. Let

α = (α1, . . . , αn),

β = (β1, . . . , βn),

h(·|α, β) = (h1(·|α1, β1), . . . , hn(·|αn, βn)),

22 The notation x∗
1 denotes candidate 1’s position in policy profile x∗. The function f depends only

on candidate 1’s policy position.
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and let H = {h(·|α, β) :
∑n

i=1 αi = 0, β ∈ R
n}. This is a 2n − 1 dimensional

subspace of C2.
Note that, for any g ∈ C2, any voter i ∈ N, any candidate j ∈ J, and any

β ∈ R
n, the following holds for all α, α′ ∈ R

n:

δ
j
i(g−i(x∗) + h−i(x∗|α, β)) = δ

j
i(g−i(x∗) + h−i(x∗|α′, β)),

(where the subscript −i denotes the appropriate vector of functions for all
j ∈ N \ {i}). In other words, a fixed value of β “pins down” the voters’ pivot
probabilities. Similarly, for any g ∈ C2, any voter i ∈ N, any candidate j ∈ J, and
any α, the following holds for all β, β ′ ∈ R

n:

D(g−i(x∗) + h−i(x∗|α, β)) = D(g−i(x∗) + h−i(x∗|α, β ′)),

so that a fixed value of α pins down the gradients of voters’ behaviors.
Note that λH(PV(x∗)) > 0 since h(·|α, β) ∈ PV(x∗) if

∑n
i=1 αi = 0 and, for all

i ∈ N, βi ∈ (−1/(2‖J|), 1/2|J|). It is now shown that λH(R1(x∗) + g) = 0 for any
g ∈ C2. To prove this, it suffices to show that, for arbitrary fixed g ∈ C2 and for
all β such that δ1

1(g−1(x∗) + h−1(x∗|·, β)) 
= δ1
2(g−2(x∗) + h−2(x∗|·, β)),23 the set

Sg(β) = {
α ∈ R

n : g + h(x∗|α, β) ∈ R1(x∗)
}

possesses Lebesgue measure zero in R
n.

To see why this is sufficient, fix α, β and let s = g + h(·|α, β). Then note that
s ∈ R1(x∗) implies that there exists a distinct pair of voters i, k and a candidate
j such that

Dxj si(x∗) > 0 > Dxj sk(x∗).

Therefore, one can examine voters 1 and 2 and candidate 1 without loss of
generality. Second, note that s ∈ R1(x∗) implies that δ

j
i(s−i(x∗)) > 0 for all i ∈ N

and j ∈ J. Finally, β such that δ1
1(s−1(x∗)) = δ1

2(s−2(x∗)) implies that s ∈ T(x∗)
and hence s 
∈ R1(x∗).

Noting that s = g + h(·|α, β) ∈ R1(x∗) implies that

n∑

i=1

δi(s−i(x∗))[Dx1gi(x∗) + Dx1 hi(x∗|αi, βi)] = 0,

it follows that, letting K(α, β)=−∑n
i=3 δi(s−i(x∗))[Dx1gi(x∗)+Dx1 hi(x∗|αi, βi)],24

δ1(s−1(x∗))[Dx1g1(x∗) + Dx1h1(x∗|α1, β1)]
+ δ2(s−2(x∗))[Dx1g2(x∗) + Dx1h2(x∗|α2, β2)] = K(α, β).

23 Recall that specifying the vector β is sufficient to generate the the pivot probabilities for all
voters i ∈ N and all candidate j ∈ J, even with α left unspecified.
24 Note that K(α, β) is constant with respect to α1 and α2.
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Substituting for h1 and h2,

δ1(s−1(x
∗))[Dx1g1(x

∗) + α1] + δ2(s−2(x∗))[Dx1g2(x∗) + α2] = K(α, β).

A sufficient condition for λH(R1(x∗) + g) = 0 is, for any fixed α−2 = α̃−2, there
exists a unique value of α2 such that s, t ∈ R1(x∗), s = g + h(α2, α̃−2, β), and
t + g = h(α′

2, α̃−2, β) jointly imply that α2 = α′
2. In other words, a necessary

condition for λH(R1(x∗) + g) > 0 is that there exist some α−2, β such that

K(α, β) = δ1(s−1(x
∗))[Dx1g1(x

∗)+α1]+δ2(s−2(x∗))[Dx1g2(x∗)+z] (8)

zδ2(s−2(x∗)) = K(α, β)−δ1(s−1(x
∗))[Dx1g1(x

∗)+α1]−δ2(s−2(x∗))[Dx1g2(x∗)]
(9)

z = K(α, β)−δ1(s−1(x∗))
[
Dx1g1(x∗)+α1

]− δ2(s−2(x∗))
[
Dx1g2(x∗)

]

δ2(s−2(x∗))
(10)

for more than one value of z. However, s ∈ R1(x∗) implies that δ2(s−2(x∗)) > 0,
so that z is uniquely determined by Eq. (10). Since α−2 and β are arbitrary in
Eq. (10) (except that β must, of course, be such that s 
∈ T(x∗)), it must be the
case that λH(R1(x∗) + g) = 0 because the dimensionality of the set of solutions
to Eq. (10) must be no greater than 2n − 2 (implying that its 2n − 1 dimensional
Lebesgue measure is zero). Thus, R1(x∗) is finitely shy relative to PV(x∗), as
was to be shown. �

I now prove the following theorem, which states that a policy profile x∗
that simultaneously satisfies each candidate’s first and second order conditions
for maximization of expected vote share generically (in terms of the voters’
response functions) does not do so for each candidate’s probability of victory
as well.

Theorem 1 For any point x∗ ∈ Int(Y), the set PV,R(x∗) is finitely shy in PV(x∗).
Proof Note that PV,R(x∗) ⊂ R1(x∗) ∪ B(x∗) ∪ Z(x∗). By Lemma 2, B(x∗) is
finitely shy in PV(x∗). By Lemma 3, Z(x∗) is finitely shy in PV(x∗). By Lemma
5, R1(x∗) is finitely shy in PV(x∗). Thus, PV,R(x∗) is the subset of a finite union
of sets that are finitely shy in PV(x∗) and hence finitely shy in PV(x∗) as well. �

I now state the paper’s final result, which states that a policy profile x∗ that
satisfies the first and second order conditions for maximization of expected vote
share for any candidate j generically does not do so for that candidate’s prob-
ability of victory. In one way, this result is stronger than Theorem 1 in that the
other candidates’ objectives are left arbitrary. On the other hand, Theorem 2
establishes finite shyness relative to a larger set of profiles of response functions.
Thus, logically speaking, neither Theorem 1 nor Theorem 2 imply the other.25

25 I thank an anonymous referee for pointing this out.
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Before presenting Theorem 2, define the following sets for all candidates
j ∈ J and all interior policies x∗ ∈ Int(Y):26

Pj
V(x∗) =

{
p ∈ P(Y) : DVj(x∗) = 0 and D2Vj(x∗) is n.s.d,

}

Pj
R(x∗) =

{
p ∈ P(Y) : DRj(x∗) = 0 and D2Rj(x∗) is n.s.d,

}

Pj
V,R(x∗) = Pj

V(x∗) ∩ Pj
R(x∗)

Bj(x∗) = {p ∈ PV(x∗) : ∃j ∈ J, i ∈ N such that pj
i(x

∗) = 0}
Zj(x∗) = {p ∈ PV(x∗) : ∀i ∈ N, Dpj

i(x
∗) = 0}

Tj(x∗) = {p ∈ PV(x∗) \ B(x∗) : ∃i 
= k ∈ N, δj
i(p−i(x∗)) = δ

j
k(p−k(x∗))}

R1j(x∗) = {p ∈ PV(x∗) \ (Z(x∗) ∪ B(x∗) ∪ T(x∗)) : DRj(x∗) = 0 }

Note that, for any j ∈ J, the proofs of Lemmas 2, 3, 4, and 5 can be applied to
prove that Bj(x∗), Zj(x∗), Tj(x∗), and R1j(x∗) are each finitely shy in Pj

V(x∗).
Thus, the following result is stated without proof, as it is a mirror of the proof
of Theorem 1.

Theorem 2 For any j ∈ J, x∗ ∈ Int(Y), Pj
V,R(x∗) is finitely shy with respect to

Pj
V(x∗).
Theorem 2 states that, when considering an arbitrary profile of response

functions and a vector of opponents’ policies under which an interior policy
x∗ satisfies the necessary conditions for maximization of candidate j’s expected
vote share, it is generally not the case that the first and second order conditions
for maximization of the candidate’s probability of victory will be satisfied at
x∗ as well. One conclusion to be drawn is that, in general, the best response
correspondences generated by maximization of probability of victory and max-
imization of expected vote share maximization will differ. A second conclusion
to be drawn is that the genericity found in Theorem 1 does not depend on the
assumption that all candidates share the same objective. In other words, regard-
less of what the other candidates choose, platforms satisfying the first and second
order conditions for maximization of one objective generically do not satisfy the
first and second order conditions for the other. Thus, the results do not depend
on the assumption that the candidates all share the same objective function.

6 Conclusions

In this paper I have shown that satisfaction of the first and second order condi-
tions for maximization of a candidate’s expected vote share generically implies

26 It might be useful to note that PV(x∗) = ⋂
j∈J Pj

V(x∗), PR(x∗) = ⋂
j∈J Pj

R(x∗), PV,R(x∗) =
⋂

j∈J Pj
V,R(x∗), B(x∗) = ⋂

j∈J Bj(x∗), Z(x∗) = ⋂
j∈J Zj(x∗), T(x∗) = ⋂

j∈J Tj(x∗), and R1(x∗) =
⋂

j∈J R1j(x∗).
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the violation of the first and second order conditions for maximization of that
candidate’s probability of victory. Making the point another way, the results pre-
sented in this paper demonstrate that the predictions of game theoretic models
of electoral competition with probabilistic voters will almost always depend
upon the assumed functional form of politicians’ objectives. Furthermore, this
is true for two commonly used versions of “office motivation.”

The paper’s results hold for any policy on the interior of the policy space as
long as voters’ behaviors are only restricted to be twice continuously differen-
tiable functions of the policy profile chosen by the candidates. An important
implication of this result is that best response equivalence between these two
objectives is “almost never” satisfied. This result is in accordance with the tenor
of the results of Aranson et al. (1974), which also show that equivalence between
maximization of vote share and maximization of probability of victory is a rare
event, though in a different framework.

The importance of these results lies in the research topics which remain
open due to the frequent failure of equivalence to hold. In particular, what
are the properties of electoral competition under different objective functions?
Are equilibrium outcomes under one objective function more representative
than under another? What is the relative “punishment” (in terms of decreased
chances of victory) of candidates who seek to maximize vote share under differ-
ent electoral rules?

There are several questions regarding candidates objective functions which
remain open. Perhaps the most relevant of these questions is what are the effects
of different electoral institutions on equivalence between candidate objective
functions? For example, we have not examined the properties of proportional
representation, multiple winners, multiple ballot systems (e.g., simple majority
rule systems with runoffs or party based systems with primaries), or different
scoring rules such as approval voting and the Borda count.

More immediate extensions of the model include the following. It may be of
interest to restrict attention to voter response functions which are symmetric. If
voter i possesses a symmetric response, then if 2 or more candidates choose the
same policy, voter i votes for each such candidate with equal probability (this
is a property of logit and probit response functions in a world of policy-moti-
vated voters, for example).27 Also, I do not examine at least one other plausible
objective function: maximization of expected margin of victory. Aranson et
al. (1974), Hinich (1977), Ledyard (1984), and Patty (2001) each examine this
objective function, but primarily in the context of 2 candidate contests. Finally,
the question of abstention has not been dealt with in this paper. It is conjec-
tured that allowing for abstention will only strengthen the tenor of the results
obtained in this paper.28

27 I thank Richard McKelvey for suggesting this extension.
28 It is already known, for example, that equivalence is even more unusual in electoral models
when abstention is allowed in the sense that equivalence may hold in an electoral setting without
abstention but fail once abstention is allowed (e.g., Hinich 1977; Patty 2001).
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Appendix A Proof of Lemma 1

Lemma 1 For any electoral game with differentiable response functions p, any
candidate j ∈ J, and any policy profile x ∈ Y,

Dxj Rj(x) =
∑

i∈N

δ
j
i(p−i(x))Dxj p

j
i(x).

Proof

Rl(x) =
∑

a∈A

1
|W(a)|1[l ∈ W(a)] Pr[a|p(x)]

=
∑

a∈A:l∈W(a)

1
|W(a)|

N∏

i=1

pai
i (x).

Dxl Rl(x) =
∑

a∈A:l∈W(a)

⎡

⎣ 1
|W(a)|

N∑

i=1

⎡

⎣
∏

j 
=i

p
aj
j (x)

⎤

⎦ Dxl p
ai
i (x)

⎤

⎦

=
J∑

k=1

1
k

⎡

⎣
∑

a∈A:l∈W(a),|W(a)|=k

⎡

⎣
N∑

i=1

⎡

⎣
∏

j 
=i

p
aj
j (x)

⎤

⎦ Dxl p
ai
i (x)

⎤

⎦

⎤

⎦

=
J∑

k=1

1
k

⎡

⎣
N∑

i=1

⎡

⎣
∑

a∈A:l∈W(a),|W(a)|=k

⎡

⎣
∏

j 
=i

p
aj
j (x)

⎤

⎦ Dxl p
ai
i (x)

⎤

⎦

⎤

⎦ (11)

=
J∑

k=1

1
k

⎡

⎣
N∑

i=1

⎡

⎣
∑

a∈A:l∈W(a),|W(a)|=k,ai=l

⎡

⎣
∏

j 
=i

p
aj
j (x)

⎤

⎦ Dxl p
l
i(x)

+
∑

a∈A:l∈W(a),|W(a)|=k,ai 
=l

⎡

⎣
∏

j 
=i

p
aj
j (x)

⎤

⎦ Dxl p
ai
i (x)

⎤

⎦

⎤

⎦ . (12)

For any voter i ∈ N and any vector of policy proposals x ∈ Y,
∑J

l=1 pl
i(x) = 1,

so that, for any candidate j ∈ J,
∑J

l=1 Djpl
i(x) = 0. Rewriting Eq. (12),



172 J. W. Patty

Dxl Rj(x) =
J∑

k=1

1
k

⎡

⎣
N∑

i=1

⎡

⎣
∑

a∈D(i;l):|W(a)|=k

⎡

⎣
∏

j 
=i

p
aj
j (x)

⎤

⎦ Dxl p
l
i(x)

+
∑

a 
∈D(i;j):l∈W(a),|W(a)|=k,ai=l

⎡

⎣
∏

j 
=i

p
aj
j (x)

⎤

⎦ Dxl p
l
i(x)

+
∑

a∈A:l∈W(a),|W(a)|=k,ai 
=l

⎡

⎣
∏

j 
=i

p
aj
j (x)

⎤

⎦ Dxl p
ai
i (x)

⎤

⎦

⎤

⎦ . (13)

For any voter i, any candidate j, and any vote vector a ∈ A, ai 
= j implies that
a 
∈ D(i; j). Thus, it is possible to combine the second and third inner sums in
Eq. (13) and obtain

Dxl Rj(x) =
J∑

k=1

1
k

⎡

⎣
N∑

i=1

⎡

⎣
∑

a∈D(i;l):|W(a)|=k

⎡

⎣
∏

j 
=i

p
aj
j (x)

⎤

⎦ Dxl p
l
i(x)

+
∑

a 
∈D(i;j):l∈W(a),|W(a)|=k

⎡

⎣
∏

j 
=i

p
aj
j (x)

⎤

⎦ Dxl p
ai
i (x)

⎤

⎦

⎤

⎦ . (14)

For any voter i ∈ N and candidate j ∈ J, let ND(i; j) ⊂ A−i denote the set of
vectors of votes other than i’s in which j ∈ W(A) and i can not be pivotal for j.
That is, regardless of i’s vote, W(a) remains the same (and includes j). Formally,

ND(i; j) = {a−i ∈ A−i : j ∈ W(ai; a−i)∀ai ∈ J}.

Rewriting Eq. (14),

Dxl Rj(x) =
J∑

k=1

1
k

⎡

⎣
N∑

i=1

⎡

⎣
∑

a∈D(i;l):|W(a)|=k

⎡

⎣
∏

j 
=i

p
aj
j (x)

⎤

⎦ Dxl p
l
i(x)

+
∑

a−i∈ND(i;j):|W(a)|=k

⎡

⎣
J∑

m=1

⎡

⎣
∏

j 
=i

p
aj
j (x)

⎤

⎦ Dxl p
m
i (x)

⎤

⎦

⎤

⎦

⎤

⎦ . (15)

Since
∑J

m=1 Djpm
i (x) = 0 for any i ∈ N and x ∈ Y, the second inner sum in

Eq. (15) vanishes, leaving

Dxl Rj(x) =
J∑

k=1

1
k

⎡

⎣
N∑

i=1

⎡

⎣
∑

a∈D(i;l);|W(a)|=k

⎡

⎣
∏

j 
=i

p
aj
j (x)

⎤

⎦ Dxl p
l
i(x)

⎤

⎦

⎤

⎦ .
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Then, summing over the cardinality of W(a), we obtain

Dxl Rj(x) =
N∑

i=1

⎡

⎣
∑

a∈D(i;l)

1
|W(a)|

⎡

⎣
∏

j 
=i

p
aj
j (x)

⎤

⎦ Dxl p
l
i(x)

⎤

⎦ . (16)

Finally, using Eq. (1) and substituting δl
i(p−i(x)) into Eq. (16), we obtain

Dxl Rl(x) =
N∑

i=1

δ
j
i(p−i(x))Dxl p

l
i(x),

as was to be shown. �
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