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Abstract In response to recent work on the aggregation of individual judg-
ments on logically connected propositions into collective judgments, it is often
asked whether judgment aggregation is a special case of Arrowian preference
aggregation. We argue for the converse claim. After proving two impossibility
theorems on judgment aggregation (using “systematicity” and “independence”
conditions, respectively), we construct an embedding of preference aggregation
into judgment aggregation and prove Arrow’s theorem (stated for strict prefer-
ences) as a corollary of our second result. Although we thereby provide a new
proof of Arrow’s theorem, our main aim is to identify the analogue of Arrow’s
theorem in judgment aggregation, to clarify the relation between judgment
and preference aggregation, and to illustrate the generality of the judgment
aggregation model.

1 Introduction

The problem of “judgment aggregation” has recently received much attention:
How can the judgments of several individuals on logically connected propo-
sitions be aggregated into corresponding collective judgments? To illustrate,
suppose a three-member committee has to make collective judgments (accep-
tance/rejection) on three connected propositions:
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Table 1 The discursive
paradox

a a → b b

Individual 1 True True True
Individual 2 True False False
Individual 3 False True False
Majority True True False

a: “Carbon dioxide emissions are above the threshold x.”
a → b: “If carbon dioxide emissions are above the threshold x, then there

will be global warming.”
b: “There will be global warming.”
As shown in Table 1, the first committee member accepts all three proposi-

tions; the second accepts a but rejects a → b and b; the third accepts a → b but
rejects a and b. Then the judgments of each committee member are individually
consistent, and yet the majority judgments on the propositions are inconsistent:
a majority accepts a, a majority accepts a → b, but a majority rejects b.

This so-called discursive paradox (Pettit 2001) has led to a growing literature
on the possibility of consistent judgment aggregation under various conditions.
List and Pettit (2002) have provided a first model of judgment aggregation
based on propositional logic and proved that no aggregation rule generating
consistent collective judgments can satisfy some conditions inspired by (but not
equivalent to) Arrow’s conditions on preference aggregation. This impossibility
result has been extended and strengthened by Pauly and van Hees (2006, see
also van Hees forthcoming), Dietrich (2006), and Gärdenfors (forthcoming).1

Abstracting from propositional logic, Dietrich (forthcoming) has provided a
model of judgment aggregation in general logics, which we use in the present
paper, that can represent aggregation problems involving propositions formu-
lated in richer logical languages. Drawing on the related model of “property
spaces”, Nehring and Puppe (2002, 2005) have proved the first agenda charac-
terization results, identifying necessary and sufficient conditions under which
an agenda of propositions gives rise to an impossibility result under certain
conditions.

Although judgment aggregation is different from the more familiar prob-
lem of preference aggregation, the recent results resemble earlier results in
social choice theory. The discursive paradox resembles Condorcet’s paradox
of cyclical majority preferences, and the various recent impossibility theorems
resemble Arrow’s and other theorems on preference aggregation. This raises
the question of how the work on judgment aggregation is related to earlier work
in social choice theory. Provocatively expressed, is it just a reinvention of the
wheel?

1 Possibility results, obtained by relaxing some of the conditions of these impossibility results, have
been proved by List (2003, 2004), Dietrich (2006), Pigozzi (forthcoming), and Dietrich and List
(2005). The relationship with the Condorcet jury theorem has been investigated by Bovens and
Rabinowicz (2006) and List (2005).
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It can be replied that the logic-based model of judgment aggregation general-
izes Arrow’s classical model of preference aggregation. Specifically, preference
aggregation problems can be modelled as special cases of judgment aggregation
problems by representing preference orderings as sets of binary ranking judg-
ments in predicate logic (List and Pettit 2001/2004, List 2003).2 Less formally,
this way of thinking about preferences goes back to Condorcet himself (see also
Guilbaud 1966).

In this paper, we reinforce this argument. After introducing the judgment
aggregation model in general logics and proving two impossibility results (using
“systematicity” and “independence” conditions, respectively), we construct an
explicit embedding of preference aggregation into judgment aggregation and
prove Arrow’s theorem (for strict preferences) as a corollary of our second
impossibility result. We also point out that our first impossibility result has cor-
ollaries for the aggregation of other binary relations (such as partial orderings
or equivalence relations).

Although we thereby provide a new proof of Arrow’s theorem, our primary
aim is to identify the analogue of Arrow’s theorem in judgment aggregation, to
clarify the logical relation between judgment and preference aggregation, and
to illustrate the generality of the judgment aggregation model.

Related results were given by List and Pettit (2001/2004), who derived a sim-
ple impossibility theorem on preference aggregation from their (2002) impos-
sibility result on judgment aggregation, and Nehring (2003), who derived an
Arrow-like impossibility theorem from Nehring and Puppe’s (2002) charac-
terization result in the related model of “property spaces”. But neither result
exactly matches Arrow’s theorem. Compared to Arrow’s original theorem, List
and Pettit’s result requires additional neutrality and anonymity conditions, but
no Pareto principle; Nehring’s result requires an additional monotonicity con-
dition. We highlight the connections of our present results with these and other
results (including recent results by Dokow and Holzman 2005) throughout the
paper.

2 The judgment aggregation model

We consider a group of individuals 1, 2, . . . , n (n ≥ 2). The group has to make
collective judgments on logically connected propositions.

Formal logic. Propositions are represented in an appropriate logic. A logic
(with negation symbol ¬) is an ordered pair (L, �), where (i) L is a non-empty
set of formal expressions (propositions) closed under negation (i.e., if p ∈ L
then ¬p ∈ L), and (ii) � is an entailment relation, where, for each set A ⊆ L

2 This embedding works only for the ordinal preference-relation-based part of Arrowian social
choice theory, not for the cardinal welfare-function-based part. Wilson’s (1975) aggregation model,
as discussed in our concluding remarks, is another generalization of ordinal preference aggregation.
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and each proposition p ∈ L, A � p is read as “A entails p” (we write p � q to
abbreviate {p} � q).3

A set A ⊆ L is inconsistent if A � p and A � ¬p for some p ∈ L, and con-
sistent otherwise; A ⊆ L is minimal inconsistent if it is inconsistent and every
proper subset B � A is consistent. A proposition p ∈ L is contingent if {p} and
{¬p} are consistent.

We require the logic to satisfy the following minimal conditions:
(L1) For all p ∈ L, p � p (self-entailment).
(L2) For all p ∈ L and A ⊆ B ⊆ L, if A � p then B � p (monotonicity).
(L3) ∅ is consistent, and each consistent set A ⊆ L has a consistent superset

B ⊆ L containing a member of each pair p, ¬p ∈ L (completability).
Many different logics satisfy conditions L1 to L3, including standard propo-
sitional logic, standard modal and conditional logics and, for the purpose of
representing preferences, predicate logic, as defined subsequently. For exam-
ple, in standard propositional logic, L contains propositions such as a, b, a ∧ b,
a∨b, a → b, ¬(a∧b), and � satisfies {a, a → b} � b, b � a∨b, but not b � a∧b.

The agenda. The agenda is a non-empty subset X ⊆ L, interpreted as the
set of propositions on which judgments are to be made, where X is a union
of proposition–negation pairs {p, ¬p} (with p not itself a negated proposi-
tion). For simplicity, we assume that double negations cancel each other out,
i.e., ¬¬p stands for p.4 In the earlier discursive paradox example, the agenda is
X = {a, ¬a, b, ¬b, a → b, ¬(a → b)}, with → interpreted either as the material
conditional in standard propositional logic or as a subjunctive conditional in a
suitable conditional logic.

Agenda richness. Whether or not judgment aggregation gives rise to serious
impossibility results depends on how the propositions in the agenda are inter-
connected. We consider agendas X with different types of interconnections. Our
basic agenda assumption, which significantly generalizes the one in List and Pet-
tit (2002), is minimal connectedness. An agenda X is minimally connected if (i) it
has a minimal inconsistent subset Y ⊆ X with |Y| ≥ 3, and (ii) it has a minimal
inconsistent subset Y ⊆ X such that (Y\Z)∪{¬z : z ∈ Z} is consistent for some
subset Z ⊆ Y of even size (even-number negation condition).5

As Ron Holzman has indicated to us, part (ii) of minimal connectness is
equivalent to Dokow and Holzman’s (2005) assumption that the set of admis-
sible yes/no views on the propositions in X is a non-affine subset of {0, 1}X .6

To obtain a more demanding agenda assumption, we define
path-connectedness, a variant of Nehring and Puppe’s (2002) assumption of

3 Formally, �⊆ P(L) × L, where P(L) is the power set of L.
4 When we use the negation symbol ¬ hereafter, we mean a modified negation symbol ∼,
where ∼ p := ¬p if p is unnegated and ∼ p := q if p = ¬q for some q.
5 Note that the set Y can be different in parts (i) and (ii).
6 In the first version of this paper, we had used a more restrictive version of part (ii), requiring Z
to be of size two rather than even size. The present version of part (ii) was introduced in Dietrich
(forthcoming).
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total blockedness.7 For any p, q ∈ X, we write p �∗ q if {p, ¬q} ∪ Y is incon-
sistent for some Y ⊆ X consistent with p and with ¬q.8 Now an agenda X is
path-connected if, for every contingent p, q ∈ X, there exist p1, p2, . . . , pk ∈ X
(with p = p1 and q = pk) such that p1 �∗ p2, p2 �∗ p3,…, pk−1 �∗ pk.

The agenda of our earlier example is minimally connected, but not path-
connected. As detailed subsequently, preference aggregation problems can be
represented by agendas that are both minimally connected and path-connected.
The aggregation of many other binary relations can be represented by mini-
mally connected agendas.

Individual judgment sets. Each individual i’s judgment set is a subset Ai ⊆ X,
where p ∈ Ai means that individual i accepts proposition p. A judgment set Ai
is consistent if it is a consistent set as defined earlier; Ai is complete if, for every
proposition p ∈ X, p ∈ Ai or ¬p ∈ Ai. A profile (of individual judgment sets) is
an n-tuple (A1, . . . , An).

Aggregation rules. A (judgment) aggregation rule is a function F that assigns to
each admissible profile (A1, . . . , An) a single collective judgment set F(A1, . . . ,
An) = A ⊆ X, where p ∈ A means that the group accepts proposition p. The set
of admissible profiles is called the domain of F, denoted Domain(F). Examples
of aggregation rules are the following:

• Propositionwise majority voting. For each (A1, . . . , An), F(A1, . . . , An) =
{p ∈ X : more individuals i have p ∈ Ai than p /∈ Ai}.

• Dictatorship of individual i. For each (A1, . . . , An), F(A1, . . . , An) = Ai.
• Inverse dictatorship of individual i. For each (A1, . . . , An), F(A1, . . . , An) =

{¬p : p ∈ Ai}.
Regularity conditions on aggregation rules. We impose the following condi-

tions on the inputs and outputs of aggregation rules.

Universal domain. The domain of F is the set of all possible profiles of consis-
tent and complete individual judgment sets.

Collective rationality. F generates consistent and complete collective judgment
sets.

Propositionwise majority voting, dictatorships and inverse dictatorships
satisfy universal domain, but only dictatorships generally satisfy collective ratio-
nality. As the discursive paradox example of Table 1 shows, propositionwise
majority voting sometimes generates inconsistent collective judgment sets. In-
verse dictatorships satisfy collective rationality only in special cases (i.e., when
the agenda is symmetrical: for every consistent Z ⊆ X, {¬p : p ∈ Z} is also
consistent).

7 For a compact logic, path-connectedness is equivalent to total blockedness; in the general case,
path-connectedness is weaker.
8 For non-paraconsistent logics (in the sense of L4 in Dietrich forthcoming), {p, ¬q} ∪ Y is incon-
sistent if and only if {p} ∪ Y � q.
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3 Two impossibility theorems on judgment aggregation

Are there any appealing judgment aggregation rules satisfying universal do-
main and collective rationality? The following conditions are frequently used
in the literature.

Independence. For any proposition p ∈ X and profiles (A1, . . . , An), (A∗
1, . . . ,

A∗
n) ∈ Domain(F), if [for all individuals i, p ∈ Ai if and only if p ∈ A∗

i ] then
[p ∈ F(A1, . . . , An) if and only if p ∈ F(A∗

1, . . . , A∗
n)].

Systematicity. For any propositions p, q ∈ X and profiles (A1, . . . , An), (A∗
1, . . . ,

A∗
n) ∈ Domain(F), if [for all individuals i, p ∈ Ai if and only if q ∈ A∗

i ] then
[p ∈ F(A1, . . . , An) if and only if q ∈ F(A∗

1, . . . , A∗
n)].

Unanimity principle. For any profile (A1, . . . , An) ∈ Domain(F) and any prop-
osition p ∈ X, if p ∈ Ai for all individuals i, then p ∈ F(A1, . . . , An).

Independence requires that the collective judgment on each proposition
should depend only on individual judgments on that proposition. Systematicity
strengthens independence by requiring in addition that the same pattern of
dependence should hold for all propositions (a neutrality condition). The una-
nimity principle requires that if all individuals accept a proposition then this
proposition should also be collectively accepted. The following result holds.

Proposition 1 For a minimally connected agenda X, an aggregation rule F sat-
isfies universal domain, collective rationality, systematicity and the unanimity
principle if and only if it is a dictatorship of some individual.

Proof All proofs are given in the appendix. ��
Proposition 1 is related to an earlier result by Dietrich (forthcoming), which

requires an additional assumption on the agenda X but no unanimity principle
(the additional assumption is that X is also asymmetrical: for some inconsistent
Z ⊆ X, {¬p : p ∈ Z} is consistent). This result, in turn, generalizes an earlier
result on systematicity by Pauly and van Hees (2006).

From Proposition 1, we can derive two new results of interest. The first is a
generalization of List and Pettit’s (2002) theorem on the non-existence of an
aggregation rule satisfying universal domain, collective rationality, systematicity
and anonymity (i.e., invariance of the collective judgment set under permuta-
tions of the given profile of individual judgment sets). Our result extends the
earlier impossibility result to any minimally connected agenda and weakens
anonymity to the requirement that there is no dictator or inverse dictator.

Theorem 1 For a minimally connected agenda X, every aggregation rule F sat-
isfying universal domain, collective rationality and systematicity is a (possibly
inverse) dictatorship of some individual.

The agenda assumption of Theorem 1 cannot be weakened further if the
agenda is finite or the logic is compact (and n ≥ 3 and X contains at least
one contingent proposition), i.e., minimal connectedness is also necessary (and
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not just sufficient) for giving rise to (possibly inverse) dictatorships under the
conditions of Theorem 1.9

The second result we can derive from Proposition 1 is the analogue of Arrow’s
theorem in judgment aggregation, from which we subsequently derive Arrow’s
theorem on (strict) preference aggregation as a corollary. We use the following
lemma, which strengthens an earlier lemma by Nehring and Puppe (2002) by
not requiring monotonicity.

Lemma 1 For a path-connected agenda X, an aggregation rule F satisfying uni-
versal domain, collective rationality, independence and the unanimity principle
also satisfies systematicity.

Let us call an agenda strongly connected if it is both minimally connected
and path-connected. Using Lemma 1, Proposition 1 now implies the following
impossibility result.

Theorem 2 For a strongly connected agenda X, an aggregation rule F satisfies
universal domain, collective rationality, independence and the unanimity princi-
ple if and only if it is a dictatorship of some individual.

Dokow and Holzman (2005) have independently shown that (for a finite
agenda containing only contingent propositions) strong connectedness (in the
form of the conjunction of non-affineness and total blockedness) is both nec-
essary and sufficient for characterizing dictatorships by the conditions of The-
orem 2 (assuming n ≥ 3). A prior closely related result is Nehring and Puppe’s
(2002) characterization result, using total blockeness alone but imposing an
additional monotonicity condition. In fact, within the general logics frame-
work, the necessity holds if the agenda is finite or the logic is compact (and X
contains at least one contingent proposition; again assuming n ≥ 3).

Proposition 1 and Theorems 1 and 2 continue to hold under generalized
definitions of minimally connected and strongly connected agendas.10

Of course, it is debatable whether and when independence or systematicity
are plausible requirements on judgment aggregation. The literature contains
extensive discussions of these conditions and their possible relaxations. In our
view, the importance of Theorems 1 and 2 lies not so much in establishing the

9 It can then be shown that, if X is not minimally connected, there exists an aggregation rule that
satisfies universal domain, collective rationality and systematicity and is not a (possibly inverse)
dictatorship. Let M be a subset of {1, . . . , n} of odd size at least 3. If part (i) of minimal connected-
ness is violated, then majority voting among the individuals in M satisfies all requirements. If part
(ii) is violated, the aggregation rule F with universal domain defined by F(A1, . . . , An) := {p ∈ X :
the number of individuals i ∈ M with p ∈ Ai is odd} satisfies all requirements. The second example
is due to Dokow and Holzman (2005).
10 In the definition of minimal connectedness, (i) can be weakened to the following: (i*) there is
an inconsistent set Y ⊆ X with pairwise disjoint subsets Z1, Z2, Z3 such that (Y\Zj)∪{¬p : p ∈ Zj}
is consistent for any j ∈ {1, 2, 3} (Dietrich forthcoming). In the definition of strong connectedness
(by (i), (ii) and path-connectedness), (i) can be dropped altogether, as path-connectedness implies
(i*). In the definitions of minimal connectedness and strong connectedness, (ii) can be weakened
to (ii*) in Dietrich (forthcoming).
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impossibility of consistent judgment aggregation, but rather in indicating what
conditions must be relaxed in order to make consistent judgment aggregation
possible. The theorems describe boundaries of the logical space of possibilities.

4 Arrow’s theorem

We now show that Arrow’s theorem (stated here for strict preferences) can be
restated in the judgment aggregation model, where it is a direct corollary of
Theorem 2. We consider a standard Arrowian preference aggregation model,
where each individual has a strict preference ordering (asymmtrical, transitive
and connected, as defined subsequently) over a set of options K = {x, y, z, . . .}
with |K| ≥ 3. We embed this model into our judgment aggregation model by
representing preference orderings as sets of binary ranking judgments in a sim-
ple predicate logic, following List and Pettit (2001/2004). Although we consider
strict preferences for simplicity, we note that a similar embedding is possible
for weak preferences.11

A simple predicate logic for representing preferences. We consider a predicate
logic with constants x, y, z, . . . ∈ K (representing the options), variables v, w,
v1, v2 ,…, identity symbol =, a two-place predicate P (representing strict pref-
erence), logical connectives ¬ (not), ∧ (and), ∨ (or), → (if-then), and universal
quantifier ∀. Formally, L is the smallest set such that

• L contains all propositions of the forms αPβ and α = β, where α and β are
constants or variables, and

• whenever L contains two propositions p and q, then L also contains ¬p,
(p ∧ q), (p ∨ q), (p → q) and (∀v)p, where v is any variable.

Notationally, we drop brackets when there is no ambiguity. The entailment
relation � is defined as follows. For any set A ⊆ L and any proposition p ∈ L,

A � p if and only if
A ∪ Z entails p in the standard
sense of predicate logic,

where Z is the set of rationality conditions on strict preferences:

(∀v1)(∀v2)(v1Pv2 → ¬v2Pv1) (asymmetry);
(∀v1)(∀v2)(∀v3)((v1Pv2 ∧ v2Pv3) → v1Pv3) (transitivity);
(∀v1)(∀v2)(¬ v1 = v2 → (v1Pv2 ∨ v2Pv1)) (connectedness).12

11 If we represent weak preference aggregation in the judgment aggregation model using the
embedding indicated subsequently, the independence condition and the unanimity principle
become stronger than Arrow’s independence of irrelevant alternatives and the weak Pareto princi-
ple. So, in the case of weak preferences unlike that of strict ones, Theorem 2 only implies a weaker
form of Arrow’s theorem.
12 For technical reasons, Z also contains, for each pair of distinct constants x, y, the condition
¬ x = y, reflecting the mutual exclusiveness of the options.
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To represent weak preferences rather than strict ones, Z simply needs to be
redefined as the set of rationality conditions on weak preferences (i.e., reflexiv-
ity, transitivity, and connectedness); see also Dietrich (forthcoming).13 Binary
relations with other properties can be represented analogously, by defining Z
as the set of appropriate rationality conditions, e.g., the set containing reflex-
ivity (respectively, asymmetry) and transitivity for weak (respectively, strict)
partial orderings, and the set containing reflexivity, transitivity and symmetry
for equivalence relations.

The agenda. The preference agenda is the set X of all propositions of the
forms xPy, ¬xPy ∈ L, where x and y are distinct constants.14 Note the fol-
lowing lemma (which holds for strict as well as weak preferences). The path-
connectedness part of the result is equivalent to a lemma by Nehring (2003).

Lemma 2 The preference agenda X is strongly connected.

The correspondence between preference orderings and judgment sets. It is
easy to see that each (asymmetrical, transitive and connected) preference order-
ing over K can be represented by a unique consistent and complete judgment
set in X and vice-versa, where individual i strictly prefers x to y if and only if
xPy ∈ Ai. For example, if individual i strictly prefers x to y to z, this is uniquely
represented by the judgment set Ai = {xPy, yPz, xPz, ¬yPx, ¬zPy, ¬zPx}.

The correspondence between Arrow’s conditions and conditions on judgment
aggregation. For the preference agenda, the conditions of universal domain,
collective rationality, independence (“independence of irrelevant alternatives”)
and the unanimity principle (“the weak Pareto principle”), as stated earlier,
exactly match the standard conditions of Arrow’s theorem, where an Arrowian
preference aggregation rule is represented by a judgment aggregation rule.

As the preference agenda is strongly connected, Arrow’s theorem now fol-
lows from Theorem 2.

Corollary 1 (Arrow’s theorem) For the preference agenda X, an aggregation
rule F satisfies universal domain, collective rationality, independence and the
unanimity principle if and only if it is a dictatorship of some individual.

Corollary 1 strengthens Nehring’s (2003) corollary by dropping monotonic-
ity; it also strengthens List and Pettit’s (2001/2004) corollary by weakening
systematicity to independence and (effectively) anonymity to non-dictatorship,
at the expense of imposing, in addition, the unanimity principle.

13 Transitivity and connectedness are as defined earlier. Reflexivity can be stated by the proposition
(∀v)(vPv). For aesthetic reasons, one might also replace the predicate symbol P by R in the logic.
14 xPy is interpreted as “x is better than/preferable to y”. Note that this represents preference
aggregation as the aggregation of beliefs of betterness/preferability. One might argue that prefer-
ences are desire-like rather than belief-like and thus object to re-interpreting them as beliefs of
preferability. To respond to this objection, we might, for example, interpret xPy as “x is socially
preferred to y”, and interpret an individual judgment set Ai ⊆ X as the set of propositions that
individual i desires (rather than believes), while interpreting a collective judgment set A ⊆ X as a
set of propositions about social preference.
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Table 2 The embedding of concepts

Preference aggregation Judgment aggregation
Preference ordering Judgment set

over a set of options in the preference agenda
Strong connectedness

Three or more options of the preference agenda
Asymmetry, transitivity Consistency

and connectedness and completeness
of the preference ordering of the judgment set

Preference aggregation rule Judgment aggregation rule
Universal domain Universal domain
Collective rationality Collective rationality
Independence Independence

of irrelevant alternatives
Weak Pareto principle Unanimity principle
Arrowian dictator (Judgment) dictator
Arrow’s theorem Corollary of Theorem 2

The correspondence between preference and judgment aggregation concepts
under the constructed embedding is summarized in Table 2.

5 Concluding remarks

After proving two impossibility theorems on judgment aggregation – Theo-
rem 1 with systematicity and a weak agenda assumption, Theorem 2 with inde-
pendence and a stronger agenda assumption – we have shown that Arrow’s
theorem (for strict preferences) is a corollary of Theorem 2, applied to the
aggregation of binary ranking judgments in a simple predicate logic. In the
case of binary relations other than preference orderings, Theorem 2 does not
necessarily apply, as the resulting agenda is not necessarily path-connected. For
example, if the binary relations in question are partial orderings or equivalence
relations (as briefly mentioned earlier), the agenda is merely minimally con-
nected; but Theorem 1 still yields an immediate corollary for the aggregation of
profiles of such binary relations into corresponding collective binary relations:
here every aggregation rule satisfying universal domain, collective rationality
and systematicity is a (possibly inverse) dictatorship of some individual.

These findings illustrate the generality of judgment aggregation. Impossibil-
ity and possibility results such as Theorems 1 and 2 can apply to a large class
of aggregation problems formulated in a suitable logic – any logic satisfying
conditions L1 to L3 – of which a predicate logic for representing preferences is
a special case. Other logics to which the results apply are propositional, modal
or conditional logics, some fuzzy logics as well as different predicate logics.

An alternative, very general model of aggregation is the one introduced by
Wilson (1975) and used by Dokow and Holzman (2005), where a group has to
determine its yes/no views on several issues based on the group members’ views
on these issues (subject to feasibility constraints). Wilson’s model can also be
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represented in our model; Dokow and Holzman’s results for Wilson’s model
apply to a logic satisfying L1 to L3 and a finite agenda.15

Although we have constructed an explicit embedding of preference aggre-
gation into judgment aggregation, we have not proved the impossibility of a
converse embedding. We suspect that such an embedding is hard to achieve, as
Arrow’s standard model cannot easily capture the different informational basis
of judgment aggregation. It is unclear what an embedding of judgment aggre-
gation into preference aggregation would look like. In particular, it is unclear
how to specify the options over which individuals have preferences. The proposi-
tions in an agenda are not candidates for options, as propositions are usually not
mutually exclusive. Natural candidates for options are perhaps entire judgment
sets (consistent and complete), as these are mutually exclusive and exhaustive.
But in a preference aggregation model with options thus defined, individuals
would feed into the aggregation rule not a single judgment set (option), but
an entire preference ordering over all possible judgment sets (options). This
would be a different informational basis from the one in judgment aggregation.
In addition, the explicit logical structure within each judgment set would be
lost under this approach, as judgment sets in their entirety, not propositions,
would be taken as primitives. However, the construction of a useful converse
embedding or the proof of its non-existence remains a challenge.

Acknowledgments We thank Richard Bradley, Ruvin Gekker, Ron Holzman, Philippe Mongin,
Klaus Nehring, Clemens Puppe and the referees for comments and suggestions.

6 Appendix

Proof of Proposition 1 Let X be minimally connected and let F be any aggre-
gation rule. Put N := {1, . . . , n}. If F is dictatorial, F obviously satisfies universal
domain, collective rationality, systematicity and the unanimity principle. Now
assume F satisfies the latter conditions. Then there is a set C of (“winning”) coali-
tions C ⊆ N such that, for every p ∈ X and every (A1, . . . , An) ∈ Domain(F),
F(A1, . . . , An) = {p ∈ X : {i : p ∈ Ai} ∈ C}. For every consistent set Z ⊆ X, let
AZ be some consistent and complete judgment set such that Z ⊆ AZ.

Claim 1. N ∈ C, and, for every coalition C ⊆ N , C ∈ C if and only if N\C /∈ C.
The first part of the claim follows from the unanimity principle, and the

second part follows from collective rationality together with universal domain.
Claim 2. For any coalitions C, C∗ ⊆ N, if C ∈ C and C ⊆ C∗ then C∗ ∈ C.
Let C, C∗ ⊆ N with C ∈ C and C ⊆ C∗. Assume for contradiction that C∗ /∈ C.

Then N\C∗ ∈ C. Let Y be as in part (ii) of the definition of minimally connected
agendas, and let Z be a smallest subset of Y such that (Y\Z)∪{¬z : z ∈ Z} is con-
sistent and Z has even size. We have Z �= ∅, since otherwise the (inconsistent) set

15 In Wilson’s model, the notion of consistency (feasibility) rather than that of entailment is a
primitive. While the notion of entailment in our model fully specifies a notion of consistency, the
converse does not hold for all logics satisfying L1 to L3.
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Y would equal the (consistent) set (Y\Z) ∪ {¬z : z ∈ Z}. So, as Z has even size,
there are two distinct propositions p, q ∈ Z. Since Y is minimal inconsistent,
(Y\{p})∪{¬p} and (Y\{q})∪{¬q} are each consistent. This and the consistency
of (Y\Z) ∪ {¬z : z ∈ Z} allow us to define a profile (A1, . . . , An) ∈ Domain(F)

as follows. Putting C1 := C∗\C and C2 := N\C∗ (note that {C, C1, C2} is a
partition of N), let

Ai :=
⎧
⎨

⎩

A(Y\{p})∪{¬p} if i ∈ C
A(Y\Z)∪{¬z:z∈Z} if i ∈ C1
A(Y\{q})∪{¬q} if i ∈ C2.

(1)

By (1), we have Y\Z ⊆ F(A1, . . . , An) as N ∈ C. Also by (1), we have
q ∈ F(A1, . . . , An) as C ∈ C, and p ∈ F(A1, . . . , An) as C2 = N\C∗ ∈ C. In sum-
mary, writing Z∗ := Z\{p, q}, we have (*) Y\Z∗ ⊆ F(A, . . . , An). We distinguish
two cases.

Case C1 /∈ C. Then C ∪ C2 = N\C1 ∈ C. So Z∗ ⊆ F(A1, . . . , An) by (1),
which together with (*) implies Y ⊆ F(A1, . . . , An). But then F(A1, . . . , An) is
inconsistent, a contradiction.

Case C1 ∈ C. So {¬z : z ∈ Z∗} ⊆ F(A1, . . . , An) by (1). This together with (*)
implies that (Y\Z∗)∪{¬z : z ∈ Z∗} ⊆ F(A1, . . . , An). So (Y\Z∗)∪{¬z : z ∈ Z∗}
is consistent. As Z∗ also has even size, the minimality condition in the definition
of Z is violated.

Claim 3. For any coalitions C, C∗ ⊆ N, if C, C∗ ∈ C then C ∩ C∗ ∈ C.
Consider any C, C∗ ∈ C. Let Y ⊆ X be as in part (i) of the definition of

minimally connected agendas. As |Y| ≥ 3, there are pairwise distinct proposi-
tions p, q, r ∈ Y. As Y is minimally inconsistent, each of the sets (Y\{p})∪{¬p},
(Y\{q})∪{¬q} and (Y\{r})∪{¬r} is consistent. This allows us to define a profile
(A1, ..., An) ∈ Domain(F) as follows. Putting C0 := C ∩ C∗, C1 := C∗\C and
C2 := N\C∗ (note that {C0, C1, C2} is a partition of N), let

Ai :=
⎧
⎨

⎩

A(Y\{p})∪{¬p} if i ∈ C0
A(Y\{r})∪{¬r} if i ∈ C1
A(Y\{q})∪{¬q} if i ∈ C2.

(2)

By (2), Y\{p, q, r} ⊆ F(A1, . . . , An) as N ∈ C. Again by (2), we have q ∈
F(A1, . . . , An) as C0 ∪ C1 = C∗ ∈ C. As C ∈ C and C ⊆ C0 ∪ C2, we
have C0 ∪ C2 ∈ C by claim 2. So, by (2), r ∈ F(A1, . . . , An). In summary,
Y\{p} ⊆ F(A1, . . . , An). As Y is inconsistent, p /∈ F(A1, . . . , An), and hence
¬p ∈ F(A1, . . . , An). So, by (2), C0 ∈ C (Fig. 1).

Claim 4. There is a dictator.
Consider the intersection of all winning coalitions, C̃ := ∩C∈CC. By claim

3, C̃ ∈ C. So C̃ �= ∅, as by claim 1 ∅ /∈ C. Hence there is a j ∈ C̃. As j
belongs to every winning coalition C ∈ C, j is a dictator: indeed, for each profile
(A1, . . . , An) ∈ Domain(F) and each p ∈ X, if p ∈ Aj then {i : p ∈ Ai} ∈ C, so
that p ∈ F(A1, . . . , An); and if p /∈ Ai then ¬p ∈ Ai, so that {i : ¬p ∈ Ai} ∈ C,
implying ¬p ∈ F(A1, . . . , An), and hence p /∈ F(A1, . . . , An). ��
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Fig. 1 The profiles constructed in the proofs of claims 2 (left) and 3 (right)

Proof of Theorem 1 Let X be minimally connected, and let F satisfy universal
domain, collective rationality and systematicity. If F satisfies the unanimity
principle, then, by Proposition 1, F is dictatorial. Now suppose F violates the
unanimity principle.

Claim 1. X is symmetrical, i.e., if A ⊆ X is consistent, so is {¬p : p ∈ A}.
Let A ⊆ X be consistent. Then there exists a consistent and complete judg-

ment set B such that A ⊆ B. As F violates the unanimity principle (but satisfies
systematicity), the set F(B, . . . , B) contains no element of B, hence contains
no element of A, hence contains all elements of {¬p : p ∈ A} by collective
rationality. So, again by collective rationality, {¬p : p ∈ A} is consistent.

Claim 2. The aggregation rule F̂ with universal domain defined by
F̂(A1, . . . , An) := {¬p : p ∈ F(A1, . . . , An)} is dictatorial.

As F satisfies collective rationality and systematicity, so does F̂, where the
consistency of collective judgment sets follows from claim 1. F̂ also satisfies
the unanimity principle: for any p ∈ X and any (A1, . . . , An) in the universal
domain, where p ∈ Ai for all i, p /∈ F(A1, . . . , An), hence ¬p ∈ F(A1, . . . , An),
and so p = ¬¬p ∈ F̂(A1, . . . , An). Now Proposition 1 applies to F̂, and hence F̂
is dictatorial.

Claim 3. F is inverse dictatorial.
The dictator for F̂ is an inverse dictator for F. ��

Proof of Lemma 1 Let X and F be as specified. To show that F is systematic,
consider any p, q ∈ X and any (A1, . . . , An), (A∗

1, . . . , A∗
n) ∈ Domain(F) such

that C := {i : p ∈ Ai} = {i : q ∈ A∗
i }, and let us prove that p ∈ F(A1, . . . , An) if

and only if q ∈ F(A∗
1, . . . , A∗

n) . If p and q are both tautologies ({¬p} and {¬q} are
inconsistent), the latter holds since (by collective rationality) p ∈ F(A1, . . . , An)

and q ∈ F(A∗
1, . . . , A∗

n). If p and q are both contradictions ({p} and {q} are
inconsistent), it holds since (by collective rationality) p /∈ F(A1, . . . , An) and
q /∈ F(A∗

1, . . . , A∗
n). It is impossible that one of p and q is a tautology and the

other a contradiction, because then one of {i : p ∈ Ai} and {i : q ∈ A∗
i } would

be N and the other ∅.
Now consider the remaining case where both p and q are contingent. We

say that C is winning for r (∈ X) if r ∈ F(B1, . . . , Bn) for some (hence by
independence any) profile (B1, . . . , Bn) ∈ Domain(F). with {i : r ∈ Bi} = C.
We have to show that C is winning for p if and only if C is winning for q.
Suppose C is winning for p, and let us show that C is winning for q (the con-
verse implication can be shown analogously). As X is path-connected and p
and q are contingent, there are p = p1, p2, . . . , pk = q ∈ X such that p1 �∗ p2,
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p2 �∗ p3, …, pk−1 �∗ pk. We show by induction that C is winning for each
of p1, p2, . . . , pk. If j = 1 then C is winning for p1 by p1 = p. Now let 1 ≤
j < k and assume C is winning for pj. We show that C is winning for pj+1. By
pj �∗ pj+1, there is a set Y ⊆ X such that (i) {pj} ∪ Y and {¬pj+1} ∪ Y are
each consistent, and (ii) {pj, ¬pj+1} ∪ Y is inconsistent. Using (i) and (ii), the
sets {pj, pj+1} ∪ Y and {¬pj, ¬pj+1} ∪ Y are each consistent. So there exists a
profile (B1, . . . , Bn) ∈ Domain(F) such that {pj, pj+1} ∪ Y ⊆ Bi for all i ∈ C and
{¬pj, ¬pj+1} ∪ Y ⊆ Bi for all i /∈ C. Since Y ⊆ Bi for all i, Y ⊆ F(B1, . . . , Bn)

by the unanimity principle. Since {i : pj ∈ Bi} = C is winning for pj, we have
pj ∈ F(B1, . . . , Bn). So {pj} ∪ Y ⊆ F(B1, . . . , Bn). Hence, using collective ratio-
nality and (ii), we have ¬pj+1 /∈ F(B1, . . . , Bn), and so pj+1 ∈ F(B1, . . . , Bn).
Hence, as {i : pj+1 ∈ Bi} = C, C is winning for pj+1. ��
Proof of Lemma 2 Let X be the preference agenda. X is minimally connected,
as, for any pairwise distinct constants x, y, z, the set Y = {xPy, yPz, zPx} ⊆ X is
minimal inconsistent, where {¬xPy, ¬yPz, zPx} is consistent.

To prove path-connectedness, note that, by the axioms of our predicate logic
for representing preferences, (*) ¬xPy and yPx are equivalent (i.e., entail each
other) for any distinct x, y ∈ K. Now consider any (contingent) p, q ∈ X, and let
us construct a sequence p = p1, p2, . . . , pk = q ∈ X with p |�∗ p2, . . . , pk−1 |�∗
q. By (*), if p is a negated proposition ¬xPy, then p is equivalent to the non-
negated proposition yPx; and similarly for q. So we may assume without loss
of generality that p and q are non-negated propositions, say p is xPy and q is
x′Py′. We distinguish three cases, each with subcases.

Case x = x′. If y = y′, then xPy �∗ xPy = x′Py′ (take Y = ∅). If y �= y′, then
xPy �∗ xPy′ = x′Py′ (take Y = {yPy′}).

Case x = y′. If y = x′, then, taking any z ∈ K\{x, y}, we have xPy �∗ xPz
(take Y = {yPz}), xPz �∗ yPz (take yPx), and yPz �∗ yPx = x′Py′ (take
Y = {zPx}). If y �= x′, then xPy �∗ x′Py (take Y = {x′Px}) and x′Py �∗ x′Py′
(take Y = {yPy′}).

Case x �= x′, y′. If y = x′, then xPy �∗ xPy′ (take Y = {yPy′}) and xPy′ �∗
x′Py′ (take Y = {x′Px}). If y = y′, then xPy �∗ x′Py = x′Py′ (take Y = {x′Px}).
If y �= x′, y′, then xPy �∗ x′Py′ (take Y = {x′Px, yPy′}). ��
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