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Abstract We determine, by means of max-∗-transitivity, necessary and suffi-
cient conditions for a fuzzy binary relation R defined on a countable (finite or
denumerable) set A to be representable by a utility function. We display one
example of its application.
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1 Introduction

A basic assumption made by pioneers of classical microeconomics such as
Edgeworth and Pareto was that the ranking of a consumer’s preferences could
always be measured numerically, by associating to each possible consumption
bundle a real number that measures its utility: the greater the utility, the more
preferred the bundle was, and conversely. Consequently, there has appeared a
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general mathematical problem to justify this assumption of the representation
of preferences.

When individual (consumer) has crisp preferences, many authors (Bridges
and Metha 1995; Debreu 1959; Fishburn 1970; Kreps 1990; Varian 2002) solved
the problem of the representation of a crisp binary relation (usually called clas-
sical representation) which is defined as follows: “Given a crisp binary relation
R on a set of alternatives A, find necessary and sufficient conditions of the exis-
tence of a real-valued mapping f on A such that for any elements x, y ∈ A, xRy
if and only if f (x) ≥ f (y)”.

Since 1980, Economists recognized that consumer’s preferences are not
always crisp, they could be vague or ambiguous. Accordingly, as in many works
(Barrett et al. 1990; Billot 1992, 1995; Dasgupta and Deb 1996; Fodor and
Roubens 1994; Fono 2004; Fono and Andjiga 2005; Fono and Gwét 2003; Jain
1990; Ponsard 1987; Salles 1998; Sengupta 1999), we assume in this paper that
individual or consumer has crisp or ambiguous preferences on A, which are
modeled by a Fuzzy Weak Preference Relation R on A formally defined as
follows:

Definition 1 (Barrett et al. 1990; Billot 1995; Dasgupta and Deb 1996; Fono
2004; Fono and Andjiga 2005; Fono and Gwét 2003; Salles 1998; Sengupta
1999) A fuzzy binary relation is a function R : A × A → [

0, 1
]
.

– R is crisp if ∀x, y ∈ A, R(x, y) ∈ {0, 1}.
– R is reflexive if ∀x ∈ A, R(x, x) = 1.
– R is connected if ∀x, y ∈ A, R(x, y) + R(y, x) ≥ 1.
– R is strongly connected if ∀x, y ∈ A, max(R(x, y), R(y, x)) = 1.
– A fuzzy weak preference relation (FWPR) is a reflexive and connected fuzzy

binary relation.
– R is bin-transitive if ∀x, y, z ∈ A,

[R(x, y) ≥ R(y, x) and R(y, z) ≥ R(z, y)] imply R(x, z) ≥ R(z, x).

In this case, for all x, y ∈ A, the real R(x, y) is interpreted as the degree to
which “x is at least as good as y” and the inequality R(x, y) ≥ R(y, x) means “x
is preferred or indifferent to y”.

Thus, researchers in Fuzzy Mathematical Economics attempt to formulate
and analyze, when preferences are ambiguous, problems of classical Economic
Theory which have been already solved with crisp preferences. In particular,
some scholars (Billot 1992, 1995; Fono 2004) formulated the mathematical
problem of the representation of crisp or fuzzy preferences as follows:

Definition 2 (Billot 1995; Fono 2004; Salles 1998) Let R be a FWPR.
R is numerically representable if there exists a real-valued mapping f on A satis-
fying

∀x, y ∈ A, R(x, y) ≥ R(y, x) ⇔ f (x) ≥ f (y).
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When such f exists, we say that R is numerically representable by f on A or
f is a utility function of R where the real f (x) measures the utility of x for any
alternative x of A.

Authors such as Gwét (2001) and Ovchinnikov (2000) among others, tackled
the problem of representation of fuzzy relations with formulations, definitions
and assumptions distinct from the ones used in this paper. This is due to the
fact that many crisp properties can be generalized in different ways in the fuzzy
case.

In the crisp case, that is, when consumer’s preferences are crisp and modeled
by a crisp binary relation, we have the following well-known result:

Proposition 1 (Bridges and Metha 1995; Debreu 1959; Fishburn 1970; Kreps
1990; Varian 2002) Let R be a crisp binary relation on a countable set A.

R is numerically representable on A iff R is a crisp ordering (reflexive, con-
nected and transitive crisp binary relation).

The determination of representable FWPR’s is given by the following prop-
osition due to Billot’s results (Billot 1995).

Proposition 2 Let R be a FWPR on a countable set A. Then R is numerically
representable on A iff R is bin-transitive.

It is important to emphasize that in the fuzzy set theory, we have standard,
basic and traditional definitions of fuzzy transitivity which are defined by means
of a t-norm ∗ and called max-∗-transitivity, that is, ∀x, y, z ∈ A, R(x, z) ≥
R(x, y) ∗ R(y, z). Max-∗-transitivity is the natural fuzzification of the crisp con-
cept of transitivity. It is also a general notion of transitivity of a FWPR mostly
used in the Fuzzy Decision Making (see Barrett et al. 1990; Fodor and Roubens
1994; Fono 2004; Fono and Andjiga 2005; Fono and Gwét 2003; Jain 1990;
Salles 1998; Sengupta 1999). Given the importance of the max-∗-transitivity, it
is necessary to seek if bin-transitivity is borne of the former.

The following example shows that this is false.

Example 1 Let A = {x, y, z} and R be a bin-transitive FWPR defined by: ∀a ∈
A, R(a, a) = 1; R(x, y) = 0.75; R(y, x) = 0.6; R(x, z) = 0.55; R(z, x) = R(z, y) =
0.5 and R(y, z) = 1.

For all t-norm ∗, R violates max-∗-transitivity (since R(x, z) < R(x, y) ∗
R(y, z)).

Thus, we remark that since bin-transitivity is not borne to max-∗-transitiv-
ity, the result of Proposition 2 severely hampers the preference modellers in
the determination of all the numerically representable FWPRs in the follow-
ing three sets: the sets of ∗-fuzzy orderings (that are, max-∗-transitive FWPRs)
denoted FO∗, the set of strong ∗-fuzzy orderings (that are, strongly connected
and max-∗-transitive FWPRs) denoted SFO∗ and the set of fuzzy orderings
(that are, max-min transitive FWPRs) denoted FO which are the usual subsets
of the set of FWPRs.
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The aim of this paper is to determine by means of max-∗-transitivity, neces-
sary and sufficient conditions on a given FWPR R such that it is numerically
representable on a countable set A.

The paper is organized as follows: Sect. 2 completes some basic concepts on
FWPRs and fuzzy operators. In Sect. 3, we introduce and analyze four condi-
tions on FWPRs which are used to establish by means of max-∗-transitivity,
necessary and sufficient conditions of the existence of a utility function of a
given FWPR R on A. We determine all the numerically representable FWPRs
in the traditional and usual subsets of FWPRs: FO∗, SFO∗ and FO. We give an
example of the application of the obtained results on the Theory of revealed
preference in Economics. Section 4 contains some concluding remarks.

2 Other preliminaries

Throughout this paper, for each a, b ∈ [0, 1], a ∨ b = max(a, b).

Definition 3 (Fodor and Roubens 1994; Fono 2004; Fono and Andjiga 2005;
Fono and Gwét 2003; Klement et al. 2000; Ovchinnikov 2000; Salles 1998)

1. A t-norm is a continuous function ∗ : [0, 1] × [0, 1] → [0, 1] satisfying for
all a, b, c, d ∈ [0, 1], (i) a ∗ 1 = a; (ii) a ∗ b ≤ d ∗ c if a ≤ d and b ≤ c; (iii)
a ∗ b = b ∗ a and (iv) (a ∗ b) ∗ c = a ∗ (b ∗ c).

2. Let ∗ be a t-norm. An implication (or quasi-inverse) of ∗ is the internal
composition law denoted by | and defined over [0, 1] by ∀a, b ∈ [0, 1], a|b =
max{t ∈ [0, 1]/a ∗ t ≤ b}.

Remark 1 Let R be a FWPR, ∗ be a t-norm and (x, y) ∈ A × A.

1. If ∗ is the Zadeh’s min t-norm denoted ∧, then the max-∗-transitivity is
called max-min transitivity.

2. If R is crisp, then bin-transitivity becomes classical transitivity.
3. Strong connectedness implies reflexivity and connectedness.

We shall need the following properties of a t-norm. (For proof, one may
consult Fodor and Roubens 1994; Fono and Gwét 2003; Gwét 1997): let ∗ be a
t-norm and | its implication. For all a, b, c ∈ [0, 1],

(i) a ∗ b ≤ a ∧ b, (ii) a ≤ b ⇒
{

b|c ≤ a|c
c|a ≤ c|b and (iii) b ≤ a|b. (1)

We recall the following four reals which we need in this paper (see Fono and
Andjiga 2005):
α∗

1(x, y, z) = R(z, y) ∗ R(y, x),
α∗

2(x, y, z) = R(x, y) ∗ R(y, z),
α∗

3(x, y, z) = (R(y, z)|R(y, x)) ∧ (R(x, y)|R(z, y)),
α∗

4(x, y, z) = (R(y, x)|R(y, z)) ∧ (R(z, y)|R(x, y))

where ∗ is a t-norm, | its implication, R is a FWPR and x, y, z ∈ A.
We establish in the following lemma, the comparisons of these reals.
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Lemma 1 Let R be a FWPR and ∗ be a t-norm. For all x, y, z ∈ A,
if ⎛

⎝
(R(x, y) > R(y, x) and R(y, z) ≥ R(z, y))

or
(R(x, y) = R(y, x) and R(y, z) > R(z, y))

⎞

⎠ (2)

then ⎧
⎨

⎩

(i) α∗
1(x, y, z) ≤ α∗

3(x, y, z) < 1
(ii) α∗

1(x, y, z) ≤ α∗
2(x, y, z)

(iii) α∗
3(x, y, z) ≤ α∗

4(x, y, z)

(3)

Proof Let x, y, z ∈ A. Suppose (2) and show (3).

1. Let us show (i) of (3).
(1-1) Let us show that α∗

1(x, y, z) ≤ α∗
3(x, y, z).

(iii) of (1) implies

R(z, y) ≤ R(x, y)|R(z, y) and R(y, x) ≤ R(y, z)|R(y, x) (4)

Since (i) of (1) implies α∗
1(x, y, z) ≤ R(z, y) ∧ R(y, x), (4) implies the

result.
(1-2) Let us show that α∗

3(x, y, z) < 1. Assume the contrary, then
α∗

3(x, y, z) = 1. Therefore R(x, y)|R(z, y) = R(y, z)|R(y, x) = 1. Thus,
the definition of implication gives R(x, y) ≤ R(z, y) and R(y, z) ≤
R(y, x). This contradicts (2).

2. Let us show (ii) of (3).
(2) implies R(y, x) ≤ R(x, y) and R(z, y) ≤ R(y, z). The definition of ∗ gives
R(y, x) ∗ R(z, y) ≤ R(x, y) ∗ R(y, z). Thus α∗

1(x, y, z) ≤ α∗
2(x, y, z).

3. Let us show that α∗
3(x, y, z) ≤ α∗

4(x, y, z). We distinguish two cases:
If R(y, z) ≤ R(y, x), then (2) implies R(z, y) ≤ R(x, y). Thus R(y, z)|R(y, x) =
R(z, y)|R(x, y) = 1. And we obtain α∗

3(x, y, z) = R(x, y)|R(z, y) and
α∗

4(x, y, z) = R(y, x)|R(y, z). Since (2) implies R(y, x) ≤ R(x, y) and R(z, y) ≤
R(y, z), then (ii) of (1) implies α∗

3(x, y, z) ≤ R(y, x)|R(z, y) ≤ R(y, x)|R(y, z)

= α∗
4(x, y, z).

If R(y, z)>R(y, x), then R(y, x)|R(y, z)=1. And α∗
4(x, y, z)=R(z, y)|R(x, y).

Since (2) implies R(y, x) ≤ R(x, y) and R(z, y) ≤ R(y, z), then (ii) of (1)
implies R(y, z)|R(y, x) ≤ R(z, y)|R(y, x) ≤ R(z, y)|R(x, y) = α∗

4(x, y, z). And
as α∗

3(x, y, z) ≤ R(y, z)|R(y, x), then α∗
3(x, y, z) ≤ α∗

4(x, y, z). ��
We end this section by a recall of an useful characterization of a max-∗-tran-

sitivity on {x, y, z}.
Lemma 2 (Fono and Andjiga 2005, Lemma 1, p. 375) Let R be a FWPR and ∗
be a t-norm. For all {x, y, z} ⊆ A,

R is max- ∗ -transitive on {x, y, z} ⇔
{

(i) R(x, z) ∈ [α∗
2(x, y, z), α∗

4(x, y, z)]
(ii) R(z, x) ∈ [α∗

1(x, y, z), α∗
3(x, y, z)].

(5)
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In the next section, to solve by means of a t-norm the problem of the existence
of a utility function of a given FWPR when A is countable, we will proceed as
follows:

– In Sect. 3.1, we recall two conditions and introduce two new conditions on
FWPRs.

– In Sect. 3.2, we establish by means of a t-norm, necessary and sufficient
conditions of the existence of a utility function of a given FWPR.

– In Sect. 3.3, we deduce all the numerically representable FWPRs in the usual
sets FO∗, SFO∗ and FO.

– In Sect. 3.4, we show that numerically representable FWPRs could generate
consistent choices.

3 New result and application

3.1 Conditions on FWPR

Let us recall the two first conditions introduced by Fono and Andjiga (2005).

Definition 4 (Fono and Andjiga 2005, Definition 6, p. 379) Let R be a FWPR
and ∗ be a t-norm.

1. R satisfies condition Q∗
1 if ∀x, y, z ∈ A,

(R(x, y) > R(y, x) and R(y, z) > R(z, y)) imply
⎛

⎝

⎛

⎝
R(x, z) ∈ [α∗

2(x, y, z), α∗
3(x, y, z)]

and
R(z, x) ∈ [α∗

2(x, y, z), α∗
3(x, y, z)]

⎞

⎠ ⇒ R(x, z) > R(z, x)

⎞

⎠

2. R satisfies condition Q∗
2 if ∀x, y, z ∈ A,

⎛

⎝
R(x, y) > R(y, x) and R(y, z) = R(z, y)

or
R(x, y) = R(y, x) and R(y, z) > R(z, y)

⎞

⎠

imply

⎛

⎝

⎛

⎝
R(x, z) ∈ [α∗

2(x, y, z), α∗
3(x, y, z)]

and
R(z, x) ∈ [α∗

2(x, y, z), α∗
3(x, y, z)]

⎞

⎠ ⇒ R(x, z) > R(z, x)

⎞

⎠

We also recall the following result which gives properties of Q∗
1 and Q∗

2 in
two particular cases: R is strongly connected and ∗ is the Zadeh’s min t-norm.
We need the following classical condition T (see Fono and Andjiga 2005; Fono
and Gwét 2003; Sengupta 1999):
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R satisfies condition T if for all x, y, z ∈ A,

R(x, y) = R(y, x) = R(y, z) = R(z, y) implies R(x, z) = R(z, x).

Proposition 3 (Fono and Andjiga 2005, Proposition 5, p. 380) Let R be a FWPR
and ∗ be a t-norm.

1. If R is strongly connected, then R satisfies conditions Q∗
1 and Q∗

2.
2. (i) If ∗ is the Zadeh’s min t-norm, then R satisfies condition Q∗

1.
(ii) If ∗ is the Zadeh’s min t-norm and R is max-min transitive, then condi-

tions Q∗
2 and T are equivalent.

We introduce the two new conditions using the five following intervals of
[0, 1]:

I∗
1 (x, y, z) = [0, α∗

1(x, y, z)],
I∗

2 (x, y, z) =]α∗
1(x, y, z), α∗

2(x, y, z) ∧ α∗
3(x, y, z)],

I∗
3 (x, y, z) =]α∗

3(x, y, z), α∗
2(x, y, z) ∨ α∗

3(x, y, z)],
I∗

4 (x, y, z) =]α∗
2(x, y, z) ∨ α∗

3(x, y, z), α∗
4(x, y, z)],

I∗
5 (x, y, z) =]α∗

4(x, y, z), 1],

where ∗ is a t-norm, | its implication, R is a FWPR and x, y, z ∈ A satisfying (2).
It is noticeable that I∗

2 , I∗
3 , I∗

4 and I∗
5 can be empty sets.

Definition 5 Let R be a FWPR and ∗ be a t-norm.

1. R satisfies condition H∗
1 if ∀x, y, z ∈ A,

⎛

⎝
(R(x, y) > R(y, x) and R(y, z) ≥ R(z, y))

or
(R(x, y) = R(y, x) and R(y, z) > R(z, y))

⎞

⎠ imply

∀i ∈ {1, 2, 3, 4}, (α∗
i (x, y, z) < R(z, x) ⇒ α∗

i (x, y, z) < R(x, z)
)

.

2. R satisfies condition H∗
2 if ∀x, y, z ∈ A,

⎛

⎝
(R(x, y) > R(y, x) and R(y, z) ≥ R(z, y))

or
(R(x, y) = R(y, x) and R(y, z) > R(z, y))

⎞

⎠ imply

∀i ∈ {1, 2, 3, 4, 5}, ( R(x, z) and R(z, x) ∈ I∗
i (x, y, z) ⇒ R(x, z) > R(z, x)

)
.

We can notice that Fono and Andjiga (2005, p. 382–384) gave some explana-
tions of conditions Q∗

1 and Q∗
2.
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The following result shows that when R is strongly connected, conditions H∗
1

and H∗
2 become merely:

(i) Condition H∗
1,fc : ∀x, y, z ∈ A,

⎛

⎝
(R(x, y) > R(y, x) and R(y, z) ≥ R(z, y))

or
(R(x, y) = R(y, x) and R(y, z) > R(z, y))

⎞

⎠ imply

∀i ∈ {1, 3}, (
α∗

i (x, y, z) < R(z, x) ⇒ α∗
i (x, y, z) < R(x, z)

)

and
(ii) Condition H∗

2,fc : ∀x, y, z ∈ A,

⎛

⎝
(R(x, y) > R(y, x) and R(y, z) ≥ R(z, y))

or
(R(x, y) = R(y, x) and R(y, z) > R(z, y))

⎞

⎠ imply

(
R(x, z) and R(z, x) ∈ I∗

3 (x, y, z) =]α∗
3(x, y, z), 1] ⇒ R(x, z) > R(z, x)

)

respectively.

Proposition 4 Let R be a FWPR and ∗ be a t-norm. If R is strongly connected,
then conditions H∗

1 and H∗
2 are equivalent to conditions H∗

1,fc and H∗
2,fc respec-

tively.

Proof Suppose that R is a strongly connected FWPR. Thus, for all x, y, z ∈
A such that (2) is satisfied, we have R(x, y) = R(y, z) = 1 and α∗

1(x, y, z) ≤
α∗

3(x, y, z) < α∗
2(x, y, z) = α∗

4(x, y, z) = 1. And, the five intervals become:

I∗
1 (x, y, z) = [0, α∗

1(x, y, z)], I∗
2 (x, y, z) =]α∗

1(x, y, z), α∗
3(x, y, z)],

I∗
3 (x, y, z) =]α∗

3(x, y, z), 1] and I∗
4 (x, y, z) = I∗

5 (x, y, z) = ∅.

The equalities α∗
2(x, y, z) = α∗

4(x, y, z) = 1 imply that for i ∈ {2, 4}, the assertion
α∗

i (x, y, z) < R(z, x) ⇒ α∗
i (x, y, z) < R(x, z) is satisfied. Hence conditions H∗

1
and H∗

1,fc are equivalent.

Let us consider for i ∈ {1, 2, 4, 5}, the assertion:

(
R(x, z) and R(z, x) ∈ I∗

i (x, y, z)
) ⇒ R(x, z) > R(z, x) (6)

Since I∗
4 (x, y, z) = I∗

5 (x, y, z) = ∅, then for i ∈ {4, 5}, (6) is satisfied.
As R is strongly connected, we have R(x, z) = 1 or R(z, x) = 1. Moreover,

since the upper bounds α∗
1(x, y, z) and α∗

3(x, y, z) of the intervals I∗
1 (x, y, z) and

I∗
2 (x, y, z) are lower than 1, then these two intervals can no contain the two reals

R(x, z) and R(z, x). Thus, for i ∈ {1, 2}, (6) is satisfied. Hence conditions H∗
2 and

H∗
2,fc are equivalent. ��
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The next result shows that the four conditions are satisfied when R is numer-
ically representable.

Proposition 5 Let R be a FWPR and ∗ be a t-norm. If R is numerically repre-
sentable, then R satisfies conditions Q∗

1, Q∗
2, H∗

1 and H∗
2 .

Proof Let x, y, z ∈ A such that (2) is satisfied. It is sufficient to show that
R(x, z) > R(z, x). As R is numerically representable, there exists a utility func-
tion f of R on A. Thus (2) implies (f (x) > f (y) and f (y) ≥ f (z)) or (f (x) = f (y)

and f (y) > f (z)). This gives f (x) > f (z), i.e., R(x, z) > R(z, x). And we obtain
the result. ��

Let us now give by means of max-∗-transitivity, necessary and sufficient con-
ditions of the existence of a utility function for a FWPR which is the main result
of our paper.

3.2 New result with standard transitivity

Theorem 1 Let R be a FWPR and ∗ be a t-norm. The two following statements
are equivalent:

1. R is numerically representable.
2. ∀{x, y, z} ⊆ A, one of the two following conditions is satisfied:

(a) R is max-∗-transitive and satisfies conditions Q∗
1 and Q∗

2 on {x, y, z}.
(b) R violates max-∗-transitivity and satisfies conditions H∗

1 and H∗
2 on

{x, y, z}.
The proof of this theorem is due to the two following lemmas.

Lemma 3 Let R be a FWPR and ∗ be a t-norm. Given {x, y, z} ⊆ A, if R is max-
∗-transitive and satisfies conditions Q∗

1 and Q∗
2 on {x, y, z}, then R is bin-transitive

on {x, y, z}.
Lemma 4 Let R be a FWPR and ∗ be a t-norm. Given {x, y, z} ⊆ A, if R vio-
lates max-∗-transitivity and satisfies conditions H∗

1 and H∗
2 on {x, y, z}, then R is

bin-transitive on {x, y, z}.
Proof of Lemma 3 Suppose that R is max-∗-transitive and satisfies conditions
Q∗

1 and Q∗
2 on {x, y, z} and show that R is bin-transitive on {x, y, z}.

Fono and Andjiga (2005, Proposition 7, p. 381) show that:
Let R be a max-∗-transitive FWPR.
R satisfies conditions Q∗

1 and Q∗
2 iff (for all x, y, z ∈ A, (R(x, y) ≥ R(y, x) and

R(y, z) ≥ R(z, y)) imply R(x, z) ≥ R(z, x)).
This result and the previous hypotheses imply that R is bin-transitive on

{x, y, z}. ��
Proof of Lemma 4 Suppose that R violates max-∗-transitivity and satisfies con-
ditions H∗

1 and H∗
2 on {x, y, z}. Let us show that R is bin-transitive on {x, y, z}.
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Suppose that R(x, y) ≥ R(y, x) and R(y, z) ≥ R(z, y). Let us show that
R(x, z) ≥ R(z, x).

With Lemma 2, R violates max-∗-transitivity on {x, y, z}, i.e.,

R(x, z) �∈ [α∗
2(x, y, z), α∗

4(x, y, z)] or R(z, x) �∈ [α∗
1(x, y, z), α∗

3(x, y, z)] (7)

We distinguish two cases.

Case 1 Suppose (2) and show that R(x, z) > R(z, x). Here, we distinguish six
cases noted from (1-1) to (1-6).

(1-1) Suppose that R(z, x) ∈ I∗
6 (x, y, z) =]α∗

2(x, y, z) ∧ α∗
3(x, y, z), α∗

3(x, y, z)].
As R(z, x) ∈ I∗

6 (x, y, z), then α∗
2(x, y, z) ∧ α∗

3(x, y, z) = α∗
2(x, y, z) <

R(z, x) ≤ α∗
3(x, y, z). Therefore by condition H∗

1 , we have R(x, z) >

α∗
2(x, y, z).

The inequality α∗
2(x, y, z) < α∗

3(x, y, z) and (ii) and (iii) of (3) give
α∗

1(x, y, z) ≤ α∗
2(x, y, z) < α∗

3(x, y, z) ≤ α∗
4(x, y, z). Thus, as R(z, x) ∈

]α∗
2(x, y, z), α∗

3(x, y, z)], then R(z, x) ∈ [α∗
1(x, y, z), α∗

3(x, y, z)]. By (7), we
deduce that R(x, z) �∈ [α∗

2(x, y, z), α∗
4(x, y, z)]. The inequality R(x, z) >

α∗
2(x, y, z) implies R(x, z) > α∗

4(x, y, z). We have R(z, x) ≤ α∗
3(x, y, z) ≤

α∗
4(x, y, z) < R(x, z). Hence R(x, z) > R(z, x).

(1-2) Suppose that R(z, x) ∈ I∗
1 (x, y, z). Here, we distinguish two cases:

(1-2-i) If R(x, z) > α∗
1(x, y, z), then R(z, x) < R(x, z).

(1-2-ii) If R(x, z) ∈ I∗
1 (x, y, z), then (2) and condition H∗

2 imply R(x, z) >

R(z, x).
(1-3) Suppose that R(z, x) ∈ I∗

2 (x, y, z).
If R(x, z) > α∗

2(x, y, z) ∧ α∗
3(x, y, z), then R(z, x) < R(x, z).

If R(x, z) ≤ α∗
2(x, y, z) ∧ α∗

3(x, y, z).
As R(z, x) ∈ I∗

2 (x, y, z), then R(z, x) > α∗
1(x, y, z). Therefore (2) and con-

dition H∗
1 imply R(x, z) > α∗

1(x, y, z). Thus R(x, z) ∈ I∗
2 (x, y, z). Hence (2)

and condition H∗
2 imply R(x, z) > R(z, x).

(1-4) Suppose that R(z, x) ∈ I∗
3 (x, y, z) =]α∗

3(x, y, z), α∗
2(x, y, z) ∨ α∗

3(x, y, z)].
If R(x, z) > α∗

2(x, y, z) ∨ α∗
3(x, y, z), then R(x, z) > R(z, x).

If R(x, z) ≤ α∗
2(x, y, z) ∨ α∗

3(x, y, z).
As R(z, x)∈I∗

3 (x, y, z), then α∗
3(x, y, z)<R(z, x)<α∗

2(x, y, z) ∨ α∗
3(x, y, z) =

α∗
2(x, y, z). Therefore, by condition H∗

1 , we have R(x, z) > α∗
3(x, y, z). Thus

R(x, z) ∈ I∗
3 (x, y, z). (2) and condition H∗

2 imply R(x, z) > R(z, x).
(1-5) Suppose that R(z, x) ∈ I∗

4 (x, y, z) =]α∗
3(x, y, z) ∨ α∗

2(x, y, z), α∗
4(x, y, z)].

If R(x, z) > α∗
4(x, y, z), we have R(x, z) > R(z, x).

If R(x, z) ≤ α∗
4(x, y, z), as R(z, x)∈I∗

4 (x, y, z), then α∗
3(x, y, z)∨α∗

2(x, y, z) <

R(z, x). Therefore, condition H∗
1 implies R(x, z)>α∗

3(x, y, z) and R(x, z) >

α∗
2(x, y, z). Thus R(x, z) ∈ I∗

4 (x, y, z). Hence (2) and condition H∗
2 imply

R(x, z) > R(z, x).
(1-6) Suppose that R(z, x) ∈ I∗

5 (x, y, z) =]α∗
4(x, y, z), 1]. As R(z, x) ∈ I∗

5 (x, y, z),
then R(z, x) > α∗

4(x, y, z). Therefore condition H∗
1 implies R(x, z) >

α∗
4(x, y, z). Thus R(x, z) ∈ I∗

5 (x, y, z). Hence (2) and condition H∗
2 imply

R(x, z) > R(z, x).



Utility function of fuzzy preferences 677

Case 2 Let us show that R(x, y) = R(y, x) and R(y, z) = R(z, y) imply R(x, z) =
R(z, x).

Assume to the contrary that R(x, y) = R(y, x), R(y, z) = R(z, y) and R(x, z) �=
R(z, x).

If R(x, z) > R(z, x), then the equality R(y, z) = R(z, y) and the result of the
first case imply that R(x, y) > R(y, x). This contradicts R(x, y) = R(y, x).
If R(z, x) > R(x, z), then the equality R(x, y) = R(y, x) and the result of the first
case imply that R(z, y) > R(y, z). This contradicts R(z, y) = R(y, z). ��
Proof of Theorem 1 (1) ⇒ (2) Obvious by Proposition 5.
(2) ⇒ (1) By Lemmas 3 and 4, R is bin-transitive on {x, y, z} for all {x, y, z} ⊆ A.
Therefore, R is bin-transitive and, by Proposition 2, R is numerically represent-
able. ��

In the literature (see Fono and Andjiga 2005; Fono and Gwét 2003; Salles
1998), we have CO ⊂ SFO∗ ⊂ FO∗ for all t-norm ∗, where CO is the set of
crisp orderings on A. Since elements of FO∗ (and therefore those of SFO∗)
are standard and traditional fuzzy extensions of crisp orderings, the previous
theorem brings us into determining all the ∗-fuzzy orderings and all the strong
∗-fuzzy orderings which are numerically representable.

3.3 Subsets of numerically representable FWPRs

Proposition 6 Let R be a FWPR.

1. If R is a ∗-fuzzy ordering, then

(R is numerically representable) ⇔ (R satisfies conditions Q∗
1 and Q∗

2).

2. If R is a strong ∗-fuzzy ordering, then R is numerically representable.

Proof 1. Suppose that R is a ∗-fuzzy ordering, then R is max-∗-transitive on A.
Thus Theorem 1 gives the first result.
2. Suppose that R is a strong ∗-fuzzy ordering, then the first result of Proposition
3 and the first result of this proposition imply the second result. ��

In the literature (see Fono and Andjiga 2005; Fono and Gwét 2003; Salles
1998), if ∗ is the Zadeh’s min t-norm, then a ∗-fuzzy ordering and a strong
∗-fuzzy ordering are simply called a fuzzy ordering and a strong fuzzy ordering
respectively, and their sets are therefore denoted respectively FO and SFO.
We have CO ⊂ SFO ⊂ FO. Let us deduce in the sets FO and SFO, all the
numerically representable elements.

Corollary 1 Let R be a FWPR.

1. If R is a fuzzy ordering, then

(R is numerically representable) ⇔ (R satisfies condition T).

2. If R is a strong fuzzy ordering, then R is numerically representable.
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Proof 1. Suppose that R is a fuzzy ordering, then the two last results of Propo-
sition 3 and the first result of Proposition 6 give the first result of this corollary.
2. Suppose that R is a strong fuzzy ordering, then the second result of Proposi-
tion 6 gives the second result. ��

Remark 2 Let ∗ be a t-norm. We denote by FO∗NR the set of all the numerically
representable ∗-fuzzy orderings.

The previous results give the following interesting sets relations:

– FO∗NR = {R ∈ FO∗/R satisfies conditions Q∗
1 and Q∗

2}.
– CO ⊂ SFO∗ ⊂ FO∗NR ⊂ FO∗.

In other words, the set of all the numerically representable ∗-fuzzy orderings
which is the set of all ∗-fuzzy orderings satisfying conditions Q∗

1 and Q∗
2 con-

tains the two usual sets: CO and SFO∗. Furthermore, the two sets SFO∗ and
FO∗NR contain the set of crisp orderings CO which is also the set of numerically
representable crisp binary relations.

In the last subsection, we give an example of the application of Theorem 1
on the “Theory of revealed preference” in Economics.

3.4 Example of application

In real life, the individual, even though his preference is fuzzy, will have to
make a choice, necessarily exact. This raises, on the “Theory of revealed pref-
erence”, the question as how unambiguous or exact choice are generated by
fuzzy preference and whether the exact choices induced by fuzzy preference
satisfy certain plausible rationality conditions.

In this subsection, we introduce one traditional alternative rule for generat-
ing exact choices from FWPRs and determine by means of Theorem 1, ∗-fuzzy
orderings under which that rule satisfies eight classical and fairly weak ratio-
nality conditions.

We assume that: A is a finite set of alternatives and |A| ≥ 3; A is the set of
nonempty crisp subsets of A and G is the set of FWPRs on A.

Definition 6 (Barrett et al. 1990, p. 198) A preference based choice function
(PCF) is a mapping C : A × G′ → A satisfying

∅ �= G′ ⊂ G and ∀S ∈ A, ∀R ∈ G′, ∅ �= C(S, R) ⊆ S.

Remark 3 (Barrett et al. 1990, p. 198, Remark 2.5) Intuitively, G′ figuring in
Definition 6 constitutes the set of “admissible” FWPRs. Given an admissible
FWPR R, and given a crisp set S of available alternatives, C(S, R) constitutes
the exact set of alternatives chosen from S, on the basis of R.
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In this paper, we consider the following usual PCF (see Barrett et al. 1990;
Jain 1990; Salles 1998; Sengupta 1999):

C :
A × G′ → A
(S, R) �→ C(S, R) = {x ∈ S/ ∀y ∈ S, R(x, y) ≥ R(y, x)} (8)

The previous PCF generates exact choices from fuzzy preference. Intuitively,
given an admissible FWPR R, and given a crisp set S of available alternatives,
the previous PCF stipulates: an alternative x of S is chosen iff it is preferred or
indifferent to every other alternative of S.

We now recall eight classical and fairly rationality conditions of a PCF. Each
of them lay down sufficient conditions of choosing alternative, given an admis-
sible FWPR R, and given a feasible set of alternatives. The two first are defined
in Barrett et al. (1990) and the six others in Sen (1986).

Definition 7 (Barrett et al. 1990; Sen 1986) Let C be a PCF.

1. (i) C satisfies RPWD (Reward for Pairwise Weak Dominance) if ∀S ∈
A, ∀R ∈ G′, ∀x ∈ S,

(∀y ∈ S − {x}, R(x, y) ≥ R(y, x)) ⇒ x ∈ C(S, R).

(ii) C satisfies RPSD (Reward for Pairwise Strict Dominance) if ∀S ∈
A, ∀R ∈ G′, ∀x ∈ S,

(∀y ∈ S − {x}, R(x, y) > R(y, x)) ⇒ x ∈ C(S, R).

2. (i) C satisfies condition α (Standard contraction consistency) if

∀S, K∈A, ∀R∈G′, ∀x∈A, [x∈C(S, R) and x∈K ⊆ S] ⇒ x∈C(K, R).

(ii) C satisfies condition weak α if ∀S, K ∈ A, ∀R ∈ G′, ∀x ∈ A,

[x ∈ K ⊆ S and ∀Y ⊆ S such that Y �= K and x ∈ C(Y, R)] ⇒ x ∈ C(K, R).

(iii) C satisfies condition β+ if ∀S, K ∈ A, ∀R ∈ G′, ∀x, y ∈ A,

[x ∈ C(S, R) and y ∈ S ⊆ K] ⇒ [y ∈ C(K, R) ⇒ x ∈ C(K, R)].

(iv) C satisfies condition β if ∀S, K ∈ A, ∀R ∈ G′, ∀x, y ∈ A,

[x, y ∈ C(S, R) and S ⊆ K] ⇒ [y ∈ C(K, R) ⇒ x ∈ C(K, R)].

(v) C satisfies condition γ (Standard expansion consistency) if for all (Sj)j∈J
a class of elements of A, ∀R ∈ G′, ∀x ∈ A,

[∀j ∈ J, x ∈ C(Sj, R)] ⇒ x ∈ C(∪j∈JSj, R).
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(vi) C satisfies condition δ if ∀S, K ∈ A, ∀R ∈ G′, ∀x, y ∈ A,

[x, y ∈ C(S, R) and S ⊆ K] ⇒ [{x} �= C(K, R) and {y} �= C(K, R)].

Remark 4 (see Barrett et al. 1990; Sen 1986)

1. RPWD implies RPSD.
2. Condition α implies condition weak α.
3. Condition β+ implies conditions β, γ and δ.

Given one of the eight rationality conditions, the main question is now to deter-
mine a set of FWPRs under which the PCF defined by (8) satisfies the given
condition.

The following proposition shows that when admissible FWPRs are ∗-fuzzy
orderings, then the classical PCF defined by (8) satisfies the five first conditions
and violates conditions β+ and β. Furthermore, it shows that the PCF violates
condition δ if ∗ is the product t-norm (defined by ∀a, b ∈ [0, 1], a ∗ b = ab) and
admissible FWPRs are ∗-fuzzy orderings.

Proposition 7 Let C defined by (8) and ∗ be a t-norm.

1. If G′ ⊂ FO∗, then C satisfies conditions RPWR, RPSD, α, weak α and γ .
2. If G′ = FO∗, then C violates conditions β+ and β.
3. If ∗ is the product t-norm and G′ = FO∗, then C violates condition δ.

Proof 1. Suppose that G′ ⊂ FO∗. Let us show that C satisfies conditions
RPWD and RPSD. As RPWD implies RPSD, it suffices to show that C
satisfies condition RPWD.
Let S ∈ A, R ∈ G′ and x ∈ S such that (∀y ∈ S − {x}, R(x, y) ≥ R(y, x)).
Show that x ∈ C(S, R), that is, ∀s ∈ S, R(x, s) ≥ R(s, x).
Let s ∈ S. If s = x, then R(x, x) = R(x, x). If s ∈ S − {x}, then R(x, s) ≥
R(s, x). Hence the result.
Let us show that C satisfies conditions α and weak α.
As condition α implies condition weak α, it suffices to show that C satisfies
condition α.
Let S, K ∈ A, R ∈ G′ and x ∈ A such that x ∈ C(S, R) and x ∈ K ⊆ S. Show
that x ∈ C(K, R), that is, ∀t ∈ K, R(x, t) ≥ R(t, x).
Let t ∈ K. As K ⊆ S, we have t ∈ S. And as x ∈ C(S, R), we have R(x, t) ≥
R(t, x). Hence the result.
Let us show that C satisfies condition γ .
Let (Sj)j∈J be a class of elements of A, R ∈ G′ and x ∈ A such that x ∈
C(Sj, R) for all j ∈ J. Show that x ∈ C(∪j∈JSj, R), that is, ∀s ∈ ∪j∈JSj, R(x, s) ≥
R(s, x).
Let s ∈ ∪j∈JSj. There exists j0 ∈ J such that s ∈ Sj0 . As x ∈ C(Sj0 , R) and
s ∈ Sj0 , then R(x, s) ≥ R(s, x). Hence the result.

2. Suppose that G′ = FO∗ and let us show that C violates conditions β+ and
β. As β+ implies β, it suffices to show that C violates condition β.
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Let A = {x, y, z}, S = {x, y}, K = {x, y, z} and R1 ∈ FO∗ defined on A
by: ∀a ∈ A, R1(a, a) = 1, R1(x, y) = R1(y, x) = R1(y, z) = R1(z, y) =
0.5, R1(z, x) = 0.8 and R1(x, z) = 0.6.
We have S ⊆ K. As R1(x, y) = R1(y, x), we have C(S, R1) = {x, y}. Also, as
R1(y, z) = R1(z, y) and R1(x, y) = R1(y, x), then y ∈ C(K, R1). But we have
x �∈ C(K, R1) since there exists z ∈ K such that R1(z, x) > R1(x, z). Hence C
violates condition β.

3. Suppose that ∗ is the product t-norm and G′ = FO∗. Let us show that C
violates condition δ.
Let A = {x, y, z, v}, S = {x, y}, K = {x, y, z, v}, ∗ be the product-norm and R2
be the FWPR defined on A by: ∀a ∈ A, R2(a, a) = 1, R2(y, x) = R2(x, y) =
R2(y, z) = R2(z, y) = R2(z, x) = R2(v, x) = R2(x, v) = R2(y, v) = 0.5,
R2(x, z) = 0.6, R2(v, z) = R2(v, y) = 0.7 and R2(z, v) = 0.71.
Since ∀g, h, t ∈ A, R2(g, t) ≥ R2(g, h)R2(h, t), R is max-∗-transitive. Thus
R ∈ FO∗.
We have S ⊆ K. As R2(x, y) = R2(y, x), we have C(S, R2) = {x, y}.
Moreover, we have v �∈ C(K, R2), z �∈ C(K, R2) and y �∈ C(K, R2) since
R2(v, z) < R2(z, v), R2(z, x) < R2(x, z) and R2(y, v) < R2(v, y) respectively.
Furthermore, we have ∀k ∈ K, R2(x, k) ≥ R2(k, x). Thus C(K, R2) = {x}.
Hence C violates condition δ. ��

Remark 5 If ∗ is the Zadeh’s min t-norm, the first result of the previous propo-
sition becomes proposition 4.5 established by Barrett et al. (1990, p. 203).

The two last results of the previous proposition lead us to determine, in
the following proposition, a subset of ∗-fuzzy orderings under which C satisfies
conditions β+, β and δ.

Proposition 8 Let C defined by (8) and ∗ be a t-norm.
If G′ ⊂ FO∗NR, then C satisfies properties β+, β and δ.

Proof Suppose that G′ ⊂ FO∗NR. As β+ implies β and δ, it is sufficient to
show that C satisfies condition β+.

Let S, K ∈ A, R ∈ G′ and x, y ∈ A such that x ∈ C(S, R), y ∈ S ⊆ K and
y ∈ C(K, R). Show that x ∈ C(K, R), that is, ∀t ∈ K, R(x, t) ≥ R(t, x).

Let t ∈ K. As y ∈ C(K, R) and t ∈ K, then R(y, t) ≥ R(t, y). As x ∈ C(S, R)

and y ∈ S, then R(x, y) ≥ R(y, x). Since R ∈ G′ ⊆ FO∗NR, the two previous
inequalities imply R(x, t) ≥ R(t, x). ��
Remark 6 All the numerically representable FWPRs in FO∗ satisfy all the
above conditions. This justify that FWPRs of FO∗NR generate through C [de-
fined by (8)] rational choices.

4 Concluding remarks

In this paper, we show that numerically representable FWPRs on a countable
set A are the ∗-fuzzy orderings satisfying conditions Q∗

1 and Q∗
2, or the FWPRs

violating max-∗-transitivity and satisfying conditions H∗
1 and H∗

2 (Theorem 1).
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Although this result does not seem simple, it provides the following inter-
esting results: (a) only the ∗-fuzzy orderings satisfying conditions Q∗

1 and Q∗
2

are numerically representable (first result of Proposition 6), (b) all the strong
*-fuzzy orderings are numerically representable (second result of Proposition 6)
and (c) only fuzzy orderings satisfying condition T are numerically represent-
able (Corollary 1). Each of these results is a fuzzy extension of that of classical
representation when A is countable.

It is well-known that the classical utility theory has permit the development of
traditional Economic Theory, we think that these results will allow the develop-
ment of the fuzzy Social Choice Theory (and we start to justify it in Subsect. 3.4
of Sect. 3).

This work is the first stage of research on numerical representation of FWPRs.
Our next concern is to seek what happens when A is uncountable.

As we raised it in Fono and Andjiga (2005) and Fono and Gwét (2003),
contrary to classical and crisp transitivity on {0, 1}, max-∗-transitivity on [0, 1]
does not handle certain problems relating to rationality on triplets. It is there-
fore in view of covering this shortcoming that we impose conditions Q∗

1, Q∗
2, H∗

1
and H∗

2 .
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