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Abstract Condorcet’s Jury Theorem (CJT) provides a theoretical basis of
public choice theory and political science. This paper provides an extension of
CJT for random subcommittees consisting of dependent heterogeneous experts.
Necessary and sufficient conditions for beneficial augmentation (reduction) of
the size of a random subcommittee are provided. These results are applied in
several dependency models.

1 Introduction

1.1 Historical Background

Issues related to democracy raise actual questions in any society and era. A lot of
works concerned with public choice theory, social science and political science
explore various aspects of these questions. Mathematics, together with other
sciences, contributes its significant part in the investigation of these issues. One
of the origins of these studies goes back as far as Condorcet (1785). In his Essai
sur l’application de l’analyse à la probabilité des décisions méthodiques, he dem-
onstrated what is known as “Condorcet’s Jury Theorem”, which deals with some
properties of majority voting in the dichotomous case. Condorcet considered
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the following situation: a committee consisting of an odd number of members
is required to select one of two alternatives, of which exactly one is correct. For
example, a committee of jurors has to decide whether a certain person is guilty.
The dichotomous choice model appears in a variety of areas, such as medicine,
law, management and others. The classical version of CJT states that, if all deci-
sion makers are independent and have the same qualifications, expressed by
the probability p of each of them to make the correct choice, where p > 1/2,
then:

(i) The probability of the committee to make the correct choice when uti-
lizing the simple majority rule is larger than the correctness probability
p of any of its members.

(ii) The correctness probability of the committee increases monotonically to
1 as n tends to infinity.

Obviously, this implies that, if p < 1/2, then the conclusions are the opposite.
If p = 1/2, then the correctness probability of the committee is always 1/2.
Part (i) is referred to as the non-asymptotic part of Condorcet’s statement, and
(ii) as the asymptotic part.

1.2 Previous results

In practice, the classical assumptions of CJT, namely the homogeneity of the
committee and independence among the experts, are seldom realistic in most
practical situations. Thus, various attempts to generalize the theorem were made
in several directions. One may be concerned with heterogeneous correctness
probabilities (cf. Grofman et al. (1983); Nitzan and Paroush (1985); Miller
(1986); Young (1989); Paroush (1998); Berend and Paroush (1998); Kanazawa
(1998)). Similarly, it is interesting to incorporate dependence among the experts
in the model. The first work to show the significance of independence in the
dichotomous model is due to Nitzan and Paroush (1984). From their work one
can conclude that, without the assumption of independence, simple majority
is not necessarily the optimal rule even if the decision makers possess iden-
tical competence. Other models of dependence among the experts were con-
sidered by Boland (1989), Berg (1993), and Ladha (1993, 1995). There have
been numerous other directions in which the theorem was extended, such as
hierarchical voting systems dealing with collective decisions at several stages
(cf. Berg (1997); Berg and Paroush (1998)), strategic versions of CJT removing
the assumption of voter truthfulness and showing that the truthfulness is not
generally incentive-compatible, even when the voters have the same objective
(cf. Austen-Smith and Banks (1996); Feddersen and Pesendorfer (1998)) and
others.

For our purposes, one of the most interesting of these is the study of the
connection between the quality of the committee’s decision and the size of the
committee (cf. Feld and Grofman (1984); Paroush and Karotkin (1989); Mara-
non (2000); Ben-Yashar and Paroush’s (2000); Karotkin and Paroush (2003);
Berend and Sapir (2005); Sapir (2005)).
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1.3 Scope of paper

In this paper we focus on the non-strategic version of the Condorcet jury
model, where the voters express their judgments truthfully. However, we omit
both classical assumptions in CJT, allowing heterogeneous correctness prob-
abilities and dependence among the experts. We extend further the ideas of
Boland (1989), Ladha (1993, 1995), Ben-Yashar and Paroush (2000) and
Berend and Sapir (2005). A slight adjustment of Condorcet’s statement was
considered by Ben-Yashar and Paroush (2000), who proved that, under the
assumption of independence, the probability of a group of competence struc-
ture (p1, p2, . . . , pn), with pi ≥ 1/2 for each i, to reach the correct decision when
utilizing the simple majority rule is always larger than the probability of a ran-
dom group member to do so. Later, under the same assumptions, Berend and
Sapir (2005) generalized the result of Ben-Yashar and Paroush (2000) and
proved the monotonicity of the probability of a correct choice as a function
of the size of the (randomly selected) subcommittee. This implies that, regard-
less of the specific competence structure of the group, but under the assump-
tion of independence, the augmentation of a random subcommittee is always
beneficial.

This paper provides an extension of CJT for random subcommittees consist-
ing of dependent heterogeneous experts. Omitting the independence assump-
tion, the paper raises several questions, mainly concerned with an optimal size
of a random subcommittee. We start with the question whether an augmenta-
tion of a random subcommittee is still beneficial for dependent voters. We show
that, in general, the answer to this question is negative. Moreover, we illustrate
in the sequel that, even if the members are uncorrelated, the augmentation is
still not necessary beneficial. Our main result focuses on necessary and sufficient
conditions for beneficial augmentation of the size of a random subcommittee
for arbitrary dependent experts and on their intuitive meaning. We exemplify
these conditions on two models of correlation, considered by Boland (1989),
and provide connections between the correlation and monotonicity. For these
models we propose some practical recommendations.

The rest of this paper is organized as follows: In Sect. 2 we describe the setup
more carefully. Section 3 contains the main results, and Sect. 4 their proofs. In
Sect. 5 we summarize and raise some ideas for further research.

2 Model and notations

We start with several notations. We have an initial committee En = {1, 2, . . . , n}.
For an arbitrary fixed member i, 1 ≤ i ≤ n, of En, define a random variable
Xi by

Xi =
{

1, the i th expert chooses the correct alternative,

0, the i th expert chooses the incorrect alternative.
(1)
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Let pi = P(Xi = 1) be the probability of the i th expert to choose the correct
alternative, and qi = 1 − pi be his probability of making a mistake. An n-tuple
of individual decisions �X = (X1, X2, . . . , Xn) is a decision profile.

Let E = {e1, e2, . . . , em} be a subcommittee of En consisting of m members,
where 1 ≤ e1 < e2 < · · · < em ≤ n. Denote by Pm,j(E) = Pm,j(e1, e2, . . . , em),
0 ≤ j ≤ m, the probability for exactly j of the members of E to choose the
correct alternative:

Pm,j(E) = P

(∑
i∈E

Xi = j

)
, 0 ≤ j ≤ m.

For example, for E = {1, 2, 3}, we have:

P3,1(E) = P(X1 = 1, X2 = 0, X3 = 0) + P(X1 = 0, X2 = 1, X3 = 0)

+P(X1 = 0, X2 = 0, X3 = 1).

Let Pm,≥j(E) = Pm,≥j(e1, e2, . . . , em), 0 ≤ j ≤ m, be the probability for at least
j of the members of E to choose the correct alternative, namely:

Pm,≥j(E) =
m∑

i=j

Pm,i(E).

For example, for E = {1, 2, 3}:

P3,≥2(E) = P(X1 = 1, X2 = 1, X3 = 0) + P(X1 = 1, X2 = 0, X3 = 1)

+ P(X1 = 0, X2 = 1, X3 = 1) + P(X1 = 1, X2 = 1, X3 = 1).

For E of odd size m ≥ 1, let M(E) = M(e1, e2, . . . , em) be the probability of E
to make the correct choice when utilizing the simple majority rule:

M(E) = Pm,≥(m+1)/2(E).

For example, if E = {1, 2, 3}, then M(E) = P3,≥2(E).
Sn,m,j will denote the sum of the Pm,j(E)’s as E ranges over all

(n
m

)
subsets of

En of size m. Namely, denoting by n̄m this collection of subsets:

Sn,m,j =
∑

E∈n̄m

Pm,j(E).

For example,

S4,3,1 = P3,1(1, 2, 3) + P3,1(1, 2, 4) + P3,1(1, 3, 4) + P3,1(2, 3, 4).
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Denote by P̄m,j the probability that exactly j of the members of a randomly
selected subcommittee of size m of En will choose the correct alternative,
namely:

P̄m,j = Sn,m,j(n
m

) .

Similarly, let P̄m,≥j, 0 ≤ j ≤ m, be the probability for at least j of the members
of a randomly selected subcommittee of size m of En to choose the correct
alternative, namely:

P̄m,≥j(E) =
m∑

i=j

P̄m,i = 1(n
m

) ∑
E∈n̄m

Pm,≥j(E).

Denote by M̄m the probability of a randomly selected subcommittee of En
of size m to decide correctly when utilizing the simple majority rule. That is, for
odd m ≥ 1

M̄m = 1(n
m

) ∑
E∈n̄m

M(E) = P̄m,≥(m+1)/2. (2)

For example, if n = 4 and m = 3, then

M̄3 = 1
4
(M(1, 2, 3) + M(1, 2, 4) + M(1, 3, 4) + M(2, 3, 4)),

or, equivalently,

M̄3 = P̄3,≥2.

In particular, the probability of a random committee member to decide cor-
rectly is M̄1 = p̄ = (1/n)

∑n
i=1 pi. If n is odd, then M̄n is the probability of a com-

mittee of size n, utilizing the simple majority rule, to make the correct choice.

3 The main results

The motivation for this paper derives from the results of Ben-Yashar and
Paroush (2000). They considered a slight adjustment of Condorcet’s statement,
which is valid regardless of the specific competence structure of the group.
Since the simple majority rule is well-defined only for odd-sized committees we
assume, by default, that n is odd (otherwise we mention it specifically). Under
the assumption of independence, they proved that the probability of a group
with competence structure (p1, p2, . . . , pn), where pi ≥ 1/2 for each i, to reach
the correct decision when utilizing the simple majority rule is larger than the
probability p̄ = (1/n)

∑n
i=1 pi of a random group member to do so. Later, under



512 D. Berend, L. Sapir

the same assumptions, Berend and Sapir (2005) generalized this result and
proved the monotonicity of the probability of a correct choice as a function of
the size of the selected subcommittee. Namely, they proved

Theorem 1 [Berend and Sapir (2005), Theorem 1] Let En be a committee of
size n with competence structure (p1, p2, . . . , pn). If the members are independent
and pi ≥ 1/2 for each i, then

⎧⎨
⎩

M̄1 ≤ M̄3 ≤ · · · ≤ M̄n, n ≡ 1 (mod 2),

M̄1 ≤ M̄3 ≤ · · · ≤ M̄n−1, n ≡ 0 (mod 2).

This result raises

Question 1 Are the above conclusions still valid if the voters are dependent?

It is easy to see that the answer is negative in general. Ladha (1992) gave
an example to that effect with n = 3. The following example generalizes his
example.

Example 1 Let n = 3 and 0 ≤ c ≤ 3/4. Suppose that the voters are exchange-
able in the sense of Ladha (1993), and P3,0(E3) = 0, P3,1(E3) = c, P3,2(E3) =√

3c − 2c and P3,3(E3) = 1 + c − √
3c. It is easy to see that pi = M̄1 =∑3

j=1[jP3,j(E3)]/3 = 1 − √
c/3 ≥ 1/2, i = 1, 2, 3, and M̄3 = P3,2(E3) +

P3,3(E3) = 1 − c. Since M̄3 − M̄1 = √
c/3 − c, we easily find that

(i) M̄3 > M̄1 for 0 < c < 1/3,
(ii) M̄3 = M̄1 for c = 0 and c = 1/3,

(iii) M̄1 > M̄3 for 1/3 < c ≤ 3/4.

Note that for c �= 0 the voters are not independent, since

P3,3(E3) = 1 + c − √
3c �=

3∏
i=1

pi =
(

1 −
√

c
3

)3

= 1 + c − √
3c −

(√
c
3

)3

.

However, they are uncorrelated, since for i �= j:

cov(Xi, Xj) = E(Xi · Xj) − E(Xi)E(Xj)

= P(Xi = 1, Xj = 1) − P2(Xi = 1)

= 1
3 P3,2(E3) + P3,3(E3) − p2

1

= 1
3

(√
3c − 2c

)
+ 1 + c − √

3c −
(

1 −
√

c
3

)2 = 0.

Note that for c = 0.6075 we obtain Example 1 of Ladha (1992).

Thus, the answer to Question 1 is negative even if the members are assumed
to be uncorrelated.
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The next example illustrates a more extreme situation for any odd n, where
the probability of a random subcommittee to choose correctly decreases mono-
tonically as the subcommittee’s size increases, namely M̄1 > M̄3 > · · · > M̄n.

Example 2 Consider a committee of size n. Suppose that Pn,n(En) = c, and
that each decision profile, in which exactly (n − 1)/2 of the committee mem-
bers are correct, has the same probability (1 − c)/

( n
(n−1)/2

)
, where 0 < c < 1.

(We mention in passing that these probabilities make the votes exchangeable
in the sense of Ladha (1993).) Thus, Pn,(n−1)/2(En) = 1 − c, and Pn,j(En) = 0,
for j �= n, (n − 1)/2. It is easy to see that pi = M̄1 = c + (n − 1)/2n(1 − c) for
1 ≤ i ≤ n, and M̄n = c. Assume that c ≥ 1/(n + 1), which condition guarantees
that pi ≥ 1/2 for 1 ≤ i ≤ n. Thus M̄1 > M̄n, which is in contradiction with
Condorcet’s belief. Moreover, in this situation:

M̄1 > M̄3 > · · · > M̄n.

Indeed, for arbitrary fixed odd m, 1 ≤ m ≤ n,

M̄m = c + 1 − c( n
(n−1)/2

) m∑
j=(m+1)/2

(
m
j

)(
n − m

[(n − 1)/2] − j

)

(where a binomial coefficient
(a

b

)
with b < 0 is to be taken as 0). Thus for

3 ≤ m ≤ n we have:

M̄m−2 − M̄m = 1 − c( n
(n−1)/2

)
⎛
⎝ m−2∑

j=(m−1)/2

(
m − 2

j

)(
n − m + 2

(n − 1)/2 − j

)

−
m∑

j=(m+1)/2

(
m
j

)(
n − m

(n − 1)/2 − j

)⎞⎠ .

To prove that M̄m−2 > M̄m we will use the identity

(
a + 2

b

)
=
(

a
b

)
+ 2

(
a

b − 1

)
+
(

a
b − 2

)

for a = n − m and b = [(n − 1)/2] − j to obtain:

m−2∑
j=(m−1)/2

(
m − 2

j

)(
n − m + 2

[(n − 1)/2] − j

)

=
m−2∑

j=(m−1)/2

(
m − 2

j

)(
n − m

[(n − 1)/2] − j

)
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+ 2
m−2∑

j=(m−1)/2

(
m − 2

j

)(
n − m

[(n − 1)/2] − j − 1

)

+
m−2∑

j=(m−1)/2

(
m − 2

j

)(
n − m

[(n − 1)/2] − j − 2

)
. (3)

Similarly, for a = m − 2 and b = j we have:

m∑
j=(m+1)/2

(
m
j

)(
n − m

[(n − 1)/2] − j

)
=

m∑
j=(m+1)/2

(
m − 2

j

)(
n − m

[(n − 1)/2] − j

)

+ 2
m∑

j=(m+1)/2

(
m − 2
j − 1

)(
n − m

[(n − 1)/2] − j

)

+
m∑

j=(m+1)/2

(
m − 2
j − 2

)(
n − m

[(n − 1)/2] − j

)

=
m∑

j=(m+1)/2

(
m − 2

j

)(
n − m

[(n − 1)/2] − j

)

+ 2
m−1∑

j=(m−1)/2

(
m − 2

j

)(
n − m

[(n − 1)/2] − j − 1

)

+
m−2∑

j=(m−3)/2

(
m − 2

j

)(
n − m

[(n − 1)/2] − j − 2

)
.

(4)

By (3) and (4):

m−2∑
j=(m−1)/2

(
m − 2

j

)(
n − m + 2

[(n − 1)/2] − j

)
−

m∑
j=(m+1)/2

(
m
j

)(
n − m

[(n − 1)/2] − j

)

=
(

m − 2
(m − 1)/2

)(
n − m

(n − m)/2

)
−
(

m − 2
(m − 3)/2

)(
n − m

(n − m − 2)/2

)
> 0.

Hence the probability of a random subcommittee to choose correctly decreases
monotonically as the subcommittee’s size increases.

Suppose we have a committee of size n, and want to choose a subcommittee
which will make its decisions by majority vote. The polar options are to take all
the n members and to take but one of them. Naturally, anyone who believes in
democratic traditions would hope that the first option is preferable. As men-
tioned earlier, Ben-Yashar and Paroush’s (2000) result confirms this belief for
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independent voters (with pi ≥ 1/2 for each i). As we have seen in Examples 1
and 2, the assumption of independence is critical. This raises

Question 2 Under what conditions is the non-asymptotic part of Condorcet’s
statement, namely M̄n ≥ M̄1, valid?

Partial answers were provided by several authors for special models of
dependence (cf. Boland (1989), Berg (1993)). The following result, which con-
tains a complete answer to this question, is implicit in Ladha (1993). (See the
proof of Lemma 2 in his paper.)

Proposition 1 [Ladha 1993] For a group En of an odd size n with any compe-
tence structure (p1, p2, . . . , pn), we have

M̄n ≥ M̄1

if and only if
(n−1)/2∑

j=1

j(Pn,n−j(En) − Pn,j(En)) ≥ 0. (5)

Note that the values Pn,n(En) and Pn,0(En) are immaterial in (5). The reason
is that the first of these contributes all its value to both M̄n and M̄1 (as well to
any M̄j), whereas the latter contributes to none.

Intuitively, condition (5) means that there is a bias towards having more
members voting correctly rather than incorrectly. In particular, Proposition 1
immediately implies

Corollary 1 If for each “small” j ∈ {1, 2, . . . , (n − 1)/2} the probability of the
number of correct opinions to be j does not exceed that of the number of correct
opinions to be n − j, namely

Pn,n−j(En) ≥ Pn,j(En), 1 ≤ j ≤ n − 1
2

, (6)

then

M̄n ≥ M̄1.

As mentioned above, for independent juries with pi ≥ 1/2, 1 ≤ i ≤ n,
the probability of a random subcommittee to choose correctly increases mono-
tonically as a function of its size. Using continuity, it is clear, if the voters are
“almost” independent, then we still have monotonicity. Another simple corol-
lary of Theorem 1 is

Corollary 2 Let j ∈ {3, 5, . . . , n} be an arbitrary fixed number. If in En every j
experts are independent, then

M̄1 ≤ M̄3 ≤ · · · ≤ M̄j−2 ≤ M̄j. (7)
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Thus, having only partial information about the dependence among the
experts, (knowing only that every j experts in the committee are indepen-
dent), Corollary 7 provides some “recommendations” about the size of the
random subcommittee. However, this information is insufficient to determine
the optimal size of the (random) subcommittee. In particular, both of the two
polar situations

M̄1 ≤ M̄3 ≤ · · · ≤ M̄j−2 ≤ M̄j ≤ M̄j+2 ≤ · · · ≤ M̄n−2 ≤ M̄n

and

M̄n ≤ M̄n−2 ≤ · · · ≤ M̄j+2 ≤ M̄1 ≤ M̄3 ≤ · · · ≤ M̄j−2 ≤ M̄j

are compatible with this assumption.
The following example illustrates such a phenomenon.

Example 3 We illustrate the two polar situations for n = 5. In both of the two
cases below, every three experts in the committee are independent, but all the
five members are dependent.

Case 1 Suppose that P5,5(E5)=0.024, P5,4(E5)=0.48, P5,3(E5)=0, P5,2(E5)=
0.48, P5,1(E5) = 0, P5,0(E5) = 0.016. Also suppose that the voters are
exchangeable in the sense of Ladha (1993). Clearly, pi = P(Xi = 1) = 0.6 for
1 ≤ i ≤ 5, so that M̄1 = 0.6, and

P(X1 = 1, X2 = 1, X3 = 1, X4 = 1, X5 = 1)=P5,5(E5)=0.024 �=
n∏

i=1

pi.

Thus, the members of the committee are dependent. Since the votes are
exchangeable, to prove the independence of any three committee members,
it suffices to verify that P(X1 = 1, X2 = 1) = p1

2 and P(X1 = 1, X2 = 1, X3 =
1) = p1

3. Indeed, we have:

P(X1 = 1, X2 = 1)= P5,5(E5)+ 3
5

P5,4(E5)+ 3
10

P5,3(E5)+ 1
10

P5,2(E5)

= 0.36 = 0.62 = p2
1,

and

P(X1 = 1, X2 = 1, X3 = 1) = P5,5(E5) + 2
5

P5,4(E5) + 1
10

P5,3(E5)

= 0.216 = 0.63 = p1
3.
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By symmetry:

M̄3 = 3P(X1 = 1, X2 = 1, X3 = 0) + P(X1 = 1, X2 = 1, X3 = 1)

= 3
(

1
5

P5,4(E5) + 2
10

P5,3(E5) + 1
10

P5,2(E2)

)
+ p1

3 = 0.648,

and

M̄5 = P5,3(E5) + P5,4(E5) + P5,5(E5) = 0.504.

Thus:

M̄5 = 0.504 < M̄1 = 0.6 < M̄3 = 0.648.

Case 2 Suppose that P5,5(E5)=0.1, P5,4(E5)=0.16, P5,3(E5)=0.52, P5,2(E5)=
0.08, P5,1(E5)=0.14, P5,0(E5)=0. Also suppose that the voters exchangeable
in the sense of Ladha (1993). As in Case 1, a routine calculation shows that the
members are dependent, although any three of them are independent, but this
time:

M̄1 = 0.6 < M̄3 = 0.648 < M̄5 = 0.78.

Now let us focus on a minimal augmentation (namely, by two members) of
a random subcommittee’s size. The following theorem provides necessary and
sufficient conditions for such an augmentation to be beneficial.

Theorem 2 For a group En of size n with any competence structure (p1, p2, . . . , pn)

and arbitrarily fixed odd m, 3 ≤ m ≤ n, the following three conditions are equiv-
alent:

(i) M̄m ≥ M̄m−2.
(ii) P̄m,(m+1)/2 ≥ P̄m,(m−1)/2.

(iii)
(n−1)/2∑

j=(m−1)/2

cj,m(Pn,n−j(En) − Pn,j(En)) ≥ 0,

where cj,m = n−2j
n−j−[(m−1)/2] · ( j

(m−1)/2

)( n−j
(m+1)/2

)
for j = (m − 1)/2, (m + 1)/2, . . . , (n − 1)/2.

We shall exemplify, on two versions of a model suggested by Boland (1989),
how these conditions can be verified, and understand better their intuitive sig-
nificance. In both models, the committee consists of regular members and a
“leader”. In Boland’s first model the leader is part of the decision making team,
while in the second model the leader has external influence on the voters, but
does not participate in the voting itself. For example, in the first model the
leader may be thought as the chairman of the committee, and in the second it
may be advertising or promotional campaign, which effects the voters without
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being a voter itself. Let Xi be a random variable as in (1), corresponding to the
i th regular expert, and let Y be the analogous random variable for the leader.
In the first model, the outcome of the voting is determined by the variables Y
and Xi, 1 ≤ i ≤ n − 1, and in the second − by the variables Xi, 1 ≤ i ≤ n.
Assume that Y takes values 1 and 0 with probabilities p and q, respectively, and
that the Xi’s are independent given Y, with

P(Xi = 1|Y = 1) = p + rq,

and

P(Xi = 1|Y = 0) = p − rp,

for a certain parameter r. Note that each Xi is distributed as Y, namely B(1, p),
and that r is related to the correlations between the variables: ρ(Xi, Y) = r, and
ρ(Xi, Xj) = r2, i �= j. To have all probabilities in the range [0, 1], we need to
require that −q/p ≤ r ≤ 1.

Boland (1989) proved an extended version of CJT for both models. He
showed that, in each of them, for positive correlation r between the regular
experts and the leader, the probability of the majority rule to yield the cor-
rect answer decreases as a function of r. However, in each model, for p > 1/2
and 0 ≤ r < 1, the group competence is still greater than the individual ones,
namely, M̄1 < M̄n, and thus the non-asymptotic part of CJT is still valid.

Let us start with Boland’s first model. For n = 3 we generalize his result,
allowing any value of r. Indeed, to check (ii) or (iii) of Theorem 2, for p ≥ 1/2
and −q/p ≤ r < 1, we compute:

P3,2(E3) − P3,1(E3) = 2p(p + rq)(q − rq) + q(p − rp)2

−2q(q + rp)(p − rp) − p(q − rq)2

= 3pq(1 − r)2(p − q) > 0.

Thus, condition (iii) in Theorem 2 holds, and therefore M̄1 < M̄3 for any r.
Let us turn to n = 5. In principle, there may be six possible rankings of the

M̄i’s:

(a) M̄1 ≤ M̄3 ≤ M̄5,
(b) M̄1 ≤ M̄5 ≤ M̄3,
(c) M̄5 ≤ M̄1 ≤ M̄3,
(d) M̄5 ≤ M̄3 ≤ M̄1,
(e) M̄3 ≤ M̄1 ≤ M̄5,
(f) M̄3 ≤ M̄5 ≤ M̄1.

We claim that, in fact, we necessarily have M̄1 ≤ M̄3, so that the chains in
(d), (e), and (f) are impossible (unless at least two of the M̄i’s coincide). As
the computations required to verify these claims are routine, we shall present
a single case as an example. Checking Theorem 2(iii), we obtain that M̄3 ≤ M̄5
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Table 1 All monotonicity chains in Boland’s first model for n = 5

p r

[−1, −0.78) [−0.78, −0.77) [−0.77, −0.65) [−0.65, −0.6) [−0.6, 0.4) [0.4, 0.52) [0.52, 1)

(ps∗) (c) (b) (b) (a) (a) (a) (b)
(pl∗) (c) (b) (b)

if and only if p(1 − p) ≥ r(r − 0.4)/(1 − r)2. Thus, for 0 ≤ r ≤ 0.4 we have
M̄3 ≤ M̄5, which, combined with the inequality M̄1 ≤ M̄3, immediately implies
chain (a). Similarly, for all other values of r we can show that the ordering for
this model is as in Table 1. More precisely, put:

r1 = −7
9

≈ −0.78, r2 = −1 + √
13

6
≈ −0.77,

r3 = −1 + √
76

15
≈ −0.65, r4 = −1 + √

76
15

≈ 0.52,

and

p∗(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

+ 1
2

√
7 + 9r

3(1 − r)
, r1 ≤ r < r2,

1
2

+ 1
2

√
1 − 4r(r − 0.4)

(1 − r)2 , r3 ≤ r < −0.6
∨

0.4 ≤ r < r4,

1, otherwise.

(8)

Clearly, for p = 0.5 and p = 1 we have M̄1 = M̄3 = M̄5. For arbitrary fixed
−1 ≤ r < 1, the condition r ≥ −q/p implies p ≤ 1/(1 − r). We shall distinguish
between “small” and “large” values of p:

(ps∗) 0.5 < p < p∗(r),
(pl∗) p∗(r) ≤ p < min(1/(1 − r), 1).

(In fact, in case (pl∗) we allow p to assume the value 1/(1 − r) when r < 0, but
not the value 1, which was selected above, when r ≥ 0.) With these notations,
Table 1 provides all possible monotonicity chains for Boland’s first model for
n = 5. (The empty cells in the table correspond to empty sets.)

The table confirms, in a quantitative way, a few natural beliefs. The case r = 0
(for Boland’s model) is the independent case, in which we have monotonicity
[chain (a)], and in particular the non-asymptotic part of CJT holds (M̄1 ≤ M̄5 −
chains (a) and (b) in this model). Intuitively, it is clear that, if the correlation r is
“sufficiently small,” (i.e. −0.6 ≤ r < 0.4), then voters are “almost” independent



520 D. Berend, L. Sapir

Table 2 All monotonicity chains in Boland’s second model for n = 5

p r

[−1, −0.5) [−0.5, −0.45) [−0.45, −0.39) [−0.39, 0.5) [0.5, 0.64) [0.64, 1)

(ps∗∗) (c)
(pm∗∗) (d) (b) (b) (a) (a) (b)
(pl∗∗) (a) (a) (b)

and the augmentation of the random subcommittee will be always beneficial
[chain (a)]. Since the condition M̄1 ≤ M̄5 is weaker than that of monotonicity,
it seems clear that the non-asymptotic part of CJT is valid for a much wider
range of r, which contains both positive and negative values of the correlation
(as confirmed by the table).

Table 2 illustrates the results for Boland’s second model. The picture is “quite
similar” to the previous one. However, for a “sufficiently negative” correlation
r, in this model we may obtain a situation where enlargement of the subcom-
mittee is always non-beneficial, namely M̄1 ≥ M̄3 ≥ · · · ≥ M̄n. In particular, for
n = 3 the inequality M̄1 < M̄3 holds if and only if r > −0.5. Similarly, for n = 5
denote

r5 = −21 + √
105

24
≈ −0.45, r6 = 1 − √

17
8

≈ −0.39, r7 = 1 + √
17

8
≈ 0.64,

p∗∗(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

+
√

12r2 + 21r + 7
12(1 − r)(1 + 4r)

, −0.5 ≤ r < r5,

1
2

, otherwise,

(9)

and

p∗∗(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

+
√

(1 + r)(−4r2 + r + 1)

4(1 − r)2(1 + 4r)
, −0.5 ≤ r < r6

∨
0.5 ≤ r < r7,

1, otherwise.

(10)

Clearly, for p = 0.5 and p = 1 we have M̄1 = M̄3 = M̄5. For arbitrary fixed −1 ≤
r < 1, distinguish between small, medium and large p ∈ [0.5, min (1/(1 − r), 1)

]
:

(ps∗∗) 0.5 < p ≤ p∗∗(r),
(pm∗∗) p∗∗(r) ≤ p < p∗∗(r),
(pl∗∗) p∗∗(r) ≤ p < min (1/(1 − r), 1) .
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(In fact, in case (pl∗∗) we allow p to assume the value 1/(1 − r) when r < 0, but
not the value 1, which was selected above, when r ≥ 0.) With these notations
Table 2 provides all possible monotonicity chains for Boland’s second model
for n = 5. (The empty cells in the table correspond to empty sets).

Finally, note that in both models there exists a wide range of values of the cor-
relation r around 0, for which an augmentation of the subcommittee is always
beneficial, namely M̄1 ≤ M̄3 ≤ M̄5.

We return to the discussion of the general case. The equivalence of Theo-
rem 2(i) and (iii) immediately implies

Corollary 3

1. If Pn,n−j(En) ≥ Pn,j(En) for 1 ≤ j ≤ (n − 1)/2, then an augmentation of the
(random) subcommittee is always beneficial, namely M̄1 ≤ M̄3 ≤ · · · ≤ M̄n.

2. If Pn,n−j(En) ≤ Pn,j(En) for 1 ≤ j ≤ (n − 1)/2, then an augmentation of
the (random) subcommittee is always non-beneficial, namely M̄1 ≥ M̄3
≥ · · · ≥ M̄n.

In the following two propositions, we apply Corollary 3 to obtain, for both
of Boland’s models, monotonicity in certain regions.

Proposition 2 Under the assumptions of Boland’s first model, if

1. −1
2

≤ r ≤ 0, 1 − 1
2(1 − r)

≤ p ≤ 1
1 − r

,
or

2. 0 < r ≤ 1
1 + e

≈ 0.27,
e

(1 + e)(1 − r)
≤ p ≤ 1,

then
M̄1 ≤ M̄3 ≤ · · · ≤ M̄n.

Proposition 3 Under the assumptions of Boland’s second model, if

1. − 1
2 ≤ r ≤ 0, 1 − 1

2(1−r) ≤ p ≤ 1
1−r ,

or
2. 0 < r ≤ 1

2 , 1
2(1−r) ≤ p ≤ 1,

then
M̄1 ≤ M̄3 ≤ · · · ≤ M̄n.

This means that there exists a range of values of the correlation r around 0,
for which an augmentation of the subcommittee is always beneficial. If the cor-
relation r belongs to this range, then it is best to collect all the experts opinions
and follow the majority. In particular, in both cases the monotonicity implies
the validity of the non-asymptotic part of CJT, namely that M̄1 ≤ M̄n, as long
as r ≥ −0.5. Recall that Boland (1989) proved that M̄1 ≤ M̄n for any r ≥ 0.
Note that, already in our analysis of Boland’s model for n = 5, we have seen
that the inequality M̄1 ≤ M̄n does not necessarily implies monotonicity, i.e., it
is possible to have, say, M̄1 ≤ M̄n ≤ M̄i for some odd i, 3 ≤ i ≤ n − 2.

The equivalence of Theorem 2(i) and (ii) immediately implies



522 D. Berend, L. Sapir

Corollary 4 For each 1 ≤ i ≤ n, denote by n̄i,m the set of all subcommittees of
given odd size m ≤ n, containing the ith expert of the given committee En. Let
Ei,j,m, 1 ≤ j ≤ (n−1

m−1

)
, be the subcommittees belonging to n̄i,m. For an arbitrary

fixed j, let Aj(i) be the event whereby the opinions in the subcommittee Ei,j,m\{i},
are split evenly. If for all 1 ≤ i ≤ n we have

P(Xi = 1|Aj(i)) ≥ 1
2

, 1 ≤ j ≤
(

n − 1
m − 1

)
, (11)

then

M̄m ≥ M̄m−2.

The intuitive meaning of condition (11) is as follows. Any single commit-
tee member is usually “unimportant”. In fact, his vote makes a difference only
when all other members are evenly split. Condition (11) ensures that each mem-
ber has a positive contribution in any situation in which his vote is important.
That is, if he is a member of any subcommittee, at which the other members
are evenly split, there is a probability of at least 1/2 that his vote will bring
about the correct decision. Thus, Corollary 4 implies the following far-reaching
generalization of the monotonicity result of Berend and Sapir (2005).

Corollary 5 If condition (11) takes place for all odd m, 3 ≤ m ≤ n, then

M̄1 ≤ M̄3 ≤ · · · ≤ M̄n.

Note that, for the condition in Corollary 5 to hold, we only need each mem-
ber to have a probability at least 1/2 of being correct, given that in any arbitrary
fixed subset of the committee the opinions are evenly split. Thus, members are
only required to have good decisional ability (i.e., probability at least 1/2) when
they are not pressed in any direction by the opinions of others. If their vote
is negatively effected only when a majority of the other members are of some
opinion, the performance of a random subcommittee is still better is still better
as the size of the subcommittee grows.

4 Proofs

In this section we prove all the results of the paper, except for those which were
proved in other papers, and those which follow easily from the other results.

Proof of Theorem 2 (i) ⇔ (ii) Viewing a random subcommittee of size m − 2
of En as a random subcommittee of size m from which two random members i
and k are dropped, we derive from (2):

M̄m−2 = 1( n
m−2

) ∑
E∈n̄m

1(n−(m−2)
2

) ∑
{i,k}⊆E

m−2∑
j=(m−1)/2

Pm−2,j(E\{i, k}).
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Since
( n

m−2

)(n−(m−2)
2

) = (n
m

)(m
2

)
, we have

M̄m−2 = 1(n
m

)(m
2

) ∑
E∈n̄m

∑
{i,k}⊆E

m−2∑
j=(m−1)/2

Pm−2,j(E\{i, k}).

Writing each Pm−2,j(E\{i, k}) as a sum

Pm−2,j(E\{i, k})

= P

⎛
⎝ ∑

s∈E\{i,k}
Xs = j, Xi = 0, Xk = 0

⎞
⎠+P

⎛
⎝ ∑

s∈E\{i,k}
Xs = j, Xi = 1, Xk = 0

⎞
⎠

+ P

⎛
⎝ ∑

s∈E\{i,k}
Xs=j, Xi=0, Xk=1

⎞
⎠+P

⎛
⎝ ∑

s∈E\{i,k}
Xs = j, Xi = 1, Xk = 1

⎞
⎠,

we arrive at

M̄m−2 = 1(n
m

)(m
2

) ∑
E∈n̄m

[ (m+1
2
2

)
Pm,(m−1)/2(E)

+
((

(m − 1)/2
2

)
+
(

(m − 1)/2
1

)(
(m + 1)/2

1

))
Pm,(m+1)/2(E)

+
n∑

odd t=3

((
(m − t)/2

2

)
+
(

(m − t)/2
1

)(
(m + t)/2

1

)

+
(

(m + t)/2
2

))
Pm,(m+t)/2(E)

]
.

One can easily check that for odd t, 1 ≤ t ≤ m, we have:

(
(m − t)/2

2

)
+
(

(m − t)/2
1

)(
(m + t)/2

1

)
+
(

(m + t)/2
2

)
=
(

m
2

)
.

Thus

M̄m−2 = 1(n
m

)(m
2

) ∑
E∈n̄m

⎡
⎣((m + 1)/2

2

)
Pm,(m−1)/2(E)

+
((

m
2

)
−
(

(m + 1)/2
2

))
Pm,(m+1)/2(E) +

(
m
2

) m∑
j=(m+3)/2

Pm,j(E)

⎤
⎦ .
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Using (2) we obtain:

M̄m − M̄m−2 =
(
(m+1)/2

2

)
(n

m

)(m
2

) ∑
E∈n̄m

(
Pm,(m+1)/2(E) − Pm,(m−1)/2(E)

)

=
(
(m+1)/2

2

)
(m

2

) (
P̄m,(m+1)/2 − P̄m,(m−1)/2

)
,

which proves the equivalence of (i) and (ii).

Now we will show that (ii) ⇔ (iii). Recall that P̄m,(m+1)/2 is the probabil-
ity that exactly (m + 1)/2 experts in a random subcommittee of size m make
the right choice. Each decision profile, which contains exactly (m + 1)/2 cor-
rect individual decision of an arbitrary fixed subcommittee E ∈ n̄m of size m,
we complete by the all possible 2n−m decisions of the complementary n − m
members of En\E. We do it for each subcommittee E ∈ n̄m. This yields:

P̄m,(m+1)/2 = 1(n
m

) n−(m−1)/2∑
j=(m+1)/2

(
j

(m + 1)/2

)(
n − j

(m − 1)/2

)
Pn,j(En).

In the same way:

P̄m,(m−1)/2 = 1(n
m

) n−(m+1)/2∑
j=(m−1)/2

(
j

(m − 1)/2

)(
n − j

(m + 1)/2

)
Pn,j(En).

By the last two equalities:

P̄m,(m+1)/2 − P̄m,(m−1)/2 = 1(n
m

) n−(m−1)/2∑
j=(m−1)/2

((
j

(m + 1)/2

)(
n − j

(m − 1)/2

)

−
(

j
(m − 1)/2

)(
n − j

(m + 1)/2

))
Pn,j.

Since for (m − 1)/2 ≤ j ≤ (n − 1)/2 all coefficients of Pn,j(En) in the last
sum are negative and all the coefficients of Pn,n−j(En) are positive, and for each
(m − 1)/2 ≤ j ≤ (n − 1)/2 the terms Pn,n−j(En) and −Pn,j(En) have the same
coefficient cj,m, we obtain

P̄m,(m+1)/2 − P̄m,(m−1)/2 = 1(n
m

) (n−1)/2∑
j=(m−1)/2

cj,m(Pn,n−j(En) − Pn,j(En)),

which completes the proof.
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Proof of Corollary 4 Clearly, (11) is equivalent to the condition, whereby for
any expert ei ∈ En, 1 ≤ i ≤ n, we have:

P(Xi = 1 ∩ Aj(i)) ≥ P(Xi = 0 ∩ Aj(i)), 1 ≤ j ≤
(

n − 1
m − 1

)
.

Summing over all i and j, we obtain

1(n
m

) ·
n∑

i=1

(n−1
m−1)∑
j=1

P(Xi = 1 ∩ Aj(i)) ≥ 1(n
m

) ·
n∑

i=1

(n−1
m−1)∑
j=1

P(Xi = 0 ∩ Aj(i)),

that is

m + 1
2

P̄m,(m+1)/2 = m + 1
2

P̄m,(m−1)/2.

It follows that condition (ii) of Theorem 2 holds, which completes the proof.

Proof of Proposition 2 Denote q = 1 − p, α = p + rq and β = (1 − r)p. One
can easily verify that

p(1 − α) = qβ, α ≤ p + q = 1,

r = α − β, β ≤ (1 + q/p)p = 1.

With these notations, for each 1 ≤ j ≤ (n − 1)/2 we have

Pn,n−j(En) − Pn,j(En)

= pαj−1(1 − α)j ·
((

n − 1
j

)
αn−2j −

(
n − 1
j − 1

)
(1 − α)n−2j

)

−q(1 − β)j−1β j ·
((

n − 1
j

)
(1 − β)n−2j −

(
n − 1
j − 1

)
βn−2j

)
= qβ · ((1 − β)β)j−1

×
[(

α(1 − α)

β(1 − β)

)j−1

·
((

n − 1
j

)
αn−2j −

(
n − 1
j − 1

)
(1 − α)n−2j

)

−
((

n − 1
j

)
(1 − β)n−2j −

(
n − 1
j − 1

)
βn−2j

)]
. (12)

Now we show that the left-hand side of (12) is non-negative under the conditions
given in the proposition. Indeed, we have:

α(1 − α)

β(1 − β)
= 1 − r(p − q)

p(q + rp)
.
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If condition (1) is satisfied, then −q/p ≤ r ≤ 0 and α ≥ 1/2. Thus α(1 − α) ≥
β(1 − β), and

(n−1
j

)
αn−2j − (n−1

j−1

)
(1 − α)n−2j > 0 for 1 ≤ j ≤ (n − 1)/2. Since

p ≥ q, we have

α + β = p + r(1 − p) + p(1 − r) = 2p(1 − r) + r ≥ 2(1/2)(1 − r) + r = 1,

which implies α ≥ 1−β and 1−α ≤ β. Using these inequalities in the right-hand
side of (12), we obtain that, under (1), we have Pn,n−j(En) − Pn,j(En) ≥ 0. By
Corollary 3.1, this completes the first part of the proposition.

Let us turn to the second part. We will show that, if (2) is satisfied, then

(
n − 1

j

)
(1 − β)n−2j −

(
n − 1
j − 1

)
βn−2j < 0, 1 ≤ j ≤ n − 1

2
,

which is equivalent to

β

1 − β
>

(
n − j

j

)1/(n−2j)

, 1 ≤ j ≤ n − 1
2

. (13)

Indeed, if (2) is satisfied, then we have e/(1 + e) ≤ p(1 − r) ≤ p + r(1 − p) ≤ 1,
which is equivalent to e/(1 + e) ≤ β ≤ α ≤ 1. Obviously, the function h(β) =
β/(1 − β) is decreasing and h (e/(1 + e)) = e. Hence, for 1 ≤ j ≤ (n − 1)/2,

β

1 − β
≥ e ≥ e1/j >

((
1 + 1

j/(n − 2j)

)j/(n−2j)
)1/j

=
(

n − j
j

)1/(n−2j)

,

which proves (13). Thus Pn,n−j(En) − Pn,j(En) ≥ 0 for 1 ≤ j ≤ (n − 1)/2, which
again by Corollary 3.1 completes the proof.

Proof of Proposition 3 In the second model of Boland we have for 1 ≤ j ≤
(n − 1)/2,

Pn,n−j(En) − Pn,j(En) =
(

n
j

)
pαj(1 − α)j

(
αn−2j − (1 − α)n−2j

)

+
(

n
j

)
qβ j(1 − β)j

(
βn−2j − (1 − β)n−2j

)
.

Under condition (1) we have 1/2 ≤ p + (1 − p)r ≤ p(1 − r) ≤ 1, which is
equivalent to 1/2 ≤ α ≤ β ≤ 1. This implies

Pn,n−j(En) − Pn,j(En) ≥ 0, 1 ≤ j ≤ n − 1
2

,

which proves the first part.
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If condition (2) is satisfied, then 1/2 ≤ p(1 − r) ≤ p + (1 − p)r ≤ 1, which is
equivalent to 1/2 ≤ β ≤ α ≤ 1. This implies

Pn,n−j(En) − Pn,j(En) ≥ 0, 1 ≤ j ≤ n − 1
2

,

and thereby completes the proof.

5 Summary and conclusions

Finally, let us raise the following principal question:

Question 3 Is independence among decision makers critical for democracy?

In democracy all members of the decision body must have the same decisional
power. Thus, the strongest form of democracy in our terms means augmenting
the decision making body as much as possible. That is, we are concerned with
the question:

When is the augmentation always beneficial, namely p̄=M̄1 ≤M̄3 ≤· · ·≤M̄n?

Theorem 1 of Berend and Sapir (2005) proved this monotonicity for inde-
pendent experts. Theorem 2 implies necessary and sufficient conditions for
such monotonicity for arbitrary-dependent experts. We exemplify these condi-
tions on two models of correlation, considered by Boland (1989), and provide
connections between the correlation and monotonicity. It seems interesting
to study applications of our results in other models of dependence (cf. Berg
(1993); Ladha (1995); Dietrich and List (2004)).
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