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Abstract The rationalizability of a choice function by means of a transitive relation
has been analyzed thoroughly in the literature. However, not much seems to be
known when transitivity is weakened to quasi-transitivity or acyclicity. Such weak-
enings are particularly relevant in the context of social choice. We describe the
logical relationships between the different notions of rationalizability involving,
for example, the transitivity, quasi-transitivity, or acyclicity of the rationalizing
relation. Furthermore, we discuss sufficient conditions and necessary conditions
for rational choice on arbitrary domains. Transitive, quasi-transitive, and acyclical
rationalizability are fully characterized for domains that contain all singletons and
all two-element subsets of the universal set.

1 Introduction

The intuitive conception of rational choice as optimizing behavior, irrespective of
the nature of the objective to be optimized (be it by a single agent or by a group
of individuals), has been studied extensively in the literature. Beginning with the
revealed preference theory of consumer demand on competitive markets, which is
due to Samuelson (1938, 1947 Chap. V, 1948, 1950) and Houthakker (1950), the
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early phase of the theory of rational choice was devoted to the analysis of choices
from budget sets only.

Uzawa (1957) and Arrow (1959) freed this theory from this exclusive concern
by introducing the general concept of a choice function defined on the domain
of all subsets of a universal set of alternatives. Following this avenue, Sen (1971,
1982), Schwartz (1976), Bandyopadhyay and Sengupta (1991), and many others
succeeded in characterizing optimizing choice corresponding to fine demarcations
in the degree of consistency of the objective to be maximized. Most notably, the
theory of rational choice on such full domains was greatly simplified by the equiv-
alence results between several revealed preference axioms, for example, the weak
axiom of revealed preference and the strong axiom of revealed preference, whose
subtle difference had been regarded as lying at the heart of the integrability problem
for a competitive consumer. However, this simplification was obtained at a price
which some may think is much too high. Instead of assuming that the domain of
a choice function consists solely of the set of budget sets, it is assumed that “the
domain includes all finite subsets (of the universal set of alternatives for choice)
whether or not it includes any other subset” (Sen 1971, 1982, p. 47). It deserves
emphasis that “it is not necessary that even all finite sets be included in the domain.
All the results and proofs would continue to hold even if the domain includes all
pairs and triples but not all finite sets” (Sen 1971, 1982, pp. 48–49).

Whatever stance one may want to take vis-à-vis Sen’s argument in favor of his
domain assumption, it is interesting to see what we can make of the concept of a
rational choice function irrespective of which assumption we care to specify on its
domain, thereby focusing directly on what the logic of rational choice – and nothing
else – entails in general. A crucial step along this line was taken by Richter (1966,
1971), Hansson (1968) and Suzumura (1976, 1977, 1983, Chap. 2) who assumed
the domain of a choice function to be an arbitrary family of non-empty subsets of
an arbitrary non-empty universal set of alternatives without any algebraic or topo-
logical structure. These authors succeeded in axiomatizing the concept of a fully
rational choice function, that is, a choice function resulting from the optimization
of an underlying transitive preference ordering. Yet, “cold winds blow through
unstructured sets” (Howard 1971, p. xvii), and there remains a large gap between
the theory of rational choice functions with the Arrow–Sen domain and that with the
Richter–Hansson domain. In more concrete terms, the Richter–Hansson approach
has not yet delivered an axiomatization of rational choice functions where the
underlying preference relation is not fully transitive but possesses weaker prop-
erties such as quasi-transitivity or acyclicity. Such weakenings of transitivity are
particularly relevant in the context of social choice. The purpose of this paper is
to narrow down this gap along two lines.

In the first place, we focus on choice functions defined on what we call base
domains, which contain all singletons and pairs of alternatives included in some
universal set. On these domains, we provide axiomatizations of choice functions
rationalized by preference relations that are not fully transitive. In addition, a new
characterization of transitive rational choice is provided for those domains. The
concept of a rational choice as an optimizing choice is binary in nature in that the
choice from any (possibly very large) set is to be accounted for in terms of a binary
relation. In this sense, base domains seem to be the most natural domains to work
with in the theory of rational choice. Triples need not be included in a base domain
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even though consistency properties involving three or more alternatives (namely,
quasi-transitivity and acyclicity) are imposed, a feature which distinguishes our
approach from the Arrow–Sen framework.

In the second place, we develop new necessary conditions for choice functions
defined on arbitrary domains to be rationalized by preference relations that are
merely quasi-transitive or acyclical. Furthermore, in the acyclical case, we present
a new sufficient condition, and we prove that it is weaker than a set of sufficient
conditions in the earlier literature.

Within the context of the consistency properties of transitivity, quasi-transitiv-
ity, and acyclicity, we also explore the implications of all possible notions of rational
choice as an optimizing choice both on arbitrary domains and on base domains.
Furthermore, we analyze both maximal-element rationalizability and greatest-ele-
ment rationalizability (see Sen 1997, for example).

The remainder of the paper is organized as follows. Section 2 introduces the con-
cept of rationalizability, along with some preliminary observations. Logical rela-
tionships are examined in Sect. 3. Section 4 contains our characterization results on
base domains. In Sect. 5, we present sufficient conditions and necessary conditions
on arbitrary domains. Section 6 concludes.

2 Rationalizable choice functions

The set of positive (non-negative) integers is denoted by N (N0). For a set S, |S| is
the cardinality of S. Let X be a universal non-empty set of alternatives. X is the
power set of X excluding the empty set. A choice function is a mapping C : � → X
such that C(S) ⊆ S for all S ∈ �, where � ⊆ X with � �= ∅ is the domain of
C . In addition to arbitrary non-empty domains, we consider binary domains which
are domains � ⊆ X such that {S ∈ X | |S| = 2} ⊆ �, and base domains which
are domains � ⊆ X such that {S ∈ X | |S| = 1 or |S| = 2} ⊆ �.

Let R ⊆ X × X be a binary relation on X . The asymmetric factor P(R) of R is
given by (x, y) ∈ P(R) if and only if (x, y) ∈ R and (y, x) �∈ R for all x, y ∈ X .

A relation R ⊆ X × X is (1) reflexive if, for all x ∈ X , (x, x) ∈ R; (2) complete
if, for all x, y ∈ X such that x �= y, (x, y) ∈ R or (y, x) ∈ R; (3) transitive if, for
all x, y, z ∈ X , [(x, y) ∈ R and (y, z) ∈ R] implies (x, z) ∈ R; (4) quasi-transitive
if P(R) is transitive; (5) acyclical if, for all K ∈ N\{1} and for all x0, . . . , x K ∈ X ,
(xk−1, xk) ∈ P(R) for all k ∈ {1, . . . , K } implies (x K , x0) �∈ P(R); (6) asym-
metric if, for all x, y ∈ X , (x, y) ∈ R implies (y, x) �∈ R.

The transitive closure of R ⊆ X × X is denoted by R, that is, for all x, y ∈ X ,
(x, y) ∈ R if there exist K ∈ N and x0, . . . , x K ∈ X such that x0 = x , x K = y
and (xk−1, xk) ∈ R for all k ∈ {1, . . . , K }. Clearly, R is transitive and, because
we can set K = 1, it follows that R ⊆ R.

The direct revealed preference relation RC ⊆ X × X of a choice function C
with an arbitrary domain � is defined as follows. For all x, y ∈ X , (x, y) ∈ RC
if there exists S ∈ � such that x ∈ C(S) and y ∈ S. The (indirect) revealed pref-
erence relation of C is the transitive closure RC of the direct revealed preference
relation RC . If � is a base domain, the base relation BC ⊆ X × X of C is defined
by letting, for all x, y ∈ X , (x, y) ∈ BC if x ∈ C({x, y}).
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For S ∈ � and a relation R ⊆ X × X , the set of R-greatest elements in S is
G(S, R) = {x ∈ S | (x, y) ∈ R for all y ∈ S}, and the set of R-maximal elements
in S is M(S, R) = {x ∈ S | (y, x) �∈ P(R) for all y ∈ S}. A choice function
C is greatest-element rationalizable if there exists a relation R on X such that
C(S) = G(S, R) for all S ∈ �. C is maximal-element rationalizable if there exists
a relation R on X such that C(S) = M(S, R) for all S ∈ �.

Ours is the standard definition of maximal-element rationalizability that is used
in the traditional literature on rational (social and individual) choice. We are aware
that there are interesting alternatives such as that of Kim and Richter (1986) who
proposed the concept of motivated choice: C is a motivated choice if there exist a
relation R on X , which is to be called a motivation of C , such that

C(S) = {x ∈ S | (y, x) �∈ R for all y ∈ S}

for all S ∈ �. This property is implied by maximal-element rationalizability but
the converse implication is not true. Moreover, C is a motivated choice if and only
if C is greatest-element rationalizable. Indeed, R greatest-element rationalizes C
if and only if its dual Rd , defined by

(x, y) ∈ Rd ⇔ (y, x) �∈ R

for all x, y ∈ X , is a motivation of C . Because our version of maximal-element
rationalizability has been employed extensively in the literature and because we
think it has strong intuitive appeal, we use it in this paper. In fact, the analysis of
the differences that emerge between the two traditional versions of rationalizability
once full transitivity is no longer required is one of the major purposes of this paper.

Depending on the properties that we might want to impose on a rationalizing
relation, different notions of rationalizability can be defined. In particular, our focus
is on transitivity, quasi-transitivity, and acyclicity. We refer to those properties as
consistency conditions, and we let T, Q, A, R, and C stand for transitivity, quasi-
transitivity, acyclicity, reflexivity, and completeness, respectively. Each notion of
rationalizability is identified by a list of properties assumed to be satisfied by the
rationalizing relation, followed by the type of rationalizability (greatest-element or
maximal-element rationalizability). For example, QC-G means greatest-element
rationalizability by a quasi-transitive and complete relation, ARC-M is maximal-
element rationalizability by an acyclical, reflexive, and complete relation, etc.

We conclude this section with some preliminary results. We first present the
following lemma, due to Samuelson (1938, 1948); see also Richter (1971). It states
that the direct revealed preference relation must be contained in any greatest-ele-
ment rationalizing relation.

Lemma 1 (Samuelson 1938, 1948) If R greatest-element rationalizes C, then
RC ⊆ R.

If R is transitive and greatest-element rationalizes C , it also follows that the
strict preference relation corresponding to RC must be contained in the strict pref-
erence relation of R, that is, P(RC ) ⊆ P(R) (see Bossert 2001). On an arbitrary
domain, this result is no longer true if transitivity is weakened to quasi-transitivity.
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Example 1 Let X = {x, y}, � = {{x, y}}, and C({x, y}) = {x}. The relation R
defined by

R = {(x, x), (x, y), (y, x)}
is quasi-transitive and greatest-element rationalizes C but we have

P(RC ) = {(x, y)} �⊆ ∅ = P(R).

Even if a greatest-element rationalizing relation R is reflexive and complete,
P(RC ) need not be contained in P(R).

Example 2 Let X = {x, y, z, w}, � = {{x, z}, {x, y, w}}, and define C({x, z}) =
{z} and C({x, y, w}) = {x, w}. The relation R given by

R = (X × X) \ {(x, z), (y, w)}
is quasi-transitive, reflexive, and complete and greatest-element rationalizes C . We
have (x, y) ∈ P(RC ) and (x, y) �∈ P(R) and, hence, P(RC ) �⊆ P(R).

The implication discussed above does hold on a base domain even if no consis-
tency requirement such as transitivity, quasi-transitivity or acyclicity is imposed.

Lemma 2 Suppose � is a base domain. If R greatest-element rationalizes C, then
P(RC ) ⊆ P(R).

Proof Suppose (x, y) ∈ P(RC ) for some x, y ∈ X . This implies (x, y) ∈ RC and,
by Lemma 1, (x, y) ∈ R. By way of contradiction, suppose (y, x) ∈ R. Because
� is a base domain, {y} ∈ �. By the non-emptiness of C({y}), y ∈ C({y}). Hence,
(y, y) ∈ RC and, using Lemma 1 again, (y, y) ∈ R. Because � is a base domain,
{x, y} ∈ �. Because (y, x) ∈ R, (y, y) ∈ R, and R greatest-element rationalizes
C , we must have y ∈ C({x, y}) and hence (y, x) ∈ RC . But this contradicts the
assumption that (x, y) ∈ P(RC ). �	

A final preliminary observation concerns an axiom that is necessary for greatest-
element rationalizability even without any restrictions on a rationalizing relation.
This requirement is referred to as the V-axiom in Richter (1971); we call it
D-congruence (D for ‘direct revelation’) in order to have a systematic terminology
throughout this paper.

D-Congruence For all S ∈ �, for all x ∈ S, if (x, y) ∈ RC for all y ∈ S, then
x ∈ C(S).

We state Richter’s (1971) result that D-congruence is necessary for greatest-ele-
ment rationalizability by an arbitrary relation on an arbitrary domain.

Lemma 3 (Richter 1971) If C is greatest-element rationalizable, then C satisfies
D-congruence.

Richter (1971) shows that D-congruence is not only necessary but also sufficient
for greatest-element rationalizability by an arbitrary binary relation on an arbi-
trary domain. Moreover, the axiom is necessary and sufficient for greatest-element
rationalizability by a reflexive (but otherwise unrestricted) relation on an arbitrary
domain. The requirement remains, of course, necessary for rationalizability if we
restrict attention to base domains. However, if we add a consistency requirement
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such as transitivity, quasi-transitivity, or acyclicity, D-congruence by itself is not
sufficient for rationalizability, even on base domains.

3 Logical relationships

We provide a full description of the logical relationships between the different
notions of rationalizability that can be defined in this setting. The possible defini-
tions of rationalizability that can be obtained depend subtly on which consistency
requirement is adopted (namely, transitivity, quasi-transitivity or acyclicity) and on
whether reflexivity or completeness are added. Furthermore, a distinction between
greatest-element rationalizability and maximal-element rationalizability is made.
Note that, without any additional properties, maximal-element rationalizability
implies greatest-element rationalizability but this implication is no longer valid if
additional properties are imposed on a rationalization; see Theorem 1 below.

We state all logical relationships between the different notions of rationality
analyzed in this paper in two theorems – one for arbitrary domains and one for base
domains. For convenience, a diagrammatic representation is employed: all axioms
that are depicted within the same box are equivalent, and an arrow pointing from
one box b to another box b′ indicates that the axioms in b imply those in b′, and the
converse implication is not true. In addition, of course, all implications resulting
from chains of arrows depicted in the diagram are valid.

Theorem 1 Suppose � is a general domain. Then

Proof We proceed as follows. In Step 1, we prove the equivalence of all axioms
that appear in the same box. In Step 2, we show that all implications depicted in the
theorem statement are valid. In Step 3, we demonstrate that no further implications
are true other than those resulting from chains of implications established in Step 2.

Step 1 We prove the equivalence of the axioms for each of the four boxes contain-
ing more than one axiom.

1.a. We first prove the equivalence of the axioms in the top box.
That TRC-G, TC-G, TR-G, and T-G are equivalent follows directly from

Richter’s (1966, 1971) results.
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Because maximal elements and greatest elements coincide for a reflexive and
complete relation, it follows that TRC-G and TRC-M are equivalent.

Finally, we show that TC-M implies TRC-M. Suppose R is a transitive and
complete relation that maximal-element rationalizes C , that is, C(S) = M(S, R)
for all S ∈ �. Let

R′ = R ∪ {(x, x) | x ∈ X}.
It follows immediately that R′ is reflexive, complete, and transitive. Furthermore,
P(R′) = P(R) and, therefore, M(S, R′) = M(S, R) = C(S) for all S ∈ �, which
implies that R′ maximal-element rationalizes C .

1.b. Next, we prove that the axioms in the second box from the top are equiv-
alent.

That TR-M and T-M are equivalent can be shown using the same construction
as in the proof of the equivalence of TRC-M and TC-M.

Clearly, QRC-G and QRC-M are equivalent because greatest and maximal
elements coincide for a reflexive and complete relation.

Next, we show that Q-M implies QRC-M. Suppose R is a quasi-transitive
relation that maximal-element rationalizes C . Define R′ by

R′ = {(x, y) ∈ X × X | (y, x) �∈ P(R)}. (1)

Regardless of the properties possessed by R, R′ is always reflexive and complete
and, furthermore, P(R′) = P(R) and hence

G(S, R′) = M(S, R′) = M(S, R) for all S ∈ �. (2)

Since R is quasi-transitive and P(R′) = P(R), R′ is quasi-transitive as well.
That R′ maximal-element rationalizes C follows immediately from (2) and the

assumption that R maximal-element rationalizes C .
To complete this part of the proof, it is sufficient to establish the equivalence

of T-M and QRC-G.
First, we show that T-M implies QRC-G. Suppose C is maximal-element ratio-

nalizable by a transitive relation R. Define the relation R′ as in (1). As in the
argument proving the previous implication, R′ is quasi-transitive, reflexive, and
complete, and (2) implies that R′ greatest-element rationalizes C .

To prove that QRC-G implies T-M, suppose R is a quasi-transitive, reflexive,
and complete relation that greatest-element rationalizes C . Define

R′ = P(R).

R′ is transitive because R is quasi-transitive. Furthermore, we have P(R′) = P(R)
and hence

M(S, R′) = M(S, R) = G(S, R) for all S ∈ �, (3)

where the second equality follows from reflexivity and completeness of R. Since
R greatest-element rationalizes C it follows from (3) that R′ maximal-element
rationalizes C .

1.c. We prove that the axioms ARC-G and all axioms involving maximal-element
rationalizability by an acyclical relation are equivalent.

Again, the equivalence of ARC-G and ARC-M follows immediately because
the greatest and maximal elements of a reflexive and complete relation coincide.
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Finally, we show that A-M implies ARC-M. Suppose R is an acyclical relation
that maximal-element rationalizes C . Define R′ as in (1). Again, it is clear that R′
is reflexive and complete. Since R is acyclical and P(R′) = P(R), R′ is acyclical
as well. The argument showing that R′ maximal-element rationalizes C is identical
to the one used in 1.b.

1.d. To complete the first part of the proof, it remains to be shown that A-G
implies AR-G. Suppose R is acyclical and greatest-element rationalizes C . Define

R′ = (R ∪ {(x, x) | x ∈ X}) \ {(x, y) ∈ X × X | (x, x) �∈ R and y �= x}. (4)

Clearly, R′ is reflexive. Furthermore, by definition of R′, we have

[(x, x) �∈ R ⇒ (x, y) �∈ R′] for all x ∈ X, for all y ∈ X \ {x}. (5)

Now suppose R′ is not acyclical. Then there exist K ∈ N\{1} and x0, . . . , x K ∈
X such that (xk−1, xk) ∈ P(R′) for all k ∈ {1, . . . , K } and (x K , x0) ∈ P(R′).
Clearly, we can, without loss of generality, assume that the xk are pairwise distinct.
By (5), (xk−1, xk−1) ∈ R for all k ∈ {1, . . . , K + 1}. But this implies that we have
(xk−1, xk) ∈ P(R) for all k ∈ {1, . . . , K } and (x K , x0) ∈ P(R) by definition of
R′, contradicting the acyclicity of R.

We now prove that R′ greatest-element rationalizes C . For future reference,
note that the argument used in the proof does not depend on any of the properties
of R other than the observation that it greatest-element rationalizes C . Let S ∈ �
and x ∈ S.

Suppose x ∈ C(S). Because R greatest-element rationalizes C , we have
(x, y) ∈ R for all y ∈ S which, in particular, implies (x, x) ∈ R. Therefore,
by (4), (x, y) ∈ R′ for all y ∈ S and hence x ∈ G(S, R′).

Now suppose x ∈ G(S, R′). Therefore, (x, y) ∈ R′ for all y ∈ S. If S = {x},
x ∈ C(S) follows from the non-emptiness of C(S). If there exists y ∈ S such
that y �= x , (5) implies (x, x) ∈ R. Therefore, because (x, y) ∈ R′ implies
(x, y) ∈ R for all y ∈ S and R greatest-element rationalizes C , we immediately
obtain x ∈ C(S).

Step 2 The only non-trivial implication is that QC-G implies QR-G. Suppose R
is quasi-transitive and complete and greatest-element rationalizes C . Define the
(reflexive) relation R′ as in (4). Next, we prove that R′ is quasi-transitive. Suppose
(x, y) ∈ P(R′) and (y, z) ∈ P(R′). By (5), (x, x) ∈ R and (y, y) ∈ R. Suppose
(x, y) �∈ P(R). Because R is complete, we have (y, x) ∈ R. Because (y, y) ∈ R,
it follows that (y, x) ∈ R′ by definition of R′, contradicting (x, y) ∈ P(R′).
Therefore, (x, y) ∈ P(R).

We now distinguish two cases.
2.a. (z, z) ∈ R. Analogously to the above proof demonstrating that (x, y) ∈

P(R), we obtain (y, z) ∈ P(R) in this case. Because R is quasi-transitive, it fol-
lows that (x, z) ∈ P(R). Because (x, x) ∈ R and (x, z) ∈ P(R), we must have
(x, z) ∈ R′ by definition of R′. Furthermore, (z, x) �∈ R implies (z, x) �∈ R′ by
definition of R′ and, consequently, we obtain (x, z) ∈ P(R′).

2.b. (z, z) �∈ R. By (5), we obtain (z, x) �∈ R′. Suppose (x, z) �∈ R′. Because
(x, x) ∈ R, this implies (x, z) �∈ R by definition of R′ and hence (z, x) ∈ P(R)
by the completeness of R. Because R is quasi-transitive, we obtain (z, y) ∈ P(R)
and hence (y, z) �∈ R. Because (z, z) �∈ R, the definition of R′ implies (y, z) �∈ R′,
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contradicting (y, z) ∈ P(R′). Therefore, (x, z) ∈ R′ and, because (z, x) �∈ R′, it
follows that (x, z) ∈ P(R′).

That R′ greatest-element rationalizes C can be shown using the same proof as
in 1.d.

Step 3 To prove that no further implications other than those resulting from Step
2 are valid, it is sufficient to provide examples showing that (a) QRC-G does not
imply T-G; (b) QC-G does not imply ARC-G; (c) ARC-G does not imply Q-G; (d)
QR-G does not imply AC-G; and (e) Q-G does not imply QR-G.

3.a. QRC-G does not imply T-G.

Example 3 Let X = {x, y, z} and � = X \ {{x, y, z}}. Define the choice function
C by letting C({t}) = {t} for all t ∈ X , C({x, y}) = {x, y}, C({x, z}) = {z}, and
C({y, z}) = {y, z}. This choice function is greatest-element rationalizable by the
quasi-transitive, reflexive, and complete relation

R = (X × X) \ {(x, z)}.
Suppose C is greatest-element rationalizable by a transitive relation R′. Because
x ∈ C({x, y}), we must have (x, x) ∈ R′ and (x, y) ∈ R′. Analogously, y ∈
C({y, z}) implies (y, z) ∈ R′. By the transitivity of R′, it follows that (x, z) ∈ R′
and, together with (x, x) ∈ R′, x ∈ C({x, z}), contradicting the definition of C .

3.b. QC-G does not imply ARC-G.

Example 4 Let X = {x, y, z, w} and � = {{x, w}, {y, z}, {y, w}, {x, y, w},
{y, z, w}}, and define C({x, w}) = {w}, C({y, z}) = {y}, C({y, w}) = {y, w},
C({x, y, w}) = {w}, and C({y, z, w}) = {y}. This choice function is greatest-ele-
ment rationalized by the quasi-transitive and complete relation R given by

{(x, y), (x, z), (x, w), (y, y), (y, z), (y, w), (z, x), (z, y),

(z, w), (w, x), (w, y), (w, w)}.
Suppose R′ is acyclical, reflexive, and complete and greatest-element rational-
izes C .

Because C({y, z}) = {y} and R′ is reflexive, we obtain (y, z) ∈ P(R′). Anal-
ogously, because C({x, w}) = {w} and R′ is reflexive, we must have (w, x) ∈
P(R′).

Because y ∈ C({y, w}) and y �∈ C({x, y, w}), we must have (y, x) �∈ R′
and, because R′ is complete, it follows that (x, y) ∈ P(R′). Analogously, because
w ∈ C({y, w}) and w �∈ C({y, z, w}), we must have (w, z) �∈ R′ and, because R′
is complete, it follows that (z, w) ∈ P(R′).

Therefore, we have established that (x, y) ∈ P(R′), (y, z) ∈ P(R′), (z, w) ∈
P(R′), and (w, x) ∈ P(R′), contradicting the acyclicity of R′.

3.c. ARC-G does not imply Q-G.

Example 5 Let X = {x, y, z} and � = X \ {{x, y, z}}. Define the choice function
C by letting C({t}) = {t} for all t ∈ X , C({x, y}) = {x}, C({x, z}) = {x, z},
and C({y, z}) = {y}. This choice function is greatest-element rationalizable by the
acyclical, reflexive, and complete relation

R = {(x, x), (x, y), (x, z), (y, y), (y, z), (z, x), (z, z)}.
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Suppose C is greatest-element rationalizable by a quasi-transitive relation R′. Be-
cause y ∈ C({y, z}), we have (y, y) ∈ R′. Therefore, y �∈ C({x, y}) implies
(x, y) ∈ P(R′). Analogously, z ∈ C({x, z}) implies (z, z) ∈ R′ and, therefore,
z �∈ C({y, z}) implies (y, z) ∈ P(R′). Because R′ is quasi-transitive, it follows that
(x, z) ∈ P(R′) and hence (z, x) �∈ R′. Because R′ greatest-element rationalizes
C , this implies z �∈ C({x, z}), contradicting the definition of C .

3.d. QR-G does not imply AC-G.

Example 6 Let X = {x, y, z} and � = {{x, y}, {x, z}, {x, y, z}}. Define the choice
function C by letting C({x, y}) = {x, y}, C({x, z}) = {x, z}, and C({x, y, z}) =
{x}. C is greatest-element rationalizable by the quasi-transitive and reflexive rela-
tion

R = {(x, x), (x, y), (x, z), (y, x), (y, y), (z, x), (z, z)},
but it cannot be greatest-element rationalized by a complete relation. By way of
contradiction, suppose R′ is such a relation. By completeness, we must have

(y, z) ∈ R′ (6)

or

(z, y) ∈ R′. (7)

Suppose (6) is true. Because R′ greatest-element rationalizes C and y ∈ C({x, y}),
it follows that (y, x) ∈ R′ and (y, y) ∈ R′. Together with (6) and the greatest-ele-
ment rationalizability of C by R′, we obtain y ∈ C({x, y, z}), contradicting the
definition of C .

Now suppose (7) is true. Because R′ greatest-element rationalizes C and z ∈
C({x, z}), it follows that (z, x) ∈ R′ and (z, z) ∈ R′. Together with (7) and the
greatest-element rationalizability of C by R′, we obtain z ∈ C({x, y, z}), con-
tradicting the definition of C .

3.e. Q-G does not imply QR-G.

Example 7 Let X = {x, y, z, w} and � = {{x, y}, {y, z}, {z, w}, {x, z, w}}, and
define the choice function C by letting C({x, y}) = {y}, C({y, z}) = {z}, C({z, w})
= {z, w}, and C({x, z, w}) = {w}. This choice function is greatest-element ratio-
nalized by the quasi-transitive relation R given by

{(x, y), (y, x), (y, y), (z, y), (z, z), (z, w), (w, x), (w, z), (w, w)}.
Suppose R′ is quasi-transitive and reflexive and greatest-element rationalizes C . By
reflexivity, (x, x) ∈ R′ and, because x �∈ C({x, y}), we must have (y, x) ∈ P(R′).
Because y ∈ C({x, y}), it follows that (y, y) ∈ R′ and, hence, y �∈ C({y, z})
implies (z, y) ∈ P(R′). By quasi-transitivity, we obtain (z, x) ∈ P(R′).

Because z ∈ C({z, w}), it follows that (z, z) ∈ R′ and (z, w) ∈ R′. Together
with (z, x) ∈ P(R′) and the assumption that R′ greatest-element rationalizes C ,
we obtain z ∈ C({x, z, w}), which contradicts the definition of C . �	
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Regarding the implications presented in the above theorem, it is worth pointing
out some surprising differences between those notions of rationalizability encom-
passing transitivity and those that merely require quasi-transitivity or acyclicity.
Most strikingly, as soon as we weaken full transitivity to quasi-transitivity, not even
reflexivity is implied as a property of a greatest-element rationalizing relation. On
the other hand, all notions of maximal-element rationalizability coincide if merely
quasi-transitivity rather than full transitivity is required.

The results regarding the logical relationships between our rationalizability
axioms simplify dramatically when base domains are considered. The presence of
all one-element and two-element sets in � guarantees that every greatest-element
rationalizing relation must be reflexive and complete and, as a consequence, all
rationality requirements involving greatest-element rationalizability with a given
consistency requirement become equivalent. All implications of Theorem 1 are
preserved and, other than those just mentioned, there are no additional ones. Those
demanding transitivity are stronger than those where merely quasi-transitivity is
required which, in turn, imply (but are not implied by) all axioms where the ratio-
nalizing relation is acyclical. These observations are summarized in the following
theorem.

Theorem 2 Suppose � is a base domain. Then

The implications and equivalences of the theorem follow immediately from The-
orem 1 and the assumption that � is a base domain. Furthermore, Examples 3 and
5 can be employed to demonstrate that the implications between boxes are strict.
Thus, no formal proof is required.

As shown in Theorem 2, there are only three different versions of rationaliz-
ability for base domains. As a consequence, we can restrict attention to the ration-
alizability axioms TRC-G, QRC-G, and ARC-G in this case, keeping in mind that,
by Theorem 2, all other rationalizability requirements discussed in this paper are
covered as well by our results.

Note that, in the case of transitive greatest-element rationalizability, all defi-
nitions of rationalizability are equivalent even if � only contains all two-element
sets but not necessarily the singletons; this is a consequence of the observation
that if R is a transitive (and complete) relation greatest-element rationalizing C ,
it is always possible to find a reflexive and transitive (and complete) relation that
contains R and rationalizes C as well; see Richter (1966, 1971). Therefore, the
equivalence of all axioms involving a transitive greatest-element rationalization
can be established for binary domains as well. We do not state the corresponding
result formally as a separate theorem because our focus is on quasi-transitive and
acyclical rationalizability in this paper.
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4 Characterizations for binary and base domains

If we restrict attention to base domains (that is, domains � that contain all
one-element and two-element sets), the analysis of quasi-transitive and acycli-
cal rationalizability is significantly less complex than in the case of an arbitrary
domain, and we obtain ‘clean’ characterization results. In addition, we formu-
late a new characterization result regarding transitive rationalizability for binary
domains. The full power of a base domain is not required in the transitive case
because reflexivity can always be added as a property of a rationalizing relation as
long as transitivity is satisfied.

Note that the assumption of having a base domain differs in an important aspect
from the assumption used by Sen (1971), which stipulates that not only the sets of
cardinality two, but also those of cardinality three are in �. (Sen did not require
the singletons to be in the domain due to the observation that, for transitive great-
est-element rationalizability, reflexivity can always be added as a property of a
greatest-element rationalizing relation – see the discussion at the end of the previ-
ous section.) It is interesting to note that, in order to obtain useful and applicable
results for quasi-transitive and acyclical rationalizing relations, those sets of cardi-
nality three are not required in the domain, even though these consistency properties
impose restrictions on three or more alternatives which may be distinct. It is not
sufficient to assume that we have a binary domain (that is, a domain containing all
two-element sets). The singleton sets are needed if transitivity is weakened to quasi-
transitivity or acyclicity because, without full transitivity, reflexivity of a rational-
izing relation can no longer be guaranteed. Base domains have also been used by
Herzberger (1973) but he did not pursue the same questions we address in this paper.

4.1 Transitive rationalizability

In the case of binary domains, we obtain a new characterization of TRC-G that
employs a weaker axiom than Richter’s (1966) congruence axiom to be defined in
Sect. 5. This axiom – which we call T-congruence – is defined as follows.

T-Congruence For all x, y, z ∈ X , for all S ∈ �, if (x, y) ∈ RC , (y, z) ∈ RC ,
x ∈ S and z ∈ C(S), then x ∈ C(S).

Note that, in contrast to congruence, T-congruence does not apply to chains of
direct revealed preference of an arbitrary length but merely to chains involving
three elements. For binary domains, T-congruence is necessary and sufficient for
TRC-G. Of course, T-congruence is necessary for greatest-element rationalizabil-
ity by a transitive relation on an arbitrary domain but it is not sufficient unless
specific domain assumptions are made.

Example 8 Let X = {x, y, z, w}, � = {{x, y}, {y, z}, {z, w}, {x, w}}, and define
C by C({x, y}) = {x}, C({y, z}) = {y}, C({z, w}) = {z}, and C({x, w}) = {w}.
This choice function satisfies T-congruence but it is not greatest-element rationaliz-
able by a transitive relation. To see this, suppose R is transitive and greatest-element
rationalizes C . The definition of C yields (x, y) ∈ RC , (y, z) ∈ RC , (z, w) ∈ RC ,
and (x, x) ∈ RC . By Lemma 1, (x, y) ∈ R, (y, z) ∈ R, (z, w) ∈ R, and (x, x) ∈ R.
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Because R is transitive, we must have (x, w) ∈ R. By definition of greatest-element
rationalizability, it follows that x ∈ C({x, w}), a contradiction.

It is an interesting observation that binary domains are sufficient to obtain results
of that nature involving transitivity, even though those domains do not necessarily
contain all triples. This is in contrast to Sen’s (1971) results which crucially depend
on having all triples available in the domain. We obtain

Theorem 3 Suppose � is a binary domain. C satisfies TRC-G if and only if C
satisfies T-congruence.

Proof Let � be a binary domain. This implies that RC is complete – see the proof
of Theorem 2.

Step 1 That TRC-G implies T-congruence follows immediately from Richter’s
(1966) result and the observation that T-congruence is weaker than his congruence
axiom.

Step 2 We show that T-congruence implies TRC-G. Let

R = RC ∪ {(x, x) | x ∈ X}.
Clearly, R is reflexive by definition, and R is complete because RC is complete.
Next, we prove that R is transitive. Suppose (x, y) ∈ R and (y, z) ∈ R for some
x, y, z ∈ X . If x = z, (x, z) ∈ R follows from the reflexivity of R. If x �= z, it fol-
lows that {x, z} ∈ � because � is a binary domain. By T-congruence, x ∈ C({x, z})
and hence (x, z) ∈ RC which, by Lemma 1, implies (x, z) ∈ R.

Finally, we show that R greatest-element rationalizes C . Let S ∈ � and x ∈ S.
Suppose x ∈ C(S). This implies (x, y) ∈ RC for all y ∈ S and hence (x, y) ∈ R

for all y ∈ S. Hence, x ∈ G(S, R).
Now suppose x ∈ G(S, R), that is, (x, y) ∈ R for all y ∈ S. If S = {x}, we

have C(S) = {x} because C(S) is non-empty and hence (x, x) ∈ RC . If there
exists y ∈ S such that y �= x , it follows that (x, y) ∈ RC and, by definition of RC ,
x must be chosen for some feasible set in �. Thus, again, (x, x) ∈ RC . Therefore,
(x, y) ∈ RC for all y ∈ S. Let z ∈ C(S). This implies (z, z) ∈ RC . Because z ∈ S,
(x, z) ∈ RC . Letting y = z in the definition of T-congruence, the axiom implies
x ∈ C(S). �	
Clearly, if � is a base domain rather than merely a binary domain, RC is reflexive
and can be used as the rationalizing relation in the above theorem. A corollary of
Theorem 3 is that, on a base domain, T-congruence and congruence are equivalent.
In general, this need not be the case: congruence always implies T-congruence but
the reverse implication is not true on all domains.

4.2 Quasi-transitive rationalizability

To obtain a set of necessary and sufficient conditions for QRC-G in the case of
a base domain, we add the following Q-congruence axiom to the D-congruence
axiom introduced in Sect. 2.
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Q-Congruence For all x, y, z ∈ X , for all S ∈ �, if (x, y) ∈ P(RC ), (y, z) ∈
P(RC ) and x ∈ S, then z �∈ C(S).

Together with D-congruence, Q-congruence guarantees that the direct revealed
preference relation RC is quasi-transitive. Note, again, that we do not need to
impose a restriction regarding chains of (strict) revealed preferences of arbitrary
length. We obtain

Theorem 4 Suppose � is a base domain. C satisfies QRC-G if and only if C
satisfies D-congruence and Q-congruence.

Proof Let � be a base domain. Therefore, RC is reflexive and complete – see the
proof of Theorem 2.

Step 1 We first show that QRC-G implies Q-congruence (that D-congruence is
implied follows from Lemma 3). Suppose R is a quasi-transitive relation that great-
est-element rationalizes C . Let x, y, z ∈ X and S ∈ � be such that (x, y) ∈ P(RC ),
(y, z) ∈ P(RC ), and x ∈ S. By Lemma 2, (x, y) ∈ P(R) and (y, z) ∈ P(R) and,
because R is quasi-transitive, (x, z) ∈ P(R). This implies (z, x) �∈ R and because
R greatest-element rationalizes C , we have z �∈ C(S).

Step 2 We show that D-congruence and Q-congruence together imply QRC-G.
First, we prove that RC is quasi-transitive. Suppose (x, y) ∈ P(RC ) and (y, z) ∈
P(RC ) for some x, y, z ∈ X . Because � is a base domain, {x, z} ∈ �. By Q-con-
gruence, z �∈ C({x, z}) and hence x ∈ C({x, z}) which implies (x, z) ∈ RC . Since
RC is reflexive, (z, z) ∈ RC . If (z, x) ∈ RC , D-congruence implies z ∈ C({x, z}),
a contradiction. Therefore, (x, z) ∈ P(RC ).

The rest of the proof proceeds as in Richter (1971) by showing that RC great-
est-element rationalizes C , given D-congruence. Let S ∈ � and x ∈ S. Suppose
x ∈ C(S). This implies (x, y) ∈ RC for all y ∈ S and hence x ∈ G(S, RC ). Now
suppose x ∈ G(S, RC ), that is, (x, y) ∈ RC for all y ∈ S. By D-congruence,
x ∈ C(S). �	

D-congruence and Q-congruence are independent on base domains, as shown
by means of the following examples.

Example 9 Let X = {x, y, z} and � = X \ {{x, y, z}}, and define C({t}) = {t}
for all t ∈ X , C({x, y}) = {x}, C({y, z}) = {y}, and C({x, z}) = {z}. This choice
function satisfies D-congruence but violates Q-congruence.

Example 10 Let X = {x, y, z} and � = X , and define C({t}) = {t} for all t ∈ X ,
C({x, y}) = {x, y}, C({y, z}) = {y, z}, C({x, z}) = {x, z}, and C({x, y, z}) =
{y, z}. This choice function satisfies Q-congruence but violates D-congruence.

Q-congruence is a weaker axiom than the quasi-transitivity of RC ; it is only
in conjunction with D-congruence that it implies that the revealed preference rela-
tion is quasi-transitive. Strengthening Q-congruence to the quasi-transitivity of
RC does not allow us to drop D-congruence in the above characterization. Note
that the above example showing that Q-congruence does not imply D-congruence
is such that RC is quasi-transitive, and recall that D-congruence is necessary for
greatest-element rationalizability on any domain (Lemma 3).
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Given that we employ a base domain, it is natural to ask whether the base
relation BC could be used in place of the revealed preference relation RC in the
formulation of D-congruence and Q-congruence. This is not the case.

Example 11 Let X = {x, y, z} and � = X , and define C({t}) = {t} for all
t ∈ X , C({x, y}) = {y}, C({x, z}) = {z}, C({y, z}) = {y, z}, and C({x, y, z}) =
{x, y, z}. This choice function satisfies the modifications of D-congruence and
Q-congruence where RC is replaced with BC but it does not satisfy D-congru-
ence (and, thus, fails to be greatest-element rationalizable by any binary relation).
Note that replacing RC with BC leads to a weakening of D-congruence but to a
strengthening of Q-congruence.

4.3 Acyclical rationalizability

If quasi-transitivity is weakened to acyclicity, it seems natural to replace
Q-congruence by the following A-congruence axiom in order to obtain a
characterization of the respective rationalizability property on a base domain.

A-Congruence For all x, y ∈ X , for all S ∈ �, if (x, y) ∈ P(RC ), x ∈ S and
y ∈ C(S), then x ∈ C(S).

It is indeed the case that D-congruence and A-congruence together are necessary
and sufficient for ARC-G on base domains. However, A-congruence by itself is
stronger than the acyclicity of RC and, thus, a stronger characterization result can
be obtained by employing acyclicity instead of A-congruence.

Theorem 5 Suppose � is a base domain. C satisfies ARC-G if and only if C
satisfies D-congruence and RC is acyclical.

Proof Let � be a base domain. Again, it follows that RC is reflexive and complete.

Step 1 We first show that ARC-G implies that RC is acyclical (again, that D-con-
gruence is implied follows from Lemma 3).

Suppose R is an acyclical, reflexive, and complete relation that greatest-element
rationalizes C . Let K ∈ N \ {1} and x0, . . . , x K ∈ X be such that (xk−1, xk) ∈
P(RC ) for all k ∈ {1, . . . , K }. By Lemma 2, (xk−1, xk) ∈ P(R) for all k ∈
{1, . . . , K }. Because R is acyclical, we have (x K , x0) �∈ P(R) and, since R is
reflexive and complete, (x0, x K ) ∈ R. Because R is reflexive, (x K , x K ) ∈ R.
Because � is a base domain, {x0, x K } ∈ �. Because R greatest-element rational-
izes C , x0 ∈ C({x0, x K }) and hence (x0, x K ) ∈ RC , which implies (x K , x0) �∈
P(RC ).

Step 2 D-congruence and the acyclicity of RC together imply ARC-G because
D-congruence implies that RC greatest-element rationalizes C , as was shown in
the last paragraph of the proof of Theorem 4. �	

That D-congruence and the acyclicity of RC are independent is shown by Exam-
ples 9 and 10. Analogously, D-congruence cannot be replaced with an axiom that
merely applies to the base relation BC instead of RC .
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5 Conditions for arbitrary domains

In this section, we examine greatest-element rationalizability and maximal-ele-
ment rationalizability on completely arbitrary domains under various assumptions
regarding the properties of a rationalizing relation. Because Richter’s (1966) and
Suzumura’s (1977, 1983, p. 48) results characterizing TRC-G for arbitrary domains
are well-known, we only discuss the quasi-transitive and acyclical cases.

5.1 Quasi-transitive rationalizability

If we move from a base domain to an arbitrary domain, the conjunction of
Q-congruence and D-congruence ceases to be sufficient for QRC-G, as can be
seen from Example 4. Moreover, Q-congruence is not a necessary condition for
QRC-G either, as demonstrated by the following example.

Example 12 Let X = {x, y, z, u, v, w}, � = {{x, y, u}, {x, z, w}, {y, z, v}}, and
define C({x, y, u}) = {x, u}, C({x, z, w}) = {z, w}, and C({y, z, v}) = {y, v}.
This choice function is greatest-element rationalizable by the quasi-transitive,
reflexive, and complete relation R given by

{(x, t) | t ∈ X \ {w}} ∪ {(y, t) | t ∈ X \ {u}} ∪ {(z, t) | t ∈ X \ {v}}
∪ {(u, t) | t ∈ X} ∪ {(v, t) | t ∈ X} ∪ {(w, t) | t ∈ X}.

Since (x,y) ∈ P(RC ) and (y,z) ∈ P(RC ), Q-congruence requires z �∈ C({x, z,w}),
contradicting the definition of C .

The formulation of necessary and sufficient conditions for greatest-element or
maximal-element rationalizability by a quasi-transitive relation is a complex task.
Suzumura (1983, p. 50) shows that the strong axiom of revealed preference is a
sufficient (but not a necessary) condition for QRC-G. Now we present a condi-
tion that is necessary (but not sufficient, even if combined with D-congruence) for
QRC-G.

The axiom we employ involves a recursive construction. The idea is to identify
circumstances that force a strict preference between two elements of X and impose
a condition ensuring that this forced strict preference is transitive, as required by
the quasi-transitivity of a rationalizing relation.

Suppose C is greatest-element rationalizable by a quasi-transitive, reflexive,
and complete relation R. Consider a feasible set S ∈ � and distinct elements
x, y ∈ S such that y is not chosen in S but y is directly revealed preferred to all
z ∈ S \ {x, y}. By Lemma 1, (y, z) ∈ R for all z ∈ S \ {x, y} and, together with
the reflexivity and completeness of R, y ∈ S \ C(S) requires that x be declared
strictly preferred to y according to R and, by quasi-transitivity, all chains of strict
preference thus established must be respected as well. Moreover, once it is implied
that x is declared strictly preferred to y according to the above argument (or, more
generally, according to the transitive closure of the relation thus obtained), this
strict preference may have further implications: there may exist another set T ∈ �
such that x, y ∈ T , x is declared preferred to all z ∈ T \ {x, y, w} for some
w ∈ S \ {x, y}, and x is not chosen in T . In that case, we must declare a strict pref-
erence for w over x according to R. This procedure can be repeated recursively,
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and we now present a formal definition of this recursion, followed by a neces-
sary condition for QRC-G based on this recursive construction. This recursion is
analogous to the one employed in Bossert (2001).

Define the relation F0
C on X as follows. For all x, y ∈ X , (x, y) ∈ F0

C if
there exists S ∈ � such that x ∈ S \ {y}, y ∈ S \ C(S), and (y, z) ∈ RC for all
z ∈ S \ {x, y}.

Now let i ∈ N. Let J i−1
C = RC ∪ Fi−1

C , and define the relation Fi
C on X as

follows. For all x, y ∈ X , (x, y) ∈ Fi
C if

[(x, y) ∈ Fi−1
C ] or [there exists S ∈ � such that x ∈ S \ {y}, y ∈ S \ C(S),

and (y, z) ∈ J i−1
C for all z ∈ S \ {x, y}].

Finally, let J∞
C = ∪i∈N0 J i

C and F∞
C = ∪i∈N0 Fi

C . The following axiom turns out
to be necessary for QRC-G.

Recursive Q-congruence For all x, y ∈ X , if (x, y) ∈ F∞
C , then (y, x) �∈ J∞

C .

We obtain

Theorem 6 If C satisfies QRC-G, then C satisfies recursive Q-congruence. The
converse implication is not true.

Proof Suppose R is a quasi-transitive, reflexive, and complete relation that great-
est-element rationalizes C . We first prove that

F∞
C ⊆ P(R). (8)

Clearly, by definition of F∞
C , it is sufficient to prove that Fi

C ⊆ P(R) for all i ∈ N0.
We proceed by induction.

Step 1 i = 0. We first show that F0
C ⊆ P(R). Suppose (x, y) ∈ F0

C for some
x, y ∈ X . By definition, there exists S ∈ � such that (y, z) ∈ RC for all z ∈
S \ {x, y}, x ∈ S \ {y}, and y ∈ S \ C(S). By Lemma 1, (y, z) ∈ R for all
z ∈ S \ {x, y} and, because R is reflexive, (y, y) ∈ R. Because y ∈ S \ C(S) and
R greatest-element rationalizes C , we must have (y, x) �∈ R. Hence, because R is
complete, (x, y) ∈ P(R).

Because R is quasi-transitive (that is, P(R) is transitive) and F0
C is the transitive

closure of F0
C , it follows that F0

C ⊆ P(R).

Step 2 Let i ∈ N and suppose F j
C ⊆ P(R) for all j ∈ {0, . . . , i − 1}. Let

(x, y) ∈ Fi
C for some x, y ∈ X . By definition, there are two cases.

2.a. (x, y) ∈ Fi−1
C . In this case, (x, y) ∈ P(R) follows from the induction

hypothesis.
2.b. There exists S ∈ � such that (y, z) ∈ J i−1

C for all z ∈ S\{x, y}, x ∈ S\{y},
and y ∈ S \ C(S). Let z ∈ S \ {x, y}. By definition of J i−1

C we have (y, z) ∈ RC

or (y, z) ∈ Fi−1
C . If (y, z) ∈ RC , Lemma 1 implies (y, z) ∈ R. If (y, z) ∈ Fi−1

C ,
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(y, z) ∈ R follows from the induction hypothesis. Therefore, (y, z) ∈ R for all
z ∈ S \ {x, y} and, using the same argument as in Step 1, we obtain Fi

C ⊆ P(R)

and, by the quasi-transitivity of R, Fi
C ⊆ P(R). This completes the proof of (8).

Next, we prove that

J∞
C ⊆ R. (9)

Again, it is sufficient to prove that J i
C ⊆ R for all i ∈ N0. Let (x, y) ∈ J i

C for some

x, y ∈ X . By definition, (x, y) ∈ RC or (x, y) ∈ Fi
C . If (x, y) ∈ RC , (x, y) ∈ R

follows from Lemma 1. If (x, y) ∈ Fi
C , (x, y) ∈ R follows from the proof of (8).

Therefore, (9) is true.
To complete the proof that QRC-G implies recursive Q-congruence, we pro-

ceed by contradiction. Suppose recursive Q-congruence is violated. Then there
exists x, y ∈ X such that (x, y) ∈ F∞

C and (y, x) ∈ J∞
C . By (8) and (9), we have

(x, y) ∈ P(R) and (y, x) ∈ R, a contradiction.

To see that the converse implication is not true, consider the following example.

Example 13 Let X = {x, y, z, u, v, w} and � = {{x, y, u}, {y, z, v}, {x, z, w}}
and define C by letting C({x, y, u}) = {x}, C({y, z, v}) = {y}, and C({x, z, w}) =
{z}. It is straightforward to check that F0

C = ∅. It follows that J 0
C = RC , J i

C =
J 0

C = RC for all i ∈ N, and F∞
C = Fi

C = F0
C = ∅ for all i ∈ N. Thus, recursive Q-

congruence is trivially satisfied. Because we will use this example in the following
subsection as well, we show that C cannot be greatest-element rationalized by an
acyclical, reflexive, and complete relation (and, thus, it cannot be greatest-element
rationalized by a quasi-transitive, reflexive, and complete relation). Suppose, by
way of contradiction, that R is acyclical, reflexive, and complete and greatest-ele-
ment rationalizes C . Because y, u ∈ {x, y, u} \ C({x, y, u}) and R is reflexive and
complete, we must have

1.a. (x, y) ∈ P(R) or 1.b. [(x, u) ∈ P(R) and (u, y) ∈ P(R)].
Analogously, because z, v ∈ {y, z, v} \ C({y, z, v}) and x, w ∈ {x, z, w}
\ C({x, z, w}), we have

2.a. (y, z) ∈ P(R) or 2.b. [(y, v) ∈ P(R) and (v, z) ∈ P(R)]
and

3.a. (z, x) ∈ P(R) or 3.b. [(z, w) ∈ P(R) and (w, x) ∈ P(R)].
If 1.a, 2.a, and 3.a are true, we immediately obtain a contradiction to the acyc-

licity of R.
If 1.a, 2.a, and 3.b are true, we have (x, y) ∈ P(R), (y, z) ∈ P(R), (z, w) ∈

P(R), and (w, x) ∈ P(R), contradicting the acyclicity of R. Because of the sym-
metric role played by x, y, and z, analogous contradictions are obtained whenever
statements i.a, j.a, and k.b are true for any distinct values of i, j, k ∈ {1, 2, 3}.

If 1.a, 2.b, and 3.b are true, we obtain (x, y) ∈ P(R), (y, v) ∈ P(R), (v, z) ∈
P(R), (z, w) ∈ P(R), and (w, x) ∈ P(R), again a violation of acyclicity. Using
the symmetric role of x, y, and z again, analogous contradictions are obtained
whenever statements i.a, j.b, and k.b are true for any distinct values of i, j, k ∈
{1, 2, 3}.
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Finally, if 1.b, 2.b, and 3.b are true, we obtain (x, u) ∈ P(R), (u, y) ∈ P(R),
(y, v) ∈ P(R), (v, z) ∈ P(R), (z, w) ∈ P(R), and (w, x) ∈ P(R), and acyclicity
is violated again. �	

We noted in Lemma 3 that D-congruence is a necessary condition for greatest-
element rationalizability by any relation. This raises the question whether recursive
Q-congruence implies D-congruence. To see that this is indeed the case, suppose
D-congruence is violated. Then there exist S ∈ � and x ∈ S such that (x, y) ∈ RC
for all y ∈ S and x �∈ C(S). By definition, this implies (y, x) ∈ F0

C ⊆ F∞
C for all

y ∈ S\{x}. Because C(S) ⊆ S is non-empty and x ∈ S\C(S), S\{x} is non-empty.
Consider any y ∈ S \ {x}. Because (x, y) ∈ RC we have (x, y) ∈ J∞

C . Therefore,
we obtain (y, x) ∈ F∞

C and (x, y) ∈ J∞
C , contradicting recursive Q-congruence.

Furthermore, recursive Q-congruence and Q-congruence are independent. The
choice function in Example 12 satisfies recursive Q-congruence (by Theorem 6;
note that it satisfies QRC-G) but violates Q-congruence. Conversely, the choice
function in Example 4 satisfies Q-congruence but violates recursive Q-congruence.
To see this, note first that RC = {(y, y), (y, z), (y, w), (w, x), (w, y), (w, w)}. In
view of the definition of C , it follows that F0

C = {(x, y), (y, z), (z, w), (w, x)},
and the transitive closure of F0

C is therefore given by F0
C = X × X . It follows that

F∞
C = J∞

C = X × X , a contradiction to recursive Q-congruence.
Because no particular assumptions are formulated regarding the domain of the

choice function, it seems that conditions that are both necessary and sufficient can-
not be formulated without invoking existential clauses. Moreover, contrary to the
transitive case, quasi-transitivity of a greatest-element rationalizing relation does
not imply that the asymmetric factor of the revealed preference relation must be
contained in this rationalizing relation – see the discussion regarding Lemma 2 in
Sect. 2. These observations appear to be an important part of the reason why there
does not exist much literature on the subject of quasi-transitive rational choice on
arbitrary domains. Rather than constructing the relation F∞

C one pair of alternatives
at a time, a tighter necessary condition would be to establish the existence of an
alternative x ∈ S such that x can be declared better than y if y is feasible but not
chosen in S. This kind of condition involves an existential clause, and conditions of
that nature are difficult to verify in practice and, therefore, are of limited interest.

5.2 Acyclical rationalizability

A-congruence (and, thus, the acyclicity of RC ) fails to be sufficient for ARC-G
even in the presence of D-congruence, as Example 4 shows. Moreover, the acyc-
licity of RC (and, thus, A-congruence) is not necessary for ARC-G in the case of a
general domain. This is established by Example 12; note that, in Example 12, we
have (x, y) ∈ P(RC ), (y, z) ∈ P(RC ), and (z, x) ∈ P(RC ).

As is the case for quasi-transitivity, the formulation of necessary and sufficient
conditions for acyclical rationalizability appears to necessitate the use of axioms
involving existential clauses. We provide a discussion analogous to the one for
quasi-transitivity to illustrate the issues involved. First, we present a new sufficient
condition for ARC-G. To do so, we employ the relation EC introduced in Suzumura
(1976). It is defined as follows. For all x, y ∈ X , (x, y) ∈ EC if there exists S ∈ �
such that x ∈ C(S) and y ∈ S \ C(S).
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Strong A-congruence For all x, y ∈ X , for all S ∈ �, if (x, y) ∈ EC ∪ RC , x ∈ S
and y ∈ C(S), then x ∈ C(S).

We obtain

Theorem 7 If C satisfies strong A-congruence, then C satisfies ARC-G. The con-
verse implication is not true.

Proof Suppose C satisfies strong A-congruence. First, we prove that EC is asym-
metric. Suppose, by way of contradiction, that there exist x, y ∈ X such that
(x, y) ∈ EC and (y, x) ∈ EC . Therefore, there exist K , K ′ ∈ N, x0, . . . , x K ∈ X ,
and z0, . . . , zK ′ ∈ X such that x0 = zK ′ = x , x K = z0 = y, (xk−1, xk) ∈ EC
for all k ∈ {1, . . . , K }, and (zk−1, zk) ∈ EC for all k ∈ {1, . . . , K ′}. Hence,
(x, zK ′−1) ∈ EC and (zK ′−1, x) ∈ EC . By definition of EC , there exists S ∈ �

such that zK ′−1 ∈ C(S) and x ∈ S \ C(S), contradicting strong A-congruence.

Now define

R = {(x, y) ∈ X × X | (y, x) �∈ EC } ∪ RC .

Clearly, R is reflexive and complete by the asymmetry of EC . To prove that R is
acyclical, we first derive the asymmetric factor of R. By definition, (x, y) ∈ P(R)
if

[(y, x) �∈ EC or (x, y) ∈ RC ] and [(x, y) ∈ EC and (y, x) �∈ RC ]
which is equivalent to

[(y, x) �∈ EC and (x, y) ∈ EC and (y, x) �∈ RC ] or

[(x, y) ∈ RC and (x, y) ∈ EC and (y, x) �∈ RC ].
Using the asymmetry of EC , this is equivalent to

[(x, y) ∈ EC and (y, x) �∈ RC ] or [(x, y) ∈ EC and (x, y) ∈ P(RC )]
or, equivalently,

[(x, y) ∈ EC and (y, x) �∈ RC ]. (10)

Now we establish the acyclicity of R. Suppose there exist K ∈ N \ {1} and
x0, . . . , x K ∈ X such that x0 = x , x K = y, (xk−1, xk) ∈ EC and (xk, xk−1) �∈ RC
for all k ∈ {1, . . . , K }. Because EC is transitive, we have (x, y) ∈ EC and, by the
asymmetry of EC , (y, x) �∈ EC . By (10), this implies (y, x) �∈ P(R).

Finally, we show that R greatest-element rationalizes C . Let S ∈ � and x ∈ S.
Suppose first that x ∈ C(S). This implies (x, y) ∈ RC for all y ∈ S and hence

(x, y) ∈ R for all y ∈ S, and we have x ∈ G(S, R).
Now suppose x ∈ G(S, R). This implies

[(y, x) �∈ EC or (x, y) ∈ RC ] for all y ∈ S. (11)

Let z ∈ C(S) ⊆ S. This implies (z, x) ∈ RC . Because z ∈ S, (11) implies

(z, x) �∈ EC (12)
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or

(x, z) ∈ RC . (13)

If (12) is true, we must have x ∈ C(S) because otherwise (z, x) ∈ EC by
definition and hence (z, x) ∈ EC .

If (13) is true, x ∈ C(S) follows from strong A-congruence.
To show that strong A-congruence is not implied by ARC-G, note that Exam-

ple 12 can be employed here as well: QRC-G (and, thus, ARC-G) is satisfied but
we have (x, z) ∈ EC and z ∈ C({x, z, w}) and x ∈ {x, z, w} \ C({x, z, w}),
contradicting strong A-congruence. �	

Strong A-congruence is a tighter sufficient condition for ARC-G than the set of
sufficient conditions established in Suzumura (1983, p. 51). The conditions used
in this earlier contribution are the following.

Weak axiom of revealed preference For all x, y ∈ X , for all S ∈ �, if (x, y) ∈ EC
and x ∈ S, then y �∈ C(S).

No EC -cycles For all x, y ∈ X , for all S ∈ �, if (x, y) ∈ EC , x ∈ S and y ∈ C(S),
then x ∈ C(S).

We obtain

Theorem 8 If C satisfies the weak axiom of revealed preference and no EC -cycles,
then C satisfies strong A-congruence. The converse implication is not true.

Proof Suppose strong A-congruence is violated. Then there exist x, y ∈ X such
that (x, y) ∈ EC ∪ RC and (y, x) ∈ EC . If the weak axiom of revealed preference
is satisfied, it follows that (x, y) �∈ RC . Therefore, we must have (x, y) ∈ EC , and
we obtain an EC -cycle.

To see that the converse implication is not true, consider the following example.

Example 14 Let X = {x, y, z} and � = {{x, y}, {x, y, z}} and define C by letting
C({x, y}) = {x, y} and C({x, y, z}) = {x}. It is straightforward to verify that C
satisfies strong A-congruence but violates the weak axiom of revealed preference.

�	
To obtain a necessary condition for ARC-G, we employ a recursive construction

as in the previous subsection. Let H0
C = F0

C and, for i ∈ N, let Li−1
C = RC ∪ Hi−1

C
and define the relation Hi

C as follows. For all x, y ∈ X , (x, y) ∈ Hi
C if

[(x, y) ∈ Hi−1
C ] or [there exists S ∈ � such that x ∈ S \ {y}, y ∈ S \ C(S),

and (y, z) ∈ Li−1
C for all z ∈ S \ {x, y}].

Furthermore, let L∞
C = ∪i∈N0 Li

C and H∞
C = ∪i∈N0 Hi

C .
Analogously to recursive Q-congruence, the following condition is necessary

for ARC-G.
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Recursive A-congruence For all x, y ∈ X , if (x, y) ∈ H∞
C , then (y, x) �∈ L∞

C .

We now obtain

Theorem 9 If C satisfies ARC-G, then C satisfies recursive A-congruence. The
converse implication is not true.

Proof Suppose R is an acyclical, reflexive, and complete relation that greatest-ele-
ment rationalizes C . To demonstrate that A-congruence is implied, we first prove

H∞
C ⊆ P(R). (14)

Again, by definition of H∞
C , it is sufficient to prove that Hi

C ⊆ P(R) for all i ∈ N0.
We proceed by induction.

Step 1 i = 0. Because H0
C = F0

C , Step 1 of the proof of Theorem 6 can be
employed to conclude that H0

C ⊆ P(R).

Step 2 Let i ∈ N and suppose H j
C ⊆ P(R) for all j ∈ {0, . . . , i − 1}. Let

(x, y) ∈ Hi
C for some x, y ∈ X . By definition, there are two cases.

2.a. (x, y) ∈ Hi−1
C . In this case, (x, y) ∈ P(R) follows from the induction

hypothesis.
2.b. There exists S ∈ � such that (y, z) ∈ Li−1

C for all z ∈ S\{x, y}, x ∈ S\{y},
and y ∈ S \C(S). Let z ∈ S \ {x, y}. By definition of Li−1

C we have (y, z) ∈ RC or

(y, z) ∈ Hi−1
C . If (y, z) ∈ RC , Lemma 1 implies (y, z) ∈ R. If (y, z) ∈ Hi−1

C , there
exist K ∈ N and x0, . . . , x K ∈ X such that x0 = y, x K = z and (xk−1, xk) ∈ Hi−1

C
for all k ∈ {1, . . . , K }. By the induction hypothesis, (xk−1, xk) ∈ P(R) for all
k ∈ {1, . . . , K }, and the acyclicity and the completeness of R together imply
(y, z) ∈ R. Therefore, (y, z) ∈ R for all z ∈ S \ {x, y} and, using the same
argument as in Step 1 of the proof of Theorem 6, we obtain Hi

C ⊆ P(R). This
completes the proof of (14).

Furthermore, we have

L∞
C ⊆ R; (15)

the proof of this claim is analogous to the proof of (9).
To complete the proof that recursive A-congruence is satisfied, the same argu-

ment as in the proof of Theorem 6 can be employed, where F∞
C and J∞

C are replaced
with H∞

C and L∞
C , and (8) and (9) are replaced with (14) and (15).

To see that the converse implication is not true, note that the choice function
in Example 13 satisfies recursive A-congruence (trivially because H∞

C = ∅) but it
cannot be greatest-element rationalized by an acyclical relation. �	

Recursive A-congruence implies D-congruence; the proof is analogous to the
proof establishing that recursive Q-congruence implies D-congruence.

Furthermore, recursive A-congruence does not imply the acyclicity of RC (and,
thus, fails to imply A-congruence). This is shown by Example 13. Conversely,
recursive A-congruence is not implied by A-congruence (and, thus, it is not implied
by the acyclicity of RC ); Example 4 establishes this claim.
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6 Concluding remarks

We conclude the paper with a brief discussion of some open problems. As men-
tioned in the text, it seems very difficult to obtain useful necessary and sufficient
conditions for QRC-G or for ARC-G on general domains. Given that very indirect
implications of preference maximization have to be taken into consideration, the
nature of the problem suggests that existential clauses have to be invoked in order
to arrive at full characterizations. See also Bossert (2001) for analogous difficulties
in a different framework.

If the formulation of clean necessary and sufficient conditions for QRC-G and
for ARC-G turns out to be too complex a task, the following more modest objective
might be an issue to be addressed in future work. Note that the strong axiom of
revealed preference, a sufficient condition for QRC-G, is not implied by TRC-G
and, analogously, strong A-congruence is not implied by QRC-G. Likewise, recur-
sive Q-congruence does not imply ARC-G. One direction in which the results of
this paper could be extended is to find a condition that is intermediate in strength
between TRC-G and QRC-G, and a condition that is implied by QRC-G and implies
ARC-G in order to obtain tighter bounds on possible characterizations.

We conclude by remarking that the strong axiom of revealed preference cannot
be weakened to strong A-congruence to get a tighter sufficient condition for QRC-
G (this is established by Example 5). Similarly, recursive A-congruence cannot
be strengthened to recursive Q-congruence to get a tighter necessary condition for
ARC-G (again, this is established by Example 5).
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