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Abstract We study the asymptotic average minimum manipulating coalition size
as a characteristic of quality of a voting rule and show its serious drawback. We
suggest using the asymptotic average threshold coalition size instead. We prove
that, in large electorates, the asymptotic average threshold coalition size is maxi-
mised among all scoring rules by the Borda rule when the number m of alternatives
is 3 or 4, and by �m/2�-approval voting when m ≥ 5.

1 Introduction

In 1973–1975 Gibbard and Satterthwaite published a fundamental impossibility
theorem which states that every non-dictatorial social choice function, whose range
contains at least three alternatives, at certain profiles can be manipulated by a sin-
gle individual (Gibbard 1973; Satterthwaite 1975). After that, the natural question
arose: if there are no perfect rules, which ones are the best, i.e. least manipulable?
The answer to this question cannot be given in absolute terms. It stipulates intro-
ducing a certain index of manipulability of the rule and a certain model for the
population. The answer may depend both on the choice of the index and on the
choice of the model.

To answer this question, various indices of manipulability of voting rules have
been introduced and studied (Aleskerov and Kurbanov 1999; Chamberlin 1985;
Kelly 1993; Nitzan 1985; Saari 1990) and various models introduced (Berg and
Lepelley 1994; Saari 1990). Among the models the following two have gained the
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lion’s share of attention. The first one, impartial culture (IC) conjecture, assumes
that all voters are independent. The second one, the impartial anonymous culture
(IAC) conjecture, assumes some degree of dependency.

Among the indices, the probability of obtaining a manipulable profile either for
an individual or for a coalition has attracted most attention, both for the IC and for
the IAC conjectures (Chamberlin 1985; Lepelley and Mbih 1987; Nitzan 1985).

In some cases, these indices have been calculated exactly, mainly in the three-
alternative case (Favardin et al. 2002; Lepelley and Mbih 1987, 1994; Lepelley
and Valognes 2002). In others, they have been estimated in computer simulations
(Aleskerov and Kurbanov 1999; Chamberlin 1985; Kelly 1993; Nitzan 1985; Smith
1999).

The probability of manipulation has been especially well-studied for the impor-
tant class of scoring voting rules, and significant progress has been made in com-
paring them. In his seminal paper, Saari (1990), showed that in his “geometric”
model, Borda is the least manipulable for the three-alternative case in relation
to micro manipulation, but this does not extend to the case of four alternatives.
Kim and Roush (1996), on the other hand, proved that, asymptotically, when the
number of voters tends to infinity Borda becomes coalitionally manipulable with
probability 1.

Some other characteristics have also been used, mostly in computer simulations
(Aleskerov and Kurbanov 1999; Chamberlin 1985; Nitzan 1985). In this paper, we
originally aimed to compare scoring rules under the IC, using the average mini-
mum size of the coalition capable of manipulation as the principal characteristic of
manipulability of the rule. The greater this characteristic, the better the rule. This
characteristic was first introduced by Chamberlin (1985), where he estimated it for
four different rules by means of computer simulation.

To our surprise we discovered that while Chamberlin’s characteristic is mean-
ingful for most classical rules, it is biased towards antiplurality, and the closer the
rule gets to the antiplurality, the larger is its average minimum coalition size. Hence,
there are no optimal rules in relation to this characteristic at all. We suggest using
the asymptotic average threshold coalition size instead. This new characteristic
coincides with the average minimum coalition size on classical rules but does not
have the bias towards antiplurality. We show how to calculate the limiting value
of this characteristic when n → ∞, and discuss which rule is optimal for large
electorates. We prove that, among all scoring rules, Borda is the optimal rule in
this sense in three- and four-alternative elections. When the number of alternatives
m is five or more, �m/2�-approval voting is optimal, where for each voter most
preferred �m/2� alternatives are considered approved.

2 Scoring rules

Let A and N be two finite sets of cardinality m and n, respectively. The elements
of A = {a1, . . . , am} will be called alternatives, the elements of N agents. We will
denote agents as 1, 2, . . . , n. We assume that the agents have preferences over the
set of alternatives. By L = L(A) we denote the set of all linear orders on A; they
represent the preferences of agents over A. The elements of the Cartesian product

Ln = L × · · · × L (n times)
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are called profiles. They represent the collection of preferences of the society N .
If a linear order Ri ∈ L represents the preferences of the i th agent, then by a Ri b,
where a, b ∈ A, we denote that this agent prefers a to b. A family of mappings
Fn: Ln → A, n ∈ N, is called a social choice function (SCF).

Definition 1 Let u = (R1, . . . , Rn) be a profile. We say that a profile u′ occurred
as a result of misrepresentation by agents of a coalition C = {i1, . . . , ik} ⊆ N, if
agents of C who previously submitted linear orders Ri1, . . . , Rik now submit linear
orders R′

i1
, . . . , R′

ik
while the remaining voters submit their original linear orders.

Definition 2 Let F be an SCF and C = {i1, . . . , ik} ⊆ N be a coalition. We say
that a profile u is manipulable for F by the coalition C , if there is a profile u′,
which occurred as a result of misrepresentation by the agents of C with the lin-
ear orders Ri1, . . . , Rik being replaced by them with linear orders R′

i1
, . . . , R′

ik
, if

F(u′)Ris F(u) for all s = 1, 2, . . . , k.

In other words, a profile is manipulable by a coalition C if agents of C can
misrepresent their preferences in such a way that every member of C will benefit
from the change.

A scoring rule F is characterised by the sequence of scores v1 ≥ v2 ≥ · · · ≥ vm .
For each profile u ∈ Ln and for every alternative a ∈ A, we can define the score of
a, denoted ScF (u, a), which can be computed as ScF (u, a) = ∑m

�=1 v�i�, where
the number ik shows how many times the alternative a was ranked kth. The alterna-
tive with the highest score is declared the winner. If more than one alternative has
the greatest score, an agreed-upon tie-breaking procedure is employed to determine
the winner. For most models of the behaviour of the population, the probability of
a tie tends to zero as n → ∞. Note that it is possible, and convenient, to assume
that v1 = 1 and vm = 0.

We can formalise this situation as follows. We write the linear order Ri as

aPi (1) > aPi (2) > · · · > aPi (m),

where Pi ∈ Sym(m) is a permutation from the symmetric group Sym(m) on
{1, 2, . . . , m}. This way, we may assume that each agent i chooses a permutation
Pi ∈ Sym(m) (in effect, a permutation of the alternatives). Let Piv denote the
result of applying the permutation Pi to the elements of the vector v in the obvious
way; that is

Piv =
(
vP−1

i (1)
, . . . , vP−1

i (m)

)
.

Then Piv gives us the contribution of agent i to the “scoreboard” vector

Xn = (ScF (u, a1), . . . , ScF (u, am)) =
n∑

i=1

Piv.

The winning alternative is the one corresponding to the greatest element of Xn .
Although the score vector v is not random in nature, nevertheless the following

two characteristics of this vector will play a crucial role. We set

v̄ = 1

m

m∑

j=1

v j and σ 2
v = 1

m

m∑

j=1

(v j − v̄)2.
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Examples of scoring rules include the following.

Example 1 Plurality voting: v = (1, 0, . . . , 0). We have v̄ = 1/m, and σ 2
v =

(m − 1)/m2.

Example 2 Borda’s rule: v =
(

1, m−2
m−1 , . . . , 1

m−1 , 0
)

. We have v̄ = 1/2, and σ 2
v =

(m + 1)/12(m − 1).

Example 3 Antiplurality voting: v = (1, . . . , 1, 0). We have v̄ = (m − 1)/m, and
σ 2

v = (m − 1)/m2.

Example 4 k-Approval voting: v = (1, . . . , 1, 0, . . . , 0) (k ones). We have v̄ =
k/m, and σ 2

v = k(m − k)/m2.

Plurality and antiplurality rules are particular cases of the k-approval voting for
k = 1 and m − 1, respectively. Brams and Sanver (2004) define a fixed rule as a
voting system in which voters vote for a predetermined number of candidates. Any
fixed rule is a k-approval voting rule for some k. The Borda and the fixed rules will
be further called classical.

The difference between k-approval voting and approval voting has to be em-
phasised. Under approval voting any voter may approve as many alternatives as
she wishes, while under k-approval voting it is compulsory that any voter approves
her exactly k best alternatives. Thus approval voting is not a scoring rule. We refer
the reader to the book by Brams and Fishburn (1982) and to the more recent survey
of the same authors (Brams and Fishburn 2002).

3 The winning margin

This section addresses the problem: if the voters choose permutations indepen-
dently and uniformly at random from Sym(m) (which corresponds to the IC con-
jecture), what is the asymptotic behaviour of the winning margin (i.e. the difference
between the greatest and second-greatest elements of Xn)? The central limit theo-
rem is used to find the asymptotics.

Proposition 1 (Central limit result)

Xn − nv̄1

σv

√
n

→D N (0, �), (1)

where � is the m × m matrix with diagonal elements equal to 1 and off-diagonal
elements equal to −1

m−1 , and 1 is used to denote a vector of 1s.

Proof The Piv are i.i.d. random vectors with mean v̄1 and covariance matrix σ 2
v �.

The result follows by the classical central limit theorem (see e.g. Durrett 1996,
p. 170).

Define δ: R
m → [0,∞) such that δ(x) is the difference between the greatest

and second-greatest elements of x . Note that δ is continuous, with the properties
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δ(ax) = aδ(x) for a ≥ 0; δ(x + b1) = δ(x) for b ∈ R. We can thus apply δ to
both sides of Eq. (1) to obtain

δ(Xn)

σv

√
n

→D δ(Y ), (2)

where Y ∼ N (0, �).

Proposition 2 (Convergence of expectation) We also have

E [δ(Xn)]

σv

√
n

→ E [δ(Y )] . (3)

Proof To establish convergence of the expectation when we already have conver-
gence in distribution, it is sufficient to check that our family of random variables{
δ(Xn)/σv

√
n
}∞

n=1 is bounded in mean square (Billingsley 1995, Corollary to The-

orem 25.12). That is, E
[(

δ(Xn)/σv

√
n
)2
]

should be bounded, independently of

n. For this, note that δ(x) = δ(x − b1) ≤ 2 ‖x − b1‖∞ ≤ 2 ‖x − b1‖2 for all
x ∈ R

m and b ∈ R. Hence

E

[
δ(Xn)

2

nσ 2
v

]

≤ E

[
4 ‖Xn − nv̄1‖2

2

nσ 2
v

]

= 4

nσ 2
v

m∑

j=1

E





(
n∑

i=1

(
vP−1

i ( j) − v̄
)
)2




=
m∑

j=1

n∑

i=1

E

[(
vP−1

i ( j) − v̄
)2
]

= 4m,

making use of the fact that for any fixed j, vP−1
i ( j) are independent random vari-

ables, and so the variance of their sum is the sum of their variances. The result
follows. �
Proposition 3 (The distribution of δ(Y )) The random vector Y has the same mul-

tivariate normal distribution as
√

m
m−1

(
Z − Z̄1

)
, where Z = (Z1, . . . , Zm) ∼

N (0, Im) and Z̄ = 1
m

∑m
j=1 Z j . In particular,

E [δ(Y )] =
√

m

m − 1
E [δ(Z)] .

Proof The distribution of Y is N (0, �). To see that
√

m
m−1

(
Z − Z̄1

)
also has this

distribution, one only has to verify that Cov
(
Z j − Z̄ , Zk − Z̄

) = δ jk − 1/m and
E
[
Z j − Z̄

] = 0. �
The values of Em = E [δ(Y )] for various m can be found from several pub-

lished tables of the expected order statistics of normal variables; e.g. those by
Harter (1961). This allows the construction of the following table:
m 3 4 5 6 7 8 9 10 16

Em 1.036 0.845 0.747 0.685 0.643 0.611 0.586 0.567 0.4971



268 G. Pritchard, A. Slinko

Theorem 1 The average winning margin W M(n, m, v) = E [δ(Xn)] is asymp-
totic to Emσv

√
n as n → ∞.

Proof Follows from Propositions 1–3. �

4 Threshold coalition size

Given a profile, in order to determine the minimum manipulating coalition size for
this profile we have to know the winning margin and how the scores may change
during the manipulation attempt. Suppose we are given the scoring rule with a
score vector v = (v1, . . . , vm). Suppose also that at a certain profile the alternative
a wins, while b has the second-best score. A voter wants to manipulate in favour
of b. Then b must have a higher rank on the ballot of this voter. The best that the
voter can do is to move b to the first position on her ballot and move a to the last
position. This will reduce the winning margin by (v1 − vi ) + (v j − vm), where i
and j are the original positions of b and a respectively; note i < j . The greatest
amount by which any single voter will be able (and willing) to reduce the winning
margin is thus

dv = max
i

[
(v1 − vi ) + (vi+1 − vm)

]
.

For the Borda rule, dv = (m − 2)/(m − 1). For plurality and k-approval voting,
dv = 1.

Let the threshold coalition size Mv be (the random variable) given by

Mv = δ(Xn)

dv

,

where, as in the last section, δ(Xn) is the winning margin. Any coalition capable of
manipulating the outcome of the election must have at least �Mv� members. (Here
�·� denotes the ceiling function: �x� is the smallest integer not less than x . We will
also use the floor function: �x� is the greatest integer not greater than x .)

A note of caution must be given here. It is not true that any coalition of more
than �Mv� members can manipulate at the given profile. This coalition is capable of
reversing the gap between the best and the second best alternative but it is possible
that the third (and highly undesirable) alternative will overtake both and ruin the
manipulation attempt. This can be illustrated by the following example:

Example 5 Let us consider the Borda rule B and the following profile u:

R1 R2 R3 R4 R5 R6

a a b b c c
b b a c a b
c c c a b a

As ScB(u, a) = 3, ScB(u, b) = 3.5 and ScB(u, c) = 2.5, the winner is b. The
coalition {1, 2} may attempt to manipulate to get a chosen, submitting linear orders
R′

1 and R′
2, where they swap the order of b and c. By doing so, they will reverse the

winning margin between b and a but their attempt will fail since c will be chosen,
which is their worst alternative.
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Nevertheless Mv is a very important parameter of the rule. We will show that
for classical scoring rules this number asymptotically coincides with the minimum
size of the coalition that is capable of manipulation.

Theorem 2 The average threshold coalition size, AT C(n, m, v) = E [Mv], is
asymptotic to C(m, v)

√
n as n → ∞, where C(m, v) = Emσv/dv .

Proof Follows from Theorem 1 and the arguments given at the beginning of this
section. �

5 Minimum manipulating coalition size

Our next goal is to prove that in a large electorate it is almost certain that a coalition
will exist that can reverse the margin between the best and second-best alterna-
tives. Moreover, for the classical voting rules it will be of size �Mv� or �Mv� + 1
(depending on the tie-breaking procedure). First, we will show that, for any con-
stant t and for any linear order R ∈ L, it is almost certain that, for n large enough,
at least t�Mv� voters will submit this linear order. To see this, note that the number
of voters who submit R will be of order n, but �Mv� is of order only

√
n. The

following result states this fact more formally.

Theorem 3 Let R ∈ L be a linear order and u = (R1, . . . , Rn) be a random pro-
file. Let t > 0 be a positive number. Then, for any scoring rule with score vector
v, there is a number β > 0 such that

P (# {i | Ri = R} ≥ t�Mv�) ≥ 1 − 2e−βn

for all large enough n. That is, the probability that a coalition of like-minded voters,
who submit linear order R, of size t�Mv� exists converges to 1 with exponential
rate as n → ∞.

Proof Let Di be the random variable which is 1 if voter i submits R and 0 otherwise.
Let M ′ = ∑n

i=1 Di be the number of voters who submit R; the claim is that
M ′ ≥ t Mv with high probability. Let p = E [Di ]. The IC conjecture states that
p = 1/m! > 0. Choose α ∈ (0, p); then

(
M ′ < αn

) ⇒
(

1

n

n∑

i=1

(Di − p) ≤ α − p

)

.

Also,
(

Mv >
αn

t

)
⇒
(

δ

(
Xn

n
− v̄1

)

>
αdv

t

)

⇒
(

Xn

n
− v̄1 ∈ δ−1 ([αdv/t, ∞])

)

.

Since (−∞, α− p] and K = δ−1([αdv/t, ∞)) are closed sets which do not include
the origin, Cramér’s large-deviation theorem (Dembo and Zeitouni 1993, p. 36)
gives that for some β > 0,

P

(
1

n

n∑

i=1

(Di − p) ≤ α − p

)

< e−βn and P

(
Xn

n
− v̄1 ∈ K

)

< e−βn
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for all large enough n. It follows that

P
(
M ′ ≥ t Mv

) ≥ P
(
M ′ ≥ αn and Mv ≤ αn/t

) ≥ 1 − 2e−βn

for all large enough n. �
The following theorem was effectively proved by Kim and Roush (1996). Here

we prove a slightly stronger statement.

Theorem 4 (Kim-Roush, 1996) Any scoring voting rule F, with the exception of
antiplurality, is coalitionally manipulable with limiting probability 1, i.e. the prob-
ability that a random profile is coalitionally manipulable for F converges to 1 with
exponential rate as n → ∞. If F is one of the classical scoring rules with the score
vector v, then the probability of existence of manipulating coalition of size Mv + 1
also converges to 1 with exponential rate.

Proof Let u = (R1, . . . , Rn) be a random profile. Let F(u) = w and s is the
alternative with the second-best score. Let v be the score vector of F and let
d = v1 − vn−1 = 1 − vn−1. Since F is different from the antiplurality, vn−1 �= 1
and d > 0.

Let t > dv/d . By Theorem 3, among Ri ’s there will be at least t�Mv� of linear
orders R for which w occupies the last place and s occupies second to last. Moving
s to the top place without changing the order of other alternatives will add dt�Mv�
points to the score of s while the score of w will remain the same and the scores
of other alternatives will not increase. As dt�Mv� > δ(Xn), the new winner will
be s and this manipulation attempt will be successful.

If F is classical and different from antiplurality, then d = dv and as we saw
above u will be almost surely manipulable by a coalition of size �Mv� + 1. �

The antiplurality A is the exception indeed. In the three-alternative case the
limiting probability of coalitional manipulability will be 1/2. If alternatives are
denoted a, b, c, then a profile with ScA(a) > ScA(b) > ScA(c) is manipulable if
ScA(a)+ ScA(c) < 2ScA(b) and not manipulable if ScA(a)+ ScA(c) > 2ScA(b).
Due to the symmetry these two events have equal probabilities. Kim and Roush
(1996) gave the formula for calculating the limiting probability for m > 3.

Let F be a scoring rule with a score vector v. Let the minimum manipulating
coalition size MCv be (the random variable) equal to the minimum size of a coa-
lition capable of manipulation, if the random profile is manipulable, and ∞ if it
is not. Let average minimum manipulating coalition size AM MC(n, m, v) be the
expectancy of MCv conditional on the event that the random profile is manipulable.

We recap the results of this section in the following:

Theorem 5 For any scoring rule different from the antiplurality,

AM MC(n, m, v) ≥ AT C(n, m, v).

The average minimum manipulating coalition size AM MC(n, m, v) and average
threshold coalition size AT C(n, m, v), are asymptotically equal and, as n → ∞,
both are is asymptotic to C(m, v)

√
n, where C(m, v) = Emσv/dv .

Proof By Theorem 4 we may discard nonmanipulable profiles. Hence, the first
part is clear since MCv ≥ Mv . For all rules but antiplurality the remainder of the
theorem follows from Theorems 2 and 4. �
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6 A drawback of the average minimum manipulating coalition size

We will illustrate this drawback in the case of m = 3 alternatives, but apparently
it appears for all m ≥ 3.

Consider the scoring rule v = (1, 1 − p, 0), where 0 ≤ p ≤ 1. For a given
profile, denote the winning candidate a, the second-placegetter b, and the third-
placegetter c. Let d1 = δ(Xn) be the winning margin of a over b, and d2 = δ(−Xn)
be the “second margin" between b and c. Two types of manipulation in favour of
b are possible:

• A voter who prefers c to b to a may mis-represent his preference as b, c, a. The
effect of this will be to reduce the winning margin by p, while increasing the
second margin by 2p.

• A voter who prefers b to a to c may mis-represent his preference as b, c, a. The
effect of this will be to reduce both the winning and second margins by 1 − p.

Suppose a coalition of voters contains x1 voters of the first type and x2 voters of
the second type. Successful manipulation by this coalition requires

d1 − px1 − (1 − p)x2 ≤ 0,

d2 + 2px1 − (1 − p)x2 ≥ 0.

If 0 < p ≤ 1/2, then the smallest coalition that can succesfully manipulate has

x1 = 0, x2 = d1

1 − p

when d1 ≤ d2, and

x1 = d1 − d2

3p
, x2 = 2d1 + d2

3(1 − p)

when d1 ≥ d2. If, on the other hand, 1/2 ≤ p ≤ 1, then the minimal coalition has

x1 = d1

p
, x2 = 0.

Let us denote x+ = x , if x ≥ 0 and x+ = 0, otherwise. Then the minimum
manipulating coalition size can be written as

MCv = 1

max(p, 1 − p)
d1 + 1

3

(
1

p
− 1

1 − p

)

+
(d1 − d2)+

in all cases where 0 < p ≤ 1. (There is a small probability that insufficiently many
like-minded voters will exist to form such a minimal coalition. But by Theorem 3,
this possibility can be neglected for our purposes.)

If we define ρ : R
3 → [0,∞) by ρ(x) = (δ(x) − δ(−x))+, the excess of

the winning margin over the second margin, and note that for these rules dv =
max(p, 1 − p), then we can write

MCv = δ(Xn)

dv

+ 1

3

(
1

p
− 1

1 − p

)

+
ρ(Xn).

Note that the first term of this expression is the threshhold coalition size Mv .
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The average minimum manipulating coalition size can be taken to be the expec-
tation of this quantity. (Strictly speaking, this expectation should be conditional
on manipulability of the profile. But since the probability of this event converges
rapidly to 1, by Theorem 3 again, the conditional expectation can be replaced by
an unconditional one for our purposes.) Also, by the same arguments as used in
Sect. 3, we have

E [δ(Xn)]

σv

√
n

→
√

m

m − 1
E [δ(Z)] and

E [ρ(Xn)]

σv

√
n

→
√

m

m − 1
E [ρ(Z)] ,

where Z ∼ N (0, Im). The average minimum manipulating coalition (AMMC) size
thus satisfies

AMMC(n, 3, v)

σv

√
n

≈ E [MCv]

σv

√
n

→ E3

dv

+ 1√
6

(
1

p
− 1

1 − p

)

+
E [ρ(Z)] .

When 1/2 ≤ p ≤ 1 the second term vanishes. For such rules, the average thresh-
hold coalition (ATC) size and the AMMC size have the same asymptotics. But
when 0 < p < 1/2, the value of

γ (v) = lim
n→∞ AMMC(n, 3, v)/

√
n

exceeds that of limn→∞ ATC(n, 3, v)/
√

n. For small p, it is much greater, and
indeed lim p→0 γ (v) = ∞.

Now let us consider the case p = 0: the anti-plurality rule. For this rule, only
the voters of the second type have power to manipulate. If d1 < d2, no manipulation
is possible; otherwise the smallest manipulating coalition has

x1 = 0, x2 = d1.

Hence

AMMC(n, 3, v) = E [MCv || d1 ≥ d2]

= E [d1 || d1 ≥ d2]

= E
[
d11d1≥d2

]
/P (d1 ≥ d2)

= 2E
[
δ(Xn)1δ(Xn)≥δ(−Xn)

]
.

(In the notation used here, 1Q has the value 1 if the logical proposition Q is true,
and 0 if it is false.) So

γ (v) = lim
n

AMMC(n, 3, v)√
n

= 2σv

√
3/2E

[
δ(Z)1δ(Z)≥δ(−Z)

]

which is a finite number.
If we adopt the average minimum manipulating coalition size as a measure

of goodness of the rule, then we will have to accept that, the closer the rule to
antiplurality the better it becomes, and that there are no optimal rules. This would
be clearly an absurd conclusion. Hence, no matter how attractive it may seem, the
average minimum manipulating coalition size is not an appropriate measure for
comparing rules. We suggest that the average threshold coalition size should be
used instead.
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7 Optimal scoring rules

In this section we will determine the rules optimal in relation to asymptotic aver-
age threshold coalition size. For m = 3, 4 the optimal rule is Borda Count and for
m ≥ 5 the optimal rule is �m/2�-approval voting.

By Theorem 5, we may assume that the quality of the rule is determined by the
ratio σv/dv , or on the number C(m, v) = Emσv/dv which we will analyse in this
section.

Theorem 6 The asymptotic average minimum manipulating coalition size is maxi-
mised among all scoring rules by the Borda rule when the number m of alternatives
is 3 or 4, and by �m/2�-approval voting when m ≥ 5.

Proof We must show that the claimed rules maximise the ratio σv/dv (or equiva-
lently, σ 2

v /d2
v ) among all score vectors v.

Note that

σ 2
v = 1

m

m∑

i=1

(vi − v̄)2 = 1

2
E
[
(U − V )2] = 1

m2

∑

i< j

(vi − v j )
2,

where U and V are independent copies of vP−1
1 (1)

. We recall that, v1 = 1 and

vm = 0. If we parametrize the score vectors by setting vi = ∑m−1
j=i t j , where

t1, . . . , tm−1 ≥ 0 and
∑m−1

j=1 t j = 1, then

σ 2
v = S(t) = 1

m2

∑

i≤ j




j∑

k=i

tk





2

.

Let us first consider all the score vectors v with a fixed value of dv . Among these,
we only have to maximise σv . The set

Vα =
{

(t1, . . . , tm−1) : all ti ≥ α and
m−1∑

i=1

ti = 1

}

includes a representation of all the score vectors with dv = 1 − α. Since S is a
convex function and Vα is a convex set, the maximum value of S on Vα must be
attained at an extremal point of Vα , i.e. at one of the points t (i)(α) with every com-
ponent except the i th equal to α (and the i th component equal to 1 − (m − 2)α).
In particular, the maximum value of σv among all score vectors with dv = 1 − α
is attained by a v corresponding to one of the t (i)(α).

Now let us see that the maximum is achieved at t∗(α) = t (�m/2�)(α), and also at
t (�m/2�)(α). Observe that S(t (i)(α)) = S(t (m−i)(α)) by symmetry, so it is enough
to note that when i < �m/2�,

S(t (i)(α)) − S(t (i+1)(α)) < 0. (4)
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Since α ≤ 1
m−1 , we have 1 − (m − 2)α ≥ α. Now a direct calculation shows that

S(t (i)(α)) − S(t (i+1)(α)) = 1

m2

{
i∑

r=1

(
(1 − (m − 2)α + (r − 1)α)2 − (rα)2)

+
m−i−1∑

r=1

(
(rα)2−(1−(m − 2)α+(r −1)α)2)

}

=
m−i−1∑

r=i+1

(
(rα)2 − (1 − (m − 2)α + (r − 1)α)2) < 0.

It now remains to find

max

{
S(t∗(α))

(1 − α)2 : 0 ≤ α ≤ 1

m − 1

}

. (5)

For m = 3, we have

S(t∗(α))

(1 − α)2 = S(1 − α, α)

(1 − α)2 = 2(1 − α + α2)

9(1 − α)2 = 2

9

(

1 + α

(1 − α)2

)

.

Since this is an increasing function of α, its maximum is achieved when α takes
its greatest possible value of 1/2. This corresponds to the Borda rule.

For m = 4, we have

S(t∗(α))

(1 − α)2 = S(α, 1 − 2α, α)

(1 − α)2 = 1 − 2α + 2α2

4(1 − α)2 = 1

4

(

1 + α2

(1 − α)2

)

.

Since this is again an increasing function of α, its maximum is achieved when α
takes its greatest possible value of 1/3. This also corresponds to the Borda rule.

Now we turn our attention to the case m ≥ 5. Note that in general

S(t∗(α)) = 1

m2






∑

i≤ j<�m/2�
(( j − i + 1)α)2 +

∑

�m/2�<i≤ j

(( j − i + 1)α)2

+
∑

i≤�m/2�≤ j

(1 − (m − 2 − j + i)α)2






= cm

(

1 − (m − 2)α +
(

2 + em − 3m + m2

3

)

α2
)

,

where cm = (1 − em/m2)/4 and em is 1 if m is odd, 0 if m is even. To complete
our proof, we must show that the maximum in (5) is attained when α = 0, i.e. that
S(t∗(α))/(1−α)2 ≤ S(t∗(0)) = cm for 0 ≤ α ≤ 1/(m −1). To this end, note that

S(t∗(α)) − cm(1 − α)2 = cmα

(

−(m − 4) +
(−1 + em − 3m + m2

3

)

α

)

.
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Since 1
3

(−1 + em − 3m + m2
) ≥ 0 for m ≥ 5, for these values of m we obtain

S(t∗(α)) − cm(1 − α)2 ≤ cmα

(

−(m − 4) +
(−1 + em − 3m + m2

3

)
1

m − 1

)

= cmα

3(m − 1)

(
em − 13 + 12m − 2m2) ≤ 0.

This ends the proof. �
The following graph and table display the numbers C(m, v) for small m for the

plurality, Borda, �m/2�-approval, and 3-approval voting.

The following table gives some numerical values of the numbers C(m, v) for
small m:

3 4 5 6 7 8 9 10

Borda 0.846 0.472 0.352 0.292 0.257 0.233 0.216 0.203
Plurality 0.488 0.366 0.299 0.255 0.225 0.202 0.184 0.170
3-approval 0.366 0.366 0.343 0.318 0.296 0.276 0.260
�m/2�-approval 0.488 0.423 0.366 0.343 0.318 0.306 0.291 0.284
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We included 3-approval voting in this table for the following reason. In the
recent presidential elections in France, in which there were 16 candidates, the fol-
lowing experiment was conducted (Laslier 2003). The experiment was run in six
places: in a village, called Gy-les-Nonnains and in five voting posts in Orsay, a
suburb of Paris. In these places voters had a possibility, after casting their official
ballot, to vote unofficially according to the approval voting rule. In both places the
average number of approvals on a ballot was three. So 3-approval voting may be
the best approximation to approval voting among the scoring rules. Comparing it
with Borda, we see that Borda eventually gets better than 3-approval but it happens
only for m ≥ 28.

This is not the first case when optimality of �m/2�-approval voting manifests
itself in some form. Brams and Fishburn (1981) (see also Brams and Fishburn
2002) proved that under approval voting the strategy of approving exactly �m/2�
alternatives maximises efficacy.

8 Conclusion

We see that there are no optimal rules relative to the asymptotic average minimum
manipulating coalition size. This characteristic is biased towards the antiplurality
and should be used with great caution. The average threshold coalition size is max-
imised among all scoring rules by the Borda rule not only for the three-alternative
case but also for the case of four alternatives. At the same time, when the number of
alternatives is larger than four the �m/2�-approval voting is preferable. It is inter-
esting that in the Saari’s geometric model for m = 4 the 2-approval voting is better
than Borda in respect to micro manipulation (Saari 1990) and Saari expected Borda
to fare poorly relative to coordinated macro manipulation. Although the difference
in models should be taken into account, our results do not seem to confirm these
expectations.

It is hard to imagine �m/2�-approval voting implemented in practice. The best
approximation to this rule would be Majoritarian Compromise which for large
societies behaves as �m/2�-approval voting (Slinko 2002).

Some experimental evidence (Laslier 2003) suggests that 3-approval voting
might be the best approximation among scoring rules to the classical approval vot-
ing. If so, the characteristics of approval voting seem to be quite good since Borda
surpasses 3-approval only for m ≥ 28.

It is interesting to compare these results with the results obtained by Chamberlin
(1985) using computer simulation. The four rules plurality, Borda, Hare and Coo-
mbs were tested using the IC conjecture in three-alternative elections and for those
profiles for which all four rules were manipulable (which is about 30% of all
profiles), the average minimum manipulating coalition size was recorded in the
following table.

Voting system 21 voters 1,000 voters

Plurality 2.4 12.4
Borda 2.3 15.4
Hare 1.5 5.9
Coombs 2.5 11.6

We see that for 21 voters the result of comparison is inconclusive while for
1,000 voters Borda is clearly the best.
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Since for classical rules the asymptotic average minimum coalition size is
the same as the asymptotic average threshold coalition size, we can compare
Chamberlin’s results with ours. For 1000 voters our results give us 15.4 for the
plurality and 26.8 for the Borda rule. The difference is especially significant for
the Borda rule. One possible explanation of this discrepancy is that in Chamberlin’s
simulations only profiles manipulable for all four rules, including Hare’s rule, were
considered. Since Hare’s rule is manipulable only in 30% of all cases, this can be
a rather restricted set of profiles which are more prone to manipulation than the
majority of profiles.
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