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Abstract This paper analyzes a family of rules for bankruptcy problems that gen-
eralizes the Talmud rule (T ) and encompasses both the constrained equal-awards
rule (A) and the constrained equal-losses rule (L). The family is defined by means
of a parameter θ ∈ [0, 1] that can be interpreted as a measure of the distributive
power of the rule. We provide a systematic study of the structural properties of the
rules within the family and its connections with the existing literature.

1 Introduction

A bankruptcy problem describes a situation in which an arbitrator has to allocate a
given amount of a perfectly divisible commodity among a group of agents when the
available amount is not enough to satisfy all their claims. Most rationing problems
can be given this form. Solving bankruptcy problems means finding a procedure
or “rule” that exhibits some desirable properties and determines, for each specific
problem, a well-defined allocation satisfying two basic restrictions: (1) no agent
gets more than she claims nor less than zero; and (2) the entire available amount
is distributed. The reader is referred to Young (1994), Herrero and Villar (2001),
Moulin (2002) or Thomson (2003) for reviews of this literature.

We present in this paper a family of rules, called the TAL-family, that extends
the classical Talmud rule (T ) and encompasses two other classical rules: the con-
strained equal awards rule (A) and the constrained equal losses rule (L). The
rules in the TAL-family apply the same principle that underlies the Talmud rule.
Namely, they generate allocations in which individual rationing is of the same type
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as collective rationing. Indeed, in the Talmud rule no agent gets more than half of
her claim if the amount is less than half of the aggregate claim and nobody gets
less than half of her claim if the amount exceeds half of the aggregate claim. The
rules in the TAL-family extend this principle by considering all possible shares
of the amount to divide in the aggregate claim. That is, for any given value of the
parameter θ ∈ [0, 1], the rule Rθ distributes the amount accordingly so that nobody
gets more than a fraction θ of her claim if the amount to divide is smaller than θ
times the aggregate claim and nobody gets less than a fraction θ of her claim if the
amount to divide exceeds θ times the aggregate claim.

The parameter θ that generates the family can be regarded as an index of the
distributive power of the rule, in the following sense. Higher values of θ imply that
Rθ gives higher satisfaction to agents with relatively lower claims, whereas lower
values of θ imply that Rθ favors agents with relatively larger claims.

The rules in the TAL-family exhibit a precise duality relationship: the dual of
the rule associated with the parameter θ is that rule associated with the parameter
(1− θ). Furthermore, they satisfy many of the standard properties in the axiomatic
theory of bankruptcy. In particular, they belong to the class of “parametric rules”,
they are order preserving in awards and losses, monotonic with respect to claims
and resources, and satisfy homogeneity, and either independence of claims trun-
cation and securement or composition from minimal rights and the dual property
of securement.

The paper is organized as follows: Sect. 2 describes the reference model and
presents the TAL-family; Sect. 3 analyzes the structural properties of the rules in
this family; Sect. 4 concludes with a discussion on the connection between this work
and other results in the literature; all the proofs are relegated to the Appendix.

2 The model

2.1 Preliminary definitions

Let N represent the set of all potential agents (a set with an infinite number of mem-
bers) and let N be the family of all finite subsets of N. An element N ∈ N describes
a finite set of agents N = {1, 2, . . . , n}, where |N | = n. A bankruptcy problem
(O’Neill 1982) is a triple (N , E, c), where N is the set of agents, E ∈ R+ represents
the amount to be divided, and c ∈ R

n+ is a vector of claims whose i th component
is ci . The very notion of bankruptcy problem requires

∑
i∈N ci ≥ E > 0. The

family of all problems is B. To simplify notation we write, for any given problem
(N , E, c) ∈ B, C = ∑

i∈N ci . We denote by c−i the vector c from which the i th
coordinate has been removed. Finally, we assume, without loss of generality, that
agents are labelled so that c1 ≤ c2 ≤ · · · ≤ cn .

A rule is a mapping R that associates with every (N , E, c) ∈ B a unique point
R(N , E, c) ∈ R

n such that:

(i) 0 ≤ R(N , E, c) ≤ c; and
(ii)

∑
i∈N Ri (N , E, c) = E .

The point R(N , E, c) represents a desirable way of dividing E among the agents
in N . Requirement (i) is that each agent receives an award that is non-negative and
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bounded above by her claim. Requirement (ii) is that the entire amount be allocated.
These two requirements imply that R(N , E, c) = c whenever E = ∑

i∈N ci .
Consider the following classical rules:

The constrained equal-awards rule, A, selects for all (N , E, c) ∈ B, the vector
(min{ci , λ})i∈N , where λ > 0 is chosen so that

∑
i∈N min{ci , λ} = E.

The constrained equal-losses rule, L , selects for all (N , E, c) ∈ B, the vector
(max{0, ci − λ})i∈N , where λ > 0 is chosen so that

∑
i∈N max{0, ci − λ} = E.

The Talmud rule, T , selects for all (N , E, c) ∈ B, the vector (min{(1/2)ci , λ})i∈N
if E ≤ (1/2)C and the vector (max{(1/2)ci , ci − µ})i∈N if E ≥ (1/2)C, where λ
and µ are chosen so that

∑
i∈N Ti (N , E, c) = E.

The constrained equal awards rule distributes the amount equally among all
agents, subject to no agent receiving more than she claims. The constrained equal
losses rule imposes that losses are as equal as possible subject to no one receiving a
negative amount. Finally, the Talmud rule behaves like the constrained equal awards
rule (respectively the constrained equal losses rule) using half-claims instead of
claims, provided the amount to divide falls short (respectively exceeds) one half
of the aggregate claim. Indeed, the Talmud rule can also be given the following
representation:

T (N , E, c) =
{

A(N , E, 1
2 c) if E ≤ 1

2 C
1
2 c + L(N , E − 1

2 C, 1
2 c) if E ≥ 1

2 C

That is, for “small” values of E the Talmud rule behaves as the constrained equal
awards rule and for “large” values of E as the constrained equal losses rule.

2.2 The TAL-family

We now present a family of rules that generalizes the Talmud rule (T ) and encom-
passes the constrained equal awards rule (A) and the constrained equal losses
rule (L). The analysis of this family will provide us with further insights into the
relationship between them.

The Talmud rule is an allocation method that depends on the size of the amount
to divide relative to the aggregate claim. It can be regarded as implementing a
criterion according to which nobody gets more than half of her claim if the amount
to be distributed is less than half of the aggregate claim, and nobody gets less than
half of her claim if the amount exceeds half of the total demand. The TAL-family
generalizes this idea by applying the same principle to E and θC , and using θc
as the switch point, for all values θ in the interval [0, 1]. Formally, the following
holds.

The TAL-family consists of all rules with the following form: for some θ ∈
[0, 1], for all (N , E, c) ∈ B, and all i ∈ N,

Rθ
i (N , E, c) =

{
min {θci , λ} if E ≤ θC
max {θci , ci − µ} if E ≥ θC

where λ and µ are chosen so that
∑

i∈N Rθ
i (N , E, c) = E.
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The rule Rθ in the TAL-family applies the following principle: nobody gets
more than a fraction θ of her claim if the amount to be distributed is less than θ
times the aggregate claim and nobody gets less than a fraction θ of her claim if the
amount exceeds θ times the aggregate claim. It is straightforward to show that all
rules within the family are well defined. Note that the constrained equal-losses rule
corresponds to the case θ = 0 (R0 = L), whereas the constrained equal-awards
rule corresponds to the other extreme value, θ = 1 (R1 = A). Obviously, the
Talmud rule is obtained for θ = 1/2 (R1/2 = T ).

The TAL-family can also be given the following equivalent expression:

Rθ (N , E, c) =
{

A(N , E, θc) if E ≤ θC
θc + L(N , E − θC, (1 − θ)c) if E ≥ θC ,

or, equivalently,

Rθ (N , E, c) = A(N , min{E, θC}, θc) + L(N , max{E − θC, 0}, (1 − θ)c).

Therefore, one can visualize the rule Rθ as follows. First, it applies equal divi-
sion until the claimant with the smallest claim has obtained a fraction θ of her
claim. Then, that agent stops receiving additional units and the remaining amount
is divided equally among the other agents until the claimant with the second small-
est claim gets the fraction θ of her claim. The process continues until every agent
has received a fraction θ of her claim, or the available amount is distributed. If there
is still something left after this process, agents are invited back to receive addi-
tional shares. Now, agents receive additional amounts sequentially starting with
those with larger claims and applying equal division of their losses (see Fig. 1 for
further details).

Aumann and Maschler (1985) define the dual of a rule R, denoted R∗, as
follows: for all (N , E, c) ∈ B, R∗(N , E, c) = c − R(N , C − E, c). The rule
R∗ shares awards as R shares losses. When a rule and its dual produce the same
outcomes it is called self-dual. There exists a precise duality relationship between
the members of the TAL-family which is as follows:

Proposition 1 Let Rθ be a rule in the TAL-family
{

Rθ
}
θ∈[0,1]. Then, the dual rule

of Rθ is R1−θ , that is, (Rθ )∗ = R1−θ .

Two well-known results are immediately derived from this duality relationship.
One is that L and A are dual rules. The other that T is self-dual (in fact, there is
no other self-dual rule in the TAL-family).

The notion of duality can also be applied to the properties a rule satisfies. That
is, P∗ is the dual property of P if for every rule R it is true that R satisfies P if and
only if its dual rule R∗ satisfies P∗. This will be important in the rest of the paper.

3 Properties of the TAL-family

The rules in the TAL-family satisfy many properties that are common in the bank-
ruptcy literature. We shall consider some of them here. In the first part, we analyze
the most basic properties which are satisfied by all rules in the family (symmetry,
continuity, consistency, order preservation, monotonicity and homogeneity). Next,
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Fig. 1 Rules in the two-claimant case. This figure illustrates the “path of awards” of some rules
within the TAL-family for N = {1, 2} and c ∈ R

N+ with c1 < c2. The path of awards for c (the
locus of the awards vector chosen by a rule as the amount to divide E varies from 0 to c1 + c2)
of R0 = L follows the vertical axis until the average loss coincides with the lowest claim, i.e.,
until E = c2 − c1. After that, it follows the line of slope 1 until it reaches the vector of claims.
The path of awards of R1/3 follows the 45◦ line until claimant 1 obtains one-third of her claim.
Then, it is a vertical line until E = c2 − (1/3)c1, from where it follows the line of slope 1 until it
reaches the vector of claims. The path of awards of R1/2 = T follows the 45◦ line until claimant
1 obtains half of her claim. Then, it is a vertical line until E = c2, from where it follows the line
of slope 1 until it reaches the vector of claims. Finally, the path of awards of R1 = A follows the
45◦ line until it gives the whole claim to the lowest claimant, i.e., until E = 2c1, from where it
is vertical until it reaches the vector of claims

we discuss more specific properties that are satisfied by the members of the family
depending on the value of the parameter θ (independence of claims truncation,
composition from minimal rights and securement). Then, we consider some prop-
erties that are only satisfied by the extreme members of the family (composition
up, composition down, sustainability, independence of residual claims, exemption
and exclusion). Finally, we refer to the effect of a change in the parameter θ over
the spread of the allocations generated by the corresponding rule.

The most important of these results is that in which we show that θ = 1/2 is
the threshold that separates those rules in the family that satisfy independence of
claims truncation from those that satisfy composition from minimal rights.

3.1 Basic properties

Let us start by showing that each rule in the TAL-family is parametric. According
to Young (1987), a rule is parametric if the i th agent’s award is a function that
only depends on ci and a parameter λ, which is related to the size of the amount to
divide. More precisely:
A rule R is parametric if there exists a function f : [a, b] × R+ → R+, where
[a, b] ⊂ R ∪ {±∞}, continuous and weakly monotonic in its first argument, such
that:

(i) Ri (N , E, c) = f (λ, ci ) for all (N , E, c) ∈ B and for some λ ∈ [a, b];
(ii) f (a, x) = 0, for all x ∈ R+; and

(iii) f (b, x) = x, for all x ∈ R+.



236 J. D. Moreno-Ternero, A. Villar

All rules within the TAL-family are parametric. To check this, let θ ∈ [0, 1] be
given and define f θ: R ∪ {±∞} × R+ → R+ as follows:

f θ (λ, ci ) =
{

min{− 1
λ
, θci } if λ < 0

max{ci − 1
λ
, θci } if λ ≥ 0

.

Clearly, f θ is continuous and weakly monotonic in its first argument, with
limλ→−∞ f θ (λ, ci ) = 0 and limλ→+∞ f θ (λ, ci ) = ci for all ci ∈ R+. As a result,
the Darboux property shows that, for all (N , E, c) ∈ B, there exists λ0 ∈ R+ such
that E = ∑

i∈N f θ (λ0, ci ). Thus, f θ (λ0, ci ) = Rθ
i (N , E, c), which shows that

f θ is a parametric representation of Rθ .

Remark 1 Note that these functions f θ are S-shaped in claims. That is, f θ is con-
cave on its second argument when λ < 0 (which corresponds to a “small” amount
to divide) whereas it is convex when λ > 0 (which corresponds to a “large” amount
to divide). Therefore, the rules in the TAL-family evaluate awards and losses differ-
ently, depending on the size of the amount to divide. This feature appears in the
psychology literature, where it is well known that losses loom larger than gains
(e.g., Kahneman and Tversky 1979).

Young (1987) shows that a rule is parametric if and only if it satisfies symme-
try, continuity and consistency. Symmetry is a property of impartiality that requires
allotting equal amounts to those agents with equal claims. Continuity is an axiom
of non-arbitrariness that says that small changes in the parameters of the problem
should not induce large changes in the corresponding solution. Consistency is a
principle that relates the solution of a given problem to the solutions of the subprob-
lems that appear when we consider a subgroup of agents as a new population and the
amounts gathered in the original problem as the available amount to be distributed.
Consistency requires that the application of the rule to each subproblem produces
precisely the allocation that the subgroup obtained in the original problem.1 More
formally, a rule R is consistent if, for all (N , E, c) ∈ B, all Q ⊂ N and all i ∈ Q,
we have Ri (N , E, c) = Ri (Q, EQ, cQ), where EQ = ∑

i∈Q Ri (N , E, c) and
cQ = (ci )i∈Q .

Therefore, the preceding discussion shows the following:

Proposition 2 All rules in the TAL-family are symmetric, continuous and consis-
tent.

The following related properties are also pertinent to this analysis: order pres-
ervation and homogeneity. Order preservation, which implies symmetry, says that
agents with larger claims receive larger awards and face larger losses. That is,
ci ≥ c j implies that Ri (N , E, c) ≥ R j (N , E, c) and ci − Ri (N , E, c) ≥ c j −
R j (N , E, c), for all (N , E, c) ∈ B, all i, j ∈ N . The rules in the family satisfy
this property. Homogeneity says that if claims and amount available are multiplied
by the same positive number, then so should all awards. It implies that the units in
which claims and amount available are measured have no influence on the outcome.
The rules in the family also satisfy this property.

Proposition 3 All rules in the TAL-family are order preserving and homogeneous.

1 Thomson (1996) provides us with a survey of the many applications that have been made on
the idea of consistency.
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3.2 Solidarity properties

In this section, we consider monotonicity properties, also referred to as axioms of
solidarity in similar contexts (see, for instance, Moreno-Ternero and Roemer 2004,
and the literature cited therein).

Resource monotonicity says that when there is more to be divided, other things
being equal, nobody should lose, i.e., a larger cake should not harm anybody. For-
mally, a rule R is resource monotonic if, for each (N , E, c) ∈ B and (N , E ′, c) ∈ B

such that E ≤ E ′, then R(N , E, c) ≤ R(N , E ′, c). Claims monotonicity says that
if an agent’s claim increases, ceteris paribus, she should receive at least as much
as she did initially, i.e., a larger claim should not harm the claimant. Its dual prop-
erty says that if an agent’s claim and the amount to divide increase by the same
amount, the agent’s award should increase by at most that amount. Formally, a rule
R is claims monotonic if, for all (N , E, c) ∈ B and all i ∈ N , ci ≤ c′

i implies
Ri (N , E, (c′

i , c−i )) ≥ Ri (E, (ci , ci )). A rule satisfies the dual of claims monoto-
nicity if, for all (N , E, c) ∈ B and i ∈ N , Ri (E + ε, (ci + ε, c−i )) ≤ Ri (E, c)+ ε.

Similar properties turned out to be very strong in other domains of problems,
sometimes even being incompatible with very elementary requirements of effi-
ciency and fairness (e.g., Thomson 1987). In the context of bankruptcy, they are
quite weak however. As it stands out, all rules within the TAL-family satisfy these
properties.

Proposition 4 All rules in the TAL-family satisfy resource monotonicity, claims
monotonicity and its dual.

3.3 Independence and related properties

We start this section considering the axioms of independence of claims truncation
and composition from minimal rights. Independence of claims truncation postu-
lates that the part of a claim that is above the amount to divide should be ignored.
That is, R(N , E, c) = R(N , E, t (N , E, c)), where ti (N , E, c) = min{E, ci } for
all i ∈ N . Composition from minimal rights ensures each agent a minimal amount
mi (N , E, c) = max{0, E − ∑

j∈N−{i} c j }, which is the portion of the amount to
divide that is left to her when the claims of all other agents are fully honored,
provided this amount is non-negative. That is,

R(N , E, c) = m(N , E, c) + R(N , E − M(N , E, c), c−m(N , E, c)) ,

where m(N , E, c) = [mi (N , E, c)]i∈N and M(N , E, c) = ∑
i∈N mi (N , E, c).

These two axioms were first studied by Curiel et al. (1897). The Talmud
rule is the only rule that satisfies symmetry, independence of claims truncation,
composition from minimal rights, and consistency (Aumann and Maschler 1985;
Dagan 1996; Herrero and Villar 2001). A characterization of all rules that satisfy
homogeneity, independence of claims truncation and composition from minimal
rights is also available (Hokari and Thomson 2003).

As the following result shows, θ = 1/2 is the precise value of the parameter
that separates the rules in the family that satisfy independence of claims truncation
from those that satisfy composition from minimal rights.
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Theorem 1 Let Rθ be a rule in the TAL-family
{

Rθ
}
θ∈[0,1]. The following state-

ments hold:

(i) Rθ satisfies independence of claims truncation if and only if θ ∈ [1/2, 1].
(ii) Rθ satisfies composition from minimal rights if and only if θ ∈ [0, 1/2].

A direct consequence of this result is that there is only one rule in the family
that satisfies these two properties simultaneously: the Talmud rule, T = R1/2.

A related axiom is that of securement. Securement ensures each agent a mini-
mal share of her individual claim, no matter what the other claims are. In particular,
for a problem involving n agents, securement establishes that any agent holding a
feasible claim (a claim not larger than the amount to divide) will get at least one nth
of her claim. And also that, those agents whose individual claims are unfeasible
will get at least one nth of the amount to divide. Formally, a rule R satisfies secure-
ment if, for all (N , E, c) ∈ B, Ri (N , E, c) ≥ (1/n) min{ci , E}. Its dual property
is also an interesting one. This property provides an upper bound to each claimant
involved in the problem. Formally, a rule R satisfies the dual of securement if, for
all (N , E, c) ∈ B, Ri (N , E, c) ≤ ci − (1/n) min{ci , C − E}.

These two axioms are introduced in Moreno-Ternero and Villar (2004). Re-
cently, Dominguez and Thomson (2006) have presented the unique rule satisfying
the requirement that for each problem the awards vector can be obtained either
directly or in two steps: by first assigning to each claimant the lower bound that
the property of securement recommends and then reapplying the rule to the revised
problem.

In Moreno-Ternero and Villar (2004), we show that the Talmud rule is the
unique consistent rule that satisfies securement and its dual property. Thus, by
Proposition 2, no other rule within the TAL-family can satisfy both properties
simultaneously. Furthermore, the Talmud rule is also the unique consistent rule
that satisfies securement and composition from minimal rights (Moreno-Ternero
and Villar 2006; Yeh 2006). Thus, by Proposition 2 and Theorem 1, no rule Rθ in
the TAL-family such that θ ∈ [0, 1/2) satisfies securement. We show in the next
result that all the remaining rules within the family satisfy securement.

Theorem 2 Let Rθ be a rule in the TAL-family
{

Rθ
}
θ∈[0,1]. The following state-

ments hold:

(i) Rθ satisfies securement if and only if θ ∈ [1/2, 1].
(ii) Rθ satisfies the dual of securement if and only if θ ∈ [0, 1/2].

From Theorems 1 and 2, one might think that there exists a logical relation
between independence of claims truncation and securement. That is not the case,
as shown in Moreno-Ternero and Villar (2004), where we provide examples of
rules satisfying one property but not the other.

3.4 Composition properties

We now consider two additional properties dealing with the solvability of a bank-
ruptcy problem in stages. To motivate these properties think of the following situa-
tion: after having divided the allocation of the available amount among its creditors,
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it turns out that the actual value of the amount is larger than was initially assumed.
Then, two options are open: either the tentative division is cancelled altogether and
the actual problem is solved, or we add to the initial distribution the result of apply-
ing the rule to the remaining amount. The requirement formulated next is that both
ways of proceeding should result in the same award vectors. Formally, a rule R sat-
isfies composition up (Young 1988) if, for all (N , E, c) ∈ B, and all E1, E2 ∈ R++
such that E1+E2 = E, R(N , E, c) = R(N , E1, c)+R [N , E2, c − R(N , E1, c)].

Think now of the dual case. Namely, after having divided the available amount
among its creditors one finds that the actual value of the amount to divide falls
short of what was assumed. Here again, we can ignore the initial division and apply
the rule to the revised problem, or we can apply the rule to the problem in which the
initial claims are substituted by the (unfeasible) allocation initially proposed. The
next requirement is that both ways of proceeding should result in the same award
vectors. Formally, a rule R satisfies composition down (Moulin 1987) if, for all
(N , E, c) ∈ B, and all E ′ > E, we have R(N , E, c) = R

[
N , E, R(N , E ′, c)

]
.

In stark contrast with the properties mentioned above, these properties are only
satisfied by the constrained equal awards rule and the constrained equal losses rule
within the TAL-family. More precisely:

Theorem 3 The following statements hold:

(i) The only rules in the TAL-family that satisfy composition up are R0 = L
and R1 = A.

(ii) The only rules in the TAL-family that satisfy composition down are R0 = L
and R1 = A.

There are only three symmetric rules that satisfy homogeneity, consistency,
composition up and composition down. They are the proportional rule, the con-
strained equal awards rule and the constrained equal losses rule (Moulin 2000).2

Thus, Propositions 2 and 3 imply that R0 = L and R1 = A are the only rules in
the TAL-family that satisfy both composition up and composition down. Theorem
3 complements this corollary showing that there is no other rule within the family
satisfying only one of the properties.

Similarly, Dagan (1996) shows that the constrained equal awards rule is the only
symmetric rule that satisfies independence of claims truncation and composition
up. By duality, the constrained equal awards rule is the only symmetric rule that
satisfies composition from minimal rights and composition down. As before, these
two results and Theorem 1 imply that R0 = L and R1 = A are the only rules in the
TAL-family that satisfy both composition up and composition down. Furthermore,
they imply that the only rule in the family

{
Rθ: θ ∈ [1/2, 1]

}
that satisfies compo-

sition up is R1 = A; and also that the only rule in the family
{

Rθ: θ ∈ [0, 1/2]
}

that satisfies composition down is R0 = L .3

2 The proportional rule is the rule that selects, for all (N , E, c) ∈ B, the vector [(E/C)· ci ]i∈N .
Observe that, for a given problem (N , E, c) ∈ B, the rule Rθ within the TAL-family, where
θ = E/C , yields a solution RE/C (N , E, c) that coincides with the allocation provided by the
proportional rule to this problem. Yet, there is no θ for which Rθ is the proportional rule (i.e.,
the proportional rule is not a member of the TAL-family).

3 We thank an anonymous referee for raising these implications between existing results in
the literature and those of our paper.
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3.5 Protective properties

We now turn our attention to a group of properties that appear in the literature
referring to the application of some protective criteria for agents with “very large”
or “very small” claims: sustainability, independence of residual claims, exemption
and exclusion (Herrero and Villar 2001, 2002; Yeh 2005).4 They establish restric-
tions on the behavior of a rule when claims are very unequal. Both exemption and
sustainability require that agents with relatively small claims be fully reimbursed.
In the former property, smallness is defined as having a claim below equal division
of the available amount. In the latter property, a claim is considered small when
substituting it for the claim of any other agent whose claim is higher, there would be
enough to compensate everyone. Formally, a rule R satisfies sustainability if, for all
(N , E, c) ∈ B, and each i ∈ N , if

∑
j∈N min{ci , c j } ≤ E then Ri (N , E, c) = ci .

Similarly, a rule R satisfies exemption if, for all (N , E, c) ∈ B, ci ≤ E/n implies
Ri (N , E, c) = ci . Although they are equivalent in the two-claimant case, sustain-
ability implies exemption in the general case of n claimants (Herrero and Villar
2002). Conversely, if a rule satisfies exemption and consistency then it also satisfies
sustainability (Yeh 2005).

Dually, one could adopt the viewpoint that agents with larger claims are given
priority so that agents with very small claims should not receive anything. That kind
of value judgement makes sense when the claims represent needs or when we want
to compensate more to those who have risked larger amounts. We say that a claim is
“residual” when the aggregate excess claim relative to the agent holding this claim
exceeds the worth of the amount available. That is, E ≤ ∑

j∈N max{0, c j − ci }.
Independence of residual claims requires that if an agent’s claim is residual, she
should get nothing. Formally, a rule R satisfies independence of residual claims
if, for all (N , E, c) ∈ B, E ≤ ∑

j∈N max{0, c j − ci } implies Ri (N , E, c) = 0.
Exclusion requires that if an agent’s claim does not reach the average loss, she
gets nothing. Formally, a rule R satisfies exclusion if, for all (N , E, c) ∈ B, ci ≤
(C − E)/n implies Ri (N , E, c) = 0. It is straightforward to show that indepen-
dence of residual claims and exclusion are the dual properties of sustainability and
exemption, respectively. Therefore, independence of residual claims implies exclu-
sion, whereas exclusion, in conjunction with consistency, implies independence of
residual claims.

As the next result shows, the constrained equal awards rule is the only rule
in the TAL-family that satisfies exemption. It is also the only rule that satisfies
sustainability. On the other hand, the constrained equal losses rule is the only rule
in the TAL-family that satisfies exclusion. It is also the only one that satisfies
independence of residual claims.

Theorem 4 The following statements hold:

(i) The only rule in the TAL-family that satisfies sustainability is R1 = A.
(ii) The only rule in the TAL-family that satisfies exemption is R1 = A.

(iii) The only rule in the TAL-family that satisfies independence of residual claims
is R0 = L.

(iv) The only rule in the TAL-family that satisfies exclusion is R0 = L.

4 The notions of sustainability and independence of residual claims are referred as conditional
full compensation and conditional null compensation, respectively, by Thomson (2003).
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Theorem 4 relates with some characterization results of the constrained equal
awards rule and the constrained equal losses rule that appear in the literature. For
instance, Herrero and Villar (2002) show that the constrained equal awards rule
is the only rule that satisfies sustainability and composition down. By duality, the
constrained equal losses rule is the only rule that satisfies independence of residual
claims and composition down. Yeh (2005) replaces the axioms of composition in
the previous results by claims monotonicity and its dual property, respectively. Yeh
(2005) also shows that the constrained equal awards rule is the only rule satisfying
exemption, order preservation and consistency. By duality, the constrained equal
losses rule is the only rule satisfying exclusion, order preservation and consistency.5

Since all rules within the TAL-family are consistent (Proposition 2), order pre-
serving (Proposition 3) and satisfy claims monotonicity and its dual (Proposition
4) the content of Theorem 4 follows from Yeh’s results and duality.

3.6 Distributional effects

Finally, we consider the effect of changes in the parameter θ that generates the
TAL-family on the resulting distribution corresponding to a given problem. In order
to do that, we compare the allocations generated by different rules in the family,
for a given problem, by means of the classical Lorenz ordering. Given x, y ∈ R

n

satisfying x1 ≤ x2 ≤ · · · ≤ xn , y1 ≤ y2 ≤ · · · ≤ yn , and
∑n

i=1 xi = ∑n
i=1 yi , we

say that x is greater than y in the Lorenz ordering if
∑k

i=1 xi ≥ ∑k
i=1 yi , for all

k = 1, . . . , n − 1, with at least one strict inequality. This criterion induces a partial
ordering on allocations which reflects their relative spread. When x is greater than
y in the Lorenz ordering, the distribution x is unambiguously “more egalitarian”
than the distribution y. It is well known that this property is equivalent to saying
that y can be obtained from x by means of a finite sequence of transfers “from the
richer to the poorer” , and that I (y) > I (x) for any sensible inequality index I (·),
i.e., for any symmetric relative index satisfying the Pigou-Dalton transfer principle
and the Dalton population principle [see Atkinson (1970), Dasgupta et al. (1973),
Rostchild and Stiglitz (1973) or Chakravarty (1999), among others].

We now propose what appears the obvious move: we say that a rule R Lorenz
dominates a rule R′, which we write as R �L R′, when for all (N , E, c) ∈ B,
R(N , E, c) is greater than R′(N , E, c) in the Lorenz ordering. The following result
is obtained:

Theorem 5 (Moreno-Ternero and Villar 2005) For all θ1, θ2 ∈ [0, 1] with θ1 ≥
θ2, Rθ1 �L Rθ2 .

Theorem 5 says that all rules within the TAL-family are fully ranked in terms
of the Lorenz dominance criterion. In particular, Theorem 5 says that higher values
of θ imply higher protection for those agents with lower claims (more redistribu-
tion), whereas lower values of θ entail higher shares for those with larger claims
(less redistribution). Therefore, the parameter θ that generates the family can be
regarded as an index of the distributive power of the rule. Choosing θ can be inter-
preted as giving a degree of priority θ in the distribution to those agents with lower

5 Note that order preservation and consistency are self-dual properties.
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claims and a degree of priority (1 − θ) to those with higher demands. From this
perspective, the Talmud rule, R1/2, is a balanced compromise between the different
types of claimants.

4 Final remarks

We have presented in this paper a family of bankruptcy rules, the TAL-family,
that generalizes the Talmud rule and encompasses the constrained equal awards
rule and the constrained equal losses rule. This family depends on a parameter
θ ∈ [0, 1] that refers to the relative magnitude of the amount to divide with respect
to the aggregate claim and can be interpreted in terms of an index of the distributive
power of the rule. We have explored the behavior of the rules in the TAL-family with
respect to the standard properties in the literature. Our findings are summarized in
Table 1.

Other families of rules extending the Talmud rule appear in the literature. Hokari
and Thomson (2003) introduce a family of consistent rules meeting two charac-
teristic properties of the Talmud rule: independence of claims truncation and com-
position from minimal rights. The rules in this family, however, do not necessarily
satisfy the axiom of symmetry.

Thomson (2000, 2003) presents another family of rules (the ICI-family) exhib-
iting another feature of the Talmud rule: the evolution of each claimant’s award,
as a function of the amount to divide, is increasing first, constant next and finally
increasing again. In order to provide the formal definition of the ICI-family, let GN

be the family of lists G ≡ {Ek, Fk}n−1
k=1, where n = |N |, of real-valued functions

of the claims vector, satisfying for each c ∈ R
N+ , the following relations:

E1(c)

n
+ C − F1(c)

n
= c1

c1 + E2(c) − E1(c)

n − 1
+ F1(c) − F2(c)

n − 1
= c2

...

ck−1 + Ek(c) − Ek−1(c)

n − k + 1
+ Fk−1(c) − Fk(c)

n − k + 1
= ck

...

cn−1 + −En−1(c)

1
+ Fn−1(c)

1
= cn

The ICI rule relative to G ≡ {Ek, Fk}n−1
k=1 ∈ GN , is defined as follows. For

each c ∈ R
N+ , the awards vector is given as the following function of the amount

available E , as it varies from 0 to C . As E increases from 0 to E1(c), equal division
prevails; as it increases from E1(c) to E2(c), claimant 1’s award remains constant,
and equal division of each new unit prevails among the other claimants. As E
increases from E2(c) to E3(c), awards of claimants 1 and 2 remain constant, and
equal division of each new unit prevails among the other claimants, and so on. This
process goes on until E reaches En−1(c). The next units go to claimant n until E
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Table 1 Structural properties of the TAL-family

Properties Rules that satisfy the properties

Symmetry Rθ for all θ ∈ [0, 1]
Continuity Rθ for all θ ∈ [0, 1]
Consistency Rθ for all θ ∈ [0, 1]
Order preservation Rθ for all θ ∈ [0, 1]
Homogeneity Rθ for all θ ∈ [0, 1]
Resource monotonicity Rθ for all θ ∈ [0, 1]
Claims monotonicity Rθ for all θ ∈ [0, 1]
The dual of claims monotonicity Rθ for all θ ∈ [0, 1]
Population-and-resource monotonicity Rθ for all θ ∈ [0, 1]
Self-duality R1/2 = T
Independence of claims truncation Rθ for all θ ∈ [1/2, 1]
Composition from minimal rights Rθ for all θ ∈ [0, 1/2]
Securement Rθ for all θ ∈ [1/2, 1]
The dual of securement Rθ for all θ ∈ [0, 1/2]
Composition up R0 = L , R1 = A
Composition down R0 = L , R1 = A
Exclusion R0 = L
Exemption R1 = A
Independence of residual claims R0 = L
Sustainability R1 = A

reaches Fn−1(c), at which point equal division of each new unit prevails among
claimants n and n − 1. This goes on until E reaches Fn−2(c), at which point equal
division of each new unit prevails among claimants n through n − 2. The process
continues until E reaches F1(c), at which point claimant 1 re-enters the scene and
equal division of each new unit prevails among all claimants.

The TAL-family is a strict subset of the ICI-family. Indeed, for each θ ∈ [0, 1],
the rule Rθ in the TAL-family corresponds to the ICI rule relative to G(θ) ≡
{Ek(θ), Fk(θ)}n−1

k=1 ∈ GN , where

Ek(θ)(c) = θ ·
((

k−1∑

l=1

cl

)

+ (n − k + 1) · ck

)

,

and

Fk(θ)(c) = θC + (1 − θ)

((
n∑

l=k+1

cl

)

− (n − k)ck

)

.

Furthermore, the TAL-family is made precisely of all consistent and homogeneous
rules in the ICI-family.

To conclude, we note that the rules within the TAL-family can be characterized
by applying an extension of Moulin’s (2002) notions of lower and upper bounds,
relative to the parameter θ . It is said that a rule satisfies lower bound if each agent
receives at least the minimum of her claim and equal division. Dually, a rule sat-
isfies upper bound if each agent faces at least an equal share of the aggregate
loss, unless, of course, this share is higher than her claim (in which case she gets
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nothing). Formally, a rule R satisfies lower bound if, for all (N , E, c) ∈ B, then
Ri (N , E, c) ≥ min{ci , E/n}. It satisfies upper bound if, for all (N , E, c) ∈ B, then
Ri (N , E, c) ≤ max{0, ci − (C − E)/n}. These two axioms are very restrictive.
Indeed, by themselves, they characterize the constrained equal awards rule and
the constrained equal losses rule, respectively, in the two-claimant case (Moulin
2002). If we add consistency, both rules are characterized in the general case of n
claimants.

Lower bound provides a protection for those agents with relatively small claims
whereas upper bound provides a protection for those agents with relatively large
claims. Upon modulating the protection offered to small and large claimants, by
means of the parameter θ , we generate the TAL-family. More precisely, we could
say that a rule satisfies lower bound of degree θ if each agent receives at least either
a fraction θ of her claim or an equal share of the amount to divide. Similarly, a rule
would satisfy upper bound of degree θ if each agent gets at most a fraction θ of
her claim or an equal share of the losses. Formally, let θ ∈ [0, 1]. A rule satisfies
lower bound of degree θ , if for all (N , E, c) ∈ B, Ri (N , E, c) ≥ min{θci , E/n}.
A rule satisfies upper bound of degree θ , if for all (N , E, c) ∈ B, Ri (N , E, c) ≤
max{θci , ci − (C − E)/n}. It is easy to see that Rθ is the only consistent rule that
satisfies these two properties simultaneously, thus providing a characterization of
the rules in the TAL-family. One might argue that if the axiomatic characteriza-
tions of the constrained equal awards rule and the constrained equal losses rule
mentioned above are meaningful results, so is the one concerning the TAL-family.
This characterization, however, has not the same appeal of those in Moulin (2002).
This is so because the “degree θ axioms” are much closer to the very definition of
the rules in the family and have much less intuitive appeal. Therefore, we consider
that the proper characterization of the TAL-family is still an open problem. Our
conjecture is that the rules in the TAL-family are the only parametric rules satisfy-
ing either independence of claims truncation and securement or composition from
minimal rights and the dual property of securement. More precisely:

Conjecture 1 A parametric rule R satisfies independence of claims truncation
and securement if and only if R ∈ {

Rθ: θ ∈ [1/2, 1]
}

Conjecture 2 A parametric rule R satisfies composition from minimal rights and
the dual property of securement if and only if R ∈ {

Rθ: θ ∈ [0, 1/2]
}
.

Note that, as a consequence of Proposition 1, one would just need to prove one
conjecture and the other would follow by duality.

5 Appendix: Proofs of the results

5.1 Proof of Theorem 1

(ia) Independence of claims truncation implies θ ∈ [1/2, 1].
For θ = 0 we have R0 = L , a rule that violates this property (Dagan, 1996). Let

θ ∈ (0, 1/2) and consider the two-claimant problem B = ({1, 2}, E, (E, E/θ)). It
is straightforward to check that Rθ (B) = (θ E, (1 − θ) E). The associated problem
in which claims are truncated is ({1, 2}, E, (E, E)), whose solution is (E/2, E/2).
Therefore, Rθ ({1, 2}, E, c) �= Rθ ({1, 2}, E, t (N , E, c))
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(ib) θ ∈ [1/2, 1] implies independence of claims truncation.
Let θ ∈ [1/2, 1] and (N , E, c) ∈ B be given. We prove this part by induction

in the cardinality of N .
Suppose first |N | = 2. Then the rule Rθ is expressed as follows:

Rθ(N , E, c)=





( E
2 , E

2

)
if E ≤ 2θc1

(θc1, E − θc1) if 2θc1 ≤ E ≤c2+(2θ − 1) c1(
c1 − C−E

2 , c2 − C−E
2

)
if c2 + (2θ − 1) c1 ≤ E

. (1)

There are several cases.

Case 1 E ≤ c1.
Since θ ≥ 1/2, it follows that E ≤ 2θc1. Thus, Rθ (N , E, c) = (E/2, E/2).

Moreover, in this case, t (N , E, c) = (E, E). Given that every rule in the TAL-family
is symmetric (Proposition 2), Rθ (N , E, t (N , E, c)) = (E/2, E/2).

Case 2 c1 < E < c2.
In this case, t (N , E, c) = (c1, E). We distinguish two subcases:

Subcase 2.1 E ≤2θc1.
Then, Rθ (N , E, c)=(E/2, E/2)= Rθ (N , E, t (N , E, c)).

Subcase 2.2 E > 2θc1.
Since θ ≥ 1/2, E ≤ c2 + (2θ − 1) c1, which implies Rθ (N , E, c) = (θc1 ,

E − θc1). Similarly, since θ ≥ 1/2, it follows that E ≤ E + (2θ − 1) c1 =
t2(N , E, c) + (2θ − 1) t1(N , E, c), and, therefore, Rθ (N , E, t (N , E, c)) = (θc1,
E − θc1).

Case 3 E ≥ c2.
In this case, t (N , E, c) = c and, therefore, independence of claims truncation

holds trivially.

As a consequence, for every two-claimant problem, Rθ satisfies independence
of claims truncation, when θ ∈ [1/2, 1]. We now assume that it is also true when
|N | = k ≥ 2, and we prove it for the case |N | = k + 1. Without loss of generality,
assume that N = {1, 2, . . . , k + 1} and c1 ≤ c2 ≤ · · · ≤ ck+1.

Let us show first that Rθ
1 (N , E, c) = Rθ

1 (N , E, t (N , E, c)). It is straightfor-
ward to see that

Rθ
1 (N , E, c) =






E
k+1 if E ≤ (k + 1)θc1
θc1 if (k + 1)θc1 ≤ E ≤ C − (k + 1) (1 − θ) c1

c1 − C−E
k+1 if C − (k + 1) (1 − θ) c1 ≤ E

.

Suppose that c1 = t1(N , E, c). Otherwise, t (N , E, c) = (E, E, . . . , E). In such a
case, since c1 ≤ (k + 1)θc1 and Rθ satisfies symmetry we would have
Rθ (N , E, t (N , E, c)) = (E/(k + 1), E/(k + 1), . . . , E/(k + 1)) = Rθ (N , E, c).
As a result, c1 ≤ t j (N , E, c), for all j = 2, . . . , k + 1 . . . We can also assume that
tk+1(N , E, c) = E . Otherwise, we would have c = t (N , E, c), and, therefore,
independence of claims truncation would hold trivially. We distinguish two cases.

Case 1 E ≤ (k + 1)θc1.
Then Rθ

1 (N , E, c) = E/(k + 1) = Rθ
1 (N , E, t (N , E, c)).
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Case 2 E > (k + 1)θc1.
Let CT = ∑

i∈N ti (N , E, c). Then:

C − (k + 1) (1 − θ) c1 ≥ CT − (k + 1) (1 − θ) c1

=
∑

i∈N

ti (N , E, c) − (k + 1) (1 − θ) c1

= E +
k∑

i=2

ti (N , E, c) + [1 − (k + 1) (1 − θ)]c1

≥ E +
k∑

i=2

ti (N , E, c) − (k − 1)
c1

2

≥ E +
k∑

i=2

ti (N , E, c) − 1

2

k∑

i=2

ti (N , E, c)

= E + 1

2

k∑

i=2

ti (N , E, c) > E .

This implies Rθ
1 (N , E, t (N , E, c)) = θc1 = Rθ

1 (N , E, c).

Once it is shown that Rθ
1 (N , E, c) = Rθ

1 (N , E, t (N , E, c)), we conclude by
appealing to consistency. Let S = N\{1}. Denote ES = ∑

i∈S Rθ
i (N , E, c), cs =

(ci )i∈S , ET
S = ∑

i∈S Rθ
i (N , E, t (N , E, c)), and cT

s = (ti (N , E, c))i∈S . Now,
since all rules within the TAL-family are consistent, Rθ

i (N , E, c) = Rθ
i (S, ES, cs),

for all i ∈ S. By induction hypothesis, Rθ
i (S, ES, cs) = Rθ

i

(
S, ES, cT

s

)
. Note

that ES = E − Rθ
1 (N , E, c) = E − Rθ

1 (N , E, t (N , E, c)) = ET
S . Thus, Rθ

i(
S, ES, cT

s

) = Rθ
i

(
S, ET

S , cT
s

) = Rθ
i (N , E, t (N , E, c)), where the last equal-

ity holds, again thanks to consistency. In other words, for all i ∈ S, or what is
equivalent, for all i = 2, . . . , k +1, Rθ

i (N , E, c) = Rθ
i (N , E, t (N , E, c)), which

concludes the proof.
(ii) Independence of claims truncation and composition from minimal rights

are dual properties (Herrero and Villar 2001). Thus, as Rθ satisfies independence
of claims truncation if and only if θ ∈ [1/2, 1], and R1−θ is the dual rule of Rθ ,
Rθ satisfies composition from minimal rights if and only if θ ∈ [0, 1/2]. �

5.2 Proof of Theorem 2

(i) As mentioned in the text, if θ ∈ [0, 1/2), Rθ does not satisfy securement. We
fix now θ ∈ [1/2, 1] and show that Rθ satisfies securement. Let (N , E, c) ∈ B be
given. Suppose first that |N | = 2. Without loss of generality, assume N = {1, 2}
and c1 ≤ c2. We distinguish three cases.

Case 1 E ≤ 2θc1.
In this case, Rθ

i (N , E, c) = E/2 ≥ (1/2) min{ci , E}, for all i = 1, 2.
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Case 2 2θc1 < E < c2 + (2θ − 1) c1.
In this case, Rθ (N , E, c) = (θc1, E − θc1). Since θ ≥ 1/2, it follows that

Rθ
1 (N , E, c) = θc1 ≥ (1/2) min{c1, E}. Similarly, since 2θc1 < E , it follows

that Rθ
2 (N , E, c) = E − θc1 > E/2 ≥ (1/2) min{c2, E}.

Case 3 E ≥ c2 + (2θ − 1) c1.
In this case, Rθ (N , E, c) = (c1 − (C − E)/2, c2 − (C − E)/2). Since θ ≥

1/2, it follows that E ≥ c2 + (2θ − 1) c1 ≥ c2. Thus, Rθ
1 (N , E, c) = c1 − (C −

E)/2 ≥ c1/2 ≥ (1/2) min{c1, E}. Furthermore, Rθ
2 (N , E, c) = c2−(C−E)/2 ≥

E/2 ≥ (1/2) min{c2, E}.
Thus, we have shown that for every two-claimant problem, Rθ satisfies secure-

ment, when θ ∈ [1/2, 1]. Suppose now, by contradiction, that this does not hold
for problems with more than two claims. In other words, suppose that there exists
(N , E, c) with |N | = n > 2 and i ∈ N such that

Rθ
i (N , E, c) <

1

n
min{ci , E} ≤ ci

2
. (2)

Since Rθ
i (N , E, c) < E/n, there exists j ∈ N such that Rθ

i (N , E, c) > E/n
and, therefore,

Rθ
i (N , E, c) <

Rθ
i (N , E, c) + Rθ

j (N , E, c)

2
. (3)

Consider now the problem ({i, j}, Rθ
i (N , E, c) + Rθ

j (N , E, c) , (ci , c j )). Since

Rθ is consistent and satisfies securement in the two-agent case, it follows that
Rθ

i (N , E, c) ≥ (1/2) min{ci , Rθ
i (N , E, c) + Rθ

j (N , E, c)}, which represents a
contradiction with (2) and ( 3).

(ii) Since Rθ satisfies securement if and only if θ ∈ [1/2, 1] and R1−θ is the
dual rule of Rθ , Rθ satisfies the dual of securement if and only if θ ∈ [0, 1/2]. �

5.3 Proof of Theorem 3

(i) The rules R0 = L and R1 = A satisfy composition up (Moulin 2000). Let us
see that there is no other rule within the TAL-family for which this happens. Let
θ ∈ (0, 1) be given. Consider the two-claimant problem

(N , E, c) =
(

{1, 2}, 1,

(
1

3θ
,

1

θ

))

,

and let E1 = 1/2 = E2. Then, E1 < E = 1 < 1/3 + 1 = θ · (c1 + c2). Thus,
Rθ (N , E, c) = A(N , E, θc) = (1/3, 2/3) and Rθ (N , E1, c) = A(N , E1, θc) =
(1/4, 1/4).

Let c′ =c−Rθ (N , E1, c)=(1/3θ − 1/4, 1/θ − 1/4). Then, E−θ ·(c′
1 + c′

2

) =
1 − θ · (1/3θ − 1/4 + 1/θ − 1/4) = θ/2 − 5/6 < 0, so that

Rθ
(
N , E2, c′) = A(N , E2, θc′) =

{
(1/4, 1/4) if θ ≤ 1/3
(1/3 − θ/4, 1/6 + θ/4) if θ > 1/3 .
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Thus, Rθ (N , E, c) �= Rθ (N , E1, c) + Rθ
(
N , E2, c′) for all θ ∈ (0, 1).

(ii) Both A and L satisfy composition down (Moulin 2000). Now, suppose that
there exists some θ ∈ (0, 1) such that Rθ satisfies composition down. Then R1−θ ,
the dual rule of Rθ , should satisfy composition up, which contradicts part (i) of
this theorem. �
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