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Abstract “Strategy-proofness” is one of the axioms that are most frequently used
in the recent literature on social choice theory. It requires that by misrepresenting
his preferences, no agent can manipulate the outcome of the social choice rule
in his favor. The stronger requirement of “group strategy-proofness” is also often
employed to obtain clear characterization results of social choice rules. Group strat-
egy-proofness requires that no group of agents can manipulate the outcome in their
favors. In this paper, we advocate “effective pairwise strategy-proofness.” It is the
requirement that the social choice rule should be immune to unilateral manipulation
and “self-enforcing” pairwise manipulation in the sense that no agent of a pair has
the incentive to betray his partner. We apply the axiom of effective pairwise strat-
egy-proofness to three types of economies: public good economy, pure exchange
economy, and allotment economy. Although effective pairwise strategy-proofness
is seemingly a much weaker axiom than group strategy-proofness, effective pair-
wise strategy-proofness characterizes social choice rules that are analyzed by using
different axioms in the literature.

1 Introduction

When a collection of individuals has to choose an allocation, the procedure they
use for making their choice should take into account their preferences. Procedures
are formally represented as functions from the class of possible preference profiles
into the feasible set, and they are called social choice functions, or social choice
rules. In this paper, we call them rules for short. “Strategy-proofness” is one of
the axioms that are most frequently used in the recent literature on social choice
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theory; it says that by misrepresenting his preferences, no agent can manipulate
the outcome of the rule in his favor.1 “Group strategy-proofness” is also often
employed to obtain clear characterization results of rules. This condition is a much
stronger requirement than strategy-proofness in that a rule must be immune to the
strategic misrepresentation of preferences by all kinds of coalitions of agents. Since
cooperation in such manipulation is difficult in many situations, group strategy-
proofness is considered to be unnecessarily demanding. Thus, one might suspect
that desirable properties of rules are unnecessarily sacrificed for the requirement
of group strategy-proofness.

In this paper, we advocate “effective pairwise strategy-proofness”. This con-
dition weakens group strategy-proofness by restricting manipulations to which
rules must be immune as follows. Cooperation in strategic misrepresentation is
especially difficult for large coalitions. Thus, effective pairwise strategy-proof-
ness does not require that a rule should be immune to manipulations by more
than two agents. Note that in pairwise manipulation, there is an incentive for an
agent to betray his partner to increase his utility further. If there is a chance of
such betrayal, a pairwise manipulation is not “self-enforcing”,2 and the society
may not have to worry about pairwise manipulations that are not self-enforcing.
Therefore, effective pairwise strategy-proofness neglects non-self-enforcing pair-
wise manipulations. That is, effective pairwise strategy-proofness is a requirement
that a rule should be immune only to unilateral manipulation and self-enforcing
pairwise manipulation.3 Accordingly, although effective pairwise strategy-proof-
ness is stronger than strategy-proofness, it is a reasonable requirement. We apply
effective pairwise strategy-proofness to various kinds of economies, such as pub-
lic good economies, pure exchange economies, and allotment economies. As a
result, we obtain new characterizations of classes of rules that are analyzed in the
literature.

In their influential articles, Gibbard (1977) and Satterthwaite (1975) charac-
terize dictatorships4 to be the only strategy-proof rules on the universal domain5

where there are at least three alternatives in the range. Since then, many authors
employ strategy-proofness to characterize various classes of rules in different kinds
of models. For example, Moulin (1980) and his successors identify the class of
strategy-proof rules for economies where the feasible set consists of only public
alternatives and agents have single-peaked6 preferences. However, when there is
at least one private good, strategy-proofness alone is not strong enough to obtain
meaningful classes of rules. Thus, together with some additional properties, con-
ditions stronger than strategy-proofness are often required in characterizing rules.

1 In game theoretic terminology, a rule is strategy-proof if it is a weakly dominant strategy for
each agent to represent his true.

2 This notion of self-enforcing is similar to self-enforcingness of Peleg and Sudhölter (1999).
3 In this paper, we do not consider the private transfer between agents. Schummer (2000)

independently analyzes the joint manipulation of two agents when the transfer between agents is
possible in economies where preferences are quasi-linear.

4 A rule is a dictatorship if there is some agent such that the outcome of the rule is always his
most preferred element in the feasible set.

5 The universal domain is the class of all linear preferences on the feasible set.
6 A preference is single-peaked if there is some point, called “peak”, and alternatives closer

to the peak are more preferred.



Pairwise strategy-proofness and self-enforcing manipulation 307

Moulin (1994) provides a remarkable example of public good economies. He
applies group strategy-proofness and symmetry7 to economies with one public
good and one private good. As a result, he obtains “equal cost share rules,” that is,
rules where agents equally share the cost of the public good, regardless of whatever
preferences they may have.

Barberà and Jackson (1995) also provide a notable example in pure
exchange economies. They employ “nonbossiness” introduced by Satterthwaite
and Sonnenschein (1981) together with strategy-proofness. The condition of non-
bossiness says that by changing his announced preferences, no agent can change the
other agents’ consumption bundles without changing his own consumption bundle.
When combined with strategy-proofness, the requirement of nonbossiness implies
a weak variant of group strategy-proofness called “weak group strategy-proofness”
on the class of classical preferences. Using this fact, Barberà and Jackson succeed
in identifying the class of strategy-proof, nonbossy, and anonymous8 rules for pure
exchange economies.

In this paper, first, we apply effective pairwise strategy-proofness to public good
economies where there are one private good and one pure public good. We assume
that the domain of preferences is classical or is quasi-linear. We establish that if a
rule is effectively pairwise strategy-proof, then it is a “preference independent cost
share rule”; each agent shares the cost of the public goods according to his own
cost share function that depends only on the quantity of the public goods produced.
When such cost share functions are considered to reflect some social norm such
as the ability to pay, this result supports the ability to pay doctrine against benefit
doctrine. We also establish that effective pairwise strategy-proofness is equivalent
to group strategy-proofness on the class of classical preferences in public goods
economies.

Second, we apply effective pairwise strategy-proofness to pure exchange econ-
omies where preferences are classical, homothetic and smooth. We establish that
there is no effectively pairwise strategy-proof, Pareto-efficient, and nondictatorial
rule. As corollaries of this result on the class of classical, homothetic, and smooth
preferences, the same conclusions hold on any superdomain of the class of those
preferences. It is also follows from this result that effective pairwise strategy-proof-
ness together with Pareto-efficiency imply group strategy-proofness on the class
of classical, homothetic, and smooth preferences in pure exchange economies.

Third, we apply effective pairwise strategy-proofness to allotment economies
where there is a fixed amount of one private good that is not freely disposable, and
preferences are single-peaked. We establish that a rule is effectively pairwise strat-
egy-proof and symmetric, and respects unanimity 9 if and only if it is the “uniform
rule (Benassy (1982))”. We also establish that effective pairwise strategy-proof-
ness together with respect for unanimity imply group strategy-proofness on the
class of single-peaked preferences in allotment economies.

7 A rule is symmetric if whenever two agents have the same preference, they receive the same
consumption bundle.

8 A rule is anonymous if whenever the preferences of two agents are switched, their consump-
tion bundles are also switched.

9 A rule in allotment economies respects unanimity if whenever the sum of agents’ preferred
levels is equal to the total endowment, agents receive their preferred levels.
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We organize the paper as follows: In Sect. 2, we describe the general model and
introduce basic notions. We state the results of the three types of economies, public
good economies, pure exchange economies, and allotment economies in Sects. 3,
4, and 5, respectively. We gather the proofs of all results in Sect. 6.

2 The general model and the basic notions

There are n ≥ 2 agents. We denote the set of agents by N = {1, 2, . . . , n}. A
coalition is a subset N ′ of N . Given a coalition N ′ ⊆ N and an agent i ∈ N ,
we denote the coalition N\N ′ by −N ′ and the coalition N\{i} by −i . There are
m X ≥ 1 private goods and mY (pure) public goods, where mY is 0 or 1. Let
m = m X + mY . We denote the set of goods by M = {1, 2, . . . , m}, and that of
private goods by MX = {1, 2, . . . , m X }. Each agent i is faced with his consump-
tion set Zi = Xi × Y = R

m+, where Xi = R
m X+ is the set of agent i’s private

good consumption bundles and Y = R+ is the set of the public good levels. His
consumption bundle zi = (zi

1, . . . , zi
m) = (xi , y) is an element of Zi . The fea-

sible set Z is a subset of X1 × · · · × Xn × Y, and is specified for various types
of economies in the following sections. An allocation z = (x1, . . . , xn, y) is an
element of Z . Let e = (e1, . . . , en, 0, . . . , 0) ∈ Z be the endowment point, where
ei ∈ R

m X+ is agent i’s endowment of the private goods. Let U 0 be the class of
preferences on R

m+ which are represented by continuous utility functions. We shall
often abuse language and identify preferences with the continuous utility functions
that represent them.

Definition Let U 0′ ⊂ U 0, and U = (U 0′)n . A rule on U is a function f from
U to Z . The set U is called the domain of f.

Definition A preference ui ∈ U 0 is classical if its utility function is continuous
on R

m+, and it is strictly quasi-concave and strictly monotonic on the interior of R
m+.

We denote the class of classical preferences by U C , and call it the classical
domain.

Other types of domains are introduced in the subsequent sections. Although
agent i’s utility function ui (x1, . . . , xn, y) actually depends only on zi = (xi , y),
we treat ui as a function on R

n·m X +mY+ when it simplifies notation without creating
confusion. We write U = U 1 × · · · × U n , where Ui is the set of agent i’s utility
functions. A preference profile is an element of U . Given N ′ ⊆ N , let U N ′ =
∏

j∈N ′ U j . We denote generic elements of U , U N ′
and U−i by u, uN ′

and u−i ,

respectively. If u = (u1, . . . , un) ∈ U , N ′ ⊆ N , and i ∈ N are given in advance,
uN ′

denotes (u j ) j∈N ′ and u−i denotes (u j ) j∈N\{i}. Given i ∈ N and u ∈ U , let
the best element set Bi (u) = {z ∈ Z |∀z′ ∈ Z , ui (z) ≥ ui (z′)}. Given a rule
f :U → Z and a preference profile u ∈ U , we write f (u) = ( f1(u), . . . , fn(u),
fy(u)), f i (u) = ( fi (u), fy(u)), and f −i (u) = (( f j (u)) j �=i , fy(u)).

Definition Given a u ∈ U , an allocation z ∈ Z is Pareto-efficient for u if for any
z′ ∈ Z ,

[∃i ∈ N such that ui (z′) > ui (z)] ⇒ [∃ j ∈ N such that u j (z) > u j (z′)].
A rule f is Pareto-efficient if for any u ∈ U , f (u) is Pareto-efficient for u.
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Next we consider the distributional requirements of rules. A rule is “individu-
ally rational” if it never assigns an allocation which makes some agent worse off
than he would be by consuming his endowment. This condition requires that all the
agents should share in the fruit of cooperation. A rule is “symmetric” if two agents
receive the same consumption bundle whenever they have the same preference;
and it is “anonymous” if when the preferences of two agents are switched, their
assigned consumption bundles are switched as well. These two conditions require
a rule not to treat agents unfairly.

Definition A rule f is individually rational if for any u ∈ U and any i ∈ N ,
ui ( f (u)) ≥ ui (e).

It is symmetric if for any u ∈ U , any i ∈ N , and any j ∈ N ,
ui = u j ⇒ fi (u) = f j (u).
It is anonymous if for any u ∈ U , any i ∈ N , any j ∈ N , any ûi ∈ Ui , and any
û j ∈ U j ,

ûi = u j & û j = ui

⇒ f i (ûi , û j , u−{i, j}) = f j (u) & f j (ûi , û j , u−{i, j}) = f i (u).

Definition A rule f is dictatorial if there is an agent i ∈ N such that for any
u ∈ U, f i (u) ∈ Bi (u); otherwise f is nondictatorial.

The condition of “individual strategy-proofness” requires that a rule should be
immune to the strategic behavior of any single agent; no agent can increase his
utility by unilateral manipulation. Hereafter we call the condition of individual
strategy-proofness simply “strategy-proofness” for short. “Group strategy-proof-
ness” is a stronger condition; it requires that by coalitional manipulation no coali-
tion can increase the utility of any member in the coalition without decreasing the
utility of some other member in it. “Pairwise strategy-proofness” is an intermediate
condition; it is stronger than individual strategy-proofness but weaker than group
strategy-proofness. Pairwise strategy-proofness requires that no pair of agents can
increase the utility of any agent of the pair without decreasing the utility of the
other of the pair. A pairwise manipulation is “self-enforcing” if the manipulation
does not decrease the utility of either of the pair, increases the utility of at least one
of the pair, and neither of the pair has the incentive to betray the partner. “Effective
pairwise strategy-proofness” requires that no pair of agents should have a self-
enforcing manipulation in addition to strategy-proofness. Thus, effective pairwise
strategy-proofness is stronger than strategy-proofness, but weaker than pairwise
strategy-proofness.

Definition A rule f is (individually) strategy-proof if for any u ∈ U , any i ∈ N ,
and any ûi ∈ Ui , ui ( f (u)) ≥ ui ( f (ûi , u−i )).

It is weak group strategy-proof if for any u ∈ U , any N ′ ⊆ N , and any ûN ′ ∈ U N ′
,

∃i ∈ N ′ s.t. ui ( f (u)) ≥ ui ( f (ûN ′
, u−N ′

)).

It is group strategy-proof if for any u ∈ U , any N ′ ⊆ N , and any ûN ′ ∈ U N ′
,

∃i ∈ N ′such that ui ( f (ûN ′
, u−N ′

)) > ui ( f (u))

⇒ ∃ j ∈ N ′such that u j ( f (ûN ′
, u−N ′

)) < u j ( f (u)).



310 S. Serizawa

Definition A rule f is pairwise strategy-proof if for any u ∈ U , any N ′ = {i, j} ⊆
N , and any ûN ′ ∈ U N ′

,
[ui ( f (ûN ′

, u−N ′
)) > ui ( f (u))] ⇒ [u j ( f (ûN ′

, u−N ′
)) < u j ( f (u))].

Definition Given a rule f , a preference profile u ∈ U , and a pair of agents N ′ =
{i, j}, a preference profile of the pair ûN ′ ∈ U N ′

is a self-enforcing manipulation
if

(i) ui ( f (ûN ′
, u−N ′

)) ≥ ui ( f (u)) and u j ( f (ûN ′
, u−N ′

)) ≥ u j ( f (u)),
(ii) ui ( f (ûN ′

, u−N ′
)) > ui ( f (u)) or u j ( f (ûN ′

, u−N ′
)) > u j ( f (u)),

(iii) for any ũi ∈ Ui , ui ( f (ûN ′
, u−N ′

)) ≥ ui ( f (̃ui , û j , u−N ′
)) , and

(iv) for any ũ j ∈ U j , u j ( f (ûN ′
, u−N ′

)) ≥ u j ( f (̃u j , ûi , u−N ′
)).

A rule is effectively pairwise strategy-proof if (i) it is strategy-proof, and (ii)
no pair of agents has a self-enforcing manipulation.

Generally we say that an agent is “bossy” if he intervenes in what he is not con-
cerned with. Since agent i’s preference depends only on zi , agent i is not concerned
with z−i . Thus here, “nonbossiness” implies that by changing his announced pref-
erences, no agent can change the other agents’ consumption bundles z−i without
changing his own consumption bundle zi .

Definition A rule f is nonbossy if for any u ∈ U , any i ∈ N , and any ûi ∈ Ui ,
f −i (u) �= f −i (ûi , u−i ) ⇒ f i (u) �= f i (ûi , u−i ).

Nonbossiness is introduced in Satterthwaite and Sonnenschein (1981). They
discuss its economic motivation. This condition also plays a technically impor-
tant role in our paper. Propositions 1, 3, and 5 in the subsequent sections state
that nonbossiness is closely related to effective pairwise strategy-proofness. In
Sect. 4, however, we cite an example which emphasizes that effective pairwise strat-
egy-proofness is mathematically independent of nonbossiness in pure exchange
economies. That example also demonstrates that the two conditions are also math-
ematically independent in allotment economies.

3 Public good economies

In this section, we consider economies where there are one private good and one
public good. Thus, m X = mY = 1 in this section. The public good is produced
using the private good as an input which is collected from agents. The cost function
C of the public good is an increasing function from R+ to R+. The feasible set
Z in this section is the set {z = (x1, . . . , xn, y) ∈ X1 × · · · × Xn × Y | C(y) ≤∑

i∈N (ei − xi )}. Given a rule f on a domain U , we denote the production range
of f by Y f , that is, Y f = {y ∈ Y | ∃u ∈ U such that fy(u) = y}.
Definition A preference ui ∈ U C is quasi-linear if there is a value function
vi : R+ → R+ such that

∀zi = (xi , y) ∈ Zi , ∀ẑi = (x̂ i , ŷ) ∈ Zi ,

ui (zi ) ≥ ui (ẑi ) ⇐⇒ vi (y) + xi ≥ vi (ŷ) + x̂ i .

We denote the class of quasi-linear preferences by U Q , and call it the quasi-
linear domain.
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How agents should share the cost of the public good has been discussed by
even classical economists or earlier. One of the influential doctrines was the “abil-
ity to pay doctrine”; it insists that agents should share the cost of the public good
according to their ability to pay, not the benefit they receive from the public good.
However, since Samuelson (1954) analyzed the Lindahl mechanism, the modern
economic theory pays most attention to rules based on “benefit doctrine”; it insists
that the cost share of agents should depend on the benefit they receive.10 As we
mentioned in the Introduction, Moulin (1994) employs the condition of group strat-
egy-proofness together with symmetry to obtain “equal cost share rules,” that is, the
rules where agents equally share the cost of the public good, regardless of whatever
preferences they may have. He establishes that if a rule is group strategy-proof and
symmetric, then it is an equal cost share rule. Equal cost share rules belong to the
class of “preference independent cost share rules.” The idea of preference inde-
pendent cost share rule is similar to the ability to pay doctrine. Under a preference
independent cost share rule, each agent has his own “norm cost share function”,
which is mathematically formulated as a function from Y to R+, and which assigns
his cost share for any level of the public good produced. Norm cost share functions
are interpreted as reflecting the ability to pay of agents or a certain kind of social
norm. Preference independent cost share rules are rules such that agents share the
cost of the public good according to their norm cost share functions.

Definition A rule f is a preference independent cost share rule if there is a list of
norm cost share functions ti :Y → R+, i ∈ N , such that for any u ∈ U , C( fy(u)) ≤
∑

i∈N ti ( fy(u)), and for any u ∈ U and any i ∈ N , fi (u) = ei − ti ( fy(u)).

Under preference independent cost share rules, agents’ preferences have an
influence on the levels of the public good produced, and thus the preferences have
an indirect influence on the cost shares the agents need to pay. However, the change
of the preferences has no impact on the cost shares unless the level of the public
good produced also changes. Proportional cost share rules illustrated in Example 1
below are an example of preference independent cost share rules.

Example 1 (Proportional cost share rule). Let the number of agents n be odd, and
let α = (α1, . . . , αn) ∈ R

n+ be such that
∑

i∈N αi = 1. Consider a rule f such that
for any u ∈ U and any i ∈ N , fi (u) = ei −αi · C(( fy(u)). Then f is a preference
independent cost share rule. Assume further that C is convex, and that the produc-
tion range, Y f , is convex. Then the agents’ classical and quasi-linear preferences
induce single-peaked preferences on Y f , and the peaks are agents’ demands for
the public good. If the public good production level is determined by “the median
voter scheme”, that is, if the public good is produced as much as the median of the
demands, then f is group strategy-proof.

Since equal cost share rules are considered to be based on the ability to pay
doctrine in the case that all agents have the equal ability to pay, Moulin’s (1994)
result supports the ability to pay principle from the view point of strategic behav-
ior. Serizawa (1996, 1999) and Ohseto (1997) and Ded and Ohseto (1999) etc.
succeeded in strengthening his result by using strategy-proofness. However, some

10 See Musgrave (1985) for the details of the literature.
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additional conditions such as symmetry, budget-balancing, individual rationality,
nonbossiness, etc. are still required to obtain preference independent cost share
rules. In this section, we establish that effective pairwise strategy-proofness alone
is enough to obtain preference independent cost share rules. Our result strongly
supports the ability to pay doctrine from the view point of strategic behavior. First
we show that effective strategy-proofness implies nonbossiness.

Proposition 1 Consider the public good economy with a private good and a pub-
lic good where the domain is classical, or is quasi-linear. If a rule is effectively
pairwise strategy-proof, then it is nonbossy.

Proposition 1 holds even without resource-balance11. It is a special feature of
the type of economies analyzed in this section that effective pairwise strategy-
proofness alone implies nonbossiness.

Theorem 1 Consider the public good economy with a private good and a pub-
lic good where the domain is classical, or is quasi-linear. If a rule is effectively
pairwise strategy-proof, then it is a preference independent cost share rule.

Theorem 1 implies that to be a preference independent cost share rule is a
necessary condition for effective pairwise strategy-proofness. However, to be a
preference independent cost share rule is not a sufficient condition for effective
pairwise strategy-proofness, as illustrated by Example 2 below.

Example 2 Assume that n = 3 and that C(y) = y for any y ∈ R+. Let t1 be such
that t1(y) = y/2 for any y ∈ [0, 2] and t1(y) = 1 + (y − 2)/n for any y > 2.
For each i ∈ N\{1}, let ti (y) = [y − t1(y)]/(n − 1) for any y ∈ R+. When the
level of the public good is determined similarly to Example 1,12 the rule is not even
strategy-proof.

Example 3 Assume that C, t1, and ti (y) for all i ∈ N\{1} are the same as in
Example 2. If public good is always produced as much as the demand of some
prespecified agent, for instance, if the public good is always produced as much as
agent 2’s demand, then the rule is group strategy-proof.

Whether a preference independent cost share rule satisfies strategy-proof
requirements or not depends on several factors. Examples 1, 2, and 3 imply that
the shape of the norm cost share functions, and the power of structure to decide the
level of the public good are important. It is well known that if the production range,
Y f , is convex, if the norm cost functions are all convex, and if the public good pro-
duction level is determined by the median voter scheme, then the rule is group
strategy-proof. Moulin (1980) generalizes the median voter scheme, and identifies
the class of strategy-proof schemes determining public good production levels.13

11 An allocation is resource-balanced if all endowments are used up for the production of other
goods or consumed by some agents. A rule f is resource-balanced if for any u ∈ U , f (u) is
resource-balanced.

12 The preferences of agents, j = 2, . . . , n, induce single-peaked preferences on Y f . However,
the preference on Y f induced by agent 1’s preference may have two peaks. In that case, we take
the larger one as agent 1’s demand, for example.

13 Barberà et al. (1998) also study the case where there are several public goods and the pro-
duction range is compact.
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Serizawa (1996, 1999) and Ohseto (1997) provide various sufficient conditions for
strategy-proof requirements.

Effective pairwise strategy-proofness is actually a strong condition in public
good economies. It is equivalent to group strategy-proofness on the class of the
classical preferences, as Proposition 2 below says. However, it is an open question
whether the same equivalence holds or not on the class of quasi-linear preferences.

Proposition 2 Consider the public good economy with a private good and a public
good where the domain is classical. A rule is effectively pairwise strategy-proof if
and only if it is group strategy-proof.

4 Pure exchange economies

In this section, we consider pure exchange economies, that is, economies where
there are only private goods, and there is no production. Thus, mY = 0 in this sec-
tion. The feasible set Z in this section is the set {z = (x1, . . . , xn) ∈ X1×· · ·×Xn |∑

i∈N xi ≤ ∑
i∈N ei }.

Definition A preference ui ∈ U 0 is homothetic if for any zi ∈ Zi , any ẑi ∈ Zi ,
and any λ ∈ R+,

ui (zi ) ≥ ui (̂zi ) ⇒ ui (λ · zi ) ≥ ui (λ · ẑi ).

We denote the class of homothetic preferences by U H , and call it the homothetic
domain.

Definition A preference ui ∈ U 0 is smooth if for any zi ∈ R
m++, there is a unique

vector in the unit simplex {q ∈ R
m+ : ‖q‖ = 1} that generates a hyperplane sup-

porting UC(ui , zi ) at zi .
We denote the class of smooth preferences by U M , and call it the smooth

domain.

In his pioneering article, Hurwicz (1972) established that there is no strategy-
proof, Pareto-efficient, and individually rational rule for pure exchange economies
with two agents and two goods, provided that the domain includes a sufficiently
wide class of classical preferences. However, he left open the many-agent case. By
citing the following example from Satterthwaite and Sonnenschein (1981), Zhou
(1991) later demonstrated that the results of the two-agent case may not extend to
the many-agent case.

Example 4 (Satterthwaite and Sonnenschein 1981). Suppose that there are two
goods and three agents, say, agents 1, 2, and 3. Agent 1 gets the whole endowment
if agent 3’s marginal rate of substitution at (1, 1) is greater than 1. Otherwise, agent
2 gets the whole endowment.

The rule of Example 4 is strategy-proof, Pareto-efficient, and nondictatorial,
although Zhou (1991) proved the nonexistence of such a rule in the two-agent case.
He establishes that in pure exchange economies with two agents and any finite num-
ber of goods, there is no strategy-proof, Pareto-efficient, and nondictatorial rule
on the class of classical preferences. Schummer (1997) established the same con-
clusion as Zhou (1991) on the class of classical and homothetic preferences in the
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two-agent case. Serizawa (2002) has recently shown the parallel result of Hurwicz
(1972) on the class of classical, homothetic, and smooth preferences in the case
of any finite number of agents and goods. Furthermore, Serizawa and Weymark
(2003) strengthen Serizawa’s (2002) result. They replace individual rationality by
a weaker condition of “minimum consumption guarantee”; it requires that there
should be a positive constant ε such that for any preference profile, the consumption
of every agent is at least ε distance from the origin of his consumption set.14

By employing effective pairwise strategy-proofness, we establish a new result
for pure exchange economies with any finite number of agents and goods. We
show that in pure exchange economies with any finite number of agents and goods,
there is no effectively pairwise strategy-proof, Pareto-efficient, and nondictatorial
rule on the class of classical, homothetic, and smooth preferences. When com-
pared with Hurwicz (1972), Zhou (1991), and Schummer (1997), our result can be
applied to pure exchange economies with any finite number of agents. When com-
pared with Serizawa (2002) and Serizawa and Weymark (2003), individual ratio-
nality and minimum consumption guarantee are replaced with the weaker condition
of nondictatoriality. First we show that effective pairwise strategy-proofness and
Pareto-efficiency imply nonbossiness.

Proposition 3 Consider the pure exchange economy where there are at least two
private goods and two agents, and the domain is classical, homothetic and smooth.
If a rule is effectively pairwise strategy-proof and Pareto-efficient, then it is non-
bossy.

We emphasize that in pure exchange economies, effective pairwise strategy-
proofness and nonbossiness are mathematically independent. Satterthwaite and
Sonnenschein (1981) explain that a Walrasian rule is nonbossy, but it is not even
strategy-proof. Example 5 below illustrates that pairwise strategy-proofness alone
does not imply nonbossiness in pure exchange economies.

Example 5 Consider a pure exchange economy with N = {1, 2, 3}, M = {1, 2},
and e1 = e2 = e3 = (2, 2). Assume that the domain is classical, homothetic
and smooth. Let A = {(1, 3), (2, 2), (3, 1)}. Given u ∈ U , let Bi (u) be the set of
agent i’s best elements on A . The difference between Bi (u) and ei is considered
to be agent i’s (net) demand or supply. Note that #Bi (u) = 1 or #Bi (u) = 2.15

Also note that if #Bi (u) = 2, then Bi (u) = {(1, 3), (2, 2)} or {(2, 2), (3, 1)}.
We construct the “fixed price trading between agents 1 and 2” as follows: we set
f 3(u) = e3 = (2, 2) for any u ∈ U . We fix the relative price between goods 1
and 2 to be 1 so that the trades between agents 1 and 2 are constrained to A, that
is, f (U ) ⊆ A × A × {e3}. We choose the allocation depending on the number of
agents whose Bi consist of two elements, #{i ∈ N : #Bi (u) = 2}.
Case I #B1(u) = #B2(u) = 1. “The short side principle” is employed; it says that
the goods are traded as much as the smaller side of demand or supply. For example,
if B1(u) = {(1, 3)} and B2(u) = {(3, 1)}, then f (u) = ((1, 3), (3, 1), (2, 2)). Or
if B1(u) = {(1, 3)} and B2(u) = {(2, 2)}, then f (u) = ((2, 2), (2, 2), (2, 2)).

14 To be precise, individual rationality implies minimum consumption guarantee in the case
that every agent has positive endowments of all goods. Otherwise, the two requirements are
mathematically independent.

15 Given a set D, we denote the cardinality of D by #D.



Pairwise strategy-proofness and self-enforcing manipulation 315

Case II [#B1(u) = 1&#B2(u) = 2] or [#B1(u) = 2&#B2(u) = 1]. The tie of
Bi with #Bi (u) = 2 is broken in a way to minimize the difference between supply
and demand; and then the short side principle is applied. For example, if B1(u) =
{(1, 3), (2, 2)} and B2(u) = {(3, 1)}, then f (u) = ((1, 3), (3, 1), (2, 2)). Or if
B1(u) = {(1, 3), (2, 2)} and B2(u) = {(2, 2)}, then f (u) = ((2, 2), (2, 2), (2, 2)).

Case III [#B1(u) = #B2(u) = 2]. Case III is divided into two subcases.

Subcase III-i [B1(u) = B2(u) = {(1, 3), (2, 2)}] or [B1(u) = B2(u) = {(3, 1),
(2, 2)}] or [B1(u) = {(1, 3), (2, 2)}&B2(u) = {(3, 1), (2, 2)}]. We choose f (u) =
((2, 2), (2, 2), (2, 2)) for any such preference profile u ∈ U.

Subcase III-ii [B1(u) = {(3, 1), (2, 2)}&B2(u) = {(1, 3), (2, 2)}]. In this sub-
case, we use agent 3’s preference to choose the allocation. We set f (u) = ((3, 1),
(1, 3), (2, 2)) if u3(1, 3) ≥ u3(3, 1) , and set f (u) = ((2, 2), (2, 2), (2, 2))
otherwise.

Then f is pairwise strategy-proof, and even group strategy-proof, but it is bossy
in Subcase III-ii.

Now we state the main result of this section.

Theorem 2 Consider the pure exchange economy where there are at least two
private goods and at least two agents, and the domain is classical, homothetic
and smooth. There is no effectively pairwise strategy-proof, Pareto-efficient, and
nondictatorial rule.

Corollary Consider the pure exchange economy where there are at least two pri-
vate goods and at least two agents. Let the domain U be a superset of the class of
classical, homothetic, and smooth preferences. Then there is no effectively pairwise
strategy-proof, Pareto-efficient, and nondictatorial rule on U.

Proposition 4 also follows from Theorem 2 since dictatorships are group strat-
egy-proofs.

Proposition 4 Consider the pure exchange economy where there are at least two
private goods and two agents, and the domain is classical, homothetic and smooth.
If a rule is effectively pairwise strategy-proof and Pareto-efficient, then it is group
strategy-proof.

Remember the rule of Example 4. This rule is strategy-proof and Pareto-effi-
cient, but is not effectively pairwise strategy-proof. Thus strategy-proofness and
Pareto-efficiency do not imply effective pairwise strategy-proofness. However, it
is an open question whether effective pairwise strategy-proofness alone implies
group strategy-proofness or not in pure exchange economies.

5 Allotment economies

In this section, we consider the following allotment economies. There is only one
private good that is not freely disposable; agents have single-peaked preferences;
and the total endowment of the good is distributed among agents. Thus, in this
section, m X = 1 and mY = 0, and the feasible set Z is the set {z = (x1, . . . , xn) ∈
R

n+ | ∑
i∈N xi = �}, where � is the total endowment of the private good.



316 S. Serizawa

Definition A preference ui ∈ U 0 on Zi = R+ is single-peaked if it has a unique
best element b(ui ) (the “peak” of ui ), and for any zi ∈ R+ and any ẑi ∈ R+,

[zi < ẑi ≤ b(ui ) or zi > ẑi ≥ b(ui )] �⇒ ui (̂zi ) > ui (zi ).

We denote the class of single-peaked preferences by U S, and call it the single-
peaked domain.

Throughout this section, we assume that the domain is single-peaked. Sprumont
(1991) cites several interesting economic situations, which induce allotment econ-
omies. In this type of economy, he characterizes the “uniform rule (Benassy 1982)”
defined below; he establishes that the uniform rule is the only rule that is strategy-
proof, anonymous, and Pareto-efficient. Later Ching (1994) strengthened this result
by substituting anonymity by symmetry. That is, he established that the uniform
rule is the only rule that is strategy-proof, symmetry, and Pareto-efficient. When
effective pairwise strategy-proofness is applied to allotment economies, a new char-
acterization of the uniform rule is obtained. In the characterization results above,
if effective pairwise strategy-proofness is employed instead of strategy-proofness,
then Pareto-efficiency can be replaced by respect for unanimity, a much weaker
requirement.

Definition A rule f on U = (U S)n respects unanimity if for any u ∈ U , whenever∑
i∈N b(ui ) = ∑

i∈N ei , f (u) = (b(ui ))i∈N .

We establish that the uniform rule is the only rule that is effectively pairwise
strategy-proof and symmetric, and respects unanimity. We also establish that effec-
tive pairwise strategy-proofness together with respect for unanimity imply group
strategy-proofness.

The uniform rule allocates the total endowment to the agents as follows. When
the sum of agents’ preferred levels is greater than or equal to the total endowment,
an agent gets his preferred level if that level is less than the common upper bound;
otherwise he receives the common bound; and the common bound is chosen so
as to satisfy the feasibility. When the sum of agents’ preferred levels is less than
the total endowment, the opposite principle is applied, that is, an agent gets his
preferred level if that level is more than the common lower bound; and so on.

Definition The uniform rule F is the function from U = (U S)n to Z such that for
all u ∈ U = (U S)n and all i ∈ N ,

Fi (u) =
{

min{b(ui ), λ(u)} if � ≤ ∑
i∈N b(u j )

max{b(ui ), λ(u)} otherwise,

where λ(u) solves
∑

i∈N Fi (u) = �.

Proposition 5 If a rule in an allotment economy is effectively pairwise strategy-
proof and respects unanimity, then it is nonbossy.

Remember Example 5 of fixed price trading in Sect. 4. As Sprumont (1991)
discussed, fixed price trading induces allotment economies. Since the trades of
agents are constrained to A, the rule in the example does not respect unanimity.
Thus, Example 5 also demonstrates that effective pairwise strategy-proofness alone
does not imply nonbossiness in allotment economies.
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Proposition 6 If a rule in an allotment economy is effectively pairwise strategy-
proof and respects unanimity, then it is Pareto-efficient.

Theorem 3 below follows from Proposition 6, and Sprumont (1992) and Ching
(1994).

Theorem 3 A rule in an allotment economy is effectively pairwise strategy-proof
and symmetric, and respects unanimity if and only if it is the uniform rule.

It is obvious that the “only if” Part of Theorem 3 does not hold when any
of the three requirements of effective pairwise strategy-proofness, symmetry, and
respect for unanimity is dropped. The “proportional rule” defined below satisfies
symmetry and respect for unanimity, but not effective pairwise strategy-proofness.
The “queuing rule” defined below satisfies pairwise strategy-proofness and respect
for unanimity, but not symmetry. The “equal distribution rule” satisfies pairwise
strategy-proofness and symmetry, but not respect for unanimity. However, it is an
open question whether the uniform rule is the unique rule that satisfies individual
strategy-proofness, symmetry, and respect for unanimity.

Definition The proportional rule P is the function from U = (U S)n to Z such
that for all u ∈ U = (U S)n and all i ∈ N , Pi (u) = (� · b(ui ))/(

∑
j∈N b(u j )).

Definition The queuing rule Q is the function from U = (U S)n to Z such that
there is a permutation π of N and for all u ∈ U = (U S)n ,

Qπ(1)(u) =Argmax{uπ(1)(z0) : z0 ∈ [0,�]},
Qπ(2)(u) =Argmax{uπ(2)(z0) : z0 ∈ [0, � − Qπ(1)(u)]},
Qπ(3)(u) =Argmax{uπ(3)(z0) : z0 ∈ [0,� − Qπ(1)(u) − Qπ(2)(u)]},
...

Qπ(n)(u) = � − ∑ j=n−1
j=1 Qπ( j)(u).

Definition The equal distribution rule E is the function from U = (U S)n to Z
such that for all u ∈ U = (U S)n and all i ∈ N , Ei (u) = �/n.

Proposition 7 If a rule in an allotment economy is effectively pairwise strategy-
proof and respects unanimity, then it is group strategy-proof.

Strategy-proofness and respect for unanimity do not imply group strategy-
proofness, as Example 6 shows.

Example 6 Let N = {1, 2, 3}. The following rule f is a variant of the queuing
rule. Let u ∈ U be given. f 1(u) = b(u1). If u1(�) > u1(0), then f 2(u) =
Arg max{u2(z0) : z0 ∈ [0,� − f 1(u)]} and f 3(u) = � − f 1(u) − f 2(u).
If u1(�) ≤ u1(0), then f 3(u) =Argmax{u3(z0) : z0 ∈ [0,� − f 1(u)]} and
f 2(u) = � − f 1(u) − f 3(u). Then f is not effectively pairwise strategy-proof or
group strategy-proof, but it is strategy-proof and respects unanimity.

6 Proofs

In this section, we prove the results in Sects. 3, 4, and 5. Subsection 6.1 introduces
a well-known notion of “Maskin Monotonic Transformation (Maskin 1999),” and
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shows the basic results of effective pairwise strategy-proofness. Subsections 6.2,
6.3, and 6.4 are, respectively, devoted to the proofs of the results in Sects. 3, 4,
and 5.

6.1 Preliminary results

Given zi ∈ Zi and ui ∈ U 0, let the upper contour set UC(ui , zi ) = {̂zi ∈
Zi |ui (̂zi ) ≥ ui (zi )}, and the lower contour set LC(ui , zi ) = {̂zi ∈ Zi |ui (̂zi ) ≤
ui (zi )}. We say that ûi ∈ U 0 is a Maskin Monotonic Transformation16 of ui at zi if
(i) UC(ûi , zi ) ⊆ UC(ui , zi ) holds, and (ii) ẑi ∈ UC(ûi , zi ) and ẑi �= zi together
imply that ui (̂zi ) > ui (zi ). Let M(ui , zi ) be the set of Maskin Monotonic Transfor-
mations of ui at zi . Given ui ∈ U 0 and z ∈ Z , we write UC(ui , z) = UC(ui , zi )
and M(ui , z) = M(ui , zi ) when it simplifies notation without creating confusion.
Fact 1 below is a well-known result.17

Fact 1 Let f be a strategy-proof rule. For any u ∈ U, any i ∈ N, and any ûi ∈
M(ui , f (u)), f i (ûi , u−i ) = f i (u).

Lemma 1.1 Let f be an effectively pairwise strategy-proof rule. Let u ∈ U, i ∈ N ,
and ûi ∈ Ui be such that ui ( f i (ûi , u−i )) = ui ( f i (u)) and ûi ( f i (ûi , u−i )) =
ûi ( f i (u)). Then for any j �= i, u j ( f j (ûi , u−i )) = u j ( f j (u)).

Proof of Lemma 1.1 Let j �= i . First, we prove u j ( f j (ûi , u−i )) ≤ u j ( f j (u)).
Suppose u j ( f j (ûi , u−i )) > u j ( f j (u)). Then (ûi , u j ) is a self-enforcing manip-
ulation of the pair N ′ = {i, j} at the preference profile u. To see this, note that if
it is not, Condition (iii) or (iv) of self-enforcing manipulation must be violated. If
Condition (iii) is violated, ui ( f i (̃ui , u−i )) > ui ( f i (ûi , u−i )) for some ũi ∈ Ui .
However, since ui ( f i (ûi , u−i )) = ui ( f i (u)), this contradicts the individual strat-
egy-proofness for agent i . If Condition (iv) is violated, u j ( f j (̃u j , ûi , u−N ′

)) >
u j ( f j (ûi , u−i )) for some ũ j ∈ U j . This also contradicts individual strategy-proof-
ness for agent j . Therefore, u j ( f j (ûi , u−i )) ≤ u j ( f j (u)).

If u j ( f j (ûi , u−i )) < u j ( f j (u)), by the same way as above, we can show
that (ui , u j ) is a self-enforcing manipulation of the pair N ′ = {i, j} at the pref-
erence profile (ûi , u−i ), which is a contradiction. Therefore, u j ( f j (ûi , u−i )) ≥
u j ( f j (u)). ��

Lemma 1.2 below directly follows from Lemma 1.1.

Lemma 1.2 Let f be an effectively pairwise strategy-proof rule. Let u ∈ U,
i ∈ N , and ûi ∈ Ui be such that f i (ûi , u−i ) = f i (u). Then, for any j �=
i, u j ( f j (ûi , u−i )) = u j ( f j (u)).

Lemma 1.3 below follows from Fact 1 and Lemma 1.2.

Lemma 1.3 Let f be an effectively pairwise strategy-proof rule. For any u ∈ U,
any i ∈ N, any ûi ∈ M(ui , f (u)), and any j �= i, u j ( f j (ûi , u−i )) = u j ( f j (u)).

16 To be precise, this is the definition of what is called “Strictly Maskin Monotonic Transfor-
mation”. Here, we call this notion “Maskin Monotonic Transformation” for short.

17 See, for example, Zhou (1991), Barberà and Jackson (1995) etc.
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Proof of Lemma 1.3 Let u ∈ U , i ∈ N , ûi ∈ M(ui , f (u)), and j �= i . Since
f i (ûi , u−i ) = f i (u) by Fact 1, Lemma 1.2 implies u j ( f j (ûi , u−i )) = u j

( f j (u)) . ��

6.2 Proofs of Results in Sect. 3

In this subsection, we prove the results in Sect. 3.

Proof of Proposition 1. Let f be an effectively pairwise strategy-proof rule, and
let U = U 1 × · · · × U n be the domain. The following argument holds whether
U is classical or U is quasi-linear. Let u ∈ U , i ∈ N , and ûi ∈ Ui be such
that f i (u) = f i (ûi , u−i ). We want to show that f −i (u) = f −i (ûi , u−i ). Suppose
f −i (u) �= f −i (ûi , u−i ). Since f i (u) = f i (ûi , u−i ) implies fy(u) = fy(ûi , u−i ),
there is j ∈ N such that f j (u) �= f j (ûi , u−i ). If f j (u) < f j (ûi , u−i ), then
u j ( f (u)) < u j ( f (ûi , u−i ). If f j (u) > f j (ûi , u−i ), then u j ( f (u)) > u j ( f (ûi ,

u−i ). This contradicts Lemma 1.2. ��
Proof of Theorem 1 The following argument holds whether the domain U is clas-
sical, or U is quasi-linear. Suppose that a rule f is not a preference independent
cost share rule. Then there are u ∈ U and û ∈ U such that fy(u) = fy (̂u) but
fi (u) �= fi (̂u) for some i ∈ N . Since fy(u) = fy (̂u), for each agent j ∈ N , there
is ũ j ∈ M(u j , f (u)) ∩ M (̂u j , f (̂u)). By Fact 1 and nonbossiness (Proposition 1),
we have f (u) = f (̃u) = f (̂u), which is a contradiction. ��
Proof of Proposition 2 Since the “if” part is trivial, we show only the “only if”
part. Let f be an effectively pairwise strategy-proof rule. Suppose that f is not
group strategy-proof. We derive a contradiction. Note that there are u ∈ N , N ′ =
C1 ∪ C2 ⊆ N , and ûN ′ ∈ U N ′

such that

(1) for any i ∈ C1, ui ( f (̂uN ′
, u−N ′

)) = ui ( f (u));
(2) for any i ∈ C2, ui ( f (̂uN ′

, u−N ′
)) > ui ( f (u)); and

(3) C2 �= ∅.

Let z = f (u) and ẑ = f (̂uN ′
, u−N ′

). Since the domain is classical, by (2), for each
i ∈ C2, there is ũi ∈ M(ui , z) ∩ M (̂ui , ẑ). Then, since z = f (u), by applying
Fact 1 successively for agents in C2 and nonbossiness (Proposition 1), we have (4)
f (uC1, ũC2 , u−N ′

) = z. Similarly, we have (5) f (̂uC1, ũC2 , u−N ′
) = ẑ. If C1 = ∅,

since (2) and (3) imply ẑ �= z, we already have a contradiction. Thus we assume
C1 �= ∅. Without loss of generality, let C1 = {1, . . . , c}.

Note that since the domain is classical, given ε > 0, there is ũ1
ε ∈ M (̂u1, ẑ1)∩

M(u1, ẑ1) such that

for all z1′ ∈ Z1,

(6) z1′ ∈ UC (̃u1
ε, z1) &

∥
∥z1′ − ẑ1

∥
∥ > ε & z1′ �= z1

⇒ u1(z1′) > u1(z1).

Figure 1 below illustrates the preference ũ1
ε . Note that by (1), ũ1

ε ∈ M(u1, ẑ1)

implies that (7) ũ1
ε (̂z

1) > ũ1
ε(z

1′) for any z1′ ∈ LC(u1, z1)\{̂z1}.
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Fig. 1 Illustration of ũ1
ε in the Proof of Theorem 1

In this paragraph, we claim that for some ε > 0, f 1(̃u1
ε, u{2,...,c}, ũC2 , u−N ′

) =
z1 or f 1(̃u1

ε, u{2,...,c}, ũC2 , u−N ′
) = ẑ1. Suppose the contrary. Then, there is a

sequence {ε(k)}k=∞
k=1 such that (8) ε(k) → 0 as k → ∞; and (9) for any k,

f 1(̃u1
ε(k), u{2,...,c}, ũC2 , u−N ′

) �= z1 and f 1(̃u1
ε(k), u{2,...,c}, ũC2 , u−N ′

) �= ẑ1. Note

that by (4), strategy-proofness implies that (10) f 1(̃u1
ε(k), u{2,...,c}, ũC2 , u−N ′

) ∈
UC (̃u1

ε(k), z1) ∩ LC(u1, z1) for any k. Note further that by (6) and (8), the set

[UC (̃u1
ε(k), z1) ∩ LC(u1, z1)]\{z1} converges to {̂z1} as k → ∞. Thus, it follows

from (9) and (10) that f 1(̃u1
ε(k), u{2,...,c}, ũC2 , u−N ′

) → ẑ1 as k → ∞. Therefore,
it also follows from (7) and (9) that given k, there is K such that

ũ1
ε(k)( f 1(̃u1

ε(K ), u{2,...,c}, ũC2 , u−N ′
)) > ũ1

ε(k)( f 1(̃u1
ε(k), u{2,...,c}, ũC2 , u−N ′

)),

contradicting strategy-proofness for agent 1. Accordingly, for some ε > 0, we
have f (̃u1

ε, u{2,...,c}, ũC2 , u−N ′
) = z1 or f 1(̃u1

ε, u{2,...,c}, ũC2 , u−N ′
) = ẑ1.

Let ε1 > 0 be such that f 1(̃u1
ε1

, u{2,...,c}, ũC2 , u−N ′
) = z1 or f 1(̃u1

ε1
, u{2,...,c},

ũC2 , u−N ′
) = ẑ1. If f 1(̃u1

ε1
, u{2,...,c}, ũC2 , u−N ′

) = ẑ1, then by Theorem 1, f (̃u1
ε1

,

u{2,...,c}, ũC2 , u−N ′
) = ẑ. By (1), (2), (4), and (5), (̃u1

ε1
, ũc+1) is a self-forcing

manipulation by the pair of agents 1 and (c + 1) at the profile (uC1, ũC2 , u−N ′
).18

18 To see that (̃u1
ε1

, ũc+1) is a self-forcing manipulation, note that Conditions (i) and (ii) of the
self-forcing manipulation follow from (1), (2), (3), and (4). Conditions (iii) and (iv) follow from
strategy-proofness.
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This contradicts effective pairwise strategy-proofness. Thus f 1(̃u1
ε1

, u{2,...,c},
ũC2 , u−N ′

) = z1, and so by Theorem 1, we have f (̃u1
ε1

, u{2,...,c}, ũC2 , u−N ′
) = z.

By choosing εi and ũi
εi

similarly for i = 2, . . . , c, we obtain f (̃uC1
ε , ũC2 ,

u−N ′
) = z, where ũC1

ε = (̃u1
ε1

, . . . , ũc
εc

). On the other hand, since ũi
εi

∈ M (̂ui , ẑi )
for each i ∈ C1, it follows from (5), Fact 1, and nonbossiness (Proposition 1) that
f (̃uC1

ε , ũC2 , u−N ′
) = ẑ. This is a contradiction. Hence, f is group strategy-proof.

��

6.3 Proofs of Results in Sect. 4

In this subsection, we prove the results in Sect. 4.

Proof of Proposition 3 Suppose the contrary. Then without loss of generality, we
may assume that there are u ∈ U and û1 ∈ U 1 such that f 1(û1, u−1) = f 1(u)
and f 2(û1, u−1) �= f 2(u). Let f (u) = z and f (ûi , u−i ) = ẑ . Lemma 1.2 implies
that ui (ẑ) = ui (z) for any i ∈ N . Let z̃ = (z + ẑ)/2. Then since preferences are
strictly quasi-concave, it follows that u2(z̃) > u2(z) and u j (z̃) ≥ u j (z) for j ∈ N .
Because the convexity of Z implies z̃ ∈ Z , this contradicts Pareto-efficiency. ��

We introduce several lemmas before we prove Theorem 2.
Lemma 3.1 below says that if a rule is Pareto-efficient and if two agents have

identical preferences that are classical and homothetic, then the rule assigns them
the proportional bundles. This Lemma is based on the property of classical and
homothetic preference that the marginal rate of substitutions at two consumption
bundles coincide if and only if the two bundles are proportional. See Schummer
(1997) for the proof of the lemma.

Lemma 3.1 Let f be a Pareto-efficient rule, and u0 ∈ U C ∩ U H . Let i ∈ N,
j ∈ N , and u ∈ U be such that ui = u j = u0. If f i (u) �= 0, then f j (u) is
proportional to f i (u), that is, there is λ ∈ R+ such that f j (u) = λ · f i (u).

Lemma 3.2 below says that if one agent, say agent 1, has classical preferences,
and the other agents all have the common preference that is also classical and
homothetic, then the locus of the Pareto-efficient allocations looks like a contract
curve of a two-agent economy from the viewpoint of agent 1. To treat the fea-
sible sets and the sets of Pareto-efficient allocations of economies with different
number of agents, we introduce new notations. Given � ∈ R

m+ and n′ ≤ n, let

Z(n′,�) = {z ∈ R
m·n′
+ | ∑n′

i=1 zi = �}; that is, Z(n′, �) is the feasible set of
the pure exchange economy with the resource bundle � and n′ agents. Given � ∈
R

m+, n′ ≤ n and a preference profile u ∈ (U 0)n′
for n′ of the agents, denote the

set of Pareto-efficient allocations for u on Z(n′, �) by P(u, Z(n′, �)), and the
projection of P(u, Z(n′, �)) on Zi by Pi (u, Z(n′, �)). Note that the feasible set
Z specified in Sect. 4 coincides with Z(n,

∑
i∈N ei ). See Serizawa (2000) for the

proof.

Lemma 3.2 Let � ∈ Rm+ , u0 ∈ U H , i ∈ N , and ui ∈ U C . Then Pi (ui , u0,

Z(2,�)) = Pi (ui , u0, . . . , u0, Z(n, �)).
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Lemma 3.3 is a well-known result in the literature. For example, it is called
“diagonality” in Barberà and Jackson (1995). Thus, we omit its proof.

Lemma 3.3 Let f be a strategy-proof rule on U. Let u ∈ U, and z = f (u).
Let i ∈ N and ẑ ∈ Z be such that ẑi < zi or ẑi > zi . Then for any ûi ∈ Ui ,
ẑ �= f (̂ui , u−i ).

Lemma 3.4 Let f be an effectively pairwise strategy-proof and Pareto-efficient
rule on U. Let u0 ∈ U C ∩ U H , u1 ∈ U C ∩ U H , and z = f (u1, u0, . . . , u0). Let
û0 ∈ M(u0,

∑i=n
i=2 zi ) ∩U C ∩ U H . Then z = f (u1, û0, . . . , û0).

Proof It follows from Lemma 3.1 that there is λ = (λ2, . . . , λn) ∈ R
n−1+ such

that zi = λi · ∑ j=n
j=2 z j for any i ∈ N\{1}. Thus since u0 and û0 are homo-

thetic, for any i �= 1, û0 ∈ M(u0, zi ). Since û0 ∈ M(u0, z2), Fact 1 implies
that z2 = f 2(u1, û0, u0, . . . , u0), and so nonbossiness (Proposition 3) implies
z = f (u1, û0, u0, . . . , u0). Repeating this argument for i = 3, . . . , n, we get the
result that z = f (u1, û0, . . . , û0). ��

In the rest of the subsection, � denotes the total endowment, that is, � =∑
i∈N ei .

Lemma 3.5 Let f be an effectively pairwise strategy-proof and Pareto-efficient
rule on U. Let u0 ∈ U C ∩ U H and û0 ∈ U C ∩ U H . Let z = f (u0, . . . , u0) and
ẑ = f (̂u0, . . . , û0). Then ẑ = z.

Proof By contradiction, suppose that ẑ �= z. Note that by Lemma 3.1 and Pa-
reto-efficiency, there are λ = (λ1, . . . , λn) ∈ R

n+ and λ̂ = (̂λ1, . . . , λ̂n) ∈ R
n+

such that z = (λ1�, . . . , λn�) and ẑ = (̂λ1�, . . . , λ̂n�). Also note that there
is ũ0 ∈ U C ∩ U H such that ũ0 ∈ M(u0, �) ∩ M (̂u0, �). Then for any i ∈ N ,
ũ0 ∈ M(u0, zi ) ∩ M (̂u0, ẑi ). By successively applying Fact 1 and nonbossiness
(Proposition 3), we have the result that z = f (̃u0, . . . , ũ0) and ẑ = f (̃u0, . . . , ũ0).
This is a contradiction. ��
Lemma 3.6 Let f be an effectively pairwise strategy-proof, Pareto-efficient, and
nondictatorial rule on U. There is d ∈ Z such that d = (λ1�, . . . , λn�) for
some λ = (λ1, . . . , λn) ∈ [0, 1)n, and d = f (u0, . . . , u0) for any preference
u0 ∈ U C ∩ U H .

Proof It follows from Lemma 3.5. that there is d ∈ Z such that d = (λ1�, . . . ,
λn�) for some λ = (λ1, . . . , λn) ∈ R

n+, and d = f (u0, . . . , u0) for any preference
u0 ∈ U C ∩ U H . Due to the feasibility constraint, for any i ∈ N , λi ∈ [0, 1]. Thus
we have to only show that for any i ∈ N , λi �= 1.

By contradiction, suppose that for some i ∈ N , λi = 1. Without loss of gen-
erality, let i = 1. We claim that agent 1 is a dictator, that is, for any u ∈ U,
f (u) = (�, 0, . . . , 0), where � = ∑n

i=1 ei . Let u ∈ U. Let u0 ∈ U C ∩ U H , and
û = (u0, . . . u0). Note that f (̂u) = (�, 0, . . . , 0). Strategy-proofness for agent
1 implies that f 1(u1, û−1) = �. For otherwise, u1( f (̂u)) > u1( f (u1, û−1)).
Thus f (u1, û−1) = (�, 0, . . . , 0). Then strategy-proofness for agent 2 implies that
f 2(u1, u2, û−{1,2}) = 0. For otherwise, û2( f (u1, u2, û−{1,2})) > û2( f (u1, û−1)).
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By nonbossiness (Proposition 3), we have f (u1, u2, û−{1,2}) = (�, 0, . . . , 0).
Repeating this argument for j = 3, . . . , n, we get the result that f (u) =
(�, 0, . . . , 0). This is a contradiction to nondictatorship. ��

Fact 2 below says that for any classical, homothetic, and smooth preference u0

and any consumption bundle z0 in the interior of the consumption set, there exists
a CES type preference û0 that has the same rate of substitution as u0 at z0 and that
is also a Maskin Monotonic Transformation of u0.

Fact 2 Let u0 be a classical, homothetic, and smooth preference, and let a ∈ Rm++
and z0 ∈ Rm++. Given ρ ∈ (−∞, 1) and x ∈ Rm+ , let û0(x; ρ) = A−1/ρ ·[∑l∈M al ·
(z0

l )
1−ρ · (xl)

ρ]1/ρ , where A = ∑
l∈M al · (z0

l ). Then for any ρ ∈ (−∞, 1),

the function û0(·; ρ) on Rm+ is a classical, homothetic, and smooth preference. If
al = [∂u0(z0)/∂xl ] · A for each l ∈ M, then the following holds.

(i) ∂ û0(z0; ρ)/∂xl = ∂u0(z0)/∂xl for any l ∈ M.
(ii) There is ρ0 ∈ (−∞, 1) such that for any ρ ∈ (−∞, ρ0), û0(·; ρ) ∈

M(u0, z0).

Proof of Theorem 2 Let f be an effectively pairwise strategy-proof, Pareto-effi-
cient, and non dictatorial rule. We apply the above Lemmas to derive a contradic-
tion. Let d = (d1, , . . . , dn) = (λ1�, . . . , λn�) be the one specified in Lemma
3.6. Since λi ∈ [0, 1) for any i ∈ N , it follows that there is j ∈ N such that
λ j ∈ (0, 1). Without loss of generality, let j = 1. The basic structure of the rest
of the proof is similar to that of the theorem of Schummer (1997) mentioned in
Sect. 4, which establishes the same nonexistence result in two-agent pure exchange
economies.

Let u0(x1, . . . , xn) = x1×· · ·×xn, u1(x1, . . . , xn) = (x1)
2×x2×· · ·×xn, and

z = f (u1, u0, . . . , u0). Since d = f (u0, u0, . . . , u0), by Lemma 3.3, it is not the
case that z1 < d1 or that z1 > d1. Since λ1 ∈ (0, 1) and since d1 = λ1 ·�, z is off
diagonal, and z1 ∈ R

m++. Thus there is p ∈ R
m++ such that p · (z1 −d1) < 0. Since

z1 = �−∑i=n
i=2 zi and d1 = �−∑i=n

i=2 di , we have p · (∑i=n
i=2 di −∑i=n

i=2 zi ) < 0.

Given σ ∈ (0, 1) and x ∈ R
m+, let û1(x) = [∑l∈M pl · (z1

l )
1−σ · (xl)

σ ]1/σ . Note
that for any x ∈ [z1, �], the vector q = (pl · (z1

l )
1−σ · (xl)

σ−1)l∈M generates
a hyperplane supporting UC (̂u1, x) at x . As a special case, p generates a hyper-
plane supporting UC (̂u1, z1) at z1. Thus since p · (z1 − d1) < 0, there is σ
close to 1 such that û1(d) > û1(z1). Let σ be so chosen. Given ρ ∈ (−∞, 1),

let û0(·; ρ) be the preference specified in Fact 2 such that z0 = ∑i=n
i=2 zi . By

Lemma 3.4, f (u1, û0(·; ρ), . . . , û0(·; ρ)) = z for any ρ < ρ0, where ρ0 is spec-
ified in Fact 2. Note that as ρ −→ −∞, P1(̂u1, û0(·; ρ), Z(2,�)) ∩ UC (̂u1, z1)
converges to [z1, �]. Also note that f (̂u0(·; ρ), û0(·; ρ), . . . , û0(·; ρ)) = d for
any ρ, so that û1( f (̂u1, û0(·; ρ), . . . , û0(·; ρ))) ≥ û1(d) > û1(z) for any ρ.
Thus it follows from Pareto-efficiency and strategy-proofness that there is ρ1 such
that for any ρ < ρ1 , u1( f (̂u1, û0(·; ρ), . . . , u0(·; ρ))) > u1(z). Therefore, for
ρ < min{ρ0, ρ1}, u1( f (̂u1, û0(·; ρ), . . . , û0(·; ρ))) > u1( f (u1, û0(·; ρ), . . . , û0

(·; ρ))). This contradicts strategy-proofness. ��
Proof of Corollary Suppose that there is an effectively pairwise strategy-
proof, Pareto-efficient, and nondictatorial rule f on U ⊇ (U C ∩ U H )n . Let
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Û = (U C ∩U H )n , and let f̂ be the restriction of f to Û . Since f is strategy-proof
and Pareto-efficient, f̂ is also strategy-proof and Pareto-efficient on Û . Thus, by
Theorem 2, f̂ is dictatorial. Without loss of generality, we may assume that agent
1 is a dictator on Û , that is, for any u ∈ Û , f̂ (u) = f (u) = (�, 0, . . . , 0).
We claim that agent 1 is a dictator on the whole U , that is, for any u ∈ U,
f (u) = (�, 0, . . . , 0).

Let u ∈ U , and û ∈ Û . Since f (̂u) = (�, 0, . . . , 0), strategy-proofness for
agent 1 implies that f 1(u1, û−1) = �. For otherwise, u1( f (̂u)) > u1( f (u1, û−1)).
Thus f (u1, û−1) = (�, 0, . . . , 0). Then strategy-proofness for agent 2 implies that
f 2(u1, u2, û−{1,2}) = 0. For otherwise, û2( f (u1, u2, û−{1,2})) > û2( f (u1, û−1)).
By nonbossiness (Proposition 3), we have f (u1, u2, û−{1,2}) = (�, 0, . . . , 0).
Repeating this argument for j = 3, . . . , n, we get the result that f (u) =
(�, 0, . . . , 0). This is a contradiction to nondictatorship. ��

6.4 Proofs of Results in Sect. 5

In this subsection, we prove the results in Sect. 5. First, we introduce a useful nota-
tion in allotment economies. Let Z0 = [0,�]. Given a single-peaked preference
u0 ∈ U S and z0 ∈ Z0\{b(u0)}, there is at most one element ẑ0 of Z0\{z0} such
that u0(̂z0) = u0(z0), and we denote that element by e(u0, z0) if it exists. The
key condition of the proofs of this subsection is also nonbossiness. Lemmas 4.1
and 4.2 below together explain what will happen if a rule is effectively pairwise
strategy-proof but not nonbossy. These two lemmas will be employed to establish
nonbossiness in Proposition 5.

Lemma 4.1 Let f be an effectively pairwise strategy-proof rule. Let u ∈ U, i ∈ N,
and ûi ∈ U S be such that ui ( f i (ûi , u−i )) = ui ( f i (u)) and ûi ( f i (ûi , u−i )) =
ûi ( f i (u)).Denote D = { j ∈ N | f j (ûi , u−i ) �= f j (u)}and D′ = { j ∈ N | f j (u) =
b(u j )}. Then (i), (ii), (iii), and (iv) below hold.

(i) u j ( f j (ûi , u−i )) = u j ( f j (u)) for any j ∈ D, and f j (ûi , u−i ) = f j (u) for
any j ∈ D′.

(ii) If f −i (ûi , u−i ) �= f −i (u), then D �= ∅, and
∑

j∈D f j (ûi , u−i ) =
∑

j∈D f j (u).
(iii) D ∩ D′ = ∅.
(iv) e(u j , f j (u)) exists for any j ∈ D, and

∑
j∈D e(u j , f j (u)) = ∑

j∈D f j (u).

The condition (i) of Lemma 4.1 follows from Lemma 1.1. The condition (ii)
follows directly from the definition of D and resource-balance. Condition (iii) fol-
lows from the condition (i) and the definition of D. Condition (iv) follows from
conditions (i) and (ii).

Lemma 4.2 Let f be an effectively pairwise strategy-proof rule. Let u ∈ U, i ∈ N ,
and ûi ∈ U S be such that f i (u) = f i (ûi , u−i ) and f −i (u) �= f −i (ûi , u−i ). Then
for some preference profile ũ, there are C ⊆ N and C ′ ⊆ N such that

(i) C ∩ C ′ = ∅, C ∪ C ′ = N, C �= ∅,
(ii) C ′ = { j ∈ N |b(ũ j ) = f j (ũ)}, and

(iii) e(ũ j , f j (ũ)) exists for any j ∈ C, and
∑

j∈C e(ũ j , f j (ũ)) = ∑
j∈C f j (ũ).
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Proof of Lemma 4.2 We will construct C, C ′, and ũ by means of an algorithm.
Our algorithm consists of an operation, and Cases 0, 1, 2, 3, and 4 defined below.

Let D = { j ∈ N | f j (ûi , u−i ) �= f j (u)} and D′ = { j ∈ N | f j (u) =
b(u j )}. By f i (u) = f i (ûi , u−i ), we have ui ( f i (ûi , u−i )) = ui ( f i (u)) and
ûi ( f i (ûi , u−i )) = ûi ( f i (u)). Therefore, it follows from Lemma 4.1 and f −i (u) �=
f −i (ûi , u−i ) that D ∩ D′ = ∅, D �= ∅, e(u j , f j (u)) exists for any j ∈ D, and∑

k∈D e(uk, f k(u)) = ∑
k∈D f k(u). If N = D ∪ D′, then we set C to be D, C ′ to

be D′, and ũ to be u; and the proof is complete. If N\(D ∪ D′) �= ∅, then we are
now in Case 0 below.

Case 0 The following conditions (i′), (ii′), and (iii′) hold for D ⊂ N and D′ ⊂ N .

(i′) D ∩ D′ = ∅, D ∪ D′ �= N , and D �= ∅.
(ii′) D′ = { j ∈ N | f j (u) = b(u j )}.

(iii′) e(u j , f j (u)) exists for any j ∈ D, and
∑

j∈D e(u j , f j (u)) = ∑
j∈D f j (u).

When we are in Case 0, we execute the operation below.
Operation: Pick an agent j from N\(D ∪ D′). Let û j ∈ U S be such that

b(û j ) = f j (u), and let D′′ = {k ∈ N | f k(û j , u− j ) �= f k(u)}.
As the result of the operation above, we have f j (û j , u− j ) = f j (u) by strat-

egy-proofness, and so j /∈ D′′. Note that one of the four possible cases below must
hold.

Case 1 : f − j (û j , u− j ) = f − j (u) and N = D′ ∪ { j} ∪ D.

Case 2 : f − j (û j , u− j ) = f − j (u) and N �= D′ ∪ { j} ∪ D.

Case 3 : f − j (û j , u− j ) �= f − j (u) and N = D′ ∪ { j} ∪ D′′.
Case 4 : f − j (û j , u− j ) �= f − j (u) and N �= D′ ∪ { j} ∪ D′′.

The discussion and the direction for each of the four cases are given below.

Case 1 It holds that f (û j , u− j ) = f (u). Thus, D′ ∪ { j} is the set of all agents
whose consumptions are equal to their peaks at the profile (û j , u− j ), e(uk, f k(û j ,
u− j )) exists for any k ∈ D, and

∑
k∈D e(uk, f k(u)) = ∑

k∈D f k(u) implies
∑

k∈D e(uk, f k(û j , u− j )) = ∑
k∈D f k(û j , u− j ). We set C to be D, C ′ to be

D′ ∪ { j}, and the preference profile ũ to be (û j , u− j ). Then, the proof is complete.

Case 2 It holds that f (û j , u− j ) = f (u). Thus, D′ ∪ { j} is the set of all agents
whose consumptions are equal to their peaks at the profile (û j , u− j ), e(uk, f k(û j ,
u− j )) exists for any k ∈ D, and

∑
k∈D e(uk, f k(u)) = ∑

k∈D f k(u) implies
∑

k∈D e(uk, f k(û j , u− j )) = ∑
k∈D f k(û j , u− j ) . We reset the notation, and let

the new D′ denote D′ ∪ { j}, and the new u denote (û j , u− j ). Then, we go back to
Case 0 above and execute the same operation as above.

Case 3 By f j (û j , u− j ) = f j (u), it holds that u j ( f j (û j , u− j )) = u j ( f j (u)) and
û j ( f j (û j , u− j )) = û j ( f j (u)). Thus by Lemma 4.1, D′′∩(D′∪{ j}) = ∅, D′′ �= ∅,
e(uk, f k(u)) exists for any k ∈ D′′, and

∑
k∈D′′ e(uk, f k(u)) = ∑

k∈D′′ f k(u). In
addition, D′ ∪ { j} is the set of all agents whose consumptions are equal to their
peaks at the profile (û j , u− j ). We set C to be D′′, C ′ to be D′ ∪ { j}, and ũ to be
the preference profile (û j , u− j ). Then, the proof is complete.
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Case 4 By f j (û j , u− j ) = f j (u), it holds that u j ( f j (û j , u− j )) = u j ( f j (u)) and
û j ( f j (û j , u− j )) = û j ( f j (u)). Thus by Lemma 4.1, D′′∩(D′∪{ j}) = ∅, D′′ �= ∅,
e(uk, f k(u)) exists for any k ∈ D′′, and

∑
k∈D′′ e(uk, f k(u)) = ∑

k∈D′′ f k(u). In
addition, D′ ∪ { j} is the set of all agents whose consumptions are equal to their
peaks at the profile (û j , u− j ). We reset the notation, and let the new D denote D′′,
the new D′ denote D′ ∪ { j}, and the new u denote (û j , u− j ). Then, we go back to
Case 0 above and execute the same operation as above.

Note that after each operation, a new agent enters D′. Thus after some finite
repetitions of the operation, it must be the case that N = D ∪ { j} ∪ D′ or N =
D′ ∪ { j} ∪ D′′, that is, Case 1 or Case 3 must hold. Hence, the constructions of C,
C ′, and ũ are completed. ��
Proof of Proposition 5 Let u ∈ U , i ∈ N , and ûi ∈ U S be such that f i (u) =
f i (ûi , u−i ). We want to show that f −i (u) = f −i (ûi , u−i ). Suppose f −i (u) �=
f −i (ûi , u−i ). By Lemma 4.2, we may assume that there are C ⊆ N and C ′ ⊆ N
such that C ∩ C ′ = ∅, C ∪ C ′ = N , C �= ∅, e(u j , f j (u)) exists for any j ∈ C ,
C ′ = { j ∈ N : b(u j ) = f j (u)}, and

∑
j∈C e(u j , f j (u)) = ∑

j∈C f j (u).

Note that C ∩ C ′ = ∅ implies that for any j ∈ C , e(u j , f j (u)) < b(u j ) <
f j (u) or e(u j , f j (u)) > b(u j ) > f j (u). Thus for each j ∈ C , there is ū j ∈ U S

such that b(ū j ) = [e(u j , f j (u)) + f j (u)]/2, and

(∗) ∀x j ∈ Z0, [ū j ( f j (u)) ≥ ū j (x j ) ⇐⇒ u j ( f j (u)) ≥ u j (x j )].
Figure 2 below illustrates the preference ū j . Since

∑
j∈C e(u j , f j (u)) =

∑
j∈C f j (u), it follows that

∑

j∈C

b(u j ) =
∑

j∈C

[e(u j , f j (u)) + f j (u)]/2

=



∑

j∈C

e(u j , f j (u)) +
∑

j∈C

f j (u)



 /2

=
∑

j∈C

f j (u).

Fig. 2 Illustration of ū j in the Proof of Proposition 5
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Without loss of generality, let C = {1, . . . , c}. We establish by induction logic
that for any k ∈ C = {1, . . . , c}, it holds that

(1) f j (uK , u−K ) = f j (u) for any j ∈ C ′, and
(2) f j (uK , u−K ) = f j (u) or f j (uK , u−K ) = e(u j , f j (u)) for any j ∈ C,

where K = {1, . . . , k} and uK = (u1, . . . , uk).

Step 1 We show (1) and (2) in the case that k = 1. Note that by (∗), strategy-proof-
ness implies that f 1(ū1, u−1) = f 1(u) or f 1(ū1, u−1) = e(u1, f 1(u)). Therefore
by (∗) again, we have u1( f 1(ū1, u−1)) = u1( f 1(u)) and ū1( f 1(ū1, u−1)) =
ū1( f 1(u)). Thus it follows from Lemma 4.1 that f j (ū1, u−1) = f j (u) or f j (ū1,
u−1) = e(u j , f j (u))) for any j ∈ C . Furthermore, since b(u j ) = f j (u) for any
j ∈ C ′, it also follows from Lemma 4.1 that f j (ū1, u−1) = b j (u) for any j ∈ C ′.

Step 2 As induction hypothesis, assume that

(1′) f j (uK ′
, u−K ′

) = f j (u) for any j ∈ C ′, and
(2′) f j (uK ′

, u−K ′
) = f j (u) or f j (uK ′

, u−K ′
) = e(u j , f j (u)) for any j ∈ C,

where K ′ = {1, . . . , k − 1} and uK ′ = (u1, . . . , uk−1).
We show (1) and (2). By (∗) and (2′), strategy-proofness implies that f k(uK ,

u−K ) = f k(u) or f k(uK , u−K ) = e(uk, f k(u)). Thus it follows from Lemma
4.1 and (2′) that f j (uK , u−K ) = f j (u) or f j (uK , u−K ) = e(u j , f j (u)) for any
j ∈ C . Furthermore, it also follows from Lemma 4.1 and (1′) that f j (uK , u−K ) =
b j (u) for any j ∈ C ′.

We have completed the induction argument. When the result (2) above is applied
to the case that k = c, it implies that f j (uC , u−C ) = f j (u) or f j (uC , u−C ) =
e(u j , f j (u)) for any j ∈ C . Since b(ū j ) = [e(u j , f j (u)) + f j (u)]/2 for any
j ∈ C , it follows that f j (ūC , u−C ) �= b(ū j ) for any j ∈ C �= ∅. However, by
C ∪ C ′ = N , we have

∑
j∈C ′ b(u j ) + ∑

j∈C b(ū j ) = ∑
j∈N f j (u) = �. This

contradicts the respect for unanimity. ��
It is a well-known property of allotment economies19 that a rule f is Pareto-

efficient if and only if for any u ∈ U,

(i)
∑

k∈N b(uk) ≥ � ⇒ [∀k ∈ N , f k(u) ≤ b(uk)], and
(ii)

∑
k∈N b(uk) ≤ � ⇒ [∀k ∈ N , f k(u) ≥ b(uk)].

We employ this property in the proofs of Propositions 6 and 7.

Proof of Proposition 6 Let f be an effectively pairwise strategy-proof rule that
respects unanimity. Suppose that f is not Pareto-efficient. We derive a contradic-
tion. We may assume that there are u ∈ U and i ∈ N such that

∑
k∈N b(uk) ≥ �

but f i (u) > b(ui ) since we can treat the opposite case symmetrically. Notice
that

∑
k∈N b(uk) ≥ � and f i (u) > b(ui ) imply that there is j ∈ N such that

f j (u) < b(u j ). Without loss of generality, let i = 1 and j = 2. Denote N ′ =
{3, . . . , n}.

19 See Sprumont (1991).
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For each k ∈ N ′, let ûk ∈ U S be such that b(̂uk) = f k(u). Then by
strategy-proofness, f 3(û3, u−3) = f 3(u). So by nonbossiness (Proposition 5),
f (û3, u−3) = f (u). Repeating this argument for k = 4, . . . , n, we get
f (u1, u2, ûN ′

)= f (u), where ûN ′ = (û3, . . . , ûN ).
Note that f 1(u)− b(u1) ≥ b(u2)− f 2(u) or f 1(u)− b(u1) ≤ b(u2)− f 2(u).

Consider the case that f 1(u) − b(u1) ≥ b(u2) − f 2(u). Let û1 ∈ U S be such that
b(̂u1) = f 1(u) − [b(u2) − f 2(u)] and û1( f 1(u)) > û1(b(u1)). Then by strat-
egy-proofness, f 1(̂u1, u2, ûN ′

) = f 1(u1, u2, ûN ′
) > b(̂u1). So by nonbossiness

(Proposition 5), f (̂u1, u2, ûN ′
) = f (u1, u2, ûN ′

) = f (u). However,

b(̂u1) + b(u2) +
∑

k∈N ′
b(̂uk) = f 1(u) + f 1(u) +

∑

k∈N ′
f k(u) = �.

This contradicts respect for unanimity. We can similarly derive a contradiction
to respect for unanimity in the case that f 1(u) − b(u1) ≤ b(u2) − f 2(u) by
using the preference û2 ∈ U S such that b(̂u2) = f 2(u) + [ f 1(u) − b(u1)] and
û2( f 2(u)) > û2(b(u1)). ��
Proof of Proposition 7 Let f be an effectively pairwise strategy-proof rule that
respects unanimity. Suppose that f is not group strategy-proof. Then there are
u ∈ U, N ′ ⊆ N , N1 ⊆ N ′, N2 ⊆ N ′, N3 ⊆ N ′, and ûN ′ ∈ U N ′

such that

(1) N1 �= ∅ and N1 ∪ N2 ∪ N3 = N ′,
(2) ui ( f (̂uN ′

, u−N ′
)) > ui ( f (u)) for any i ∈ N1,

(3) f i (̂uN ′
, u−N ′

) = f i (u) for any i ∈ N2, and
(4) f i (̂uN ′

, u−N ′
) �= f i (u), e(ui , f i (u)) exists and f i (̂uN ′

, u−N ′
) = e(ui , f i (u))

for any i ∈ N3.

Note that N1, N2, and N3 are mutually disjoint. Also note that (1) and (2) imply
f (̂uN ′

, u−N ′
) �= f (u).

For each i ∈ N1, by (2), there is ũi ∈ M(ui , f i (u)) ∩ M (̂ui , f i (̂uN ′
, u−N ′

)).
For each i ∈ N2, let ũi ∈ U S be such that b(̃ui ) = f i (̂uN ′

, u−N ′
) = f i (u). Then,

by applying Fact 1 and nonbossiness (Proposition 5) successively for agents in
N1 and N2, we have (5) f (̃uN1∪N2 , u−(N1∪N2)) = f (u). Similarly, we have (6)
f (̃uN1∪N2 , ûN3, u−N ′

) = f (̂uN ′
, u−N ′

).
Without loss of generality, we may assume that

(7)
∑

k∈N1∪N2
b(̃uk) + ∑

k∈N\(N1∪N2)
b(uk) ≥ �

since we can apply the symmetric argument to the case of the opposite inequality.
Then, Pareto-efficiency (Proposition 6), (5), and (7) together imply that f i (u) ≤
b(ui ) for any i ∈ N3. Thus, (4) implies that f i (u) < b(ui ) < e(ui , f i (u)) =
f i (̂uN ′

, u−N ′
) for any i ∈ N3. For each i ∈ N3, let ũi ∈ U S be such that b(̃ui ) =

f i (̂uN ′
, u−N ′

) = e(ui , f i (u)). Owing to (6), by applying Fact 1 and nonbos-
siness (Proposition 5) successively for agents in N3, we have f (̃uN ′

, u−N ′
) =

f (̂uN ′
, u−N ′

).
In the rest of the proof, we establish that f (̃uN ′

, u−N ′
) = f (u−N ′

), which
together with f (̃uN ′

, u−N ′
) = f (̂uN ′

, u−N ′
), contradicts f (̂uN ′

, u−N ′
) �= f (u).

Without loss of generality, let N3 = {n′, . . . , n′′}, n′ ≤ n′′.
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Fig. 3 Illustration of ūn′
in the Proof of Proposition 7

It follows from (7) and b(un′
) < f n′

(̂uN ′
, u−N ′

) = b(̃un′
) that

∑

k∈N1∪N2

b(̃uk) + b(̃un′
) +

∑

k∈N\(N1∪N2∪{n′})
b(uk) ≥ �.

Thus, Pareto-efficiency implies

f n′
(̃uN1∪N2 , ũn′

, u−(N1∪N2∪{n′})) ≤ b(̃un′
) = e(un′

, f n′
(u)).

By (4) and (5), strategy-proofness for agent n′ with the preference un′
implies

f n′
(̃uN1∪N2 , ũn′

, u−(N1∪N2∪{n′})) ≤ f n′
(̃uN1∪N2 , u−(N1∪N2)) = f n′

(u),

or f n′
(̃uN1∪N2 , ũn′

, u−(N1∪N2∪{n′})) ≥ e(un′
, f n′

(u)).

By (4) and (5), strategy-proofness for agent n′ with the preference ũn′
implies

f n′
(̃uN1∪N2 , u−(N1∪N2)) = f n′

(u)

≤ f n′
(̃uN1∪N2 , ũn′

, u−(N1∪N2∪{n′}))
≤ e(̃un′

, f n′
(u)).

Therefore, it holds that

f n′
(̃uN1∪N2 , ũn′

, u−(N1∪N2∪{n′})) = f n′
(̃uN1∪N2 , u−(N1∪N2)) = f n′

(u),

or f n′
(̃uN1∪N2 , ũn′

, u−(N1∪N2∪{n′})) = e(un′
, f n′

(u)) = f n′
(̂uN ′

, u−N ′
).

Suppose f n′
(̃uN1∪N2 , ũn′

, u−(N1∪N2∪{n′})) = f n′
(̂uN ′

, u−N ′
). We derive a con-

tradiction. Let un′ ∈ U S be such that b(un′
) < b(un′

) < b(̃un′
) and un′

( f n′
(u)) <

un′
( f n′

(̂uN ′
, u−N ′

)). Figure 3 above illustrates un′
. It follows from (7) and b(un′

) <

b(un′
) that
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∑

k∈N1∪N2

b(̃uk) + b(un′
) +

∑

k∈N\(N1∪N2∪{n′})
b(uk) ≥ �.

Thus by Pareto-efficiency,

f n′
(̃uN1∪N2 , un′

, u−(N1∪N2∪{n′})) ≤ b(un′
).

By (4) and (5), strategy-proofness for agent n′ with the preference un′
implies

f n′ (
ũN1∪N2 , un′

, u−(N1∪N2∪{n′})) ≤ f n′ (
ũN1∪N2 , u−(N1∪N2)

)
= f n′

(u),

or f n′ (
ũN1∪N2 , un′

, u−(N1∪N2∪{n′})) ≥ e
(

un′
, f n′

(u)
)

.

By (4) and (5), strategy-proofness for agent n′ with the preference un′
implies

f n′ (
ũN1∪N2 , u−(N1∪N2)

)
= f n′

(u)

≤ f n′ (
ũN1∪N2 , un′

, u−(N1∪N2∪{n′}))

≤ e(un′
, f n′

(u)).

Therefore, it holds that f n′ (
ũN1∪N2 , un′

, u−(N1∪N2∪{n′})
)

= f n′
(u). Thus

un′ (
f n′

(̃uN1∪N2, un′
, u−(N1∪N2∪{n′}))

)
< un′ (

f n′
(̃uN1∪N2, ũn′

, u−(N1∪N2∪{n′}))
)
,

contradicting strategy-proofness. Thus, it must be the case that

f n′
(̃uN1∪N2 , ũn′

, u−(N1∪N2∪{n′})) = f n′
(̃uN1∪N2 , u−(N1∪N2)) = f n′

(u).

Hence by nonbossiness (Proposition 5), we have

f (̃uN1∪N2 , ũn′
, u−(N1∪N2∪{n′})) = f (̃uN1∪N2 , u−(N1∪N2)) = f (u).

Repeating the same argument as above for agents, i = n′ + 1, . . . , n′′, we get
f (̃uN ′

, u−N ′
) = f (u−N ′

). ��

7 Concluding remark

In this article, we applied effective pairwise strategy-proofness to the three types
of economies: public goods economies, pure exchange economies, and allotment
economies. Then, new characterization results have been obtained. The implication
of effective pairwise strategy-proofness is interesting from the view point of stra-
tegic behavior. Although effective pairwise strategy-proofness is seemingly much
weaker than group strategy-proofness, this axiom characterizes many rules that are
analyzed by using different axioms in the literature. These results indicate a new
direction of the research on strategy-proof requirements. The author believes that
the application of effective pairwise strategy-proofness will also generate interest-
ing characterization results in other types of economies.
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