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Abstract In this paper, we analyze capacity manipulation games in hospital-intern
markets inspired by the real-life entry-level labor markets for young physicians who
seek residencies at hospitals. In a hospital-intern market, the matching is determined
by a centralized clearinghouse using the preferences revealed by interns and hospi-
tals and the number of vacant positions revealed by hospitals. We consider a model
in which preferences of hospitals and interns are common knowledge. Hospitals
play a capacity-reporting game. We analyze the equilibria of the game-form under
the two most widely used matching rules: hospital-optimal and intern-optimal sta-
ble rules. We show that (i) there may not be a pure strategy equilibrium in general;
and (ii) when a pure strategy equilibrium exists, every hospital weakly prefers
this equilibrium outcome to the outcome of any larger capacity profile. Finally,
we present conditions on preferences to guarantee the existence of pure strategy
equilibria.

1 Introduction

This paper examines capacity manipulation games in hospital-intern markets.
Hospital-intern markets are entry-level labor markets, where new physicians
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seek positions in hospitals as residents. Motivated by this real-life problem, Roth
(1984, 1991) demonstrated that these markets can be modeled using the two-sided
matching model of Gale and Shapley (1962).1

A hospital-intern market consists of a finite set of hospitals each with a finite
quota of positions, a finite set of interns, strict preferences of hospitals over groups
of interns and strict preferences of interns over hospitals. Each intern can work at
one hospital, while a hospital can hire as many interns as its capacity permits.2 A
matching assigns an intern at most to one hospital and assigns a hospital to a group
of interns not larger than its quota. A stable matching is defined as a matching
where (i) no hospital prefers keeping a position vacant to filling it with one of its
assignments, (ii) no intern prefers being unemployed to her assignment, and (iii)
there is no unmatched hospital-intern pair such that the intern prefers the hospital
to her assignment and the hospital prefers the intern to one of its assignments or
keeping a vacant position. A matching rule is a systematic procedure that assigns a
matching to each hospital–intern market. In the game-theoretical model, hospitals
report their preferences and capacities, and interns report their preferences to the
authority. The authority matches interns to hospitals via a matching rule using the
revealed information.

The two stable matching rules, known as hospital-optimal and intern-optimal
stable matching rules, are being used in the United States and in different regions
of the United Kingdom to match medical interns to hospitals (Roth 1984, 1991;
Roth and Peranson 1999).3 Thus, the game-theoretical model is indeed a real-world
practice. Hence, it is important to know the normative and strategic performances
of these two matching rules.

Roth (1982) and Dubins and Freedman (1981) showed that truthful preference
revelation is a dominant strategy for interns under the intern-optimal stable rule.
This result is particularly important in applications where hospitals cannot misrep-
resent their preferences. The game-theoretical hospital-intern markets can be also
used to model various real-life school admission markets.4 For example, in Turkish
college admissions market, students take standardized exams on various subjects.
In this market, preferences of colleges over students are determined using these test
scores through a publicly known formula (Balinski and Sönmez 1999). Another

1 See Roth and Sotomayor (1990) for an extensive game-theoretical treatment of two-sided
matching problems.

2 A hospital-intern market is also known as a many-to-one two-sided matching market or a
college admissions market in the literature.

3 After each physician graduates from medical school, she is required to work in a residency
position in a qualified hospital. From 1951 to 1997 the National Residency Matching Program
(NRMP) used various mechanisms based on the hospital-optimal stable rule to match hospi-
tals and interns in the United States (Roth 1984). Then, Roth and Peranson (1999) designed a
mechanism based on the intern-optimal stable rule and Roth and Vande Vate (1990) study. This
matching rule is now being used in the United States market (Roth and Peranson (1999)). Also,
Roth (1991) observed that unstable rules failed in the field to obtain stable matches in Britain.
Some were replaced by the hospital-optimal and intern-optimal rules. Matching rules based on the
hospital-optimal and intern-optimal stable rules have been used in regions of England, Scotland,
and Wales. For the centralized match, applicants submit an ordered list of hospital names and
hospitals submit the number of vacant residencies and an ordered list of applicant names to the
NRMP. Then, the NRMP uses this information to match hospitals to intern candidates using the
Roth and Peranson algorithm. In our model, the Roth and Peranson matching rule is equivalent
to the intern-optimal stable rule.

4 Hospitals represent schools and interns represent students in these applications.
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example is elementary and secondary school choice in the USA. In many school
districts, priority of each student at each school is determined by the school district
(Abdulkadiroğlu and Sönmez 2003). Schools have no control over these priorities
and they can only manipulate their capacities. Students, on the other hand, do not
have any incentives to misreport their preferences under the intern-optimal stable
matching rule.

In this paper, we consider strategic capacity manipulation by hospitals. Sönmez
(1997b) analyzed hospitals’ incentives to underreport their capacities in a hospi-
tal-intern market. He showed that there is no stable matching rule that is immune
to manipulation via underreporting capacities under the standard responsive (Roth
1985) and strict preferences. Motivated by this observations, we analyze a capacity-
reporting game where preferences of agents are common knowledge. In this game,
hospitals are the active players and reveal their capacities. A matching rule is fixed
and the outcome of the induced market is found using the revealed capacities.5 We
analyze the properties of equilibria of this game under the hospital-optimal and
intern-optimal stable matching rules.6

Using responsive and strict preferences, we show that there may not be any
pure strategy equilibrium of the capacity-reporting game. When a pure strategy
equilibrium exists, we prove that every hospital weakly prefers this equilibrium
outcome to the outcome of any capacity profile that is at least as large as the equi-
librium in every component. Finally, we consider two preference restrictions each
of which guarantees the existence of a pure strategy equilibrium. First, if every hos-
pital always prefers a larger group of acceptable interns to a smaller group, then
truthful capacity revelation is a weakly dominant strategy under the intern-opti-
mal stable rule. Moreover, there exists a pure strategy equilibrium (not necessarily
truthful capacity revelation) under the hospital-optimal rule. Second, if hospitals
have exactly the same preferences over the set of individual interns or interns have
exactly same preferences over the set of hospitals, then truthful capacity revelation
becomes a weakly dominant strategy.

The paper is organized as follows. The rest of this section provides a brief dis-
cussion of the literature on two-sided matching games. In Sect. 2, we present the
game-theoretical model for hospital-intern markets, introduce relevant concepts
for our analysis, and define our notion of capacity-reporting games. In Sect. 3, we
show that there may not be a pure strategy equilibrium in capacity-reporting games.
In Sect. 4, we discuss the welfare implications of capacity manipulation on equi-
libria. We also present a useful example for understanding characteristics of the
set of equilibria. In Sect. 5, we introduce two types of preference restrictions that
guarantee nonemptiness of the set of pure strategy equilibria in capacity-reporting
games. Section 6 concludes the paper.

5 It is informationally demanding to assume that every agent’s preferences are common knowl-
edge. One may want to analyze a capacity-revelation game where preferences are not common
knowledge. However, there are multiple ways to formulate information structures over prefer-
ences. In this paper, we adopt a common knowledge information structure in order to conduct a
benchmark study on games of capacity manipulation.

6 It is also worthwhile to know the strategic performance of the other commonly used matching
rule, hospital-optimal stable rule, under capacity manipulation.
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1.1 A brief literature review

There is an extensive literature on stable matching rules and their properties in two-
sided matching markets.7 Strategic actions by agents are one of the central interests
in the literature. Under what conditions and how can interns or hospitals benefit
from choosing their actions strategically? Such questions have direct implications
for real-life policy.

Incentives for preference manipulation have been widely studied in the litera-
ture. Dubins and Freedman (1981) show that the hospital-optimal stable matching
rule is not immune to preference manipulation in the marriage framework (i.e., for
the case when a hospital can hire only one intern). Roth (1982) shows that there is
no stable matching rule immune to preference manipulation. Alcalde and Barberà
(1994) generalize Roth’s negative result to any individually rational and Pareto-
efficient matching rule. Roth and Rothblum (1999) study preference manipulation
by interns with incomplete information about others’ preferences under the hospi-
tal-optimal stable rule. Equilibrium analysis of preference manipulation games has
been studied (generally in the marriage framework) as well. Gale and Sotomayor
(1985a,b) study preference manipulation games under the hospital-optimal sta-
ble rule in marriage markets. Alcalde (1996), Ma (1995, 1997) and Shin and Suh
(1996) characterize the equilibria of the preference reporting games induced by
stable solutions in marriage markets. Sönmez (1997a) analyzes the equilibrium
outcomes of the preference reporting games induced by Pareto-efficient and indi-
vidually rational solutions in the context of marriage problems.8

Two additional strategic issues have been examined in hospital-intern mar-
kets. One question is whether a hospital and an intern can benefit from making an
early contract prior to the centralized match. Sönmez (1999) shows that no stable
matching rule is immune to manipulation through early contracting. This is in the
same spirit as the model of unraveling in hospital-intern markets by Roth and Xing
(1994). Another question is whether a hospital can benefit from underreporting
its capacity. Sönmez (1997b) shows that there is no stable matching rule that is
immune to manipulation via underreporting capacities.9

In this paper, we further pursue Sönmez (1997b) research program on capac-
ity manipulation. We inspect the pure strategy equilibria of the capacity-reporting
games in the spirit of Gale and Sotomayor (1985a,b).

2 Hospital-intern markets and capacity-reporting games

First, we define hospital-intern markets (Gale and Shapley 1962). A hospital-intern
market is a quadruple (H, I, q, R) where

1. H = {h1, h2, . . . , hm} is a set of hospitals,
2. I = {i1, i2, . . . , in} is a set of interns,

7 See Roth and Sotomayor (1990) to have an account of the literature prior to 1990.
8 Kara and Sönmez (1996, 1997) analyze implementable matching rules in the marriage and

hospital-intern frameworks, respectively. Alcalde and Romero-Medina (2000) analyze simple
mechanisms that implement the core of hospital-intern markets.

9 This is in the same spirit as Postlewaite (1979) which studies manipulations via endowments
in exchange economies. See also Sertel (1994) and Thomson (1987a,b, 1995).
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3. q = (qh1, . . . , qhm ) is a list of hospital capacities where qh is the capacity of
hospital h,

4. R = (Rh1, . . . , Rhm , Ri1, . . . , Rin ) is a profile of preference relations where
Rh is the preference relation of hospital h and Ri is the preference relation of
intern i .

For any h ∈ H, Rh is a binary preference relation that is a linear order (or
strict preference)10 on groups of interns and staying unmatched. Formally, Rh is
defined on the members of the set X I

h ≡ X I = 2I . The preferences of hospi-
tals are responsive (Roth 1985). For any h ∈ H, its preference relation Rh is
responsive if and only if (i) for any i, j ∈ I and any J ⊆ I\{i, j}, we have
(J ∪ {i}) Rh (J ∪ { j}) ⇐⇒ {i}Rh{ j}, and (ii) for any i ∈ I and J ⊆ I\{i},
we have (J ∪ {i}) Rh J ⇐⇒ {i}Rh∅. Let Rh be the class of all such responsive
preference relations.

For any i ∈ I , Ri is a binary preference relation that is a linear order on individ-
ual hospitals and staying unmatched. Formally, Ri is defined on the members of set
XH

i ≡ XH = {{h1}, {h2}, . . . , {hm}, ∅}. Let Ri be the class of all such preference
relations. Let R = �

h∈H
Rh × �

i∈I
Ri .

Let Ph be the strict relation induced by Rh for any h ∈ H . Since Rh is a linear
order, L Ph L ′ ⇐⇒ L Rh L ′ and L �= L ′ for any L , L ′ ⊆ I . Similarly, let Pi denote
the strict relation induced by Ri for any i ∈ I . Since Ri is a linear order, {h}Pi {h′}
⇐⇒ {h}Ri {h′} and {h} �= {h′} for any h, h′ ∈ H .

Let N = H ∪ I be the set of agents. Each hospital h can hire at most qh interns
and each intern i can work at most for one hospital. Hospital h is acceptable for
intern i if and only if {h}Pi∅, i.e., intern i prefers working in the hospital h to
staying unmatched. An intern i ∈ I is acceptable for hospital h if and only if
{i}Ph∅.

A matching assigns each hospital h to at most qh interns and assigns each intern
to at most one hospital. Formally, a matching is defined as a function μ : N −→
X I ∪ XH such that11 (i) for any i ∈ I, μi ∈ XH, (ii) for any h ∈ H, μh ∈ X I with
|μh | ≤ qh, and (iii) for any i ∈ I and for any h ∈ H, μi = {h} ⇐⇒ i ∈ μh .

Note that for any agent v ∈ N , μv = ∅ means that this agent is unmatched by
matching μ. Let M(H, I, q, R) be the set of matchings of market (H, I, q, R).12

A matching μ ∈ M(H, I, q, R) is stable if and only if (i) there exists no hos-
pital h and intern i such that for some group of interns J ⊆ μh with |J | < qh,
we have (J ∪ {i}) Phμh and {h}Piμi (pair (h, i) is said to be a “blocking pair”),
and (ii) there exists no agent v such that for some agent y ∈ μv we have ∅Pv y
(agent v is said to be a “blocking agent”). Let S(H, I, q, R) denote the set of stable
matchings of market (H, I, q, R). This set is non-empty (Gale and Shapley 1962).
In many cases it is multivalued.

10 A binary relation Rv on the set X is a linear order if

1. For every x ∈ X, we have x Rvx .
2. For every x, x ′, x ′′ ∈ X such that x Rvx ′ and x ′ Rvx ′′, we have x Rvx ′′.
3. For every x, x ′ ∈ X such that x �= x ′, we have x Rvx ′ or x ′ Rvx but not both.

11 For any agent v ∈ N , μ(v) refers to the allocation of agent v in matching μ. For purposes
of notation, we will denote μ(v) by μv.

12 We will sometimes say that “agent v prefers matching μ to matching μ′” to describe μv Pvμ
′
v.
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2.1 Hospital-optimal and Intern-optimal stable matchings

In each market (H, I, q, R), there exists a stable matching that is weakly pre-
ferred to any other stable matching by every hospital (Gale and Shapley 1962).
We refer to this matching as the hospital-optimal stable matching and denote it
by μH(H, I, q, R). Every intern weakly prefers any stable matching to the hos-
pital-optimal stable matching (Roth and Sotomayor 1990). Similarly, there exists
a stable matching that is weakly preferred to any other stable matching by every
intern. We refer to this matching as the intern-optimal stable matching and denote
it by μI(H, I, q, R). Every hospital weakly prefers any stable matching to the
intern-optimal stable matching.

The hospital-proposing deferred acceptance algorithm (Gale and Shapley 1962)
can be used to find the hospital-optimal stable matching. This algorithm can be out-
lined as follows, when hospitals report capacity profile q ′:

Step 1 Each hospital h makes as many as q ′
h offers to its best acceptable interns

in Rh . Each intern i who receives at least one offer holds the best acceptable offer
and rejects the rest. The algorithm terminates if no offer is rejected. Otherwise,
hospitals skip to the next step.

...
...

Step t Each hospital h that has fewer than q ′
h held offers, and still has acceptable

interns to whom it has not proposed yet, makes offers to as many acceptable interns
as possible in order to complete the number of offers to q ′

h . Each intern i holds the
best acceptable offer among the ones she receives at this step and the one she was
holding from the previous step. She rejects the rest. The algorithm terminates if no
offer is rejected by any intern. Otherwise, hospitals skip to the next step.

When the algorithm terminates, the tentatively held offers are realized as assign-
ments.

The intern-proposing deferred acceptance algorithm of Gale and Shapley can
be used to find the intern-optimal stable matching. This algorithm can be outlined,
when hospitals report capacity q ′:

Step 1 Each intern i makes an offer to her best acceptable hospital in Ri . Each hos-
pital h that receives one or more offers holds as many as q ′

h best acceptable offers
and rejects the rest. The algorithm terminates if no offer is rejected. Otherwise,
interns skip to the next step.

...
...

Step t Each intern i whose offer was rejected at step t−1 proposes to the best
acceptable hospital to which she has not proposed before. Each hospital h holds as
many as q ′

h best acceptable offers among the ones it receives at this step and the ones
it was holding from the previous step. It rejects the rest. The algorithm terminates
if no offer is rejected by any hospital. Otherwise, interns skip to the next step.

When the algorithm terminates, the tentatively held offers are realized as assign-
ments.
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2.2 Capacity-reporting games

Let (H, I, q, R) be a hospital-intern market. Since we are interested in capacity
manipulation, we will fix H, I, and R throughout the paper. We need to define a
capacity-reporting game. A matching rule ϕ is a systematic procedure that assigns a
matching for each hospital-intern market. We consider only different capacity pos-
sibilities. An admissible capacity of each hospital h is a nonnegative integer that is
no greater than the true capacity.13 Thus, h can report q ′

h ∈ Qh = {0, 1, . . . , qh}.
Define the set of admissible capacity profiles as Q = �h∈H Qh . Let ϕH be the
matching rule such that for each q ′ ∈ Q, ϕH(q ′) = μH(H, I, q ′, R). We refer to
this rule as the hospital-optimal stable matching rule. Let ϕI be the matching rule
such that for each q ′ ∈ Q, ϕI(q ′) = μI(H, I, q ′, R). We refer to this rule as the
intern-optimal stable matching rule. As Gale and Sotomayor (1985b) focused in a
preference manipulation game, we focus on these two matching rules. These rules
have been widely used in real markets.14

In the ‘capacity-reporting game,’ each hospital h reports an admissible capacity
q ′

h, and a matching rule ϕ is used to find a matching in the induced matching market.
The preferences of agents are a common knowledge. Interns are passive players in
this setting. Hospitals are active players, and hospital h’s strategy space is Qh , that
is, the space of admissible capacities. Hospital h’s preferences over reported capac-
ities are represented as a binary relation �ϕ

h over Q such that q ′ �ϕ
h q ′′ if and only

if ϕh(q ′)Rhϕh(q ′′). A capacity-reporting game under matching rule ϕ is described
by a strategic form game (H, (Qh, �ϕ

h )h∈H ). A pure strategy (Nash) equilibrium
of (H, (Qh, �ϕ

h )h∈H ) is a strategy profile q ′ ∈ Q such that q ′ �ϕ
h (q ′′

h , q ′−h) for any
h ∈ H and any q ′′

h ∈ Qh . Note that (q ′′
h , q ′−h) ∈ Q is a strategy profile obtained

by replacing component q ′
h of profile q ′ by q ′′

h .15

3 Nonexistence of pure strategy equilibria

We will analyze pure strategy equilibria of the capacity-reporting game under the
hospital-optimal and intern-optimal stable matching rules, ϕH and ϕI, respectively.

13 Note that we could permit upward manipulation of capacities as well. In that case, we should
define the preferences of hospitals responsive relative to their capacity. Since hospitals cannot
honor extra jobs over their capacity, we can simply assume that for any hospital being matched
to any group of interns that is larger than its true capacity is worse than being unmatched (this
preference restriction can be weakened much further). Under such a preference restriction, it can
be shown that upward manipulation would be weakly dominated by truthful capacity revelation
under the intern-optimal and hospital-optimal stable rules.

14 In the British hospital-intern markets, algorithms based on both intern-optimal and hospi-
tal-optimal stable rules have been used to match interns to hospitals in different regions (Roth
1991). In the United States hospital-intern market, an algorithm based on the hospital-optimal
stable rule have been used until recently (Roth 1984). They started to use an algorithm based
on the intern-optimal stable rule in 1998 (Roth and Peranson 1999). In Turkish college admis-
sions market, the hospital-optimal stable rule is used to allocate students in college departments
(Balinski and Sönmez 1999). Recently, many entry-level professional specialty markets started
using variants of the intern-optimal stable rule for their centralized match. These markets include
clinical psychology internships in the USA and Canada, article positions with law firms in Canada,
hospital-intern markets in Scotland (Irving 1998), and various medical specialty markets.

15 Similarly, we will use the notation (q ′
G , q−G) to denote the capacity profile (q ′

G , qH\G) for
any G ⊂ H such that |G| > 1.
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The first two theorems show that pure strategy equilibria may not exist. The proofs
are based on two examples in which no pure strategy profile is an equilibrium
of the capacity-reporting games. For notational convenience, define hospital h’s
best-response correspondence under matching rule ϕ by β

ϕ
h : �h′∈H\{h}Qh′ � Qh

such that β
ϕ
h (q ′−h) = {q̃h ∈ Qh : (q̃h, q ′−h) �ϕ

h (q ′′
h , q ′−h) for any q ′′

h ∈ Qh}.

Theorem 1 The capacity-reporting game under ϕH may not have a pure strategy
equilibrium.

Proof We prove the proposition with an example. Consider the following market
(H, I, q, R) with H = {h1, h2}, I = {i1, i2, i3, i4, i5}, q1 = 3, q2 = 3, hospitals’
preferences satisfying16

{i1}Ph1{i2}Ph1{i4}Ph1{i3}Ph1{i5}Ph1∅ with {i3, i4}Ph1{i1}
{i4}Ph2{i5}Ph2{i1}Ph2{i3}Ph2{i2}Ph2∅ with {i4}Ph2{i1, i3} and {i2, i3}Ph2{i5}

and interns’ preferences are given by

{h2}Pi1{h1}Pi1∅
{h2}Pi2{h1}Pi2∅
{h2}Pi3{h1}Pi3∅
{h1}Pi4{h2}Pi4∅
{h1}Pi5{h2}Pi5∅

We give the outcome allocations of the game for each pure strategy q ′ ∈ Q:

q ′
2

1 2 3

1

(
h1 h2 ∅
{i1} {i4} i2, i3, i5

) (
h1 h2 ∅
{i1} {i4, i5} i2, i3

) (
h1 h2 ∅
{i2} {i1, i4, i5} i2, i3

)

q ′
1 2

(
h1 h2 ∅

{i1, i2} {i4} i3, i5

) (
h1 h2 ∅

{i1, i2} {i4, i5} i3

) (
h1 h2

{i2, i4} {i1, i3, i5}
)

3

(
h1 h2 ∅

{i1, i2, i4} {i5} i3

) (
h1 h2

{i2, i3, i4} {i1, i5}
) (

h1 h2
{i4, i5} {i1, i2, i3}

)

According to the specifications of hospitals’ preferences, their best-response
correspondences are:

β
ϕH

1 (1) = {3}, β
ϕH

1 (2) = {3}, β
ϕH

1 (3) = {2};
β

ϕH

2 (1) = {3}, β
ϕH

2 (2) = {2}, β
ϕH

2 (3) = {3}.
Therefore, this game has no pure strategy equilibrium. ��

16 We also impose responsiveness on hospitals’ preferences. It is easy to see that we can con-
struct such preferences. The same comment applies to the example in the proof of Theorem 2 and
Example 1.
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We discuss the above example in detail in order to understand why no pure
strategy equilibrium exists. These observations will help us to proceed especially
in identifying preference restrictions that guarantee the existence of a pure strategy
equilibrium (in Sect. 5).

First, we describe why and how a capacity manipulation improves a devia-
tor’s payoff. At (q ′

1, q ′
2) = (3, 3), hospitals h1 and h2 get assignments {i4, i5} and

{i1, i2, i3}, respectively. However, both hospitals are matched with relatively unde-
sirable interns, although each intern is matched with her favorite hospital under
this matching. If interns i1 or i2 could be swapped with interns i4 or i5, then both
hospitals would be better off. Capacity manipulation by hospital h1 makes such
a swap feasible. To see this, we can describe how the hospital-optimal stable rule
makes its assignment for (q ′

1, q ′
2) = (3, 3) by using the hospital-proposing deferred

acceptance algorithm.

Step 1 Hospitals h1 and h2 make offers to {i1, i2, i4} and {i4, i5, i1}, respectively.
Since i1 and i4 got two offers, they choose h2 and h1, respectively. Thus, the
tentative allocation is (

h1 h2
{i2, i4} {i5, i1}

)
.

Step 2 Hospitals h1 and h2 make offers to i3. Then i3 chooses h2. Thus, the tentative
allocation is (

h1 h2
{i2, i4} {i5, i1, i3}

)
.

Step 3 Hospital h1 makes an offer to i5, and she accepts h1 by rejecting h2.
(

h1 h2
{i2, i4, i5} {i1, i3}

)
.

Step 4 Hospital h2 makes an offer to i2, and she accepts h2 by rejecting h1.
(

h1 h2
{i4, i5} {i1, i3, i2}

)
.

Step 5 Hospital h1 has no other intern to make an offer to, so the algorithm termi-
nates.

At steps 3 and 4, having a vacancy, hospital h1 makes an offer to i5 and ends
up stealing her from h2. Because of this newly created vacancy, hospital h2 makes
an offer to i2 and ends up stealing her from hospital h1. Unfortunately, hospital h1
prefers i2 to i5, yet hospital h2 prefers i5 to i2. If hospital h1 had not got an extra
vacancy at the tentative matching at the end of step 2, then a welfare decreasing
swapping (for hospitals) would not have happened.17 This is exactly why h1 has
an incentive to reduce q ′

1 to 2 at (q ′
1, q ′

2) = (3, 3). Having larger capacities means
that they have the chance to make offers to many interns, which implies that interns

17 Note that interns i2 and i5 are better off by this swapping.
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have more choices. This makes interns better off, but not hospitals.18 By reducing
capacities, hospitals may be able to keep their favorite interns who prefer other
hospitals. Whenever a hospital hi has an incentive to reduce its capacity, hi is
making a deal with another hospital h j : by not stealing a favorite intern from h j ,
hi closes off h j ’s opportunity to steal hi ’s favorite intern.

Second, note that there is a best response cycle among strategy profiles: (3, 3) →
(2, 3) → (2, 2) → (3, 2) → (3, 3) → . . . As we have seen in the previous par-
agraph, at (q ′

1, q ′
2) = (3, 3), hospital h1 has an incentive to reduce q ′

1 to 2. Given
this, hospital h2 now has an incentive to reduce q ′

2 to 2. By so doing, hospital h2
loses interns i1 and i3, but it can get its most preferable intern i4. As a result, at
(q ′

1, q ′
2) = (2, 2), both hospitals get the two most preferable interns each. However,

once q ′
2 is reduced to 2, hospital h1 has an incentive to increase its capacity to 3.

Hospital h1 did not mind reducing its capacity from 3 to 2 at (q ′
1, q ′

2) = (3, 3), only
because filling all three positions was never possible as long as q ′

2 = 3. Finally,
once q ′

1 is raised to 3, hospital h2 also has an incentive to raise q ′
2 to 3. Hospital h2

reduced its capacity from 3 to 2 at (q ′
1, q ′

2) = (2, 3), only because it wanted to get
intern i4. However, after q ′

1 is raised to 3, it became impossible for hospital h2 to
get intern i4 anyway. This is why we have a cycle à la matching pennies game.

Third, related to the second point, hospitals have non-monotonic best-response
correspondences.19 This creates a best response cycle. Such a non-monotonicity
is not special to this example. With larger reported capacities, hospitals tend to get
less preferable interns unless hospitals’ preferences are positively correlated with
interns’ preferences. Thus, hospitals may reduce their reported capacities in order
to prevent welfare decreasing swapping for themselves. However, under smaller
reported capacities, a hospital may have an incentive to raise its reported capacity,
since there may be acceptable unmatched interns left in the market.

We can also observe similar properties in games under the intern-optimal stable
matching rule. As a result, we have a similar proposition for the capacity-reporting
game under ϕI.

Theorem 2 The capacity-reporting game under ϕI may not have a pure strategy
equilibrium.

Proof We prove the proposition with an example. Consider the following market
(H, I, q, R) with H = {h1, h2}, I = {i1, i2, i3, i4, i5}, q1 = 3, q2 = 2, hospitals’
preferences satisfying

{i1}Ph1{i2}Ph1{i3}Ph1{i4}Ph1{i5}Ph1∅ with {i2}Ph1{i4, i5} and {i3, i4}Ph1{i1}
{i3}Ph2{i4}Ph2{i1}Ph2{i5}Ph2{i2}Ph2∅ with {i3}Ph2{i1, i4},

and interns’ preferences are given by

18 If hospitals have no capacity limitation, then there is a unique stable matching. This is simply
because every intern receives offers from all hospitals that find her acceptable. Obviously, she
chooses her favorite hospital. See Sönmez (1996).

19 If such monotonicity is shown for all hospitals, then the game becomes an ordinary supermod-
ular game (see Milgrom and Shannon 1994), and it has a pure strategy equilibrium. Unfortunately,
it is hard to satisfy such a property in our game.
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{h2}Pi1{h1}Pi1∅
{h2}Pi2{h1}Pi2∅
{h1}Pi3{h2}Pi3∅
{h1}Pi4{h2}Pi4∅
{h1}Pi5{h2}Pi5∅.

We give the outcome allocations of the game for each pure strategy q ′ ∈ Q:

q ′
2

1 2

1

(
h1 h2 ∅
{i1} {i3} i2, i4, i5

) (
h1 h2 ∅
{i1} {i3, i4} i2, i5

)

q ′
1 2

(
h1 h2 ∅

{i1, i2} {i3} i4, i5

) (
h1 h2 ∅

{i2, i3} {i1, i4} i5

)

3

(
h1 h2 ∅

{i2, i3, i4} {i1} i5

) (
h1 h2{i3, i4, i5} {i1, i2}

)

According to the specification of hospitals’ preferences, their best-response
correspondences are:20

β
ϕI

1 (1) = {3}, β
ϕI

1 (2) = {2};
β

ϕI

2 (1) = {2}, β
ϕI

2 (2) = {1}, β
ϕI

2 (3) = {2}.
Therefore, this game has no pure strategy equilibrium. ��

As before, similar observations can be made in this example. Thus, we will
make only a brief remark on the first point: an incentive to reduce capacity. In the
example above, it is easy to see that if q ′ = (3, 2), then every intern is matched
with her most preferable hospital: in the intern-proposing deferred acceptance algo-
rithm, interns offer to their most preferable hospitals at step 1, and having enough
capacity, hospitals accept all interns. However, such a matching is not good for
hospitals. Hospitals are getting their least preferable acceptable interns. Hospitals
can do better by swapping interns. Hospital h1 can obtain intern i2 by cutting its
capacity to 2, because i5 is a more preferable intern than i2 for hospital h2. By
rejecting i5 through reducing its capacity, hospital h1 gets a chance to obtain i2.

4 Results on welfare properties of equilibria

In both examples in the previous section, we observe that when a hospital reduces
its capacity, the other hospital is better off. Although interns are not the active play-
ers in our games, their welfare is affected by capacity manipulation of hospitals.
When all the examples given above are inspected, it is straightforward to see that
at equilibrium, no intern ever benefits by capacity misreports.

This is not a coincidence. The next lemma shows that if some hospital decreases
its quota under the hospital-optimal and intern-optimal stable rules, no other hospi-
tal will be worse off and no intern will be better off . This lemma plays an important
role in proving our main result on welfare properties of the equilibria (when pure

20 Responsiveness together with {i3, i4}Ph1 {i1} implies {i2, i3}Ph1 {i1}.
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strategy equilibria exist). This lemma will be referred to as the “Capacity Lemma.”
Its proof depends on a similar result proven for one-to-one matching (or marriage)
markets.

Lemma 1 (Capacity Lemma) In capacity-reporting games under ϕH and ϕI, a
hospital’s capacity underreport makes all other hospitals weakly better off and all
interns weakly worse off.

Proof Let (H, I, q, R) be a hospital-intern market. We define the corresponding
one-to-one two-sided matching market (H c, I, qc, Rc). In the corresponding hos-
pital-intern market, every position of any hospital h is itself an agent. The set of
positions is denoted by H c. Positions of any h ∈ H are indexed from 1 to qh
and each of them has the same preferences as hospital h over the members of
X I

h = {{i1}, {i2}, . . . , {in},∅}. Formally, we denote kth position of hospital h by
hk . For any index k ∈ {1, 2, . . . , qh} and i, i ′ ∈ I , (i) {i}Pc

hk {i ′} ⇐⇒ {i}Ph{i ′},
and (ii) {i}Pc

hk ∅ ⇐⇒ {i}Ph∅.

By definition, each position has capacity 1: qc
hk = 1 for all hk ∈ H c.

The interns are still the same agents. The preference relation of intern i, Rc
i

is defined on the members of X H c

i = {{h1
1}, . . . , {hq1

1 }, . . . , {h1
m}, . . . , {hqm

m }, ∅}.
For any i ∈ I and any h, h′ ∈ H, (i) {hk}Pc

i {h′�} for any k ≤ qh and � ≤
qh′ ⇐⇒ {h}Pi {h′}, (ii) {hk}Pc

i {h�} ⇐⇒ k < �, and (iii) {hk}Pc
i ∅ for all k ≤

qh ⇐⇒{h}Pi∅. Market (H c, I, qc, Rc) is a hospital-intern market including hos-
pitals with capacity 1.

For μ ∈ M(H, I, q, R), the corresponding matching μc ∈ M(H c, I, qc, Rc)
is defined as follows:

(i) For any i ∈ I and h ∈ H , μi = {h} ⇐⇒ μc
i = {hk} for some k ∈

{1, 2, . . . , qh}.
(ii) For any h ∈ H and i ∈ I , i ∈ μh ⇐⇒ μc

hk = {i} for some k ∈
{1, 2, . . . , |μh |} and μc

h� Phμc
hk for all � ∈ {1, 2, . . . , k − 1}.

(iii) For any i ∈ I, μi = ∅ ⇐⇒ μc
i = ∅.

(iv) For any h ∈ H and for every k > |μh |, we have μc
hk = ∅.

Lemma 1 in Roth and Sotomayor (1989, p. 566) implies that a matching μ is in
S(H, I, q, R) if and only if its corresponding matching μc is in S(H c, I, qc, Rc).
By Theorem 4 in Roth and Sotomayor (1989, p. 568), we know that for any
ν, η ∈ S(H, I, q, R) if there is some h ∈ H with νh Phηh , then for all i ∈ νh
and all j ∈ ηh\νh we have {i} Ph { j}. Hence, each position of each hospital h gets
its most preferred intern in matching

(
μH(H, I, q, R)

)c
among all stable match-

ings of (H c, I, qc, Rc). This implies
(
μH(H, I, q, R)

)c
is the hospital-optimal sta-

ble matching of market (H c, I, qc, Rc): (μH(H, I, q, R)
)c = μH(H c, I, qc, Rc).

Similarly, each position h gets its least preferred intern in matching (μI(H, I, q, R))c

among all stable matchings of (H c, I, qc, Rc). This implies that
(
μI(H, I, q, R)

)c

= μI(H c, I, qc, Rc). By Proposition 2 of Gale and Sotomayor (1985b, p. 264),
decreasing the number of positions in H c does not harm any other position under
the hospital position-optimal and intern-optimal stable rules in (H c, I, qc, Rc).
By responsiveness of preferences, decreasing the capacity of a hospital does not
harm other hospitals under the hospital-optimal and intern-optimal stable rules in
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(H, I, q, R). On the other hand, again by Proposition 2 of Gale and Sotomayor
(1985b, p. 264), decreasing the number of positions in H c does not make any in-
tern better off under the hospital position-optimal and intern-optimal stable rules in
(H c, I, qc, Rc). This fact implies that decreasing the capacity of any hospital in H
does not make any intern better off under the hospital-optimal and intern-optimal
stable rules in (H, I, q, R). ��

Next, we examine the properties of pure strategy equilibria when they exist.
First, consider the following example.

Example 1 Let (H, I, q, R) be a hospital-intern market such that H = {h1, h2}
and I = {i1, i2, i3, i4}. Let q1 = 4 and q2 = 4. Hospitals’ preferences satisfy

{i1}Ph1{i3}Ph1{i2}Ph1{i4}Ph1∅ with {i1}Ph1{i2, i3, i4}

{i3}Ph2{i2}Ph2{i4}Ph2{i1}Ph2∅ with {i2}Ph2{i1, i4}
and interns’ preferences are stated as

{h2}Pi1{h1}Pi1∅
{h1}Pi2{h2}Pi2∅
{h1}Pi3{h2}Pi3∅
{h1}Pi4{h2}Pi4∅

Below, we give the outcome matchings of the capacity-reporting games under ϕH

and ϕI for each pure strategy q ′ ∈ Q, with equilibria of the two games highlighted
in bold:

q ′
2

ϕH 1 2 3 4

1

(
h1 h2 ∅
{i1} {i3} i2,i4

) (
h1 h2 ∅
{i1} {i2, i3} i4

) (
h1 h2
{i1} {i2, i3, i4}

) (
h1 h2
{i3} {i1, i2, i4}

)

q ′
1 2

(
h1 h2 ∅

{i1, i3} {i2} i4

) (
h1 h2

{i1, i3} {i2, i4}
) (

h1 h2
{i2, i3} {i1, i4}

) (
h1 h2

{i2, i3} {i1, i4}
)

3

(
h1 h2

{i1, i2, i3} {i4}
) (

h1 h2
{i2, i3, i4} {i1}

) (
h1 h2

{i2, i3, i4} {i1}
) (

h1 h2
{i2, i3, i4} {i1}

)

4

(
h1 h2

{i2, i3, i4} {i1}
) (

h1 h2
{i2, i3, i4} {i1}

) (
h1 h2

{i2, i3, i4} {i1}
) (

h1 h2
{i2, i3, i4} {i1}

)

q ′
2

ϕI 1 2 3 4

1

(
h1 h2 ∅
{i1} {i3} i2, i4

) (
h1 h2 ∅
{i1} {i2, i3} i4

) (
h1 h2
{i3} {i1, i2, i4}

) (
h1 h2
{i3} {i1, i2, i4}

)

q ′
1 2

(
h1 h2 ∅

{i1, i3} {i2} i4

) (
h1 h2

{i2, i3} {i1, i4}
) (

h1 h2
{i2, i3} {i1, i4}

) (
h1 h2

{i2, i3} {i1, i4}
)

3

(
h1 h2

{i2, i3, i4} {i1}
) (

h1 h2
{i2, i3, i4} {i1}

) (
h1 h2

{i2, i3, i4} {i1}
) (

h1 h2
{i2, i3, i4} {i1}

)

4

(
h1 h2

{i2, i3, i4} {i1}
) (

h1 h2
{i2, i3, i4} {i1}

) (
h1 h2

{i2, i3, i4} {i1}
) (

h1 h2
{i2, i3, i4} {i1}

)
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In the capacity-reporting game under the hospital-optimal rule, every hospital
weakly prefers each of the equilibrium matchings ϕH(1, 3), ϕH(2, 2), and ϕH(3, 1)
to equilibrium matching ϕH(4, 4). Moreover, every intern weakly prefers ϕH(4, 4)
to each of ϕH(1, 3), ϕH(2, 2), and ϕH(3, 1).

Similarly, in the game under the intern-optimal rule, every hospital weakly pre-
fers each of the equilibrium matchings ϕI(1, 2) and ϕI(2, 1) to equilibrium match-
ing ϕI(4, 4). Moreover, every intern weakly prefers ϕI(4, 4) to each of ϕI(1, 2) and
ϕI(2, 1). The remaining three pure strategy equilibria, (3, 4), (4, 3), and (3, 3),
yield the same equilibrium outcomes as (4, 4) does. ��

We observe a few interesting properties in Example 1. First, these two games
have very different sets of equilibria. Except truthful capacity revelation, there is
no other common equilibrium profile. This observation is not very surprising.

Second, when a pure strategy equilibrium exists, truthful capacity revelation
need not be an equilibrium. Consider the capacity-reporting game under ϕH. If we
restricted the true capacities of hospitals to q1 = 3 and q2 = 3, (3, 3) – truthful
capacity revelation – would not be an equilibrium, but (1, 3), (2, 2), and (3, 1)
would be. Next consider the capacity-reporting game under ϕI. If we restricted the
true capacities as q1 = 2 and q2 = 2, (2, 2) – truthful capacity revelation – would
not be an equilibrium, but (1, 2) and (2, 1) would be.

Third, and more important, in both games, the truthful capacity revelation
equilibrium generates a matching that is no better than the outcome of the other
equilibria for hospitals and at least as good as the outcome of the other equilibria
for the interns. This property is not an exception and does not depend on the choice
of ϕH or ϕI. We can state a more general result about this observation as a theo-
rem. The proof of the theorem is composed of simple applications of the Capacity
Lemma.

Theorem 3 Let V ∈ {H, I }. If q ′ ∈ Q is an equilibrium in the capacity reporting
game under ϕV and q ′′ ∈ Q such that q ′ ≤ q ′′, then (i) every hospital weakly
prefers ϕV

(
q ′) to ϕV

(
q ′′), and (ii) every intern weakly prefers ϕV (q ′′) to ϕV (q ′).

Proof Let (H, I, q, R) be a hospital-intern market. First, we consider the capac-
ity-reporting game under ϕH. Suppose that q ′ ∈ Q is an equilibrium of this
game-form and q ′′ ∈ Q such that q ′ ≤ q ′′. Let h be an arbitrary hospital. Since
q ′ is an equilibrium, ϕH

h (q ′)RhϕH
h (q ′′

h , q ′−h) follows. By the Capacity Lemma,
ϕH

h (q ′′
h , q ′−h)RhϕH

h (q ′′). Thus, ϕH
h (q ′)RhϕH

h (q ′′). On the other hand, a direct appli-
cation of the Capacity Lemma implies ϕH

i (q ′′)Riϕ
H
i (q ′). A similar proof can be

given for the capacity-reporting game under ϕI. ��
We can state an immediate corollary to this theorem. If there is an equilib-

rium different from truthful capacity revelation, every hospital weakly prefers this
equilibrium outcome to the outcome of truthful capacity revelation. On the other
hand, every intern weakly prefers the outcome of truthful capacity revelation to
this equilibrium outcome.

5 Positive results under restricted domains of preferences

In this section, we consider two preference restrictions each of which guarantees
the existence of a pure strategy equilibrium. These restrictions are motivated by the
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observations that followed Theorem 1. The first restriction requires that hospitals
prefer a larger number of acceptable interns irrespective of the preferability of each
intern. Under this restriction, named “strong monotonicity in population,” we will
not observe best response cycles discussed in the third remark in the subsequent dis-
cussion for Theorem 1. The second restriction is to require common preferences for
one group: we consider the cases where either (i) all hospitals have common pref-
erences over interns and their preferences over groups of interns are responsive but
otherwise arbitrary, or (ii) all interns have common preferences over hospitals. In ei-
ther case, the sets of acceptable interns (and hospitals) are equal to the set of interns
(and hospitals). Such a restriction, named “common preference rankings for one
group,” removes conflicts of interests between interns and hospitals. Thus, welfare
decreasing swappings for hospitals due to truthful capacity revelation will not occur.

5.1 Strong monotonicity in population of acceptable interns

We start with the case where hospitals prefer larger number of acceptable interns
irrespective of the preferability of each intern. Let Ah = {i ∈ I : {i}Ph∅} be
the set of acceptable interns for hospital h. We say that hospitals’ preferences sat-
isfy strong monotonicity in population, if and only if for any h ∈ H and for any
L , L ′ ⊆ Ah we have |L| > |L ′| ⇒ L Ph L ′. Let RSM ⊂ R be the domain of such
profiles of responsive preference relations.

First, we consider the capacity-reporting game under ϕH. The following result
establishes that if every hospital h reports

∣∣ϕH
h (q)

∣∣ as its capacity, this strategy will
be an equilibrium of the game.

Theorem 4 Let (H, I, q, R) be a hospital-intern market such that R ∈ RSM. If
q∗

h = ∣∣ϕH
h (q)

∣∣ for every hospital h, then q∗ will be an equilibrium of the capacity-
reporting game under ϕH.

Proof Let (H, I, q, R) be a hospital-intern market such that R ∈ RSM. Let q∗
h =∣∣ϕH

h (q)
∣∣ for each h ∈ H . We will prove that q∗ is an equilibrium using the following

claim.

Claim If q̂ ∈ Q with q∗ ≤ q̂, then for each hospital h we have ϕH
h (q∗)RhϕH

h (q̂).

Proof of Claim Let q̂ ∈ Q such that q∗ ≤ q̂. Matching ϕH(q) is feasible in the
market (H, I, q̂, R). Suppose that ϕH(q) /∈ S(H, I, q̂, R). We have either (i) there
exists a pair (h, i) blocking ϕH(q) in market (H, I, q̂, R), or (ii) there exists some
agent v and some agent y ∈ ϕH

v (q) such that ∅Pv y. If case (i) holds, (h, i) will block
ϕH(q) also in market (H, I, q, R), since qh ≥ q̂h . If case (ii) holds, agent v will
block ϕH(q) also in market (H, I, q, R). In both cases, the result will be a contradic-
tion to ϕH(q) ∈ S(H, I, q, R). We showed that ϕH(q) ∈ S(H, I, q̂, R). Similarly,
we can show that ϕH(q) ∈ S(H, I, q∗, R). By Theorem 1 in Roth and Sotomayor
(1989, p. 566), for any h ∈ H, for any stable matching η ∈ S(H, I, q∗, R) we
have |ηh | = ∣∣ϕH

h (q)
∣∣ = q∗

h and for any stable matching ν ∈ S(H, I, q̂, R) we
have |νh | = ∣∣ϕH

h (q)
∣∣ = q∗

h . So ϕH(q̂) is feasible in (H, I, q∗, R). Any pair
or any agent that blocks it in market (H, I, q∗, R) can block it also in market
(H, I, q̂, R). Therefore, ϕH(q̂) ∈ S(H, I, q∗, R). Since ϕH(q∗) is hospital-opti-
mal in (H, I, q∗, R), ϕH

h (q∗)RhϕH
h (q̂) for each hospital h. ��
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Consider capacity q∗. Let h ∈ H. By the Claim,

ϕH
h (q∗)RhϕH

h (q̂h, q∗−h) for any q̂h > q∗
h .

By strong monotonicity in population,

ϕH
h (q∗)PhϕH

h (q̂h, q∗−h) for any q̂h < q∗
h .

Hence, q∗ is an equilibrium of the capacity-reporting game under ϕH. ��
Note that this theorem says neither (i) truthful capacity revelation strategy pro-

file q is an equilibrium, nor (ii) ϕH(q∗) = ϕH(q). These points can be seen in the
following example, which is a modified version of Example 1.

Example 2 Let (H, I, q, R) be a hospital-intern market such that H = {h1, h2}
and I = {i1, i2, i3, i4}. Let q1 = 3 and q2 = 3. The profile of preference relations,
R, which satisfies strong monotonicity in population (R ∈ RSM), is stated as

{i1}Ph1{i3}Ph1{i2}Ph1{i4}Ph1∅

{i3}Ph2{i2}Ph2{i4}Ph2{i1}Ph2∅
{h2}Pi1{h1}Pi1∅
{h1}Pi2{h2}Pi2∅
{h1}Pi3{h2}Pi3∅
{h1}Pi4{h2}Pi4∅

Below, we give the outcome matchings of the capacity-reporting game under ϕH

for each pure strategy q ′ ∈ Q. Equilibria of this game are highlighted in bold:

q ′
2

ϕH 1 2 3

1

(
h1 h2 ∅
{i1} {i3} i2,i4

) (
h1 h2 ∅
{i1} {i2, i3} i4

) (
h1 h2
{i1} {i2, i3, i4}

)

q ′
1 2

(
h1 h2 ∅

{i1, i3} {i2} i4

) (
h1 h2

{i1, i3} {i2, i4}
) (

h1 h2
{i2, i3} {i1, i4}

)

3

(
h1 h2

{i1, i2, i3} {i4}
) (

h1 h2
{i2, i3, i4} {i1}

) (
h1 h2

{i2, i3, i4} {i1}
)

Note that q∗ = (3, 1), and q ′ = q∗ is an equilibrium of the game (as Theorem 4
says). However, truthful capacity revelation is not an equilibrium, and ϕH(q) does
not coincide with ϕH(q∗). ��

We see a very different result in the capacity-reporting game under ϕI: truthful
capacity revelation is a weakly dominant strategy when preferences satisfy strong
monotonicity in population.

Theorem 5 Let (H, I, q, R) be a hospital-intern market such that R ∈ RSM. In
the capacity-reporting game under ϕI, qh is a weakly-dominant strategy for each
h ∈ H.
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Proof Let (H, I, q, R) be a hospital-intern market such that R ∈ RSM. Consider
the capacity-reporting game under ϕI. Let h be an arbitrary hospital. Suppose that
q ′−h is the reported capacities of all the remaining hospitals. Let

∣∣ϕI
h(qh, q ′−h)

∣∣ =
q ′

h . Let q̂h ∈ Qh be a capacity for hospital h such that q ′
h ≤ q̂h . Then ϕI(q̂h, q ′−h) is

a feasible matching in the market (H, I, (qh, q ′−h), R). Furthermore ϕI(qh, q ′−h) ∈
S(H, I, (̂qh, q ′−h), R). Otherwise the blocking pair or the blocking agent in mar-
ket (H, I, (q̂h, q ′−h), R) would also block it in market (H, I, (qh, q ′−h), R). Since
by Corollary 5.30 in Roth and Sotomayor (1990, p. 163) every hospital weakly
prefers any other stable matching to the intern-optimal stable matching in market
(H, I, (q̂h, q ′−h), R), it follows that

ϕI
h(qh, q ′−h)RhϕI

h(q̂h, q ′−h).

By strong monotonicity in population,

ϕI
h(qh, q ′−h)PhϕI

h(q̃h, q ′−h) for all q̃h < q ′
h .

Hence, qh is a weakly-dominant strategy for hospital h. ��
The immediate implication of this result is that truthful capacity revelation is an

equilibrium of the capacity-reporting game under ϕI. This result is in sharp contrast
with the game under ϕH, although strong monotonicity in population guarantees
existence of equilibrium in both games.

5.2 Common preferences for one group over agents

Finally, we consider the cases where either all hospitals or all interns have per-
fectly correlated preferences over the agents of the other group.21 Preference pro-
file R ∈ R satisfies common preferences for hospitals over individual interns if
and only if for any h, h′ ∈ H (i) for any i, i ′ ∈ I we have {i}Ph{i ′} ⇐⇒ {i}Ph′ {i ′}
and (ii) for any i ∈ I , we have {i}Ph∅ and {i}Ph′∅.22 Preference profile R ∈ R
satisfies common preferences for interns if and only if for any i, i ′ ∈ I , (i) for any
h, h′ ∈ H , we have {h}Pi {h′} ⇐⇒ {h}Pi ′ {h′}, and (ii) for any h ∈ H , we have
{h}Pi∅ and {h}Pi ′∅. Let RCH ⊂ R and RCI ⊂ R be the domains of such profiles
of preference relations, respectively.

21 Perfectly correlated preferences may be observed in real life. The same region hospitals and
interns may be competing to be matched with each other, as it is in Britain. In this case, the
central hospital is almost always preferred to smaller hospitals in the region (Roth 1991). Also,
common preferences for schools are observed in student placement for some high schools done
by a central authority in Turkey (Balinski and Sönmez 1999). Unlike college admissions, test
score is unidimensional (only one skill category), so high schools’ preferences are common: they
all want the students who got high scores in the test.

22 Here, we assume Ah = I for all h ∈ H only for simplicity. We can obtain the same result
(with some modification of the argument) even when hospitals have heterogeneous sets of accept-
able interns: there exists a common ordering � over I such that (i) for any h ∈ H and i, i ′ ∈ Ah ,
{i}Ph{i ′} ⇐⇒ i � i ′, and (ii) for any h ∈ H , i ′ ∈ Ah , and i ∈ I , i � i ′ �⇒ i ∈ Ah .
For common preference restriction for interns over hospitals, we can weaken the assumption by
employing the counter-part assumption for interns’ preferences.
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First, we consider preference domain RCH. We can reorder acceptable interns
by hospitals’ common preference ordering as i1, i2, . . . , im . Hospital h has the
same preference ordering as this ordering:

{i1}Ph{i2}Ph . . . Ph{in}Ph∅
Let Chi (G) be the most preferable acceptable hospital in G ⊆ H for intern i , i.e.,
Chi (G) = {h ∈ G : {h}Ri {h′} for any h′ ∈ G, and {h}Pi∅}. It is useful to have a
matching μ∗ generated by the following serial-dictatorship :23

Step 1 Let G1 = H and q1
h = qh for each h ∈ H . Setμ∗

i1
(H, I, q, R) = Chi1(G

1).

...
...

Step t For each h ∈ H let qt
h = qt−1

h − 1 if μ∗
it−1

= {h}, and qt
h = qt−1

h otherwise.
Let Gt = {h ∈ H : qt

h �= 0}. Set μ∗
it

= Chit (G
t ).

The algorithm terminates after n steps, and μ∗ becomes a matching of the
hospital-intern market.

We have the following lemma.24

Lemma 2 Let (H, I, q, R) be a hospital-intern market such that R ∈ RCH. Then
μ∗ is the unique stable matching.

Proof Let (H, I, q, R) be a hospital-intern market such that R ∈ RCH. We will
prove that μ∗ is the unique stable matching of this market. Before proving the
statement, note Gt ⊇ Gt+1 applies for any t ≤ n − 1. This can be seen from the
fact that Gt = {h ∈ H : qt

h �= 0} monotonically shrinks (weakly) by construction.
First, μi1 = Chi1(G

1) at any stable matching μ. Otherwise, pair (i1, Chi1(G
1))

will block μ if Chi1(G
1) �= ∅; and i1 would be better of by staying unmatched if

Chi1(G
1) = ∅. Given this, μi2 = Chi2(G

2) at any stable matching μ. Otherwise,
(i2, Chi2(G

2)) will block μ if Chi2(G
2) �= ∅; and i2 would be better off by stay-

ing unmatched if Chi2(G
2) = ∅. Similarly, for any t ≤ n, μit = Chit (G

t ) at any
stable matching. ��

We can now prove that truthful capacity revelation is a weakly dominant strat-
egy in the capacity-reporting game under the stable matching rule.25

Theorem 6 Let (H, I, q, R) be a hospital-intern market such that R ∈ RCH. In
the capacity-reporting game under stable matching rule, qh is a weakly dominant
strategy for each h ∈ H.

23 Loosely speaking, stability and common preference property induces a hierarchy very much
like the hierarchy inherent in serial dictatorships in the context of one-sided matching markets.
See Svensson (1994), Abdulkadiroğlu and Sönmez (1998), and Papai (2000).

24 Alcalde (1995) and Banerjee et al. (2001) prove uniqueness of stable allocations for differ-
ent kinds of markets by imposing preference restrictions called α-reducibility and top-coalition
property, respectively. The proofs of the following two lemmas in the current paper are similar
to theirs.

25 Since stable matching is unique under RCH, we do not need to specify the stable matching
rule to be ϕH or ϕI. The same comment applies to Theorem 7.
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Proof Let (H, I, q, R) be a hospital-intern market such that R ∈ RCH. Let ϕ∗
be the unique stable matching rule in (H, I, q, R). Pick a hospital h ∈ H , and
consider a possible capacity report q ′

h < qh . Let ϕ∗
h(qh, q ′−h) = {ik, il , . . . , ir },

where k < l < · · · < r ≤ n. For any t < k, and any q ′
h < qh , it /∈ ϕ∗

h(q ′) follows
by the construction of ϕ∗ (

q ′). As long as q ′
h ≥ 1, ik ∈ ϕ∗

h(q ′) also follows. By
the same argument, (i) for any t < l with t �= k and any q ′

h < qh , it /∈ ϕ∗
h(q ′),

and (ii) as long as q ′
h ≥ 2, il ∈ ϕ∗

h(q ′). Thus, by iteration of the same argument,
ϕ∗

h(q ′) ⊆ ϕ∗
h(qh, q ′−h) for any q ′

h < qh ; moreover, ϕ∗
h(qh, q ′−h)\ϕ∗

h(q ′) contains
an acceptable intern if it is non-empty. By responsiveness of hospital preferences,
hospital h is not better off by reporting q ′

h . Hence, there is no incentive for a hospital
to misreport its capacity. ��

Second, we consider preference domain RCI. We can reorder acceptable hos-
pitals by interns’ common preference ordering as h1, h2, . . . , hm . Intern i has the
same preference ordering as this ordering:

{h1}Pi {h2}Pi . . . Pi {hm}Pi∅
Recall that Ah denotes the set of acceptable interns for hospital h. Let Chh(J, qh)
be the set of most preferable acceptable interns among J ⊆ I for hospital h under
capacity q ′

h ∈ Qh , i.e., Chh(J, q ′
h) = {L ⊆ J ∩ Ah with |L| ≤ q ′

h : L Rh L ′ for
any L ′ ⊆ J with |L ′| ≤ q ′

h}. It is useful to have a matching μ∗∗ generated by the
following serial-dictatorship:

Step 1 Let J 1 = I . Set μ∗∗
h1

= Chh1(J 1, qh1).

...
...

Step t Let J t = J t−1\Chht−1(J t−1, qht−1). Set μ∗∗
ht

= Chht (J t , qht ).
The algorithm terminates after m steps, and μ∗∗ is a matching of the hospital-

intern market.

We have the following lemma.

Lemma 3 Let (H, I, q, R) be a hospital-intern market such that R ∈ RCI. Then
μ∗∗ is the unique stable matching.

Proof Let (H, I, q, R) be a hospital-intern market such that R ∈ RCI. We will
prove that μ∗∗ is the unique stable matching of this market. Before proving the
statement, note J t ⊇ J t+1 applies for any t ≤ m − 1, since the set J t =
J t−1\Chht−1(J t−1, qht−1) monotonically shrinks (weakly) as t increases. First,
μh1 = Chh1(I ) at any stable matching μ. Otherwise, if Chh1(I, qh1) �= ∅, then
for some i ∈ Chh1(I, qh1), pair (i, h1) will block μ; and if Chh1(I, qh1) = ∅,
then h1 will be better off by staying unmatched and deviating from μ. Given this,
μh2 = Chi2(J 2, qh2) at any stable matching μ. Otherwise, if Chh2(J 2, qh2) �= ∅,
then for some i ∈ Chh2(J 2, qh2), pair (i, h2) will block matching μ; and if
Chh2(J 2, qh2) = ∅, then h2 will be better off by staying unmatched. Similarly, for
any t ≤ m, μht = Chht (J t , qht ) at any stable matching. ��

We can now prove that truthful capacity revelation is a weakly dominant strat-
egy in the capacity-reporting game under the stable matching rule.
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Theorem 7 Let (H, I, q, R) be a hospital-intern market such that R ∈ RCI. In the
capacity-reporting game under the stable matching rule, qh is a weakly dominant
strategy for each h ∈ H.

Proof Let (H, I, q, R) be a hospital-intern market such that R ∈ RCI. Let ϕ∗∗ be
the unique stable matching rule in (H, I, q, R). Pick a hospital ht ∈ H . Since J t

is solely determined by reports {q ′
h1

, . . . , q ′
ht−1

}, hospital ht cannot affect J t . Pick
q ′ ∈ Q. We have ϕ∗∗

ht
(q ′) = Chht (J t , q ′

ht
) and ϕ∗∗

ht
(qht , q ′−ht

) = Chht (J t , qht ).
We have ϕ∗∗

ht
(qht , q ′−ht

)Rht ϕ
∗∗
ht

(q ′) since (i) ϕ∗∗
ht

(q ′) ⊆ ϕ∗∗
ht

(qht , q ′−ht
), and (ii)

interns in ϕ∗∗
ht

(qht , q ′−ht
) are acceptable for ht . Thus, hospital ht cannot do better

by underreporting. ��

6 Conclusions

In this paper, we examined strategic interactions among hospitals in manipulating
their capacities in hospital-intern matching markets. Hospitals report their capaci-
ties taking the matching rule and preferences of agents as given. We found that there
may not be any pure strategy equilibrium in the standard preference domain (strict
and responsive preferences). Even if equilibria exist, truthful capacity revelation
may not be an equilibrium. When there is an equilibrium different from truthful
capacity revelation, every hospital weakly prefers this equilibrium outcome to the
outcome of any larger capacity profile. This makes capacity manipulation very
likely to occur in real life. To make matters worse, there is an aftermarket for hos-
pitals and interns in real life. If there are unmatched interns, hospitals can come
back to hire these interns in the aftermarket. This strengthens hospitals’ incentives
to underreport. They can get better interns by underreporting their capacities in the
regular market, and then fill the rest of their capacities with unmatched acceptable
interns in the aftermarket. Our welfare result (the Capacity Lemma) says that such
practices benefit hospitals but are detrimental to interns.

We also find preference restrictions that guarantee the existence of a pure strat-
egy equilibrium. Restrictions on the domain of preferences can make truthful capac-
ity revelation a weakly dominant strategy in some cases, depending on the choice
of matching rule. Under strong monotonicity in population, truthful capacity rev-
elation is a weakly dominant strategy under the intern-optimal stable rule, but not
under the hospital-optimal stable rule. Interestingly, the National Resident Match-
ing Program in the USA recently replaced the hospital-optimal stable rule with the
intern-optimal stable rule based on recommendation by Roth and Peranson (1999).
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