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Abstract We prove a lemma characterizing majority preferences over lotteries
on a subset of Euclidean space. Assuming voters have quadratic von
Neumann–Morgenstern utility representations, and assuming existence of a major-
ity undominated (or “core”) point, the core voter is decisive: one lottery is major-
ity-preferred to another if and only if this is the preference of the core voter. Several
applications of this result to dynamic voting games are discussed.

1 Introduction

The prominence of electoral systems based on majority rule has prompted much
research on the nature of majority preferences. McGarvey (1953) has shown that,
when the set of alternatives is finite, asymmetry is the only property displayed by
strict majority preferences across electorates with varying size and preferences.
When the size and preferences of the electorate are fixed, however, more structure
can be imposed on the social choice environment (the set of alternatives and the
form of individual preferences) to deduce a sharper characterization. The spatial
model, where the set of alternatives is a convex subset of finite-dimensional Euclid-
ean space and individual preferences are subject to various regularity conditions,
provides such an environment.
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Work initiated by Plott (1967) and McKelvey (1976, 1979, 1986) has, for
example, established strong necessary conditions required for the existence of a
majority-undominated (or “core”) point in multiple dimensions, and it has pro-
vided characterizations of several sets (the top cycle and uncovered set) derived
from the majority preference relation. Davis et al. (1972), in contrast, begin with
the assumption that the core is non-empty and completely characterize the majority
preference relation when individual preferences are Euclidean, i.e., the preferred of
two alternatives is the one closer to a voter’s “ideal point,” and when an additional
regularity condition holds.1 Their Theorem 4 establishes that the majority weak
preference relation is transitive and, in fact, coincides with the weak preference
relation of the “core voter.” That is, the majority-preferred of any two alternatives
is the one closer to the core. While this is strictly a social choice theory result, it
has proved useful in game-theoretic models of elections as well (cf. Calvert 1985;
Duggan and Fey 2005).

In this paper, we reinforce Davis et al.’s (1972) assumption on individual pref-
erences and extend their conclusion to majority preferences over lotteries. We
assume not only that individual preferences over pure alternatives are Euclidean,
but also that they have quadratic von Neumann–Morgenstern utility functions that
extend individual preferences to the space of lotteries over alternatives. If the core
is non-empty and the regularity condition of the latter authors holds, then, once
again, the core voter is decisive: the majority-preferred of two alternatives is the
one that yields the highest expected utility, evaluated using the quadratic utility
function with ideal point at the core. The simplest version of this result is proved
straightforwardly using mean-variance analysis, a property of quadratic utilities.
Because majority preferences over pure alternatives are unaffected by arbitrary
monotonic transformations of quadratic utilities, Davis et al.’s (1972) result for
Euclidean preferences follows as a corollary.

While our assumption of quadratic preferences is restrictive, of course, it is
widely used in theoretical and empirical work. We demonstrate the usefulness of
our lemma with a result for a class of dynamic games, in which play proceeds in
stages and determines a sequence of outcomes over time evaluated by the players
according to discounted quadratic utility. We assume a common discount factor; we
allow for incomplete information, so that players actually must evaluate lotteries
over sequences of outcomes; and we allow for a continuum of players, to capture
models of large electorates. The result is that majority preferences over action pro-
files in any stage coincide with the preferences of the “core player,” appropriately
defined. In the context of a binary voting stage, in which the continuation of the
game depends only on which of the two alternatives receives majority support, and
assuming players eliminate stage-dominated voting strategies, this means that the
alternative preferred by the core player will win.

We illustrate with several theoretical applications. Among them, we consider
a one-dimensional version of the infinite-horizon bargaining model of Baron and
Ferejohn (1989) with an arbitrary status quo policy, as in Banks and Duggan (2005).
Assuming quadratic utilities, our results imply that the approval of the median voter
is necessary and sufficient for a proposal to pass in equilibrium, an observation used

1 They assume that, for every direction, there is a unique “median hyperplane,” a condition
that holds if the number of individuals is odd or if ideal points are distributed according to a
positive density. It implies that there is at most one core point.
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in Banks and Duggan (2000) to prove “core equivalence” under the assumption
of perfect patience. We also consider a model of repeated elections related to the
family of models analyzed in Duggan (2000), Bernhardt et al. (2004), and Banks
and Duggan (2006). Applied here, the lemma generalizes observations in the latter
papers that the median voter is decisive, in the sense that an incumbent is reelected
if and only if the median voter prefers it. Thus, the lemma delivers a type of cen-
trality of the median voter in these models close to (but distinct from) the median
voter theorem of Black (1958) and Downs (1957).

Technically, by characterizing the set of proposals that can pass (in the bargain-
ing model) and the policies that lead to reelection (in repeated elections models),
the lemma allows the reformulation of the optimization problem of the proposer or
officeholder, thereby simplifying the task of working through analytic examples,
the numerical computation of stationary equilibria, and the determination of com-
parative statics in quadratic models. The lemma has applications in other models
of repeated elections (Campuzano 2001; Duggan and Fey 2006; Meirowitz 2003),
and it offers to facilitate the investigation of topics such as uniqueness of stationary
equilibria in the one-dimensional bargaining model (Cho and Duggan 2003) and
the possibility of multiple parties in models of repeated elections.

2 A social choice lemma

Suppose a set of individuals must choose from a subset X of Euclidean space of
finite dimension d . Each individual i has a Euclidean weak preference relation �i
on X , i.e., there exists an ideal point x̃i ∈ R

d such that, for all x, y ∈ X , x �i y if
and only if ||x − x̃i || ≤ ||y − x̃i ||. We write �x̃ for the preference relation corre-
sponding to ideal point x̃ , and we extend this notation even to points in Euclidean
space that do not correspond to ideal points, i.e., x �z y means ||x −z|| ≤ ||y−z||.
We use �z and ∼z to denote the associated strict preference and indifference rela-
tions. Let us suppose that individual ideal points are distributed across R

d according
to the probability measure π , which may be non-atomic to capture a continuum of
individuals. We say x is weakly majority-preferred to y, written x � y, if

π({x̃ | x �x̃ y}) ≥ 1

2
,

and we employ the above convention to denote strict preference and indifference.
The majority core consists of the points x ∈ X that are weakly preferred to all
others, i.e., x � y for all y ∈ X .

Let � denote the set of lotteries, or Borel probability measures, on X , and
let �∗

i denote the extension of i’s preference relation to this space. Suppose the
preferences of an individual with ideal point x̃ are extended to lotteries on X by
the quadratic von Neumann–Morgenstern utility function ux̃ (x) = −||x − x̃ ||2,
and, more generally, let uz be the quadratic function defined with respect to the
arbitrary point z. Paralleling the above convention, let �∗

z denote the preferences
over lotteries corresponding to z. Thus, for all λ,µ ∈ �, λ �∗

z µ if and only if

∫
uz(x) λ(dx) ≥

∫
uz(x) µ(dx).
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We say λ is weakly majority-preferred to µ, written λ �∗ µ, if

π({x̃ | λ �∗
x̃ µ}) > 1

2
.

Our goal in this section is to characterize the majority preference relation on lot-
teries in terms of the preferences of the “core voter.”

A special property of the quadratic extension is that expected utility from a
lottery λ can be decomposed into two components, one depending on the mean of
λ and the other depending on its variance. Let m = ∫

x λ(dx) denote the mean of
λ, and let

v =
∫
(x − m) · (x − m) λ(dx)

denote the variance. Then, the expected utility of λ for an individual with ideal
point x̃ is

∫
ux̃ (x) λ(dx) = −||m − x̃ || − v.

Note that the disutility from the variance of λ is independent of the individual’s
ideal point.

Given x, t ∈ R
d , the open half-space at x in direction t is

H+
t (x) = {y ∈ R

d | y · t > x · t}.
We say x is a median in all directions if, for every direction t , π(H+

t (x)) ≤ 1/2.
Every median in all directions, if contained in X , is a majority core point. Con-
versely, if x is a majority core point interior to X , then it is a median in all directions
(cf. Davis et al. 1972): if the proportion of individuals in H+

t (x) were greater than
one half, then a small enough move from x in the t direction would result in a
majority-preferred point, an impossibility. Interiority can be dropped, if X is convex
and contains all ideal points. To see this for the case in which π has finite support,2

suppose x is a majority core point but, for some direction t , π(H+
t (x)) > 1/2; let

Y denote the convex hull of the ideal points x̃i ∈ H+
t (x), so that Y ⊆ X ; and note

that the unique solution to miny∈Y ||x − y|| is strictly majority-preferred to x , a
contradiction. That something like interiority or convexity is needed can be seen
from the following example: let X = {(0, 0), (0, 1), (1, 0)}, and suppose there are
just two individuals, with ideal points x̃1 = (0, 1) and x̃2 = (1, 0). Then (0, 0) is
a majority core point, but it is not a median in all directions.

We say π is resolute at x ∈ R
d if, for every direction t with π(H+

t (x)) ≤ 1/2
and for every ε > 0,

π(H+
t (x + εt)) <

1

2
.

In words, given any hyperplane through x that evenly divides the ideal points of
the individuals, an arbitrarily small shift of the hyperplane will put strictly more

2 A slightly more complicated argument is required for the general case.
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than half of the individuals on one side.3 This condition clearly holds at every
x ∈ R

d if the set of individuals is finite and odd in number. Resoluteness also
holds if π is non-atomic with strictly positive density on some open set containing
x . In that case, for every open set G around x and for every direction t , we have
π(G ∩ H+

t (x)) > 0; then, given direction t with π(H+
t (x)) ≤ 1/2 and given

ε > 0, let G be any open set around x with G ∩ H+
t (x + εt) = ∅ to fulfill the

definition of resoluteness.
If x is a median in all directions and π is resolute at x , then x is the unique

median in all directions; in fact,

π({x̃ | x �x̃ y}) > 1

2

for all y 
= x . To see this, take any y distinct from x . Then π(H+
y−x (x)) ≤ 1/2, but

then, because π is resolute at x , we have π(H+
y−x (z)) < 1/2 for z = (1/2)(x + y),

which implies π(H+
x−y(y)) > 1/2. Thus, y is not a median in all directions.

The main result of this paper is the next lemma. It is stated in terms of a median
in all directions for maximum strength, but it applies equally to majority core points
when the two notions coincide, as they do under the weak conditions mentioned
above. Then part (i) of the lemma shows that if one lottery is weakly preferred
over another by the core voter, then the first lottery is weakly majority-preferred
over the second. Moreover, any two lotteries that are equally desirable to the core
voter are majority-indifferent. This result, which generalizes Davis et al.’s (1972)
Theorem 3, does not show that a lottery strictly preferred by the core voter is strictly
majority preferred, but it does not assume π is resolute. It, therefore, holds even if
there are multiple core points. Part (ii) strengthens the conclusion of the first part:
an implication is that if there is a finite, odd number of individuals with at the most
one ideal point at the core, then any two lotteries that are equally desirable to the
core voter must have equal proportions of voters with opposing strict preferences
over them. The same is true in a continuum model if the set of individuals with
ideal points at the core has measure zero. This part is closely related to Theorem 2
of McKelvey et al. (1980), which generalizes Plott’s (1967) necessary symmetry
conditions at a core point.4 Finally, part (iii), which corresponds to Davis et al.’s
(1972) Theorem 4, gives a full characterization of majority preferences over lot-
teries when there is a majority core point at which π is resolute (and is, therefore,
the unique core point): majority preferences are identical to that of the core voter.

Lemma 2.1 Let x be a median in all directions. Then (i) λ �∗
x λ

′ implies λ �∗ λ′,
(ii) if λ ∼∗

x λ
′, then

|π({x̃ | λ �x̃ λ
′})− π({x̃ | µ �x̃ λ})| ≤ π({x}),

and (iii) if π is resolute at x, then λ �∗
x λ

′ if and only if λ �∗ λ′.

3 Assuming existence of a median in all directions, x , resoluteness at x is equivalent to unique-
ness of a median hyperplane in all directions, which is used by Davis et al. (1972).

4 In contrast to McKelvey et al. (1980), we allow the distribution of ideal points to be discrete,
in order to capture a finite number of individuals.
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To prove part (i) of the lemma, take any λ, λ′ ∈ � such that λ �∗
x λ

′. Letting
m and m′ denote the means of these lotteries and letting v and v′ denote their
variances, we then have

ux (m)− ux (m
′) ≥ v − v′. (2.1)

Since x is a median in all directions, we have π(H+
m′−m(x)) ≤ 1/2. Note that, for

all x̃ /∈ H+
m′−m(x), we have

x̃ · (m − m′) ≥ x · (m − m′),

implying

ux̃ (m)− ux̃ (m
′) ≥ ux (m)− ux (m

′). (2.2)

Then, by (2.1) and (2.2), we have

ux̃ (m)− ux̃ (m
′) ≥ v − v′

for all x̃ /∈ H+
m′−m(x). Therefore, λ �∗ λ′, as required.

To prove part (ii), take any λ, λ′ ∈ � such that λ ∼∗
x λ

′. Using the notation
above, let m and m′ denote the means of these lotteries and v and v′ the variances.
We then have

ux (m)− ux (m
′) = v − v′.

Note that H+
m−m′(x) = {x̃ | λ �x̃ λ

′} and H+
m′−m(x) = {x̃ | λ′ �x̃ λ}, let

ε = π(H+
m−m′(x))− π(H+

m′−m(x))− π({x}), (2.3)

and suppose ε > 0. For any t ∈ R
d , let

Ht (x) = {y ∈ R
d | y · t = x · t}

denote the hyperplane through x with normal t . Take any t ∈ R
d such that

π(Hm−m′(x) ∩ Ht (x)\{x}) < ε

2
. (2.4)

(The existence of such a t follows from an argument similar to that used in the proof
of Theorem 2 in McKelvey et al. (1986, pp. 164–165).) Without loss of generality,
assume that

π(Hm−m′(x) ∩ H+
t (x)) ≥ π(Hm−m′(x) ∩ H+−t (x)). (2.5)

Define y(n) = m + (1/n)t , let fn denote the indicator function of H+
y(n)−m′(x),

and note that the sequence { fn} of indicator functions converges pointwise to the
indicator function of H+

m−m′(x). Thus, Egoroff’s Theorem (cf. Kingman and Taylor
1966; Theorem 7.1) yields n such that

π(H+
m−m′(x)\H+

y(n)−m′(x)) <
ε

4
. (2.6)
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It is an identity that

1 = π(H+
m−m′(x))+ π(H+

m′−m(x))+ π(Hm−m′(x) ∩ H+
t (x))

+π(Hm−m′(x) ∩ H+−t (x))+ π(Hm−m′(x) ∩ Ht (x)\{x})+ π({x}).
Solving for π(H+

m−m′(x)) in (2.3) and substituting, and using (2.5), we have

1 ≤ 2π(H+
m′−m(x))+ 2π(Hm−m′(x) ∩ H+

t (x))+ 2π({x})
+π(Hm−m′(x) ∩ Ht (x) \ {x})+ ε.

Using (2.4) the latter inequality yields

π(H+
m′−m(x))+ π({x})+ π(Hm−m′(x) ∩ H+

t (x))+ 3ε

4
>

1

2
. (2.7)

From (2.6) and (2.3), respectively, we have

π(H+
y(n)−m′(x) ∩ H+

m−m′(x)) > π(H+
m−m′(x))− ε

4

= π(H+
m′−m(x))+ π({x})+ 3ε

4
. (2.8)

Given x̃ ∈ Hm−m′(x) ∩ H+
t (x), note that

(x̃ − x) · (y(n)− m′) = (x̃ − x) · (m + (1/n)t − m′) = (1/n)(x̃ − x) · t > 0.

Therefore, Hm−m′(x) ∩ H+
t (x) ⊆ H+

y(n)−m′(x), which implies

π(H+
y(n)−m′(x) ∩ Hm−m′(x)) ≥ π(Hm−m′(x) ∩ H+

t (x)). (2.9)

Finally, combining (2.7), (2.8), and (2.9), we have π(H+
y(n)−m′(x)) > 1/2, but

then x is not a median in all directions, a contradiction. A symmetric argument
addresses the case π(H+

m′−m(x)) > π(H+
m−m′(x))+ π({x}), as required.

To prove part (iii), take any λ, λ′ ∈ � such that λ �∗
x λ

′, i.e.,

ux (m)− ux (m
′) > v − v′. (2.10)

Since x is a median in all directions, we have π(H+
m′−m(x)) ≤ 1/2. Because π

is resolute at x , we have π(H+
m′−m(x(ε))) < 1/2 for all ε > 0, where x(ε) =

x + ε(m′ − m). Note that, for all x̃ /∈ H+
m′−m(x(ε)), we have

x̃ · (m − m′) ≥ x(ε) · (m − m′),

implying

ux̃ (m)− ux̃ (m
′)) ≥ ux(ε)(m)− ux(ε)(m

′). (2.11)

Pick ε small enough, using continuity and (2.10), so that

ux(ε)(m)− ux(ε)(m
′) > v − v′. (2.12)
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Then, by (2.11) and (2.12), we have

ux̃ (m)− ux̃ (m
′) > v − v′

for all x̃ /∈ H+
m′−m(x(ε)). Because π(H+

m′−m(x(ε))) < 1/2, this implies that
λ �∗ λ′, as required. This completes the proof.

The assumption of quadratic utility in Lemma 2.1 cannot be weakened, even to
the assumption that utility functions are Euclidean and identical up to translations,
even in one-dimensional settings. To see this, suppose there are three individuals,
suppose d = 1 with X = [−2, 2], and let ideal points be x̃1 = −1, x̃2 = 0,
and x̃3 = 1. Let ui (x) = v(|x − y|), where v : [0, 4] → R is a strictly concave,
decreasing function. Let ε > 0 be small enough that

1

3
[v(2)+ v(0)+ v(2)] > v(2 − ε). (2.13)

We leave v(3 − ε)− v(3) = � as a variable, which, by letting v decrease rapidly
on (3 − ε, 3], can be chosen to be arbitrarily large without affecting the value of v
on [0, 3 − ε]. Now let λ be the lottery with probability 1/3 each on −2, 0, and 2,
and let λ′ be the lottery with probability 1/2 each on −2 + ε and 2 − ε. By (2.13),
the core voter, 2, strictly prefers λ to λ′. Individuals 1 and 3 have the opposite strict
preference if

1

2
[v(1 − ε)+ v(3 − ε)] > 1

3
[v(1)+ v(1)+ v(3)],

which holds for sufficiently large�. Thus, Lemma 2.1 does not extend appreciably
beyond quadratic utilities.

While we have stated Lemma 2.1 for majority rule, it is easily extended to the
class of weighted majority rules by applying the lemma to the “weighted” distri-
bution of ideal points. Specifically, suppose that (N , �) is a measurable space of
voters; suppose that x̃ : N → X is a measurable mapping such that x̃i is the ideal
point of individual i ; and suppose that ω is a probability measure on � assigning
weights to measurable coalitions C ∈ � such that x � y if and only if

ω({i ∈ N | x �i y}) ≥ 1

2
.

Then, defining π = ω ◦ x̃−1 as the weighted distribution of ideal points, the
weighted majority rule is formally equivalent to majority rule with distribution
π . The lemma also extends to arbitrary simple voting rules, those generated by
a “monotonic” and “proper” class of winning coalitions, though parts (ii) and
(iii) require that the rule be “strong” and continuous in a certain sense. (See
Banks et al. (2006) for this framework.) We omit the details of this extension.

3 A class of dynamic games

Suppose a (possibly finite) measurable set N ⊆ [0, 1] of individuals play an exten-
sive form game with the following structure. The extensive form is a stage game,
where a state ω is initially drawn from a probability space �. We write h0 = ω
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for this initial history. Given the initial history h0, a measurable subset N (h0) of
players simultaneously choose actions in the measurable space A(h0), while all
other players choose a null action ā. Denoting the profile of actions by active
players as a ∈ A(h0)

N (h0), which is assumed measurable, we have the history
h1 = (h0, a) of length one. After h1, a measurable set N (h1) of players then
simultaneously choose actions in A(h1) while others play the null action, produc-
ing a history of length two, and so on. Because the strategy sets of the players are
arbitrary, we may assume without loss of generality that this process continues ad
infinitum. Let Hk denote the set of histories of length k, and let H = ⋃∞

k=0 Hk

denote the set of all finite histories of the game. Finally, let A=⋃
hk∈H A(hk)∪{ā}

denote the set of all possible actions. The sets Hk must be endowed with appro-
priate sigma algebras, which may vary with the application and which we leave
undefined.

We assume every finite history hk generates a sequence f k(hk) of length lk
(independent of hk) in a bounded set X ⊆ R

d of outcomes, e.g.,

f k(hk) = ( f k
1 (hk), f k

2 (hk), . . . , f k
lk (hk)) = (x1, x2, . . . , xlk ),

where each f k is a measurable mapping from Hk to Xlk , the set of sequences in X
of length lk . We impose the consistency conditions that lk is weakly increasing in
k and that the continuation of a history simply extends the sequence of outcomes
in X : given histories hk and hk+1 = (hk, a), we have f k

n (hk) = f k+1
n (hk+1) for

all n = 1, 2, . . . , lk . Thus, we can drop the superscript on f . Without loss of gen-
erality, we assume that lk → ∞. Thus, every infinite history corresponds to an
infinite sequence, denoted by x = (x1, x2, . . .), of outcomes in X . We endow the
space XN of infinite sequences of outcomes with the sigma algebra generated by
finite initial cylinder sets, i.e., sets of the form X1 × · · · × Xn × X × X · · · , where
X1, . . . , Xn are measurable subsets of X .

Each state ω determines a type, specifically ρi (ω) ∈ R
d , for each individual i ,

where we assume ρ : N ×� → R
d is measurable. Here, we interpret a type, say x̃ ,

as the ideal point of an agent. Given an infinite history and an associated sequence
x of outcomes, a type x̃ player’s payoff in the game is

Ux̃ (x) = (1 − δ)

∞∑
l=1

δl−1ux̃ (xl),

where ux̃ is the quadratic utility function with ideal point x̃ and δ ∈ [0, 1) is a com-
mon discount factor. Since δ < 1, it follows that Ux̃ is measurable as a function of x.

A strategy profile is a measurable mapping σ : N × H → A such that σi (hk) ∈
A(hk) for all i ∈ N (hk) and σi (hk) = ā for all i /∈ N (hk).5 Here, of course, σi (hk)
is the action taken by player i after history hk . In applications, σ must also respect
the players’ information sets, not specified above. That is, if (hk, a) and (hk, a′)
are not distinguishable to player i , and so lie in the same information set, then
we must have σi (hk, a) = σi (hk, a′). In the remainder of this section, we take a
strategy profile σ as given.

5 For simplicity, we omit consideration of mixed strategies.
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Given this strategy profile, prior beliefs on � determine probability measures
ξi (hk) on XN representing player i’s beliefs about the sequence of outcomes, condi-
tional on realizing history hk . In applications, these beliefs must be consistent with
Bayes rule and the players’ information sets. We can then define i’s continuation
value, conditional on history hk in which i’s type is x̃ , by

vi (hk) = (1 − δ)

∫ ∞∑
l=lk+1

δl−lk−1ux̃ (xl) ξi (hk)(dx), (3.1)

which is well-defined given our sigma algebra on XN. We assume that v is jointly
measurable on N ×H . We say beliefs are symmetric at history hk if ξi (hk) = ξ j (hk)
for all i, j ∈ N (hk), in which case we can simply write vx̃ (hk) for the continuation
value of an active player of type x̃ . In the remainder of this section, we take beliefs
as given.

The next result characterizes majority preferences over action profiles follow-
ing an arbitrary history, when an arbitrary probability measure on individuals is
used to “count votes.” Note that the payoff to active player i from action profile a,
given history hk with initial state ω, is

φi (hk, a) = (1 − δ)uρi (ω)( flk+1(hk, a))+ δvi (hk, a),

where the first term on the righthand side denotes the payoff from the outcome cor-
responding to the current choice of a, and the second term is the continuation value.
If beliefs are symmetric at (hk, a), we may write φx̃ (hk, a) for the payoff of an
active player of type x̃ . The following characterization holds for an arbitrary history,
which, depending on the information structure of the game, may not be common
knowledge. The main assumption, other than quadratic utilities and existence of a
majority core point, is that beliefs are symmetric. Using Lemma 2.1, we show that
majority preferences over action profiles are identical to that of the core player.

Proposition 3.1 Let hk be an arbitrary finite history with initial stateω, and let ν be
an arbitrary probability measure on N (hk). Assume, for some a, a′ ∈ A(hk)

N (hk ),
that beliefs are symmetric at (hk, a) and at (hk, a′). Define π = ν ◦ ρ−1(·|ω),6 let
j ∈ N (hk) be such that ρ j (ω) = x∗ ∈ X is a median in all directions, and assume
π is resolute at x∗. Then

π({x̃ | φx̃ (hk, a) ≥ φx̃ (hk, a′)}) ≥ 1

2

if and only if φx∗(hk, a) ≥ φx∗(hk, a′).

By belief symmetry, the beliefs of each i ∈ N (hk) about the sequence of out-
comes given history (hk, a) are given by the same probability measure on XN.
Let λm denote the marginal of this probability measure on the mth component. By
additive separability, we may write

vx̃ (hk, a) = (1 − δ)

∞∑
m=lk+1+1

∫
δm−lk+1−1ux̃ (xm) λm(dxm)

6 Here, we intend ρ−1(Y |ω) as the set of individuals i such that ρi (ω) ∈ Y .
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for a type x̃ active player. Letting λlk+1 denote the degenerate measure with point
mass on flk+1(hk, a), and letting

λ = (1 − δ)


λlk+1 + δ

∞∑
m=lk+1+1

δm−1λm


 ,

we then have

φx̃ (hk, a) =
∫

ux̃ (x) λ(dx).

That is, we can express a type x̃ player’s payoff as the expected utility from the
lottery λ, which is itself independent of x̃ . Similarly, we can express continuation
values following a′ as the expected utility from some lottery λ′. The result then
follows directly from Lemma 2.1, completing the proof.

We call history hk a voting stage if (1) A(hk) consists of two elements, say 0 and
1, (2) for all action profiles a ∈ {0, 1}N (hk ), beliefs are symmetric at (hk, a), and (3)
there exists a probability measure ν on N (hk) such that each player’s payoff from
any measurable a ∈ {0, 1}N (hk ) takes one value if the proportion of “one-votes”
is above one half and takes another value if the proportion is less than or equal to
one half. Formally, by the latter condition we mean that there exists ν such that,
for each x̃ ∈ R

d , there exists qx̃ , rx̃ ∈ R such that

φx̃ (hk, a) =
{

qx̃ if ν({i | ai = 0}) ≤ 1/2
rx̃ if ν({i | ai = 1}) > 1/2,

where ai is the action taken by i in the profile a. Note that this definition of a
voting stage restricts not only the extensive game form but also the strategy profile
σ , because individual continuation values depend on future stages only through
the “winner” at hk . Thus, our result, below, on voting stages would not apply to
equilibria in which any voter is subject to punishment contingent specifically on
his/her vote.

An issue that arises in the analysis of voting stages is the multiplicity of Nash
equilibria: any profile of votes such that no voter is pivotal (i.e., no voter can unilat-
erally move the proportion of zero-votes above and below one half) forms a Nash
equilibrium of the voting subgame. Indeed, in models with a continuum of voters,
a single voter can never be pivotal in an election. In such cases, it makes sense to
refine the possible equilibria by assuming each voter takes the action that offers the
highest “potential” payoff. Let 0 denote the action profile consisting of all zeroes
for members of N (hk), and let 1 denote the action profile consisting of all ones.
Formally, we might require that each individual i of type x̃ votes for 1 (ai = 1) if

φx̃ (hk, 1) > φx̃ (hk, 0)

and votes for 0 (ai = 0) if the reverse inequality holds. In the context of a finite
number of voters, this refinement amounts to the elimination of strategies dom-
inated in the stage game. In the context of a continuum of voters, because no
strategy is dominated in the voting stage, it amounts to a sincere voting require-
ment (but does not imply any voter myopia). If σ satisfies this condition, we say it is
stage-undominated at history hk . This does not restrict i’s strategy when the above
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holds with equality. In applications with a finite number of voters, it is often assumed
that the voter flips a coin in this case. Another common assumption is that one alter-
native is the “default” choice and receives i’s vote. If equality implies σi (hk) = 0,
then we say σ is stage-undominated with default bias.

Our last result characterizes the outcomes of voting stages for stage-undominated
strategy profiles: essentially, voting produces the payoff (q or r ) that is higher for
the core voter’s type. Again, the characterization holds even if the type profile and
history are not common knowledge.

Proposition 3.2 Let hk be a history with initial state ω. Assume that hk is a voting
stage, with probability measure ν on N (hk), and that σ is stage-undominated at
hk. Define π = ν ◦ ρ−1(·|ω), let j ∈ N (hk) be such that ρ j (ω) = x∗ ∈ X is a
median in all directions, and assume π is resolute at x∗. Then

• ν({i | ai = 1}) > 1/2 if φx∗(hk, 1) > φx∗(hk, 0)
• ν({i | ai = 0}) > 1/2 if φx∗(hk, 0) > φ(x∗, (hk, 1)).

If σ is stage-undominated with default bias, then

• ν({i | ai = 0}) ≥ 1/2 if and only if φx∗(hk, 0) ≥ φx∗(hk, 1).

If, for example, φx∗(hk, 1) > φx∗(hk, 0), then Proposition 3.1 implies

π({x̃ | φx̃ (hk, 1) > φx̃ (hk, 0)}) > 1

2
,

or equivalently,

ν({i | φρ(i)(hk, 1) > φρ(i)(hk, 0)}) > 1

2
.

Because σ is stage-undominated, this implies that ν({i | ai = 1}) > 1/2, as
required. The rest of the proposition is proved similarly, completing proof.

4 Applications

We end with three applications of the above results.

4.1 Campaigning

Suppose a finite, odd number of voters have quadratic von Neumann–Morgenstern
utilities over a one-dimensional policy space X ⊆ R and must vote between an
incumbent, with known policy position x ∈ X , and an unknown challenger. The
challenger’s position, y, is distributed according to the common prior distribution
function F with density f . The elected politician is assumed to implement his/her
position, which voters evaluate according to quadratic utility. Conditional on chal-
lenger position y, the voters observe a common signal z, distributed according to
G(·|y) with density g(·|y). After updating using Bayes rule, the voters’ common
beliefs about the challenger’s position are given by the density

b(y|z) = g(z|y) f (y)∫
g(z|s) f (s) ds

.
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Assume the voters eliminate weakly dominated strategies, so that a voter with ideal
point x̃ votes for the incumbent if

ux̃ (x) >
∫

ux̃ (y)b(y|z) dy (4.1)

and votes for the challenger if this inequality is reversed. The winner is the candidate
with the most votes.

This model can be mapped into the framework of the previous section to deter-
mine the outcome of the election, assuming undominated voting strategies, follow-
ing any signal realization z. The initial state ω = (y, z) specifies the position of
the challenger and the signal observed by the voters; assume that the marginal on y
is given by F and, conditional on y, the distribution of z is given by G(·|y). In the
first stage, only the voters are active, each casting a ballot for the incumbent or the
challenger, and in the second stage, the elected candidate is the only active player
and simply picks his/her position, which is then the outcome.7 Voters’ beliefs upon
electing a candidate are symmetric: if the incumbent is elected, then the outcome
in the second stage is x with probability one, and if the challenger is elected, then
the outcome is given by the density b(·|z). Obviously, this is a voting stage with
the counting measure on the set of voters. Because X is one-dimensional and the
number of voters is odd, there is a unique median in all directions, say x∗, and the
distribution of ideal points is resolute at x∗. In fact, x∗ is simply the median of the
distribution of ideal points.

A direct implication of Proposition 3.2 is that the incumbent will win if the strict
inequality in (4.1) holds for the median, and the challenger will win if the opposite
holds. An implication of part (ii) of Lemma 2.1 is that, when equality obtains in
(4.1), the number of voters who strictly prefer the incumbent will equal the number
of voters who strictly prefer the challenger. If indifferent voters flip coins in the
original model, then each candidate will win with probability one half, conditional
on the median being indifferent. If indifferent voters vote for the incumbent, as
is sometimes assumed, he/she will win with probability one, again conditional on
median indifference.

In the sketch of the above model, we did not specify the voters’ information
about each other’s ideal points. In fact, because Proposition 3.2 does not presume
common knowledge of the history, the above characterization holds even if the
identity of the median voter is unknown (even to the median).

4.2 Bargaining

Suppose an odd number of agents, 1, 2, . . . , n, have quadratic von Neumann–Mor-
genstern utilities over a one-dimensional space X ⊆ R of alternatives, and suppose
the agents decide on an alternative in each of an infinite number of periods accord-
ing to the following protocol: in any period t , if no alternative has previously been
agreed upon, then an agent is drawn randomly to make a proposal, say x , which
is followed by a vote; if the proposal passes, then the outcome in period t and all

7 For technical reasons (since we assumed an infinite number of stages in Sect. 3), we define
players and action sets arbitrarily in later stages, and we specify a fixed outcome in every later
stage. This does not affect the analysis.
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subsequent periods is x , and each agent i receives quadratic utility ui (x) in periods
t, t +1, t +2, . . .; if the proposal is rejected, then the outcome in period t is a status
quo policy q ∈ X , each agent i receives utility ui (q) in period t , and bargaining
moves to period t + 1, where this process is repeated. If outcome x is passed in
period t , then each agent i’s discounted utility is

(1 − δt−1)ui (q)+ δt−1ui (x),

where δ ∈ [0, 1) is a common discount factor. (Here, we normalize the discounted
sum by (1 − δ).) Let pi denote the history-independent probability that i is drawn
to make a proposal. We assume that information is complete and that all prior
proposals and votes are observed.

A class of strategy profiles of much interest in this model are the stationary
strategy profiles, in which the proposal of an agent i is history-independent and the
vote of an agent depends only on the alternative proposed. Given such a strategy
profile, let xi denote the alternative agent i would propose, if selected to do so. Also
let Ai denote the “acceptance set” for i , the proposals that agent i would vote for,
and let M denote the collection of coalitions C containing a majority of agents.
Then we define

A =
⋃

C∈M

⋂
i∈C

Ai

as the “social acceptance set,” the proposals that would pass if made. A no-delay
strategy profile is one for which xi ∈ A for all agents. Given a no-delay profile, it is
easy to see that each agent i’s continuation value, vi , is history-independent and,
moreover,

vi =
∑
j∈N

p j ui (x j ).

A no-delay stationary equilibrium is a subgame perfect equilibrium in which (1)
each agent i proposes xi ∈ arg max{ui (x) | x ∈ A}, and (2) each agent i votes for
any proposal that is weakly preferred to continuing the bargaining process, i.e.,

Ai = {x ∈ X | ui (x) ≥ (1 − δ)ui (q)+ δvi }. (4.2)

Note that this equilibrium condition on voting strategies incorporates the refine-
ment of stage-undominated strategies in voting stages with default bias in favor
of proposals. Existence of no-delay stationary equilibria follows from a general
result, allowing for multiple dimensions and arbitrary concave utility functions, in
Banks and Duggan (2005).

This model can be mapped into the framework of the previous section to char-
acterize the social acceptance set in any stationary equilibrium. We let the initial
state determine the sequence of proposers over time, not observed by the agents,
where marginals on proposers are iid, with probabilities given by p1, . . . , pn . Ideal
points of the agents are exogenously fixed. In the first stage, the first proposer is
the only active player, and he/she chooses an alternative in X ; in the second stage,
all players are active and vote either to accept or reject the proposal; and so on.
Outcomes are generated every time a proposal is voted on, as follows: if a proposal
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has been passed, then that alternative is the outcome;8 otherwise, the outcome is
the status quo. Assuming all agents use stationary strategies and since information
is complete (so beliefs are symmetric), a stage following a proposal by any agent
is a voting stage with the counting measure on the set of agents. Furthermore, any
no-delay stationary equilibrium will be stage-undominated with default bias (in
favor of the proposal) after every history. Because X is one-dimensional and the
number of voters is odd, there is a unique median in all directions, say x∗, and the
distribution of ideal points is resolute at x∗.

Thus, Proposition 3.2 implies that, given a no-delay stationary equilibrium and
given any history ending in the selection of a proposer, a proposal will pass if and
only if the median voter weakly prefers passage to continuing the bargaining pro-
cess. That is, the social acceptance set is exactly equal to the median voter’s accep-
tance set in every no-delay stationary equilibrium. This provides a game-theoretic
foundation for a partial median voter result on bargaining in committees, one that
differs from Black (1958) in that the median voter dictates the outcomes of each
vote but, because other agents may make proposals, his/her ideal point may not
be the unique outcome. This consideration arises, of course, because we explicitly
model the proposal process and the incentives of agents in their roles as proposer
and voter. Elsewhere (Banks and Duggan 2005), we have shown that the set of out-
comes passed in no-delay stationary equilibria converges to the median as agents
become arbitrarily patient, even if utilities are not quadratic.

Whereas the above model is investigated in Banks and Duggan (2005), a related
model is taken up in Banks and Duggan (2000). A special case is the model in which
utility functions are quadratic plus a common constant c such that ui (x) + c ≥ 0
for all x ∈ X , and in which each agent’s status quo payoff is zero [so the status quo
is “bad” for all agents, as in Baron and Ferejohn (1989)]. It can be checked that,
in that model too, the median voter is decisive in the above sense.

4.3 Repeated elections

Suppose a continuum of voters, N = [0, 1], must choose between an incumbent
and a challenger for political office in each of an infinite number of periods. The
officeholder in any period t chooses a policy yt ∈ X = [0, 1], and a voter with ideal
point x̃ receives quadratic utility ux̃ (yt ) in that period. In the subsequent period,
a challenger is drawn uniformly from the population of voters to run against the
incumbent in a majority-rule election. Voters vote simultaneously by secret ballot,
and the incumbent wins if and only if he/she receives at least half of the votes;
otherwise, the challenger takes office. In either case, the winner chooses the policy
yt+1 for period t + 1. This sequence of challenger draws, elections, and policy
choices determines an infinite sequence y1, y2, . . . of policies, yielding utility

(1 − δ)

∞∑
t=1

δt−1ux̃ (yt )

to a voter with ideal point x̃ , where δ ∈ [0, 1) is a common discount factor.

8 Thus, once a proposal is passed, the game is essentially over. We focus on histories such that
no proposal has already been passed.
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Voter ideal points are private information. Borrowing from earlier notation, we
use ρ : N → X to denote a type profile, where ρi is the ideal point of voter i . We
assume that type profiles are measurable and that the distribution over type profiles
is such that the marginal of each voter’s ideal point is given by the continuous,
strictly increasing distribution function F . Because there is a continuum of voters,
we do not assume voter ideal points are independently distributed, but we assume
finite-dimensional independence, i.e., conditional on any finite number of other
voters’ ideal points, the ideal point of each voter i is distributed according to F .
Moreover, we assume that a law of large numbers holds: the distribution of type
profiles is such that, for almost every type profile, the set of voters with ideal points
less than or equal to x is measurable, and the fraction of such voters is F(x), i.e.,

λ({i | ρi ≤ x}) = F(x),

where λ here is the Lebesgue measure.9 We refer to the profiles for which these
conditions hold as regular. Thus, F represents not only the marginal distribu-
tion of any voter’s ideal point, but also (with probability one) the distribution of
ideal points across the electorate and, therefore, the distribution of challenger ideal
points. Note that, because F is continuous, the probability that any one voter is ever
selected is zero. We assume that a voter’s ideal point is never directly observed,
even if drawn as a challenger and elected as officeholder, though an officeholder
may reveal information about his/her ideal point through policy choices while in
office. By finite-independence, updating about the officeholder’s ideal point does
not affect a voter’s beliefs about other voters’ ideal points.

A class of strategy profiles of interest in this model are the simple strategy
profiles, in which (1) a voter with ideal point x̃ always chooses the same point px̃ if
ever elected to office, where px̃ is measurable with respect to x̃ , and (2) a voter with
ideal point x̃ votes to reelect the incumbent if and only if the incumbent’s policy
choice y in the previous period satisfies a history-independent utility standard ū x̃ ,
which is measurable as a function of x̃ . Thus, a voter with ideal point x̃ votes for
the incumbent if and only if ux̃ (y) ≥ ū x̃ . Letting

Ax̃ = {y ∈ [0, 1] | ux̃ (y) ≥ ū x̃ }
denote the acceptance set for a voter with ideal point x̃ , letting Pr(C) = ∫

C dF
denote the proportion of voters with ideal points in a measurable set C ⊆ X , and
letting M denote the collection of all measurable sets C satisfying Pr(C) ≥ 1/2,
we define

A =
⋃

C∈M

⋂
x̃∈C

Ax̃

as the social acceptance set, the set of policies that, if chosen, would lead to reelec-
tion of the incumbent. Because ū x̃ is measurable, A is measurable for every regular
type profile. To see this, note that, if ρ is regular, then x ∈ A if and only if

∫
ψ(x, z) F(dz) ≥ 1

2
,

9 Theorem 2 in Judd (1985) establishes the existence of such a distribution over type profiles.
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where

ψ(x, z) =
{

1 if x ∈ Az
0 else,

a jointly measurable function. Then measurability of
∫
ψ(·, z)dF follows from

Fubini’s theorem (cf. Aliprantis and Border 1999; Theorem 11.26). Thus, A is
measurable.

Given a simple strategy profile, we define beliefs throughout the game as
follows. In period t , following elections of officeholders i1, i2, . . . , ik , let y1, y2, . . . ,
yk denote the most recent policy choices of these politicians. For each politician
m, let Ym = p−1(ym) if this set is non-empty, and otherwise let Ym = {0}.10

Then the updated beliefs of a type x̃ voter are given by the prior over ρ condi-
tioned on ρim ∈ Ym , m = 1, 2, . . . , k, and ρi = x̃ . By finite-independence, the
conditional beliefs about the types of all other voters are still given by F . Let
W = {x̃ ∈ X | px̃ ∈ A} denote the set of ideal points of winning office-holders,
and let L = X \W denote the set of ideal points of losing office-holders, both
measurable under our assumptions. Assuming it exists, it is then straightforward,
using the law of large numbers, to solve for the continuation value of electing a
challenger for a voter with ideal point x̃ as

vx̃ =
∫

W ux̃ (pz) F(dz)+ (1 − δ)
∫

L ux̃ (z) F(dz)

1 − Pr(L)δ
, (4.3)

where the first term in the numerator accounts for challengers who choose policies
in A and the second, appropriately discounted, for those who do not.

A simple equilibrium is a simple strategy profile in which (3) an officeholder
with ideal point x̃ chooses y ∈ arg max{ux̃ (z) | z ∈ A} if

max{ux̃ (z) | z ∈ A} ≥ δvx̃

and otherwise chooses y = x̃ , and (4) a voter with ideal point x̃ votes to reelect an
incumbent who chose y ∈ A ∪ L in the previous period (and so followed the path
of play) if and only if

ux̃ (y) ≥ vx̃ . (4.4)

That is, an officeholder chooses between remaining in office by satisfying a major-
ity of voters (choosing the best point in A) and leaving office (choosing his/her
ideal point). Voters compare the continuation value of retaining an incumbent and
the continuation value of an unknown challenger, and they vote for the incum-
bent if he/she offers at least as high a continuation value as the challenger. Note
that this equilibrium condition on voting strategies incorporates the refinement of
stage-undominated strategies in voting stages with default bias in favor of the
incumbent. Existence of simple equilibria is established as a special case of a gen-
eral result in Banks and Duggan (2006) that allows for multiple policy dimensions
and arbitrary concave utility functions, but we do assume for simplicity a finite
number of possible types there. In that case, we must allow officeholders with

10 Without loss of generality, we will assume that the median of F is greater than one half. Thus,
in equilibrium, officeholders who choose policies off the equilibrium path will not be reelected.
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ideal points x̃ /∈ A to mix over the best policies in the acceptance set (thereby
winning) and their ideal point (thereby losing) when indifferent. This is not an
issue when F is continuous and strictly increasing, as we assume here.

We can map this model into the framework of the previous section to charac-
terize the social acceptance set of any simple equilibrium. We let the initial state
ω = (γ, ρ) consist of two components. First, γ = (i1, i2, . . .) is the sequence
of challengers over time, not observed by voters. We endow the space [0, 1]N of
sequences of challengers with the sigma algebra generated by rectangles of the
form N1 × N2 × · · · , where N1, N2, . . . are measurable subsets of N , and we
assume the marginals on challengers are distributed uniformly and independently
in each period. Second, a state determines the type profile of the voters. We endow
the space of type profiles with the sigma algebra generated by sets of the form

{ρ | ρi ∈ C},
where i ∈ N and C is a measurable subset of X . We then extend this sigma alge-
bra so that the space of regular profiles is measurable, and we assume the regular
profiles have probability one (cf. Judd 1985; Theorems 1 and 2). We assume that
sequences of challengers and type profiles are distributed independently.

In the first stage, the initial officeholder is the only active player and chooses
a policy in X ; in the second stage, all voters other than the candidates are active
and vote between the incumbent and challenger, with the winner taking office next
period;11 and this process is repeated. Letting 0 denote a vote for the incumbent
and 1 a vote for the challenger, we represent election returns by a measurable
function r : N → {0, 1}, and we let R denote the set of such election returns. A
finite history in this electoral game is then a sequence (x1, i2, r2, x2, i3, r3, x3, . . .),
which represents the period one policy choice, the period two challenger, the period
two election return, the period two policy choice, and so on. We endow all finite
histories with the sigma algebra generated by rectangles of the form

X1 × N2 × R2 × X2 × · · · ,
where N1, N2, . . . are measurable subsets of [0, 1], and where X1, X2, . . . are
Lebesgue measurable subsets of X . As for election returns, we let RI denote the
set of returns r such that

∫
r dλ ≥ 1/2; and we let RC denote the set of returns

r such that
∫

r dλ < 1/2. We then impose that R2, R3, . . . lie in {∅, RI , RC , R},
indicating, respectively, the events that neither candidate won, that the incumbent
won, that the challenger won, and that at least one of the candidates won. The
outcome functions for finite histories are simply defined as projections onto the
policy choices of officeholders, e.g.,

f (x1, i2, r2, x2, . . . , ik, rk, xk) = (x1, x2, . . . , xk),

which are measurable with respect to the above sigma algebras on the Hks.
Given a simple strategy profile as above, the set of states for which the period

one policy lies in X1 is just

S1 = {ω = (γ, ρ) | ρi1 ∈ p−1(X1)},
11 We exclude previously selected politicians to maintain belief symmetry in voting stages.

Since they are finite in number, this leaves the strategic aspects of the game unaffected.
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which is measurable by measurability of policy choice strategies and by choice of
sigma algebra on the space of type profiles. The set of states for which (x1, i2) ∈
X1 × N2 is

S2 = S1 ∩ {ω = (γ, ρ) | i1 ∈ N2},
which is also measurable. The set of type profiles for which (x1, i2, r2) ∈ X1 ×
N2 × RI is

S3 = S2 ∩ {ω = (γ, ρ) | ρi1 ∈ W },
which is measurable because W is measurable, and similarly for other collec-
tions of election returns.12 Measurability of profiles corresponding to histories of
greater length can be established by an induction argument based on these observa-
tions. With beliefs as specified above, this allows us to define probability measures
ξi (hk) on outcome sequences; continuation values are as in (3.1); and a stage fol-
lowing the choice of a policy by any officeholder is a voting stage. Because X is
one-dimensional and F is continuous and strictly increasing, there is a unique
median in all directions, and the distribution of ideal points is resolute at that point.

Thus, Proposition 3.2 implies that, given any simple equilibrium and any reg-
ular history ending with selection of a policy, the incumbent will be reelected if
and only if the median voter weakly prefers the incumbent to a randomly chosen
challenger. That is, the social acceptance set is exactly equal to the median voter’s
acceptance set in every simple equilibrium. This partially extends the median voter
result of Downs (1957) from a static model of party competition, in which two
parties adopt policy platforms prior to election, to a very different model of infi-
nitely repeated elections with incomplete information, in which political actors are
unable to compete for votes by position-taking. Here, of course, the median voter
does not dictate policy outcomes, but rather electoral outcomes. From a technical
point of view, this property has proven to drastically simplify the computation of
equilibria and the theoretical analysis of this model.
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