
Abstract. Procedures designed to select alternatives on the basis of the results
of pairwise contests between them have received much attention in literature.
The particular case of tournaments has been studied in depth. More recently
weak tournaments and valued generalizations thereof have been investi-
gated.The purpose of this paper is to investigate to what extent these choice
procedures may be meaningfully used to define ranking procedures via their
repeated use, i.e. when the equivalence classes of the ranking are determined
by successive applications of the choice procedure. This is what we call
‘‘ranking by choosing’’. As could be expected, such ranking procedures raise
monotonicity problems. We analyze these problems and show that it is
nevertheless possible to isolate a large class of well-behaved choice procedures
for which failures of monotonicity are not overly serious. The hope of finding
really attractive ranking by choosing procedures is however shown to be
limited. Our results are illustrated on the case of tournaments.
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I am grateful to Hervé Raynaud and Jean-Claude Vansnick for stimulating
discussions. Jean-François Laslier, Thierry Marchant, Bernard Monjardet, Xavier
Juret and an anonymous referee made very helpful comments on earlier drafts of this
text. Special thanks go to Patrice Perny who introduced me to the subject and to
Olivier Hudry for his help with Slater orders. The usual caveat applies. Part of this
work was accomplished while I was visiting the Service de Mathématiques de la Gestion
at the Université Libre de Bruxelles (Brussels, Belgium). I gratefully acknowledge the
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1 Introduction

In many different contexts, it is necessary to make a choice between alter-
natives on the sole basis of the results of several kinds of pairwise contests
between these alternatives. Among the many possible examples, let us men-
tion:

– Sports leagues (games usually involve two teams).
– Social choice theory, via the use of C1 or C2 Social Choice functions (as

defined by Fishburn, 1977), in view of the well-known results in McGarvey
(1953) and Debord (1987b).

– Multiple criteria decision making using ‘‘ordinal information’’ (see Arrow
and Raynaud 1986; Roy 1991) in view of the results in Bouyssou (1996).

– Psychology with, e.g., the study of binary choice probabilities (see Luce
1959; Suppes et al. 1989).

This problem has received close attention in recent years most particularly
when the result of the pairwise contests may be summarized by a tournament
(an excellent account of this literature may be found in Laslier 1997) and
much is known on the properties and interrelations of such choice proce-
dures. This line of research has been recently extended to weak tournaments
(ties are allowed, see Peris and Subiza 1999; Schwartz 1986) and valued
generalizations of (weak) tournaments (intensity of preference or number of
victories may be taken into account, see Barett et al. 1990; Basu et al. 1992;
Dutta et al. 1986; Dasgupta and Deb 1991; Dutta and Laslier 1999; de
Donder et al. 2000; Fodor and Roubens 1994; Kitainik 1993; Litvakov and
Vol’skiv 1986; Nurmi and Kacprzyk 1991; Pattanaik and Sengupta 2000;
Roubens 1989).

The related problem of ranking alternatives on the basis of the results of
pairwise contests between these alternatives has comparatively received
much less attention in recent years (see, however, Henriet 1985; Rubinstein
1980), although it generated classical studies (see Kemeny 1959; Kemeny
and Snell 1962; Slater 1961) and is clearly in the spirit of Social Welfare
Functions à la Arrow (Arrow 1963). This is a pity since most classical
applications of choice procedures are also potential applications for ranking
procedures. This is, e.g., clearly the case for sports since most leagues want
to rank order teams at the end of season and not only to select the win-
ner(s). This also the case in the many situations in which, although a choice
between alternatives is to be made, alternatives may disappear (e.g., can-
didates for a position may withdraw), so that there is a necessity of building
a waiting list.

The problem of devising sound ranking procedures for such situations can
be studied without explicit reference to choice procedures (see Bouyssou
1992b; Bouyssou and Perny 1992; Bouyssou and Pirlot 1997; Bouyssou and
Vincke 1997; Henriet 1985; Rubinstein 1980; Vincke 1992). This is in line with
the advice in Moulin (1986) to clearly distinguish the question of ranking
alternatives from the one of selecting winners.
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We shall be concerned in this paper with quite a different approach to
ranking on the basis of pairwise contests that is intimately connected with
choice procedures. Several authors have indeed suggested (see Arrow and
Raynaud 1986; Roy 1991) that a ranking procedure could well be devised by
successive applications of a choice procedure. The most natural way to do so
goes as follows:

– Apply the choice procedure to the whole set of alternatives. Define the first
equivalence class of the ranking as the chosen elements in the whole set.

– Remove the chosen elements from the set of alternatives.
– Apply the choice procedure to the reduced set. Define the second equiv-

alence class of the ranking as the chosen elements in the reduced set.
– Repeat the above two steps to define the following equivalence classes of

the ranking until there are no more alternatives to rank.

This is what we call ‘‘ranking by choosing’’. An example may help clarify
the process.

Example 1 (Ranking by choosing with Copeland). Let X ¼ fa; b; c; d; e; f ; gg.
Consider the tournament T on X defined by:

aTb; aTf ;
bTc; bTd; bTe; bTf ;
cTa; cTe; cTf ; cTg;

dTa; dTc; dTe; dTf ; dTg
eTa; eTf ; eTg;

fTg;
gTa; gTb:

Suppose that you want to use the Copeland choice procedure CopðA; T Þ
selecting the elements in A having a maximal Copeland score (i.e. maximal
outdegree) in T restricted to A as a basis for ranking alternatives.

Applying the above ranking by choosing algorithm successively leads to:

CopðX ; T Þ ¼ fdg;
CopðXnfdg; T Þ ¼ fcg;

CopðXnfd; cg; T Þ ¼ feg;
CopðXnfd; c; eg; T Þ ¼ fa; gg;

CopðXnfa; d; c; e; gg; T Þ ¼ fbg;
CopðXnfa; b; c; d; e; gg; T Þ ¼ ff g:

Hence we obtain the ranking (using obvious notation):
d � c � e � ½a � g� � b � f . This result is clearly different from the one that
we would have obtained ranking alternatives using their Copeland scores in
X , i.e.:

d � ½b � c� � e � ½a � g� � f ;

although both rankings clearly coincide on their first equivalence class.
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Using ranking by choosing, we may associate a well-defined ranking
procedure to every choice procedure. A natural question arises. If the choice
procedure has ‘‘nice properties’’, will it also be the case for the induced
ranking procedure? This is the subject of this paper.

Most ranking procedures that are used in practice are not of this ranking
by choosing type. Most often (take the example of most sports leagues) they
are rather based on some kind of scoring function that aggregates into a real
number the results of the various pairwise contests, e.g. one may rank
alternatives according to their Copeland scores.

Although ranking procedures induced by choice procedures may seem
complex when compared to those based on scoring functions, several authors
have forcefully argued in favor of their reasonableness (see Arrow and
Raynaud 1986; Roy 1991) and many of them were proposed (see Arrow and
Raynaud 1986; Debord 1987a; Matarazzo 1990; Roy 1978). They are, in
general, easy to compute and rather easy to explain. They are—structur-
ally—insensitive to a possible withdrawal of (all) best ranked alternatives (see
Vincke 1992). Furthermore, if the answer to the preceding question were to be
positive, there would be a clear interest in using well-behaved choice proce-
dures as a basis for ranking procedures.

The situation is however more complex.The potential drawbacks of these
ranking by choosing procedures should be obvious: their very conception
implies the existence of discontinuities together with a progressive impover-
ishment of information from one iteration to another. This is likely to create
difficulties with most wanted normative properties like monotonicity as was
forcefully shown by Perny (1992).The purpose of this paper is to explore the
extent of these difficulties concentrating on monotonicity. An example will
clarify how bad the situation can be.

Example 1 (continued). Consider the tournament V identical to T except
that aVd. We now have CopðX ; V Þ ¼ fb; c; dg. We had a � b with T . We now
obtain b � a with V , while the position of a has clearly improved when going
from T to V . This is a serious monotonicity problem.

The problem studied in this paper is reminiscent of the well-known mono-
tonicity problems encountered in electoral procedures with ‘‘run-offs’’, e.g.,
the French system of plurality with run-off, the Hare, Coombs and Nansson
procedures (see Fishburn 1977; Moulin 1988) that also involve discontinu-
ities. It is well-known that they often have a disappointing behavior with
respect to monotonicity (see Fishburn 1977, 1982; Moulin 1988; Saari 1994;
Smith 1973). Although these difficulties are linked with our problem, electoral
procedures with run-offs are choice procedures and not ranking procedures.
Hence the problem studied here has distinctive characteristics.

Although many ranking by choosing procedures have been suggested,
their study has received limited attention so far. Perny (1992) showed that
most procedures of this type proposed in the literature violate monotonicity.
He suggested to study the problem more in depth. Shortly after, we proposed
in Bouyssou (1995) some results in that direction (since more powerful results
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appear difficult to obtain, this text is a revised and simplified version of
Bouyssou 1995). More recently, the problem was tackled in Durand (2001)
and Juret (2001) in a Social Choice context.

We show here that, rather surprisingly, there are non-trivial and rather
well-behaved choice procedures leading to ranking by choosing procedures
satisfying a weak form of monotonicity. The hope of finding really attractive
ranking by choosing procedures is however shown to be limited.
The paper is organized as follows. The next section introduces our main
definitions and elucidates our notation. Our results are collected in Sect.3. We
apply our results to the classical case of tournaments in Sect.4. A final section
discusses our findings.

2 The setting

Throughout the paper, X will denote a finite set with jX j ¼ m � 1 elements.
Elements of X will be interpreted as alternatives that are to be compared on
the basis the results of several kinds of pairwise contests. We denote by P(X)
the set of all nonempty subsets of X.

2.1 Pairwise contests between alternatives

Pairwise contests between alternatives arise in many different contexts.
Therefore, it is not surprising that many different models have been proposed
to summarize them. The most simple ones consist of binary relations: tour-
naments (see Laslier 1997; Moulin 1986), weak tournaments (see Peris and
Subiza 1999), reflexive binary relations (see Vincke 1992). More sophisticated
models use real-valued functions on X 2: weighted tournaments (see de
Donder et al. 2000), comparison functions (see Dutta and Laslier 1999) or
general valued relations (see Kitainik 1993; Fodor and Roubens 1994;
Roubens 1989). Many of these models can be justified by results saying that
some type of aggregation methods lead to all (or nearly all) instances of these
models (see Bouyssou 1996; Deb 1976; Debord 1987b; McGarvey 1953).

Although our results can be extended to more general cases (see Bouyssou
1995), we use throughout the paper the comparison function model presented
in Dutta and Laslier (1999). It is sufficiently flexible to include:

– all complete binary relations and, hence, to deal with all C1 social choice
functions in the sense of Fishburn (1977), i.e., all social choice functions
based on the simple majority relation of some profile of linear orders and

– all 0-weighted tournaments, as defined in de Donder et al. (2000) and,
hence, to deal with most (in fact with what de Donder et al. (2000) called
C1:5 social choice functions) C2 social choice functions in the sense of
Fishburn (1977), i.e. social choice functions that are based on a matrix
giving for each ordered pair ðx; yÞ of alternatives the number nðx; yÞ being
the difference between the number of linear orders in the profile for which x
is ahead of y minus the number of linear orders for which y is ahead of x.
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These two examples are detailed below. We refer to Dutta and Laslier (1999)
for more possible interpretations.

A comparison function p on X is a skew-symmetric real-valued function on
X 2 (i.e. such that pðx; yÞ ¼ �pðy; xÞ, for all x; y 2 X ). The set of all comparison
functions on X is denoted G(X). We denote by pjA the restriction of p on
A � X , i.e. the function pjA on A such that pjAðx; yÞ ¼ pðx; yÞ, for all x; y 2 A.

Example 2 (weak tournaments). A weak tournament V on X is a complete
(xVy or yVx, for all x 2 X ) binary relation1 on X. A tournament is an
antisymmetric (xVy and yVx ) x ¼ y, for all x; y 2 X ) weak tournament. We
denote TðX Þ (resp. WTðX Þ) the set of all tournaments (resp. weak tour-
naments) on X. A transitive tournament (resp. weak tournament) is a linear
order (resp. weak order). We note WOðX Þ the set of all weak orders on X.

The interest in weak tournaments is explained by McGarvey’s theorem
(see McGarvey, 1953) ensuring that any V 2WTðX Þ is the simple majority
relation of some profile of linear orders.
Note that any comparison function p 2 GðX Þ induces a weak tournament
V 2WTðX Þ letting xVy , pðx; yÞ � 0. Conversely, any weak tournament
V 2WTðX Þ induces a comparison function pV 2 GðX Þ defined letting, for all
x; y 2 X ,

pV ðx; yÞ ¼
1 if xVy and Not½yVx�,
0 if xVy and yVx,

�1 if yVx and Not½xVy�.

8
><

>:
ð1Þ

We sometimes abuse notation in the sequel writing V instead of pV when
dealing with weak tournaments.

Example 3 (0-weighted tournaments). A 0-weighted tournament (de Donder
et al. 2000) on X is a complete digraph which set of vertices is X and in which
each arc ðx; yÞ has a skew symmetric integer valuation nðx; yÞ. Using Debord’s
theorem (see Debord 1987b), any 0-weighted tournament with all nðx; yÞ
having the same parity is the net preference matrix of some profile of linear
orders on X , i.e., there is a profile of linear orders such that nðx; yÞ is the
number of linear orders in the profile for which x > y minus the number of
linear orders in the profile for which y > x. Clearly the set of comparison
functions includes all 0-weighted tournaments.

1 We follow here the widely used terminology of Moulin (1986) and Peris and Subiza
(1999) although the term match suggested by Monjardet (1978) and Ribell (1973)
seems more satisfactory. Note that we work here, for commodity, with reflexive (weak)
tournaments although most authors prefer the asymmetric version (see Laslier 1997).
This has no consequences in what follows.
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Definition 1 (Improving the position of an alternative). Let p and p0 be two
comparison functions on X . We say that p0 improves x 2 X w.r.t. p if for all
y; z 2 Xnfxg,

p0ðy; zÞ ¼ pðy; zÞ and p0ðx; yÞ � pðx; yÞ:
We often denote px" a comparison function improving x 2 X w:r:t: p.

Let p 2 GðX Þ, A � X ; x; y 2 A. We say that x covers y in A if pðx; yÞ > 0
and, for all z 2 Anfx; yg; pðx; zÞ � pðy; zÞ. It is clear that the covering relation
thus defined is asymmetric and transitive. Hence it has maximal elements. We
denote UCðA; pÞ � A the set of maximal elements of the covering relation in
A. This definition, due to Dutta and Laslier (1999), extends to comparison
functions a well-known concept due to Fishburn (1977) and Miller (1977,
1980).

We say that x sign-covers y in A for p if it covers y for the comparison
function psign defined by:

psignðx; yÞ ¼
1 if p(x, y) > 0,
0 if p(x, y) = 0,
�1 if p(x, y) < 0,

8
<

:

for all x; y 2 X . It is clear that the sign covering relation is asymmetric and
transitive and, therefore, has maximal elements. We denote SUCðA; pÞ � A
the set of maximal elements of the sign covering relation in A. It is easy to see
that SUCðA; pÞ � UCðA; pÞ, while the two sets coincide for weak tournaments.

A Condorcet winner in A 2 PðX Þ for a comparison function p 2 GðX Þ is an
alternative x that defeats all other alternatives in A in pairwise contests, i.e.
such that pðx; yÞ > pðy; xÞ, for all y 2 Anfxg. It is clear that the set of Con-
dorcet Winners CondðA; pÞ is either empty or is a singleton.
Remark 1. When there is a Condorcet winner, it is clear that CondðX ; pÞ ¼
SUCðA; pÞ and, hence, CondðX ; pÞ � UCðA; pÞ. The uncovered set UCðA; pÞ
may however contain other alternatives.

2.2 Ranking procedures

A ranking procedure (for comparison functions on X ) ‡ associates with each
comparison function p on X a weak order ‡ðpÞ 2WOðX Þ, i.e. is a function
from GðX Þ into WOðX Þ. The asymmetric (resp. symmetric) part of ‡ðpÞ is
denoted � ðpÞ (resp. � ðpÞ).
Example 4 (Ranking procedures induced by a scoring function). Many ranking
procedures are based on scoring functions on X . A simple2 scoring function
associates with each p 2 GðX Þ, each A � X and each x 2 A a real number

2 More general scoring functions can be defined having for argument the whole
comparison function p, as in methods based on Markov chains or on eigenvalues (see
Laslier 1997). We do not envisage them here and, hence, we omit ‘‘simple’’ in what
follows.
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ScoreF ðx;A; pÞ ¼ FjAjðpðx; yÞy2AnfxgÞ, where FjAj is a real-valued function on
RjAj�1 being symmetric in its arguments and nondecreasing in all its argu-
ments. The ranking procedure ‡F associated to ScoreF ranks alternatives in
X according to their score ScoreF ðx;X ; pÞ, i.e.,

x‡F ðpÞy , ScoreF ðx;X ; pÞ � ScoreF ðy;X ; pÞ; ð2Þ

for all x; y 2 X and all p 2 GðX Þ.
Two scoring functions that are often used are:
– the Copeland score in which F ¼

P
and

– the Kramer score in which F ¼ min.

Note that using the Copeland score on a 0-weighted tournament corre-
sponding to a net preference matrix of a profile of linear orders amounts to
ranking alternatives according to their Borda score (see e.g., Young 1974).

By definition, the function FjX j used to compute ScoreF ðx;X ; pÞ is inde-
pendent of x and symmetric in its arguments. Therefore, such ranking
procedures do not depend on a particular labeling of the alternatives.
Furthermore, since FjX j have been supposed to be nondecreasing in all its
arguments, the ranking will respond in the expected direction to an
improvement of x in p. This is formalized below.

Let RðX Þ be the set of all one-to-one functions on X (i.e. permutations).
Given a comparison function p and a permutation r 2 RðX Þ, we define, pr as
the comparison function defined letting, for all x; y 2 X ; prðrðxÞ; rðyÞÞ ¼
pðx; yÞ.

Definition 2 (Neutral ranking procedures). A ranking procedure ‡ on X is said
to be neutral if, for all for all p 2 GðX Þ and all r 2 RðX Þ; x‡ðpÞy ,
rðxÞ‡ðprÞrðyÞ.

Observe that with a neutral ranking procedure, if the comparison function
is totally indecisive, i.e. if pðx; yÞ ¼ pðy; xÞ ¼ 0, for all x; y 2 X , then this
indecisivity is reflected in the weak order ‡ðpÞ, i.e. x‡ðpÞy, for all x; y 2 X .

Definition 3 (Monotonic ranking procedure). A ranking procedure ‡ on X is
said to be:

– strictly monotonic if
x‡ðpÞy ) x � ðp0Þy;

– monotonic, if

x‡ðpÞy ) x‡ðp0Þy and
x � ðpÞy ) x � ðp0Þy;

– weakly monotonic if
x‡ðpÞy ) x‡ðp0Þy;

– very weakly monotonic if
x � ðpÞy ) x‡ðp0Þy;
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for all x; y 2 X and all p; p0 2 GðX Þ such that p 6¼ p0 and p0 improves x w.r.t. p
(see Definition 1).

Strict monotonicity requires that any improvement of the position of an
alternative is sufficient to break ties in ‡. This is a very strong condition,
although it proves useful to characterize ranking procedures based on scoring
functions FjX j that are increasing in all arguments (see Bouyssou 1992b;
Henriet 1985; Rubinstein 1980). Monotonicity implies weak monotonicity
which in turn implies very weak monotonicity. As already observed, it is easy
to build a monotonic ranking procedure using a scoring function. This will
clearly be more difficult with ranking by choosing procedures in view of
Example 1. In a weakly monotonic ranking procedure, ‘‘efforts do not hurt’’,
since the position of the improved alternative cannot deteriorate: it may only
happen that beaten alternatives now tie with the improved one. Very weak
monotonicity only forbids strict reversals in ‡ after an improvement.
Although this is a very weak condition, Example 1 shows that it can be
violated with seemingly reasonable ranking by choosing procedures.

Remark 2. Durand (2001), in a classic social choice context, proves a negative
result on the existence of strictly monotonic ranking by choosing procedure.
His use of strict monotonicity tends to limit the scope of this result however.

Consider a weak order W 2WOðX Þ and its associated comparison
function pW as defined by (1). Since W is a weak order, it seems obvious to
require that any reasonable ranking procedure should not alter this ranking.

Definition 4 (Faithful ranking procedure). A ranking procedure ‡ on X is said
to be faithful if, for all weak orders W 2WOðX Þ and all x; y 2 X ,
x‡ðpW Þy , xWy. A ranking procedure is said to be faithful for linear orders if
the above condition holds for antisymmetric weak orders, i.e., linear orders.

Many other conditions can obviously be defined for ranking procedures
(for an overview, see Bouyssou and Vincke 1997; Henriet 1985; Rubinstein
1980; Vincke 1992). They will not be useful here. The analysis of ranking by
choosing procedures clearly calls now for a closer look at choice procedures.

2.3. Choice procedures

A choice procedure (for comparison functions on X ) S associates with each
comparison function p 2 GðX Þ and each nonempty subset A 2 PðX Þ a non-
empty set of chosen3 alternatives included in A. More formally, a choice
procedure S on X is a function from PðX Þ � GðX Þ into PðX Þ such that, for
all A 2 PðX Þ and all p 2 GðX Þ, SðA; pÞ � A. Given two choice procedures S0

and S, we say that S0 refines S if, for all A 2 PðX Þ and all p 2 GðX Þ,
S0ðA; pÞ � SðA; pÞ.

3 We use the term chosen even if there may be more than one alternative in SðA; pÞ
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Example 5 (Choice procedures induced by scoring functions). Like with
ranking procedures, many choice procedures are based on simple scoring
functions (again, we do not envisage here scoring functions that depend on
the entire comparison function p). Using the notation introduced in Exam-
ple 4, we simply have, for all A 2 PðX Þ and all x 2 A,

x 2SF ðA; pÞ , ScoreF ðx;A; pÞ � ScoreF ðy;A; pÞ; for all y 2 A; ð3Þ
such choice procedures are clearly independent of the labeling of alternative
and have obvious monotonicity properties. Furthermore, the chosen elements
in A only depends on the restriction pjA of p to A. We formalize these
properties below.

Definition 5 (Properties of a choice procedure). A choice procedure S on X is
said to be:

– neutral if
x 2SðA; pÞ , rðxÞ 2 SðA; prÞ,

– local if
½pjA ¼ p0jA� )SðA; pÞ ¼ SðA; p0Þ;

– Condorcet if
CondðA;pÞ 6¼ [)SðA; pÞ ¼ CondðA; pÞ,

– monotonic if
x 2SðA; pÞ ) x 2SðA; px"Þ,

– properly monotonic if it is monotonic and
½x 6¼ y and y =2SðA; pÞ� ) y =2SðA; px"Þ,

for all p; p0 2 GðX Þ, all A 2 PðX Þ, all r 2 RðX Þ, all x; y 2 X and all
px" 2 GðX Þ, with px" 6¼ p, improving x w.r.t. p.

We refer to de Donder et al. (2000), Dutta and Laslier (1999), Henriet
(1985), Laslier (1997), Moulin (1986) and Peris and Subiza (1999) for a
thorough overview of the variety and the properties of neutral, local,
Condorcet and monotonic choice procedures. An example of such procedures
is SUCðA; pÞ (see Dutta and Laslier 1999) as defined above.

Remark 3. Note that, with the question of ranking by choosing procedures in
mind, only local choice procedures raise problems. Using a non local choice
procedure, e.g., the one selecting in all A 2 PðX Þ alternatives of maximal
Copeland score in X , instead of A, it is easy to obtain a monotonic ranking by
choosing procedure.

Choice procedures may be viewed as associating a choice function (see
Moulin 1985) on X to every comparison function p defined on X . Hence,
when p is kept fixed, classical properties of choice functions may be trans-
ferred to choice procedures. We recall some of them below, referring the
reader to Aizerman (1985), Aizerman and Aleskerov (1995), Malishevski
(1993), Moulin (1985) and Sen (1997) for a detailed study of these conditions
and their relations to the classical one guaranteeing that a choice functions
can be rationalized, i.e. that there is a complete binary relation on X such that
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chosen elements in any subset are the greatest elements of this binary relation
restricted to that subset.

Definition 6 (Choice functions properties of choice procedures). A choice pro-
cedure S on X is said to satisfy:

– Strong Superset Property (SSPÞ if

½SðA; pÞ � B � A� )SðB; pÞ ¼ SðA; pÞ,
– Aizerman if

½SðA; pÞ � B � A� )SðB; pÞ � SðA; pÞ,
– Idempotency if

SðSðA; pÞ; pÞ ¼SðA; pÞ,
– bþif

½A � B and A \SðB; pÞ 6¼ [� )SðA; pÞ � SðB; pÞ,

for all p 2 GðX Þ and all A;B 2 PðX Þ.

Remark 4. We follow here the terminology of Moulin (1995) that has gained
wide acceptance. Let us however observe that the name Aizerman, is espe-
cially unfortunate since, in fact, M.A. Aizerman and his collaborators
apparently never used this condition in their classical works on choice
functions; on the contrary, they made central use of SSP under the name
Outcast (see Aizerman and Malihevski 1981; Aizerman 1985; Aizerman and
Aleskerov 1995). We follow Sen (1977) for bþ.

Let us observe that SSP clearly implies both Aizerman and Idempotency.
The reverse implication is also true (see Aizerman and Aleskerov 1995; Dutta
and Laslier 1999; Moulin 1985). On the other hand, SSP and bþ are inde-
pendent conditions (see Aizerman 1985; Aizerman and Aleskerov 1995;
Malishevski 1993; Sen 1977). Clearly, none of these conditions is sufficient to
imply that the choice function can be rationalized (for such conditions, see
Aizerman and Aleskerov 1995; Moulin 1985; Sen 1977).

Remark 5 (Refining choices). Let S be a choice procedure on X and define
S1 ¼ S. For all integers k � 2, we define Sk and S1 letting, for all
A 2 PðX Þ and all p 2 GðX Þ,

SkðA; pÞ ¼ SðSk�1ðA; pÞ; pÞ and
S1ðA;pÞ ¼

\

k�1
SkðA; pÞ:

It is clear that Sk and S1 are choice procedures. They are obtained by
successive refinements of S. It is well-known that when S is monotonic but
not idempotent, it may happen that S1 is not monotonic. This the case with
SUC (see Laslier 1997).

An apparently open question is to find necessary and sufficient conditions
on S so that this is the case. This problem is clearly related to the already-
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mentioned monotonicity problems encountered in electoral procedures with
runoffs. We do not study it here.

2.4. Ranking procedures induced by choice procedures

Ranking by choosing procedures build a weak order by successive applications
of a choice procedure, its first equivalence class consisting of the elements
chosen in X , the second equivalence class of the elements chosen after the
elements chosen at the first step are removed from X and so on. We need some
more notation in order to formalize this idea. Let W be a weak order on a set Y .
We denote by ClkðY ;W Þ (where k is an integer � 1) the elements in the k-th
equivalence class of W , i.e. Cl1ðY ;W Þ ¼ fx 2 Y : xWy; 8y 2 Y g and, for all
k � 2,

ClkðY ;W Þ ¼ fx 2 Zk�1 ¼ Y n½
[k�1

‘¼1
Cl‘ðY ;W Þ� : xWy; 8y 2 Zk�1g:

Note that Cl1ðY ;W Þ is always nonempty and that a weak order is clearly
uniquely defined by its ordered set of equivalence classes.

Similarly, we denote RkðX ;S; pÞ, the unchosen elements in X with p after
k 2 N applications of S, i.e.

R0ðX ;S; pÞ ¼ X ;
RkðX ;S; pÞ ¼ Rk�1ðX ;S; pÞnSðRk�1ðX ;S; pÞ; pÞ;

with the understanding that Sð[; pÞ ¼ [. Note that R0ðX ;S; pÞ is nonempty
by construction.

Definition 7 (Ranking procedure induced by a choice procedure). Let S be a
choice procedure on X . The ranking procedure ‡S induced by S is the ranking
procedure such that, for all p 2 GðX Þ and all integers k � 1,

ClkðX ;‡SÞ ¼ SðRk�1ðX ;S; pÞ; pÞ:
Some properties of S are easily transferred to ‡S.

Lemma 1. (Transferring properties from choice procedures to ranking pro-
cedures)

– If S is neutral then ‡S is neutral.
– If S is Condorcet then ‡S is faithful for linear orders.
– If S is based on a scoring function with all functions FjAj being increasing

in all arguments then ‡S is faithful.
– If S is a local, neutral, Aizerman and refines UC then ‡S is faithful.

Proof. The first three assertions are immediate from the definitions. Let us
prove the last one. Suppose that W is a weak order. It is clear that
UCðX ;W Þ ¼ Cl1ðX ;W Þ. Since S refines UC we must have SðX ;W Þ �
Cl1ðX ;W Þ. We have SðX ;W Þ � Cl1ðX ;W Þ � X . Hence, since S is Aizerman,
SðCl1ðX ;W Þ;W Þ �SðX ;W Þ. Since S is local and neutral, we know that
SðCl1ðX ;W Þ;W Þ ¼ Cl1ðX ;W Þ. Hence, SðX ;W Þ ¼ Cl1ðX ;W Þ. The conclu-
sion follows from a repetition of this argument. j
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Unfortunately, as shown in Example 1 above, monotonicity is not
transferred as easily from choice procedures to ranking procedures. Since
monotonicity seems to be a vital condition for the reasonableness of a ranking
procedure, we investigate below which choice procedures S have an associ-
ated ranking procedure ‡S that is monotonic or weakly monotonic.

Remark 6. It should be observed that given a scoring function ScoreF the
ranking procedures ‡F and ‡SF

may have quite different properties. Con-
sidering for instance the Kramer score Scoremin and its extension to choice
procedures, it is easy to see that ‡min is not faithful (since all alternatives not
belonging to the first equivalence of a weak order are tied with ‡min). On the
contrary, it is clear that that ‡Smin is indeed faithful.

3. Results

3.1 Weak monotonicity

Our aim is to find conditions on choice procedures that would guarantee that
the ranking procedures they induce are weakly monotonic. As already shown
by Example 1, there are choice procedures S that are neutral, local, (prop-
erly) monotonic and Condorcet while ‡S is not even very weakly monotonic.
Guaranteeing that ‡S is weakly monotonic is therefore not as trivial a task
as it might appear at first sight.

Our central result in this section says that any local and monotonic choice
procedure satisfying SSP generates a ranking procedure that is weakly
monotonic.

Proposition 1 (SSP and weak monotonicity). If S is local, monotonic and
satisfies SSP then ‡S is weakly monotonic.

Proof. Suppose that S is local, monotonic and satisfies SSP and that ‡S is
not weakly monotonic. By definition this implies that for some p 2 GðX Þ,
some x; y 2 X and some px" improving x 2 X w.r.t. p, we have x‡SðpÞy and
y �S ðpx"Þx.

Since S is monotonic, it is impossible that x 2 Cl1ðX ;‡SðpÞÞ ¼SðX ; pÞ
since this would imply x 2 Cl1ðX ;‡Sðpx"ÞÞ ¼SðX ; px"Þ, which violates
y �S ðpx"Þx. By construction, we know that x 62 Cl1ðX ;‡Sðpx"ÞÞ ¼SðX ; px"Þ.
Let Z ¼ Xnfxg. We have pjZ ¼ px"jZ . Since S is local, this implies
SðZ; pÞ ¼SðZ; p;x" Þ.

Since x 62 SðX ; pÞ, we have SðX ; pÞ � Z � X and SSP implies SðZ; pÞ ¼
SðZ; pÞ. Similarly, we know that x 62SðX ; px"Þ so that SðX ; px"Þ � Z � X
and SSP implies SðX ; px"Þ ¼SðZ; px"Þ. Because SðZ; pÞ ¼ SðZ; px"Þ, we
have SðX ; px"Þ ¼ SðX ; pÞ and, hence, Cl1ðX ;‡SðpÞÞ ¼ Cl1ðX ;‡Sðpx"ÞÞ.
Note, in particular that y 62 Cl1ðX ;‡Sðpx"ÞÞ.

It is now impossible that x 2 Cl2ðX ;‡SðpÞÞ. Indeed this would imply that
x 2SðR1ðX ;S; pÞ; pÞ, so that, using the monotonicity of S;
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x 2SðR1ðX ;S; pÞ; px"Þ. Since R1ðX ;S; pÞ ¼ R1ðX ;S; px"Þ, this would imply
x 2 Cl2ðX ;‡Sðpx"ÞÞ, which would contradict y �S ðpx"Þx.

Because S is local, the above reasoning can now be applied to
R1ðX ;S; pÞ ¼ R1ðX ;S; px"Þ. As above, this leads to Cl2ðX ;‡SðpÞÞ ¼
Cl2ðX ;‡Sðpx"ÞÞ and y 62 Cl2ðX ;‡Sðpx"ÞÞ.

Iterating the above reasoning easily leads to a contradiction. j

Let us note that in the literature on tournaments it is possible to find
rather well-behaved choice procedures that are neutral, local, monotonic
while satisfying SSP (e.g., MCS, BP , as defined below, see Laslier 1997). For
general comparison functions, Dutta and Laslier (1999) also present several
such procedures. Proposition 1, therefore shows that there are many well-
behaved weakly monotonic ranking procedures induced by choice proce-
dures. Let us give an example of such a procedure.

Example 6 (sign essential set). The bipartisan set BP defined for tourna-
ments (see Laffond et al. 1993a) has recently been generalized to comparison
functions (see Dutta and Laslier 1999; de Donder et al. 2000). Observe that
any comparison function p induces a symmetric two-person zero-sum game
(in which each of the two players have the set of strategies X and the payoff
functions are given by pðx; yÞ and pðy; xÞ). The same is clearly true for psign.

It is well-known that all such games haveNash equilibria inmixed strategies
(see von Neumann and Morgenstern 1947). The Sign Essential Set (SES) con-
sists in all pure strategies that are played with strictly positive probability in one
of the Nash equilibria in the symmetric two-person zero-sum game induced by
psign.

Dutta and Laslier (1999) show that SES defines a choice procedure that is
monotonic, Condorcet and satisfies SSP , on top of being clearly local and
neutral. It is not difficult to show that it refines UC (as well as several other
reasonable choice procedures). Hence, using lemma 1 and proposition 1, we
know that ‡SES is a neutral, faithful and weakly monotonic ranking proce-
dure. It therefore qualifies as a very reasonable ranking by choosing procedure.

Remark 7 (Aizerman cannot be substituted to SSP). The above proposition
does not hold if Aizerman is substituted to SSP . It is well-known that SUC is
monotonic and satisfies Aizerman but violates SSP (see Laslier 1997). The
following example shows that ‡SUC is not even very weakly monotonic.

Example 7 (‡SUC is not very weakly monotonic). Let X ¼ fa; b; c; d; e; f ; gg.
Consider the tournament T on X defined by:

aTb; aTd; aTe; aTf ; aTg;
bTc; bTd; bTe; bTf ; bTg;

cTa; cTe; cTf ; cTg;
dTc; dTe;

eTf ;
fTd; fTg;
gTd; gTe:
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It is easy to check, using the comparison function defined by (1),
that SUCðX ; T Þ ¼ fa; b; cg; SUCðXnfa; b; cg; T Þ ¼ fe; f ; gg. Hence, we have
f �SUC ðT Þd.

Consider now the tournament V identical to T except that eVb. We have:
SUCðX ; V Þ ¼ fa; b; c; dg, so that d �SUC ðV Þe. This shows that ‡SUC is not
very weakly monotonic.

Remark 8 (Monotonicity is not implied). It is clearly tempting to look for a
result similar to Proposition 1 involving the monotonicity of ‡S. This
problem is far more difficult than with weak monotonicity and we only have
negative results on that point. Proposition 2 below implies that Proposition 1
is no longer true if monotonicity is substituted to weak monotonicity.

Remark 9 (SSP is not necessary). For local and monotone choice proce-
dures p, SSP is a sufficient condition for ‡S to be weakly monotonic. It is not
necessary however, even when attention is restricted to the well-structured
case of tournaments. Let us consider this case and show that there are, on
some sets X , choice procedures violating SSP while being weakly monotonic.
We abuse notation in the sequel and write T instead of pT .

Suppose that jX j ¼ 5. The following example shows that SUC may violate
SSP .

Example 8 (SUC violates SSP when jX j ¼ 5). Let X ¼ fa; b; c; d; eg. Con-
sider the tournament T on X defined by:

aTb; aTd;
bTc; bTe;

cTa; cTd; cTe;
dTb; dTe;

eTa:

We have SUCðX ; T Þ ¼ fa; b; c; dg (e is covered by c) and
SUCðfa; b; c; dg; T Þ ¼ fa; b; cg (d is covered by a). This violates SSP since
SUCðX ; T Þ � fa; b; c; dg � X but SUCðfa; b; c; dg; T Þ ¼ fa; b; cg 6¼ SUCðX ; T Þ
¼ fa; b; c; dg.

Let us now show that, when jX j � 5, ‡SUC is weakly monotonic. It clearly
suffices to show that weak monotonicity holds when an alternative is
improved w.r.t. a single other alternative. The proof uses the following
well-known facts on uncovered elements in a tournament.

Lemma 2. (Miller 1977, 1980; Moulin 1986)

1: x 2 SUCðA; T Þ iff for all y 2 Anfxg, either xTy or ½xTz and zTy�, for some
z 2 A (2-step principle).

2: SUCðA; T Þ ¼ fxg iff xTy for all y 2 Anfxg.
3: If jSUCðA; T Þj 6¼ 1 then jSUCðA; T Þj � 3 and we have Cond ðSUCðA; T Þ;

T jSUCðA;T ÞÞ ¼ [.
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Lemma 3. If jX j � 4, ‡SUC is weakly monotonic.

Proof. If jX j � 3, the proof easily follows from Lemma 2 and the monoto-
nicity of SUC. If jX j ¼ 4, three cases arise by Lemma 2.

1. If jCl1ðX ;‡SUCðT ÞÞj ¼ 1. Let fag ¼ Cl1ðX ;‡SUCÞ ¼ SUCðX ; T Þ. Since a is
a Condorcet winner in X , it is impossible to improve a. If any b 6¼ a is
improved w.r.t. a, it becomes uncovered, using Lemma 2, and weak
monotonicity of ‡SUC cannot possibly be violated. If b 6¼ a is improved
w.r.t. an alternative different from a, then a remains the Condorcet winner
and it is clear that weak monotonicity of ‡SUC cannot possibly be violated.

2. If jCl1ðX ;‡SUCðT ÞÞj ¼ 3 and therefore jCl2ðX ;‡SUCðT ÞÞj ¼ 1. Weak
monotonicity of ‡SUC can only be violated if an element in
Cl1ðX‡SUCðT ÞÞ ¼ SUCðX ; T Þ is improved. Since SUC is monotonic, this
improved element will remain uncovered in X . Thus, weak monotonicity
cannot possibly be violated.

3. If jCl1ðX ;‡SUCðT ÞÞj ¼ 4, weak monotonicity of ‡SUC follows from the
monotonicity of SUC.

Lemma 4. If jX j ¼ 5, ‡SUC is weakly monotonic.

Proof. Four cases arise by Lemma 2.

1. If jCl1ðX ;‡SUCðT ÞÞj ¼ 1. Let fag ¼ Cl1ðX ;‡SUCÞ ¼ SUCðX ; T Þ. Since a is
a Condorcet winner in X , it is impossible to improve a. If an alternative not
in Cl1ðX ;‡SUCðT ÞÞ is improved w.r.t. a, it becomes uncovered, because of
part 1 of Lemma 2. Thus weak monotonicity cannot be violated. If an
alternative not in Cl1ðX ;‡SUCðT ÞÞ is improved w.r.t. another alternative
not in Cl1ðX ;‡SUCðT ÞÞ, it is clear that after the improvement a remains a
Condorcet winner and, thus, chosen alone in X . In view of Lemma 3, weak
monotonicity cannot possibly be violated.

2. If jCl1ðX ;‡SUCðT ÞÞj ¼ 3 and, therefore, jCl2ðX ;‡SUCðT ÞÞj ¼ 1 and
jCl3ðX ;‡SUCðT ÞÞj ¼ 1. Let X ¼ fa; b; c; d; eg and suppose w.l.o.g. that
Cl1ðX ;‡SUCðT ÞÞ ¼ SUCðX ; T Þ ¼ fa; b; c�, Cl2ðX ;‡SUCðT ÞÞ ¼ fdg and
Cl3ðX ;‡SUCðT ÞÞ ¼ feg. We know from Lemma 2 that there is a circuit
linking a, b and c and that dTe. We suppose w.l.o.g. that the circuit is
aTb; bTc; cTa.
It is impossible to improve e and to violate weak monotonicity. In view of
part 1 of Lemma 2, observe that d can beat at most one alternative in
fa; b; cg because we know that d 62 SUCðX ; T Þ. If d beats exactly one
alternative in fa; b; cg any improvement of d will make it uncovered.
Hence, weak monotonicity cannot be violated. Suppose therefore that d
does not beat any alternative in fa; b; cg. Because e 62 SUCðX ; T Þ, e can
beat at most one alternative in fa; b; cg.
Suppose first that e does not beat any alternative in fa; b; cg. In any T 0

improving d, it is not difficult to check that ‡SUCðT 0Þ ¼‡SUCðT Þ and no
violation of weak monotonicity can occur.
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Suppose then that ebeats one alternative in fa; b; cgand supposew.l.o.g. that
eTa. If T 0 improves d w.r.t. a, we still have ‡SUCðT 0Þ ¼‡SUCðT Þ. If T 0

improves d w.r.t. b then SUCðX ; T 0Þ ¼ fa; b; c; dg so that no violation of
weak monotonicity can occur. If T 0 improves d w.r.t. c then SUCðX ; T 0Þ ¼
fa; b; cg so that no violation of weak monotonicity can occur.

3. If jCl1ðX ;‡SUCðT ÞÞj ¼ 4. We have jCl2ðX ;‡SUCðT ÞÞj ¼ 1. Weak mono-
tonicity of ‡SUC can only violated if an element in Cl1ðX ;‡SUCðT ÞÞ ¼
SUCðX ; T Þ is improved. Since SUC is monotonic, this improved element
will remain uncovered in X . Thus, weak monotonicity cannot possibly be
violated.

4. If jCl1ðX ;‡SUCðT ÞÞj ¼ 5, weak monotonicity of ‡SUC follows from the
monotonicity of SUC. j

Remark 10. As conjectured by Perny (1995), it is possible to show that ifS is
monotonic and satisfies bþ then ‡S is weakly monotonic. This offers alter-
native sufficient conditions on S guaranteeing the weak monotonicity of ‡S

(since there are local, monotonic choice procedures satisfying SSP but vio-
lating bþ, e.g. SES, it is clear that bþ is not a necessary condition for weak
monotonicity). It should nevertheless be observed that:

– The result does not make use of the locality of S, whereas the question of
the monotonicity of ranking by choosing procedures is only of particular
interest if S is local,

– it is well-known (see Moulin 1986; Sen, 1977) that bþ is a very strong
condition. For instance, in the case of tournaments, any choice procedure
S satisfying bþ and Condorcet must include the top cycle TC, i.e. the
choice procedure selecting in A the maximal elements of the asymmetric
part of the transitive closure on A of T . Clearly, such choice procedures are
highly undiscriminating.

Therefore, although bþ and SSP are independent conditions, we do not
pursue this point here and leave to the interested reader the easy proof of the
above claim (see http://www.lamsade.dauphine.fr/�bouyssou/).
Remark 11. It is not difficult to observe that the proof of Proposition 1
makes no use of the skew-symmetry property of comparison functions (when
weak monotonicity is properly redefined). It can therefore be easily extended
to cover more general cases (see Bouyssou 1995) e.g., general valued (or
fuzzy) binary relations (see Barrett et al. 1990; Bouyssou 1992a; Bouyssou
and Pirlot 1997). We do not explore this point here.

3.2 Monotonicity

Let us consider the case of tournaments (see Laslier 1997; Moulin 1986).
There are neutral, monotonic and Condorcet choice procedures S such that
‡S is monotonic. This is clearly the case for TC which satisfies both SSP and
bþ. We already observed that TC is a very undiscriminating choice procedure
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for tournaments. It would therefore be of interest to find more discriminating
choice procedures S so that ‡S is monotonic. As show below, this proves
difficult however.

Proposition 2 (Covering compatibility and Aizerman). LetS be a local, neutral
and monotonic choice procedure satisfying Aizerman. If S refines UC then ‡S

is not monotonic.

Proof. A necessary condition for ‡S to be monotonic is that S is properly
monotonic. Indeed, suppose that that, for some X , some p 2 GðX Þ, some
x; y 2 X with x 6¼ y, we have y 62 SðA; pÞ and y 2SðA; px"Þ, where px" improves
xw.r.t.p. Thiswould imply x �S ðpÞy and x �S ðpx"Þy, violatingmonotonicity.

Thus, the claim will be proved if we can show that, for all neutral and
monotonic choice procedures refining UC and satisfying Aizerman, there is a
comparison function p such that a 2SðX ; pÞ; b 62 SðX ; pÞ and b 2 SðX ; pa"Þ,
i.e. that S is not properly monotonic. The following example suffices.

Example 9. LetX ¼ fa; b; c; d; eg. Consider the tournament T onX defined by:

aTd; aTe;
bTa;

cTa; cTb;
dTb; dTc; dTe;

eTb; eTc:

We have UCðX ; T Þ ¼ fa; c; dg and aTd; dTc and cTa. Therefore, since S re-
fines UC, we have SðX ; T Þ � fa; c; dg � X . Since S satisfies Aizerman,
Sðfa; c; dg; T Þ �SðX ; T Þ.

Because S is local and neutral, we know that Sðfa; c; dg; T Þ ¼ fa; c; dg.
Hence we must have SðX ; T Þ ¼ fa; c; dg.

Consider now the tournament V identical to T except that aVc. Using the
same reasoning as above, it is easy to check that SðX ; V Þ ¼ UCðX ; V Þ ¼
fa; b; dg. Hence b enter the choice set while a is improved and S is not
properly monotonic. j

Remark 12. Perny (1998, 2000) has proposed a different negative result using
a ‘‘positive discrimination’’ condition on choice procedures that, in our
framework, says that, starting with any comparison function, it is always
possible to obtain any alternative as the unique choice provided this alter-
native is ‘‘sufficiently’’ improved. This negative result only deals with weak
monotonicity of ‡S however.

Remark 13. In a classic social choice context, Juret (2001, Theorem 1) shows
that monotonic and rationalizable choice procedures induce monotonic
ranking by choosing procedures. This positive result seem to contrast with
Proposition 2. Let us however observe that, when jX j � 3, it easily follows
from Moulin (1986) that there is no local and Condorcet choice procedure
satisfying Chernoff, i.e., for all p 2 GðX Þ and all A;B 2 PðX Þ,
½A � B� )SðB; pÞ \ A �SðA; pÞ. Indeed suppose that fx; y; zg � X and
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consider any p 2 GðX Þ such that pðx; yÞ ¼ 1, pðy; zÞ ¼ 1 and pðz; xÞ ¼ 1. If S
is local and Condorcet then we must have Sðfx; yg; pÞ ¼ fxg,
Sðfy; zg; pÞ ¼ fyg and Sðfz; xg;pÞ ¼ fzg. Using Chernoff implies that
Sðfx; y; zg; pÞ ¼ [, a contradiction.

Since Chernoff is a necessary condition for S to be rationalized and given
the correspondence noted above between our setting and C1 and C2 social
choice functions, in the sense of Fishburn (1977), this limits the scope of the
result in Juret (2001) either to C1 and C2 choice procedures that violate
locality or Condorcet or to C3 choice procedures, i.e. procedures that are
neither C1 (not based on the simple majority relation) nor C2 (not based on
the 0-weighted tournament based on the profile).

Proposition 2 is fairly negative as long as Aizerman and the refinement of
UC are considered important properties. When this is not the case, it is
possible to envisage several choice procedures inducing a monotonic ranking
by choosing procedure. As an example, consider the well known TC	 choice
procedure (see Schwartz 1986) for weak tournaments selecting in any subset,
the maximal elements of the asymmetric part of the transitive closure (on that
subset) of the asymmetric part of the weak tournament. Simple examples
show that TC	 violates Aizerman and does not refine UC. Vincke (1992)
proves that ‡TC	 is monotonic (see also Juret 2001). It should however be
noticed that ‡TC	 is a very particular ranking by choosing procedure since the
transitive closure operation has a clearly global character, in spite of the
progressive restriction on the set of alternatives. This type of ranking by
choosing procedures is studied in Juret (2001).

4 Application: The case of tournaments

In this section we apply the above results and observations to the case of
tournaments, i.e., we only consider choice procedures defined for compari-
sons functions derived from tournaments. This case is of particular interest
because such choice procedures have been analyzed in depth and, in spite of
the restrictiveness of the antisymmetry hypothesis, the underlying choice
problem is encountered in many different and important settings.

Laslier (1997) studies in detail seven4 different choice procedures. We
briefly present them below referring the reader to Laslier (1997), Laffond et al.
(1995) and Moulin (1986) for precise definitions and results:

Top Cycle TC. Selecting in A the element of the first equivalence class of the
weak order being the transitive closure of T on A.

4 Since it is not known whether the Tournament Equilibrium Set introduced in
Schwartz (1990) is a monotonic choice procedure, we do not envisage it here. We refer
the reader to Laffond et al. (1993b) for a thorough analysis of the many open problems
concerning this choice procedure
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Copeland Cop. Selecting in A the alternatives with the highest Copeland score
in the tournament restricted to A.

Slater SL. Selecting in A all alternatives having the first rank in a linear order
on A at minimal distance of the restriction of T on A.

Uncovered Set UC. Selecting all the uncovered alternatives in A (Fishburn
1977; Miller 1977).

Banks B. Selecting all alternatives in A starting a maximal transitive path of T
on A (Banks 1985),

Minimal Covering Set MCS. Selecting all alternatives in the unique covering
set included in A of minimal cardinality (Dutta 1988),

Bipartisan Set BP . Selecting in A all alternatives in the support of the unique
Nash equilibrium of the symmetric two-person zero-sum game on A
induced by T (Laffond et al. 1993a).

We summarize the monotonicity properties of the ranking procedures
induced by these seven choice procedures in the following:

Proposition 3. (Ranking by choosing procedures for Tournaments)

1: ‡TC is monotonic,
2: ‡MCS and ‡BP are weakly monotonic but not monotonic,
3: ‡UC , ‡B;‡COP and ‡SL are not very weakly monotonic.

Proof. Part 1 is left to reader as an easy exercise. The weak monotonicity of
‡MCS and ‡BP results from Proposition 1, since it is well-known that both
procedures are neutral, local, monotonic and satisfy SSP . The fact that they
are not monotonic follows from Proposition 2 since they both refine UC.

Part 3. We respectively showed in examples 1 and 7 that ‡Cop and ‡UC are
not very weakly monotonic. It is easy to see that example 7 also shows that
‡B is not very weakly monotonic; we have ‡UC ¼‡B for both tournaments
used in this example. It remains to show that ‡SL is not very weakly
monotonic. We skip the quite cumbersome details of the computation of
Slater’s orders below. Details can be found at http://www.lamsade.
dauphine.fr/~bouyssou. We do not know whether this example is minimal.

Example 10 (‡SL is not very weakly monotonic). Let X ¼
fa; b; c; d; e; f ; g; h; ig. Consider the tournament T on X defined by:

aTb; aTe; aTg; aTh; aTi;
bTc; bTe; bTf ; bTg; bTi;

cTa; cTd; cTe; cTf ;
dTa; dTb; dTe; dTi;

eTf ; eTh;
fTa; fTd; fTh; fTi;

gTc; gTd; gTe; gTf ; gTh;
hTb; hTc; hTd; hTi;

iTc; iTe; iTg:
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Linear orders at minimal distance of T are at distance d ¼ 10. There are
exactly 40 such orders and we have SLðX ; T Þ ¼ fa; b; d; f ; g; hg. It is clear that
the restriction of T to fc; e; ig is the linear order iTc; cTe; iTe. Hence, we have
i �SL ðT Þc.

Consider now the tournament V identical to T except that iVa. Again
skipping details, linear orders at minimal distance of V are at distance d ¼ 10.
There are exactly 11 such orders.We have SLðX ; V Þ ¼ fb; g; hg. Similarly, we
obtain SLðXnfb; g; hg; V Þ ¼ fcg. Therefore c �SL ðV Þi. This shows that ‡SL is
not very weakly monotonic.

5 Discussion

Using a ranking by choosing procedure raises serious monotonicity problems.
Rather surprisingly, as shown by Proposition 1, it is possible to isolate a class
of well-behaved choice procedures that lead to weakly monotonic ranking by
choosing procedures. If weak monotonicity is considered as an attractive
property, these ranking procedures may well be good candidates to compete
with other ranking procedures. If monotonicity is considered of vital
importance, then the situation is more critical since, as shown in Proposi-
tion 2, there are no local, neutral, monotonic and Aizerman choice procedure
that is reasonably discriminatory being included in UC and inducing a
monotonic ranking procedure. This suggests several directions for future
research.

It would clearly be interesting to look for necessary and sufficient condi-
tions on S for ‡S to be (weakly) monotonic. In view of Remark 9, this task
is likely to be complex since the repeated use of S in order to build ‡S only
uses the result of the application ofS on a relatively small number of subsets.
Another intriguing problem would be to look for connections between the
problem studied here and the one of finding necessary and sufficient condi-
tions guaranteeing that S1 is monotonic. More research in this direction is
clearly needed.

The difficulties encountered with ranking procedures induced by choice
procedures may also be considered as an incentive to study ranking proce-
dures for their own sake, i.e. independently of any choice procedure. Research
in that direction has already started (see Bouyssou 1992b; Bouyssou and
Perny 1992; Bouyssou and Pirlot 1997; Bouyssou and Vincke 1997; Henriet
1985; Fodor and Roubens 1994; Gutin and Yeo 1996; Kano and Sakamoto
1983; Rubinstein 1980; Vincke 1992) mainly considering ranking procedures
based on scoring functions. This is at variance with the advice in Moulin
(1986) to focus research on ranking procedure based on the approximation of
a tournament (or a comparison function) by linear orders (or weak orders).
This idea dates back at least to Barbut (1959), Kemeny (1959), Kemeny and
Snell (1962) and Slater (1961). Although it raises fascinating deep combina-
torial questions and difficult algorithmic problems (see Barthélémy et al.
1989; Barthélémy and Monjardet 1981, 1988; Bermond 1972; Charon
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Fournier et al. 1992; Charon et al. 1996; Hudry 1989; Monjardet 1990), this
line of research raises other difficulties. As argued in Perny (1992) and Roy
and Bouyssou (1993),

– the choice of the distance function should be analyzed with care as soon as
one leaves the easy case of a distance between tournament and linear orders
(see, e.g., Roy and Słowiński 1993),

– the likely occurrence of multiple optimal solutions to the optimization
problem underlying the approximation is not easily dealt with,

– the normative properties of such procedures are not easy to analyze (see,
however, Young and Levenglick 1978).

Hence, studying simpler procedures, e.g. the ones based on scoring functions
maybe a good starting point. In many common situations, ranking and not
choosing is the central question and there is a real need for a thorough study
of ranking procedures.
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combinatoires. PhD thesis, E.N.S.T., Paris
Juret X (2001) Conditions suffisantes de monotonie des procédures de rangement
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