
Abstract. The Condorcet-Kemeny-Young statistical approach to vote
aggregation is based on the assumption that voters have the same probability
of comparing correctly two alternatives and that this probability is the same
for any pair of alternatives. We relax the second part of this assumption by
letting the probability of comparing correctly two alternatives be increasing
with the distance between two alternatives in the allegedly true ranking. This
leads to a rule in which the majority in favor of one alternative against
another one is given a larger weight the larger the distance between the two
alternatives in the true ranking, i.e., the larger the probability that the voters
compare them correctly. This rule is not Condorcet consistent and does not
satisfy local independence of irrelevant alternatives. Yet, it is anonymous,
neutral, and paretian. It also appears that its performance in selecting the
alternative most likely to be the best improves with the rate at which the
probability increases.

1 Introduction

Condorcet (1785) showed that with the simple majority rule, a group of
individuals will choose the better of two alternatives more frequently than a
single individual. He also studied the relation between the number of voters
and the probability of selecting the best alternative. The larger the number of
voters, the larger this probability. This result, known as Condorcet’s jury
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Stephen Gordon, Cyril Téjédo and an anonymous referee for their comments.

Maximum likelihood approach to vote aggregation

with variable probabilities

Mohamed Drissi-Bakhkhat1, Michel Truchon2

1Department of Economics, University Abdelmalek Essaadi, Tangier, Morocco
(e-mail: mohamed.drissi@menara.ma)
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theorem, is obtained under the assumption that the voters have the same
competence level, i.e. the same probability, above 1

2 ; of choosing the right
alternative.

Many authors have worked on relaxing this assumption. Nitzan and
Paroush (1982) show that the maximum likelihood rule, when the voters have
unequal competence, is a weighted majority rule, where the weight of each
individual’s vote is a function of the competence level of the voter. Shapley
and Grofman (1984) study the case of correlated votes. They provide a
necessary and sufficient condition for the weighted rule to be optimal. These
results, along with other extensions of the jury theorem, are gathered in
Grofman et al. (1983). More recent versions of the theorem are presented by
Berg (1993, 1994) and Ladha (1992, 1993, 1995) for the case of correlated
individual competencies and by Paroush (1998) for heterogeneous compe-
tencies.

Ben-Yashar and Nitzan (1997) present a more general approach in which
the optimal rule maximizes the expected benefit resulting from the choice of
an alternative. Ben-Yashar and Paroush (2001) and Rata (2002a) extend their
approach to more than two alternatives but the objective remains the choice
of a single alternative. In many situations, we need a complete ranking of all
alternatives, i.e. an aggregation rule. This is the case in competitions for
grants and scholarships, in judged sports such as figure skating, in projects
ranking, etc.

A possible avenue suggested by Ben-Yashar and Paroush (2001) to deal
with this more general problem is to let the choice set be the one of all
rankings of the alternatives. However, this idea leaves open the question of
how to model the competence of the voters or judges in choosing the correct
order, and more specifically how to model the probability of an incorrect
ranking. Another avenue, which we pursue here, is the binary approach to
vote aggregation also initiated by Condorcet (1785). This method consists of
ordering alternatives pairwise according to the majority rule. Condorcet
showed that, if this procedure yields an order on the set of alternatives, this
order is the most probable under a uniform competence parameter. This was
one of the first applications of the maximum likelihood principle.

Condorcet was well aware that the binary relation resulting from his
procedure may contain cycles. He proposed a method for breaking these
cycles, but unfortunately, this method gives consistent results only for the
case of three alternatives. Young (1988) shows that a correct application of
the maximum likelihood principle leads to the selection of rankings that have
the minimal total number of disagreements with those of the voters. In other
words, these rankings minimize a ‘‘distance’’ proposed by Kemeny (1959) and
for this reason, they are often given the name of Kemeny. When it exists, i.e.,
in the absence of cycles in the majority relation, the Condorcet ranking is the
unique Kemeny ranking.

The Condorcet-Kemeny-Young approach is based on the assumption that
voters have the same probability of comparing correctly two alternatives and
that this probability is the same for any pair of alternatives. In this paper, we
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relax the second part of this assumption. We let the probability of comparing
correctly two alternatives be increasing with the distance between two alter-
natives in the true ranking. This reflects the possibility that voters or judges
may have a better chance of correctly ranking two alternatives when one is
very good and the other very bad, than when facing two similar alternatives.

As we shall point out, there is some inconsistency in the binary approach:
a judge’s vote may be cyclical with positive probability. Nevertheless,
we remain within that framework, which has received much attention in the
literature, since our purpose is to verify the dependency of the results
obtained so far on the assumption of constant probability across pairs of
alternatives.

Our assumption leads to a rule in which the majority in favour of one
alternative against another one receives a larger weight as the distance
between the two alternatives in the true ranking increases.1 This result is
comparable to those of Nitzan and Paroush (1982) and of Grofman et al.
(1983). They obtain a rule in which weights vary across voters, as a result of
unequal competencies of the voters, while in our rule, weights may vary
across pairs of alternatives because of different probabilities of ordering
correctly alternatives in different pairs.

Our rule is not Condorcet consistent. It does not necessarily select the
Condorcet ranking nor the Condorcet winner, when they exist. Actually, the
selected ranking may change with the specification of the probabilities.
Therefore, this rule is different from the Kemeny rule. However, it is anon-
ymous, neutral, and paretian as is the Kemeny rule but contrary to the latter,
it does not satisfy a property that Young and Levenglick (1978) call ‘‘local
independence of irrelevant alternatives’’.

Condorcet also hinted that the Condorcet winner, or the top alternative in
the Condorcet ranking, is not necessarily the most likely to be the best. Young
(1988) confirms that indeed with a constant probability close to 1

2, the alter-
native most likely to be the best is the Borda winner, while when the prob-
ability is close to 1; it is an alternative whose smallest majority against other
alternatives is at least as large as the smallest majority of any other alterna-
tive. We extend his analysis to the case of variable probabilities.

Young’s result implies that the Kemeny rule does not necessarily select the
alternative most likely to be the best. A natural question that comes to mind
is whether or not the rule obtained with variable probabilities does better than
the Kemeny rule in this respect. It appears that this performance improves
with the rate at which the probability increases.

The structure of the paper is the following. The notation, the basic
assumptions, the voting procedure, and some useful concepts from social
choice theory are presented in Sect. 2. The maximum likelihood approach for

1 The criterion to choose an order remains the maximum likelihood principle. See
Drissi-Bakhkhat (2002) for an expected loss approach, which could be compared to
the expected benefit model of Ben-Yashar and Paroush (2001).
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variable probabilities is described in Sect. 3. Some properties of the rule arising
from the general specification of the probabilities are discussed in Sect. 4. We
show that the most likely ranking depends on the distribution of the proba-
bilities. In particular, the most likely ranking is not necessarily the Condorcet
ranking. Starting with Sect. 5, we present a systematic analysis of the case of
three alternatives for a particular class of increasing probability functions. The
characterization of the most likely rankings and of the alternatives most likely
to be the best are provided in this section and Sect. 6 respectively. This last
section also deals with the performance of the choice rule resulting from the
maximum likelihood approach in terms of the alternative most likely to be the
best. A brief conclusion is presented as a final section.

2 The social choice problem

Let X ¼ fa; b; c; . . .g be the set of alternatives or candidates to be ranked. The
cardinality of X is m. We denote by B the set of complete and asymmetric
binary relations on X and by R the subset of complete orders on X also called
rankings. A complete order on X can be represented by a permutation of the
elements of the vector 1; 2; . . . ;mð Þ; denoted r ¼ ra; rb; rc; . . .ð Þ, where ra is the
rank of a; rb the rank of b; and so on. Equivalently, an order can be repre-
sented by a sequence s1s2s3 . . . where s1; s2; s3 . . . are respectively the alter-
natives with ranks 1; 2; 3; . . ..

There is a set I ¼ f1; 2; . . . ; ng of voters or judges. Each is asked to com-
pare the alternatives pair by pair, as in the Condorcet procedure. His or her
vote is summarized in a matrix Ni ¼ mi

st

� �
s;t2X : For any pair of alternatives

s; tð Þ 2 X 2; mi
st ¼ 1 if voter i chooses s over t and mi

st ¼ 0 otherwise, and mi
st ¼ 0

if s ¼ t: Alternatively, we can ask each voter i to fill in N i according to the
previous convention. Each Ni is an element of B. Since only the aggregate
information will ever be needed, we define a poll by

N ¼
Xn

i¼1
Ni

and we let N be the set of possible polls on X :
Once the voters or judges have expressed their opinions in a poll, the

problem is to aggregate these opinions in order to select a final ranking. We
formalize this idea in the following definition and give examples of aggre-
gation rules, before turning to the maximum likelihood approach.

Definition 1. An aggregation rule is a correspondence FR : N! R that assigns
to each poll N ; a final ranking or a subset of final rankings FR Nð Þ of the
alternatives.

Consider now the correspondence FRM : N! B defined by
sFRM Nð Þt, mst > mts: The binary relation FRM Nð Þ is the majority relation
issued from the poll N : We assume that FRM Nð Þ is complete, which is always
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the case when n is odd. However, it is not necessarily transitive: it may contain
cycles.

Condorcet advocated the use of FRM as an aggregation rule when FRM Nð Þ
is an order. He also proposed a method for breaking eventual cycles in
FRM Nð Þ; which does not work when there are more than three alternatives.
We shall return to this point later.

Definition 2. Given a poll N ; if FRM Nð Þ is an order, we call this order the
Condorcet ranking.

Another well known example of an aggregation rule is due to Borda (1784). It
is a scoring method with the vector of scores m� 1;m� 2; . . . ; 2; 1; 0ð Þ. An
alternative receives m� 1 points if it is ranked first by a voter, m� 2 if it is
ranked second, ..., and 0 points if it is last. The scores of each alternative are
then aggregated across voters and alternatives are ordered according to the
sums of these scores. It can be checked that the sum of the scores for alter-
native s is equal to

P
s2X mss: This prompts the following definition.

Definition 3. Given a poll N ; we shall say that a ranking s1s2s3 . . . such that:

X

s2X

ms1;s �
X

s2X

ms2;s �
X

s2X

ms3;s � � � � ð1Þ

is a Borda ranking. The Borda rule is the correspondence FRB : N! R that
assigns to each poll N ; the set of Borda rankings. The number

P
s2X mss is called

the Borda score of s:

Remark 1. Strictly speaking, this definition is correct only if each individual
vote in the poll is transitive, which we do not assume, to be consistent with the
binary approach. This abuse of terminology will simplify the presentation
throughout the paper.

Any aggregation rule FR induces a social choice correspondence that as-
signs to each poll N ; the subset of alternatives that are top ranked in at least
one ranking in FR Nð Þ: Accordingly, we have the following concepts.

Definition 4. A Borda winner for a poll N is the top ranked alternative in at
least one Borda ranking.

Definition 5. The Condorcet winner for a poll N , if it exists, is the alternative s
that satisfies mst > mts 8t 6¼ s:

We also have the following type of winner even if we do not define a corre-
sponding aggregation rule.

Definition 6. A Kramer-Simpson winner for a poll N is an alternative s such
that maxs mss � maxs msu 8u 2 X or, equivalently, mins mss � mins mus 8u 2 X :
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Definition 7. An aggregation rule FR : N! R has the Condorcet property if
FR Nð Þ ¼ FRM Nð Þ for every poll N such that FRM Nð Þ is an order. Similarly, a
social choice correspondence has the Condorcet property if it selects exclusively
the Condorcet winner when it exists.

It is well known that the Borda rule does not have the Condorcet property. It
does not necessarily produce a ranking that has the Condorcet winner as the
top alternative.

3 The maximum likelihood approach

The maximum likelihood approach to voting was initiated by Condorcet
(1785). It starts with the assumption that there exists a true ranking r 2 R on
the set of alternatives. The true ranking, however, is not known. Experts, i.e.
voters or judges, are then asked to provide their opinion as to what should be
considered the true ranking. Their opinions are collected in Ni; i ¼ 1; . . . ; n:

Assuming that every voter has the same probability (larger than 1
2) of

correctly comparing any two alternatives, Condorcet showed that if the
binary relation FRM Nð Þ is an order, then it is the most likely ranking. He also
offered indications on how to break the cycles that FRM Nð Þ might contain.
Unfortunately, these indications yield consistent results only for the case of
three alternatives. Young (1988) shows what a correct application of the
maximum likelihood principle leads to.

It is this approach that we pursue here with a more flexible representation
of the competence of the experts. The vote of expert i on a pair of alternatives
s; tð Þ is a random variable �mi

st 2 0; 1f g; conditional on the true ranking r:
Again, each voter has the same probability of ranking correctly two alter-
natives and this probability is the same for any two couples of alternatives
s; tð Þ; u; vð Þ 2 X 2 such that rs � rt ¼ ru � rv: However, this probability is a
non-decreasing function of the distance between the two alternatives in the
true ranking.

More precisely, let P m be the class of non-decreasing functions
p : 1; . . . ;m� 1f g ! 1

2 ; 1
� �

. Given a ranking r 2 R, a function p 2 P m; and
two alternatives s; t 2 X such that rs < rt, the conditional distributions of �mi

st
and �mi

ts are defined by:

Pr �mi
st ¼ 1 j r

� �
¼ Pr �mi

ts ¼ 0 j r
� �

¼ p rt � rsð Þ
Pr �mi

ts ¼ 1 j r
� �

¼ Pr �mi
st ¼ 0 j r

� �
¼ 1� p rt � rsð Þ

The probabilities are assumed to be strictly less than unity to avoid degen-
erate distributions. This distribution on pairs of alternatives induces a con-
ditional probability distribution on the binary relations Ni 2 B :

Pr N i j r
� �

¼
Y

s;t2X
rs<rt

Pr �mi
st ¼ mi

st j r
� �
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Remark 2. At this stage, it is important to point out an important fact that is
not always mentioned in the literature on the binary approach. Given the
statistical independence of votes across pairs of alternatives, cyclical relations
in B have a positive probability, even if r is an order. For example, given the
true ranking abc on fa; b; cg; we have

Pr mi
ab ¼ 1 j abc

� �
Pr mi

bc ¼ 1 j abc
� �

Pr mi
ca ¼ 1 j abc

� �
> 0

since p 2ð Þ < 1: There is thus a positive conditional probability that a judge’s
vote be cyclical. This is the reason for not assuming that individual votes N i

are transitive. Interestingly, making p 2ð Þ larger than p 1ð Þ contributes in
diminishing the probability of observing a cycle.

We focus now on the aggregate N : The entries of N are random variables
�mst 2 0; 1; . . . ; nf g: Since the probabilities Pr �mi

st ¼ 1 j r
� �

are independent and
the same for all voters, each random variable �mst �

Pn
i¼1 �mi

st has a binomial
distribution defined by:

8l 2 f1; 2; . . . ; ng : Pr �mst ¼ l j rð Þ ¼ n
l

� �
Pr �mi

st ¼ 1 j r
� �l

Pr �mi
st ¼ 0 j r

� �n�l

for any i 2 I . With the independence assumption across pairs of alternatives,
the probability of a poll N is the product of the probabilities of its elements:

Pr N j rð Þ ¼
Y

s;t2X
rs<rt

Pr �mst ¼ mst j rð Þ ð2Þ

This is the likelihood function of poll N ; given order r: As an illustration,
consider the set X ¼ fa; b; cg and the ranking abc: We have:

Pr N j abcð Þ ¼ jp 1ð Þmabð1�p 1ð ÞÞmba p 1ð Þmbcð1�p 1ð ÞÞmcb p 2ð Þmac 1�pð2Þð Þmca

with j ¼ n!3

mab!mba!mbc!mcb!mac!mca! : Note that this term is independent of the function
p �ð Þ.

In the maximum likelihood approach, we are interested in a ranking r�

(not necessarily unique) that maximizes the likelihood function Pr N j rð Þ of
poll N : Equivalently, this ranking maximizes the posterior probability
Pr r j Nð Þ; conditional on N : These posterior probabilities are obtained by
applying Bayes’ rule under the assumption of equal prior for rankings:

Pr r j Nð Þ ¼ Pr r ^ Nð Þ
Pr Nð Þ ¼

Pr rð ÞPr N j rð Þ
Pr Nð Þ

¼ Pr rð ÞPr N j rð Þ
P

q2R Pr qð ÞPr N j qð Þ ¼
Pr N j rð Þ

P
q2R Pr N j qð Þ ð3Þ

Under the assumption of a constant prior for rankings, the prior probability
that an alternative s be ranked ahead of another alternative t is then exactly 1

2 ;
for any pair s; tð Þ: It is clear that for the true ranking r; Pr r j Nð Þ ! 1 when
n!1. This is also an implication of the Condorcet jury theorem.
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Note that Pr r j Nð Þ is an increasing transformation of Pr N j rð Þ: The fol-
lowing other transformation will prove useful in deriving some of the results.
Given a probability function p 2 P m; let

Lp kð Þ ¼ ln
p kð Þ

1� p kð Þ

� �
8k 2 1; . . . ;m� 1f g ð4Þ

and for every ranking r and every poll N ; consider the logarithmic trans-
formation of (2):

Mpðr; NÞ ¼
Xm�1

k¼1
Lp kð Þ

X

s;t2X
rt¼rsþk

mst Nð Þ

2

664

3

775

Then, the most likely rankings or the most probable rankings are the elements
of the set:

rpðNÞ ¼ argmax
r2R

Mpðr; NÞ

Clearly, rp is another aggregation rule.

Definition 8. Given a function p 2 P m; rp : N! R is the aggregation rule that
assigns to each poll N the set of most likely rankings, i.e. the set rpðNÞ � R:

rp induces a social choice correspondence that assigns to each poll N ; the
subset of alternatives that are top ranked in at least one ranking in rpðNÞ:

Definition 9. Cp : N! X defined by:

CpðNÞ ¼ s 2 X : 9r 2 rpðNÞ : rs ¼ 1
� �

is the social choice correspondence induced by rp:

The case where p kð Þ ¼ �p with �p 2 1
2 ; 1
� �

is the one studied by Young. He
shows that a ranking that has the greatest posterior probability is a ranking
with minimum ‘‘distance’’ from the poll. The distance here is the one pro-
posed by Kemeny (1959). Hence, with constant probability, the most likely
rankings are often called Kemeny orders. The distance is defined as follows.
Let cst : R2 ! R, be a function defined for every couple of alternatives s; tð Þ
and every couple of weak orders r̂; rð Þ by:

cst r̂; rð Þ ¼
1 if r̂s < r̂t and rs > rt
1
2 if r̂s ¼ r̂t and rs < rt

0 otherwise

(

Then, define the function cK : R2 ! R by:

cK r̂; rð Þ ¼
X

s2X

X

t2X
t>s

cst r̂; rð Þ ð5Þ
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Note that cK is a metric on the set of weak orders on X : The Kemeny ‘‘dis-
tance’’ dK between a ranking (or transitive binary relation) and a poll is
defined by:

dKðr;NÞ ¼
X

i2I

cKðNi; rÞ

Definition 10 The Kemeny rule is the correspondence FRK : N! R that
assigns to each poll N ; the subset FRKðNÞ ¼ argminr2R dKðr;NÞ. The elements
of FRKðNÞ are the Kemeny orders.

Remark 3. When pðkÞ ¼ �p with �p 2 1
2 ; 1
� �

, the most likely orders are the
Kemeny orders, i.e. rpðNÞ ¼ FRKðNÞ:

When pðkÞ ¼ �p with �p 2 1
2 ; 1
� �

; LpðkÞ is a constant that we may as well re-
place by 1. Then, Mpðr; NÞ becomes:

Kðr; NÞ ¼
X

s;t2X
rs<rt

mstðNÞ

The value of Kðr; NÞ, called the Kemeny score of order r given the poll N , is
the total number of agreements between order r and the individual orders
making up profile N : Thus, with a constant probability, the maximum like-
lihood approach consists in finding an order r maximizing Kðr; NÞ:

4 Properties of rp andCp

The question that we now address is whether the aggregation rule rp and the
social choice correspondence Cp give results that are significantly different
from those of the Kemeny rule when the function p is significantly different
from pðkÞ ¼ �p. We know that the Kemeny rule has the Condorcet property.
We show in the following proposition that this property is not generally
preserved by rp andCp: Therefore, rp andCp may give results different from
those of the Kemeny rule.

Proposition 1. The rule rp and the correspondence Cp do not have the Condorcet
property for every probability function p.

Proof. Consider the following poll N on X ¼ fa; b; c; dg with n ¼ 9 :

Alternatives a b c d

a – 5 5 5
b 4 – 5 7
c 4 4 – 6
d 4 2 3 –
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Note that a and abcd are the Condorcet winner and ranking respectively. The
Borda ranking is bacd2:

However, with pðkÞ ¼ �p1=k and �p < 0:7048; the most likely ranking is
bacd: j

In the previous example, abcd is the most likely ranking for �p > 0:7049:
How is it that rpðNÞ is the Condorcet ranking and CpðNÞ the Condorcet
winner only if the probability �p is sufficiently high? Why is bacd more likely
than abcd for �p sufficiently small? Note that the Kemeny score Kðabcd; NÞ
is the sum of the numbers above the diagonal of the matrix N while
Kðbacd; NÞ is the sum of the numbers above the diagonal of the following
matrix, obtained by permuting the rows and columns corresponding to a
and b in the previous matrix:

Since the first sum (33) is larger than the second (32), abcd beats bacd
under the Kemeny rule. By a continuity argument, this is also the case
under rp with the increasing function pðkÞ ¼ �p1=k and with �p sufficiently close
to 1. Note that a larger �p means a lower increase rate of the probability with
respect to k, and hence a probability function closer to a constant.

With an increasing function p, the farther the numbers from the diagonal
the larger the weights they receive. With �p ¼ 0:51; the numbers just above the
diagonal are given the weight 0:04 while those that are 2 and 3 positions away
from the diagonal are given the weights 0:9156 and 1:3798 respectively. With
the latter weight, the mbd ¼ 7; which replaces the mad ¼ 5 of the first table,
more than compensates for the replacements of the sum mac þ mbd ¼ 12 by
mbc þ mad ¼ 10 and of the sum mab þ mbc þ mcd ¼ 16 by mba þ mac þ mcd ¼ 15.
This is why bacd beats abcd:

With this example, one can also see the logic behind these variable
weights. With �p ¼ 0:51; the voters have roughly the same probability of
ordering correctly or incorrectly two adjacent alternatives in a ranking. Thus,
we should not give too much importance to the majority that an alternative
obtains against an adjacent one. This is not the case for alternatives that are
farther apart in the true ranking. For instance, the majority of 7 votes for b
against 2 for d in the above poll is given more importance when bacd is taken
as the true ranking because the voters who rank b before d have a larger

Alternatives b a c d

b – 4 5 7
a 5 – 5 5
c 4 4 – 6
d 2 4 3 –

2This is the true Borda ranking since there exists a profile of 9 transitive votes
summing to N :
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probability of voting correctly: 0:511=3 ’ 0:8 compared to 0:51 for pairs of
alternative just above the diagonal.

The rule rp and the correspondence Cp being generally different from the
Kemeny rule and correspondence, the question now is whether rp and Cp

verify properties, other than the Condorcet property, that are satisfied by the
Kemeny rule and correspondence. The latter satisfy anonymity and neutral-
ity. The Kemeny correspondence is also paretian. We shall see that these
properties are still satisfied by the more general rule rp and correspondence
Cp: In the case of the Pareto principle, we shall establish the result for tran-
sitive votes. However, rp no longer satisfies a condition that Young and
Levenglick (1978) call ‘‘local independence of irrelevant alternatives’’ , which
is satisfied by the Kemeny rule.

Anonymity or symmetry. Clearly, rp and Cp are both symmetric for every
p 2 P m: individual votes are treated identically by either function.

Neutrality. It is also obvious that rp and Cp are neutral: the alternatives are
treated identically. Names do not matter.

Weak Pareto principle. An alternative is a weak Pareto optimum if there is no
other alternative that the voters unanimously prefer. The weak Pareto prin-
ciple applied to Cp says that, for every poll N ; CpðNÞ contains only weak
Pareto optima:

8N 2N; 8p 2 P m; 8t 2 CpðNÞ; 6 9s 2 X : ri
s < ri

t 8i 2 I

Note that this principle does not imply that CpðNÞ contains all weak Pareto
optima. Actually, CpðNÞ selects one (or more) of these optima. The next
lemma will be useful to prove that Cp satisfies the weak Pareto principle.

Lemma 2. Let X ¼ f1; 2; . . . ; s; . . . ;mg and N be a poll such that ms1 ¼ n and
msh � m1h 8h 6¼ 1; s: Next, consider the rankings r ¼ ð1; 2; . . . ; s; . . . ;mÞ and
r̂ ¼ ðs; 2; . . . ; 1; . . . ;mÞ; where r̂ is obtained by interchanging 1 and s in r. Then,
Mpðr̂; NÞ > Mpðr; NÞ.

Proof. It is cumbersome but nonetheless straightforward to verify that:

Mpðr̂; NÞ �Mpðr; NÞ ¼ Lpðs� 1Þðms1 � m1sÞ þ
Xs�2

h¼1
LpðhÞðms�h;1 � ms�h;sÞ

þ
Xm�1

h¼1
LpðhÞðms;hþ1 � m1;hþ1Þ

þ
Xm�1

h¼s

Lpðhþ 1� sÞðm1;hþ1 � ms;hþ1Þ

¼ Lpðs� 1Þðms1 � m1sÞ þ
Xs�2

h¼1
LpðhÞðms�h;1 � ms�h;sÞ
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þ
Xs�2

h¼1
LpðhÞðms;hþ1 � m1;hþ1Þ

þ
Xm�1

h¼s

LpðhÞ � Lpðhþ 1� sÞ
� �

ðms;hþ1 � m1;hþ1Þ

The terms of the last expression have either the form ðmsh � m1hÞ or ðmh1 � mhsÞ:
Since msh � m1h is equivalent to mh1 � mhs 8h 6¼ 1; s; all the terms ðmsh � m1hÞ and
ðmh1 � mhsÞ are non-negative. Their coefficients also are non-negative. Fur-
thermore, Lpðs� 1Þðms;1 � m1;sÞ > 0; hence Mpðr̂; NÞ �Mpðr; NÞ > 0: j

Proposition 3. For every function p 2 P m; Cp satisfies the weak Pareto princi-
ple on the subset of polls resulting from transitive individual votes.

Proof. Consider a poll N . Assume that alternative 1 is selected by CpðNÞ and
that all voters prefer s to 1. Then, we have ms1 ¼ n and since all votes are
transitive, we also have msh � m1h 8h 6¼ 1: Indeed, those preferring 1 to h must
also prefer s to h since they prefer s to 1. Under the terms of Lemma 2, we also
have Mpðr̂; NÞ > Mpðr; NÞ; which excludes alternative 1 from CpðNÞ; a con-
tradiction. j

Local independence of irrelevant alternatives. Arrow’s (1951) independence of
irrelevant alternatives says that, when aggregating individual rankings, only
the way voters order alternatives within a pair should matter to arrive at a
final ranking on the same pair. The Condorcet rule, which leads to the
majority relation FRM ðNÞ; respects this condition, but it can produce cycles.
On the other hand, rp; and in particular the Kemeny rule, violates Arrow’s
independence condition. This violation is expected since rp gives consistent
rankings on the set of alternatives. Indeed, in a famous theorem, Arrow
(1951) shows that there is no aggregation rule of transitive individual pref-
erences that results in a transitive collective preference, that satisfies inde-
pendence of irrelevant alternatives, and that is paretian, unless it is dictatorial
or unless we restrict the set of admissible preferences. In light of the same
theorem, cycles in FRM ðNÞ are also to be expected.

This led Young and Levenglick (1978) to define a weaker condition that
they call local independence of irrelevant alternatives. This condition requires
that the ranking of any subset of successive alternatives (forming an interval)
in the ranking produced by a rule should remain unchanged if we ignore
alternatives that are outside this subset (interval). For example, with 5
alternatives, if a rule selects the ranking abcde; it should select the ranking bcd
when applied to the subset formed by these three alternatives. Young and
Levenglick show that the Kemeny rule is the only rule to satisfy this weaker
independence condition along with some other desirable conditions.

The example in the proof of Proposition 1 shows that rp does not
satisfy this local independence condition for every choice of the probability
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function p: In that example, if we set pðkÞ ¼ 0:61=k and if we restrict the
vote to fa; b; cg, the most likely ranking is abc while it is bacd on
fa; b; c; dg: Thus, the interval bac of the most likely ranking is changed for
abc when alternative d is ignored. This is a violation of the local inde-
pendence condition.

Actually, d plays an important role in the determination of the most
likely ranking on fa; b; c; dg: As it is defeated under the majority rule by
each of the other alternatives, d cannot be the top ranked alternative in the
most likely ranking regardless of the value of �p. However, it is the 7 votes
for b over d compared to the 5 votes for a over d that makes bacd more
likely than abcd when �p is sufficiently close to 1

2 ; i.e. when the relative
weights of the majorities have a large dispersion.

5 The most likely rankings with three alternatives

Section 4 showed the importance of the choice of the function p in the
selection of the most likely ranking. In particular, the Borda ranking can be
selected as the most likely ranking over the Condorcet order and the Borda
winner can be selected by Cp instead of the Condorcet winner. In this section,
we return to this question in a more systematic way for the case where
X ¼ fa; b; cg; where the Kemeny ranking is unique and where p belongs to the
class of logistic probability functions defined by:

pðk; a; bÞ ¼ eaþbðk�1Þ

1þ eaþbðk�1Þ ; with a > 0 and b � 0 ð6Þ

In this definition, k is again the distance between two alternatives and the
parameter b controls the rate at which p increases with respect to k: The larger
b, the higher this rate. With b ¼ 0, the probability is constant. And the larger
a, the larger the probability. Figure 1 shows how the probability varies with a
when b ¼ 0:

With no loss of generality, we assume that abc is the Kemeny ranking. We
denote by N3Ku the subset of polls on fa; b; cg for which abc is the unique
Kemeny ranking. The next lemma will allow us to partition N3Ku into three
subsets. As we shall see, the most likely ranking depends not only on the
values of the parameters a and b but also on which of these three subsets the
poll belongs to.

Lemma 4. For every poll N 2N3Ku:

1: mab >
n
2 > mba;

2: mbc >
n
2 > mcb;

3: minfmab; mbcg > mca:
4. Moreover, abc is the Condorcet ranking if and only if mac >

n
2 > mca.
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Proof.

1. Since Kðabc; NÞ ¼ mab þ mbc þ mac > mba þ mac þ mbc ¼ Kðbac; NÞ; we imme-
diately have mab > mba. The fraction n

2 is included between these two num-
bers since mab þ mba ¼ n.

2. Since Kðabc; NÞ > Kðacb; NÞ; we immediately have mbc > mcb.
3. Since Kðabc; NÞ ¼ mab þ mbc þ mac > mbc þ mba þ mca ¼ Kðbca; NÞ; we have

mab þ n� mca > mca þ n� mab; and thus mab > mca: Similarly, since
Kðabc; NÞ ¼ mab þ mbc þ mac > mca þ mab þ mcb ¼ Kðcab; NÞ; we have
mbc þ n� mca > mca þ n� mbc; and thus mbc > mca:

4. By definition and by 1 and 2. j

In light of Lemma 4, only three entries of the matrix N 2N3Ku can qualify
as being possibly the largest: mab; mbc; mac: To avoid future complications, we
assume that these three cases are mutually exclusive. Consequently, we can
partition N3Ku into three non-empty subsets N1, N2, and N3 :

�N1 gathers all the polls for which maxfmst : s; t 2 Xg ¼ fmacg;
�N2 gathers those for which maxfmst : s; t 2 Xg ¼ fmabg;
�N3 gathers those for which maxfmst : s; t 2 Xg ¼ fmbcg:

The results of this section are summarized in Table 1. In N1; abc is the
Condorcet ranking and it is also the most likely ranking for any values of the
parameters a and b: In N2 and in N3; abc is still the most likely for values of

2 4 6 8
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p

Fig. 1. p (Æ; a, 0)
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a sufficiently large, given the value of b: For sufficiently small values of a; acb
is the most likely in N2 and bac is the one in N3: Actually, with a sufficiently
small, the top alternative in the most likely ranking is the alternative that has
the largest majority in all binary comparisons while the alternative that is
defeated with the largest majority by the top alternative is at the bottom of
the most likely ranking.

InN2 as inN1; since a is the top alternative of the most likely ranking, be
it abc or acb; it is the alternative selected by Cp. However, in N3; b can be
selected if a is sufficiently small.

When is the Borda ranking the most likely and when does Cp select the
Borda winner? The next proposition and remark provide some answers to this
question. Another proposition establishes that in N3Ku; a is the unique
Kramer-Simpson winner.

Proposition 5. For every poll N 2N1 [N2; a is the unique Borda winner. For
every poll N 2N1; abc is the unique Borda ranking.

Proof. In N1; we have mac > mbc: According to Lemma 4, we also have
mab > mba: Therefore, mab þ mac > mba þ mbc: In N2; we have mab > mca and
therefore mac > mba:We also have mab > mbc: Therefore, mab þ mac > mba þ mbc: In
N1; we have mac > mab and therefore mba > mca: From Lemma 4, we also have
mbc > mcb: Thus, mba þ mbc > mca þ mcb; which means that abc is the Borda
ranking. j

Remark 4. In N2; the Borda ranking might be acb as well as abc: In N3; we
can verify that mba þ mbc > mca þ mcb: However, mab þ mac can be larger, equal or
less than mba þ mbc: Therefore, the Borda ranking can be bac or abc: In sum-
mary, in N1; the most likely ranking is always the Borda ranking. It is not
always the case in N2 and N3 since the most likely ranking depends on the
value of the parameters a and b: As for Cp; it always selects the Borda winner
in N1 and N2 but not in N3.

Proposition 6. For every poll N 2N3Ku; a is the unique Kramer-Simpson
winner.

Proof. It is well known and easy to verify that the Condorcet winner, when it
exists, is also the unique Kramer-Simpson winner. Thus, let us focus on the

Table 1. Summary of the results

Type of poll N1 N2 N3

maxfmst : s; t 2 Xg mac mab mbc

rp abc 8a; b
abc if a > �aðb; NÞ abc if a > âðb; NÞ
acb if a < �aðb; NÞ bac if a < âðb; NÞ

Cp a 8a; b a 8a; b
a if a > ~aðb; NÞ
b if a < ~aðb; NÞ
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polls for which there is no Condorcet winner. These are the polls in N2 and
N3 such that mca > mac:

In N2; we have mab > mbc > mca > mac > mcb > mba according to Lemma 4.
Therefore, mab > mac; mbc > mba; and mca > mcb: Since mac > mcb > mba; a is the
alternative for which the smallest majority is the largest. Thus, it is the unique
Kramer-Simpson winner.

In N3; we have mbc > mab > mca > mac > mba > mcb: Therefore, mab > mac;
mbc > mba; and mca > mcb: Since mac > mba > mcb; a is again the unique Kramer-
Simpson winner. j

Remark 5. For the probability function p defined in (6), we have:

pðk; a; bÞ
1� pðk; a; bÞ ¼ eaþbðk�1Þ

Thus, the function Lp defined in (4) takes the form:

Lðk; a; bÞ ¼ LpðkÞ ¼ aþ bðk � 1Þ

In the case of three alternatives and for order stu, we therefore have:

Mðstu;N ;a;bÞ¼Mpðstu;NÞ¼aðmstþmtuÞþðaþbÞmsu¼aðmstþmtuþmsuÞþbmsu

Note that Mðstu; N ; a; 0Þ ¼ aKðstu; NÞ:

Lemma 7. For every a > 0; every b � 0 and every poll N 2N3Ku:

1: Mðabc; N ; a; bÞ > Mðbca; N ; a; bÞ;
2: Mðabc; N ; a; bÞ > Mðcab; N ; a; bÞ;
3: Mðacb; N ; a; bÞ > Mðcba; N ; a; bÞ.

Proof.

1. From Lemma 4, we have mab > mca. Therefore, mac > mba and
mab þ mbc > mbc þ mca: This implies Mðabc; N ; a; bÞ > Mðbca; N ; a; bÞ.

2. Similarly, we have mbc > mca; which implies mac > mcb and
mab þ mbc > mca þ mab. Thus, Mðabc; N ; a; bÞ > Mðcab; N ; a; bÞ.

3. Finally, we have mab > mca; which implies mac > mba and
mac þ mcb > mcb þ mba: Thus, Mðacb; N ; a; bÞ > Mðcba; N ; a; bÞ. j

Corollary 8. For every a > 0; every b � 0; and every poll N 2N3Ku; the most
likely ranking is either acb; abc; or bac:

The most likely ranking in N1. For the polls of N1; things are simple: abc is
both the Condorcet ranking and the Borda ranking. It is also the most likely
ranking for all values of the parameters a and b.

Proposition 9. For every a > 0; every b � 0; and every poll N 2N1, the most
likely ranking is abc.
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Proof. We know that abc is the most likely ranking for b ¼ 0; i.e.
Mðabc; N ; a; 0Þ > Mðstu; N ; a; 0Þ 8stu 6¼ abc: Since mac ¼ maxfmst : s; t 2 Xg;
Mðabc; N ; a; bÞ increases more rapidly than Mðstu; N ; a; bÞ when b increases,
preserving the inequality Mðabc; N ; a; bÞ > Mðstu; N ; a; bÞ: j

The most likely rankings in N2. For the polls of N2; things are a little more
complex than in N1: For b sufficiently small, abc is still the most likely
ranking but, for sufficiently large values of b; acb becomes the most likely in
spite of the fact that maxfmst : s; t 2 Xg ¼ fmabg. However, CpðNÞ ¼ fag
regardless of the value of b:

Proposition 10. For every a > 0; every b � 0; and every poll N 2N2, the most
likely ranking is either abc or acb.

Proof. By definition of N2, we have mab > mbc: Therefore, mcb > mba and
mac þ mcb > mba þ mac: It follows that Mðacb; N ; a;bÞ > Mðbac; N ; a; bÞ. This
eliminates bac as potentially the most likely ranking in N2: The rankings
bca; cab; and cba were eliminated in Corollary 8. j

Proposition 11. Given a poll N 2N2; consider the linear function
�að�; NÞ : Rþ ! Rþ defined by:

�aðb; NÞ ¼ b
mab � mac

mbc � mcb

For every b � 0; we have:

Prðabc j N ; a; bÞTPrðacb j N ; a; bÞ , 0 < aT�aðb; NÞ

Proof. �aðb; NÞ is the solution of Mðabc; N ; a; bÞ ¼ Mðacb; N ; a; bÞ with respect
to a: The direction of the inequalities comes from
mab þ mbc þ mac > mac þ mcb þ mab: j

The most likely rankings in N3. The analysis of N3 is similar to that of N2:
For b sufficiently small, abc is still the most likely ranking, but for sufficiently
large values of b, it is bac that becomes the most likely. In contrast to what
happens in N2; CpðNÞ changes with b:

Proposition 12. For every a > 0; every b � 0; and every poll N 2N3, the most
likely ranking is either abc or bac.

Proof. By definition of N3, we have mbc > mab: Therefore, mba > mcb and
mba þ mac > mac þ mcb. It follows that Mðbac; N ; a; bÞ > Mðacb; N ; a; bÞ: Thus,
acb is eliminated from the list of the potentially most likely rankings in N3:
The rankings bca; cab; and cba were eliminated by Corollary 8. j

Proposition 13. Given a poll N 2N3; consider the function âð�; NÞ : Rþ ! Rþ
defined by:
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âðb; NÞ ¼ b
mbc � mac

mab � mba

For every b � 0; we have:

Prðabc j N ; a; bÞT Prðbac j N ; a; bÞ , 0 < aT aðb; NÞ

Proof. âðb; NÞ is the solution of Mðabc; N ; a; bÞ ¼ Mðbac; N ; a; bÞ with respect
to a: The direction of the inequalities comes from mab þ mbcþ
mac > mba þ mac þ mbc: j

Remark 6. It is easy to verify that for every b > 0, we have:

âðb; NÞ < b if a is the Borda winner

âðb; NÞ ¼ b if a and b are Borda winners

âðb; NÞ > b if b is the Borda winner

6 Alternatives most likely to be the best

Condorcet made a distinction between the most likely ranking and the
alternative most likely to be the best. He was apparently aware that the
alternative with the largest probability of being the best is not necessarily the
top alternative in the most likely ranking. Young (1988) shows that indeed
with a constant probability close to 1

2, the alternative most likely to be the best
is the Borda winner, which may be different from the top alternative in the
most likely ranking. With a probability sufficiently large, the alternative most
likely to be the best is the Kramer-Simpson winner. We extend Young’s
analysis to the more flexible formulation of the probabilities adopted in this
paper, again for the case m ¼ 3:

According to Young’s approach, a is the best alternative if it is at the same
time better than b and better than c:Denoting the relation ‘‘a is better than b’’
by a 	 b, the probability that a is the best alternative, conditional on the poll
N ; is, under the independence assumption, given by:

Prða j NÞ ¼ Prða 	 b j NÞPrða 	 c j NÞ
The computation of the probabilities Prða 	 b j NÞ and Prða 	 c j NÞ can be
done unambiguously with constant probabilities. However, this is not so with
variable probabilities, since the distance between the alternatives in a given
ranking is lost in the above formula. Thus, we need to develop an approach
that captures the notion of distance between the alternatives.

Note that:

½a	 b^a	 c
 ¼ ½a	 b^a	 c
^ ½b	 c_ c	 b
 ¼ ½a	 b	 c
_ ½a	 c	 b

In other words, a is at the same time better than b and better than c if and
only if abc or acb is the most likely ranking. Thus, the probability that a is the
best alternative, conditional on the poll N ; is given by:
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Pr a j Nð Þ ¼ Pr abc j Nð Þ þ Pr acb j Nð Þ
We obtain similar expressions for alternatives b and c:3 With this approach,
the computation of the probabilities is clear and consistent, whether the
probability is constant or increasing.

We establish a first general result.

Lemma 14. For every a > 0; every b � 0 and every poll N 2N3Ku, the alter-
native most likely to be the best is either a or b.

Proof. By Lemma 7, Pr abc j N ; a; bð Þ > Pr cab j N ; a; bð Þ and Pr acb j N ; a; bð Þ
> Pr cba j N ; a; bð Þ: Therefore, Pr a j N ; a; bð Þ > Pr c j N ; a; bð Þ. j

Which of a or b is the alternative most likely to be the best depends once
again on the values of the parameters a and b and on the type of poll. The last
row of Table 1 summarizes the results of this section.

The alternative most likely to be the best in N1 and N2. For the polls of N1

and N2; the alternative most likely to be the best is always a: Let us recall
that a is at the same time the Kemeny, the Kramer-Simpson and the Borda
winner. Thus, the alternative most likely to be the best is given by CpðNÞ:

Proposition 15. For every a > 0; every b � 0; and every poll N 2N1 [N2, a
is the alternative most likely to be the best.

Proof. In N1; we have Pr abc j N ; a; bð Þ > Pr bac j N ; a; bð Þ from Proposition
9. By definition of N1; mac > mbc and according to Lemma 4, mab > mba:
Therefore, mcb > mca and mac þ mcb > mbc þ mca: Then, we have
M acb; N ; a; bð Þ > M bca; N ; a; bð Þ; i.e. Pr acb j N ; a; bð Þ > Pr bca j N ; a; bð Þ.
Combining these two inequalities, we obtain:

Pr a j N ; a; bð Þ ¼Pr abc j N ; a; bð Þ þ Pr acb j N ; a; bð Þ
>Pr bac j N ; a; bð Þ þ Pr bca j N ; a; bð Þ ¼ Pr b j N ; a; bð Þ

InN2;we have mab > mbc and fromLemma 4 , mab > mba:Therefore, mcb > mba

and mac þ mcb > mba þ mac: Then, we have M acb; N ; a; bð Þ > M bac; N ; a; bð Þ; i.e.

3The three events
a 	 b 	 c½ 
 _ a 	 c 	 b½ 
; b 	 a 	 c½ 
 _ b 	 c 	 a½ 
; c 	 b 	 a½ 
 _ c 	 a 	 b½ 

are not exhaustive. We also have the event a 	 b 	 c 	 a½ 
 _ a 	 c 	 b 	 a½ 
; i.e. the
possibility that there is no best alternative or that the poll is the result of a cyclical
relation rather than an order. This is why the probabilities of the three alternatives do
not add up to 1 in Young’s formulation. With uniform probabilities, we can define
Pr N j a 	 b 	 c 	 að Þ unambiguously. This is not so with increasing probabilities. For
example, is a one position behind c or two positions ahead of c in the cycle
a 	 b 	 c 	 a? Thus, we must ignore these events. This is why we wrote
Pr r j Nð Þ ¼ Pr N jrð ÞP

q2R Pr N jqð Þ rather than
Pr N jrð ÞP
q2B Pr N jqð Þ in (3) of Sect 3.
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Pr acb j N ; a; bð Þ > Pr bac j N ; a; bð Þ.According toLemma7,Pr abc j N ; a; bð Þ >
Pr bca j N ; a; bð Þ: Consequently, Pr a j N ; a; bð Þ > Pr b j N ; a; bð Þ. j

Alternatives most likely to be the best in N3. For the polls ofN3; the Borda
winner canbe aor b:Weshow that there is a critical value of a (possibly 0),which
depends on b; above which a is the alternative most likely to be the best and
below which it is b: In particular, if this critical value is 0, this means that a is
always the alternative most likely to be the best. This can happen only when a is
the Borda winner. In preparation for the next proposition, we prove the fol-
lowing lemma.

Lemma 16. For every b > 0 and every poll N 2N3;

Pr a jN ; â b;Nð Þ;bð Þ>Pr b jN ; â b;Nð Þ;bð Þ if a is the Borda winner

Pr a jN ; â b;Nð Þ;bð Þ¼Pr b jN ; â b;Nð Þ;bð Þ ifa and b are Borda winners

Pr a jN ; â b;Nð Þ;bð Þ<Pr b jN ; â b;Nð Þ;bð Þ ifb is the Borda winner

Proof. Define A ¼ mac þ mcb þ mab and B ¼ mbc þ mca þ mba: Note that in N3, if
b is the Borda winner or if a and b are Borda winners, then A < B: Indeed,
mab þ mac � mba þ mbc combined with mcb < mca give A < B: If a is the Borda
winner, we can have A < B as well as A � B: Next, note that the following
statements are equivalent:

Pr a j N ; â b; Nð Þ; bð ÞT Pr b j N ; â b; Nð Þ; bð Þ

Pr acb j N ; â b; Nð Þ; bð ÞT Pr bca j N ; â b; Nð Þ; bð Þ

M acb; N ; â b; Nð Þ; bð ÞTM bca; N ; â b; Nð Þ; bð Þ

â b; Nð Þ A� Bð ÞT � b mab � mbað Þ

If a is the Borda winner and if A � B; we immediately have:

â b; Nð Þ A� Bð Þ þ b mab � mbað Þ > 0

If a is the Borda winner and if A < B; we have

â b; Nð Þ A� Bð Þ þ b mab� mbað Þ > b A� Bð Þ þ b mab� mbað Þ
¼ 2macþ 2mab� 2mbc� 2mba > 0

since â b; Nð Þ < b in this case. For the case where a and b are Borda winners,
replace the inequalities by equalities in the last expression. Reverse the
inequalities if b is the Borda winner. j

Proposition 17. For every b � 0 and every poll N 2N3; 9~a b; Nð Þ � 0 :

Pr a; N ; a;bð ÞT Pr b; N ; a; bð Þ , 0 < aT ~a b; Nð Þ
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Proof. Consider the equation:

Pr abc j N ; a; bð Þ þ Pr acb j N ; a; bð Þ ¼ Pr bac j N ; a;bð Þ þ Pr bca j N ; a; bð Þ
ð7Þ

The left-hand side is Pr a j N ; a; bð Þ and the right-hand side is Pr b j N ; a; bð Þ:We
look for the solution to this equation. Let us define the two terms C and D by:

C ¼Pr abc j N ; a; bð Þ � Pr bac j N ; a; bð Þ
D ¼Pr acb j N ; a; bð Þ � Pr bca j N ; a; bð Þ

The above equation can also be written as C þ D ¼ 0:
From Lemma 4 and Proposition 12, we know that:

mab þ mbc þ mac > mba þ mac þ mbc > max mac þ mcb þ mab; mbc þ mca þ mbaf g
Thus, as a increases, M abc; N ; a; bð Þ increases more rapidly than
M bac; N ; a; bð Þ; and the latter more rapidly than both M acb; N ; a; bð Þ and
M bca; N ; a; bð Þ. It follows that Pr abc j N ; a; bð Þ increases monotonically with
a: Thus, Pr acb j N ; a; bð Þ and Pr bca j N ; a; bð Þ can be made as small as nec-
essary with a sufficiently large.

Suppose now that b is the Borda winner. By definition of â b; Nð Þ and by
Lemma 16, we have C ¼ 0 and D < 0: Increasing a from â b; Nð Þ increases
Pr abc j N ; a; bð Þ: The value of Pr bac j N ; a; bð Þ may also increase for a while
but less than Pr abc j N ; a; bð Þ: Thus, C increases monotonically with a: As for
D; it may decrease initially (increase in absolute terms) but, for sufficiently
large values of a; it will get close to 0: Since this behavior is continuous, there
exists a unique number ~a b; Nð Þ > â b; Nð Þ such that C þ D ¼ 0; i.e. such that
Pr a; N ; a;bð Þ ¼ Pr b; N ; a; bð Þ: Moreover, a7 ~a b; Nð Þ ) C þ D70) Pr a; N ;ð
a; bÞ7 Pr b; N ; a; bð Þ:

Suppose next that a is the Borda winner. We now have C ¼ 0 and D > 0:
By the same argument as above, starting from â b; Nð Þ; C decreases mono-
tonically with a: As for D; it may increase or decrease in the beginning but, for
a sufficiently low value of a; it will be positive since mab; the coefficient of b in
Pr acb j N ; a; bð Þ; is larger than mba; the coefficient of b in Pr bca j N ; a; bð Þ .
Two cases can arise:

� A positive value of a; such that C þ D ¼ 0; is reached. This value is ~aðb; NÞ:
As when b is the Borda winner, a7 ~aðb; NÞ ) C þ D7 0)
Prða; N ; a; bÞ7 Prðb; N ; a; bÞ:

� C þ D > 0 8a � âðb; NÞ: In this case, we set ~aðb; NÞ ¼ 0 and we have
Prða; N ; a; bÞ > Prðb; N ; a; bÞ 8a � 0: j

Combining Lemma 16 and Proposition 17, we get the following corollary.

Corollary 18. For every b > 0 and every poll N 2N3;

â b; Nð Þ > ~a b; Nð Þ if a is the Borda winner

â b; Nð Þ ¼ ~a b; Nð Þ if a and b are Borda winners

â b; Nð Þ < ~a b; Nð Þ if b is the Borda winner
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Figures 2 and 3 illustrate two typical behaviors of ~a and â: The first one is
obtained from the following poll borrowed from Condorcet (1785), and in
which b is the Borda winner:

Young (1988) uses this poll to show that the Kemeny rule does not nec-
essarily select the alternative most likely to be the best. This is the case here
for a < ~a 0ð Þ ¼ 0:225; i.e. for a probability of ordering correctly two alter-
natives less than 0:556: More interestingly, this figure shows that the per-
formance of Cp in selecting the best alternative improves as b gets larger.
Indeed, this performance is better the smaller the interval â b; Nð Þ; ~a b; Nð Þð Þ:
It is only within this interval that Cp does not select the alternative most likely
to be the best.

Figure 3 is drawn from the following poll, in which a is the Borda winner:

Alternatives a b c

a – 31 31
b 29 – 37
c 29 23 –

0.1 0.2 0.3 0.4 0.5
β

0.2

0.4

0.6

0.8

1

1.2

1.4

α

α

α̃

∧

Fig. 2. Typical behaviour of ~a and â when b is the Borda winner

Alternatives a b c

a – 13 12
b 8 – 16
c 9 5 –
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In this case, ~a b; Nð Þ ¼ 0 on some interval 0; �b
� �

: This follows from Young’s
result, which, transposed to our context, says that for b ¼ 0 and a sufficiently
small, the alternative most likely to be the best is the Borda winner. As a
result, the gap between â b; Nð Þ and �a b; Nð Þ increases on 0; �b

� �
. It decreases

monotonically thereafter.
The behavior of ~a with respect to â depicted in Figs. 2 and 3 seems to be

quite general. We found numerically that it is typical of all polls in N3 with
3 � n � 12. It is thus also typical of all replicas of these polls. The reason is
that, as b gets larger, Pr abc j N ; â b; Nð Þ; bð Þ and Pr bac j N ; â b; Nð Þ; bð Þ both
get larger and, because of this, the term D in the proof of Proposition 17 gets
smaller, thus requiring a smaller departure from â b; Nð Þ. However, given the
form of the probability function used in this section, a rigorous proof of this
fact appears to be out of reach.

7 Conclusion

Condorcet (1785) initiated the statistical approach to vote aggregation.
Young (1988) clarified Condorcet’s contribution and showed that a correct
application of the maximum likelihood principle leads to the Kemeny rule.
This approach is based on the assumption that judges or voters have the same
probability of ranking correctly two alternatives and that this probability is
the same for all pairs of alternatives.

In this paper, we relaxed the second part of this assumption, adopting the
point of view that the probability of comparing correctly two alternatives is
an increasing function of the distance between them in the true ranking. We
showed that the aggregation rule that consists in selecting the most probable
ranking under this more reasonable assumption, differs in many respects from

0.1 0.2 0.3 0.4 0.5
β

0.1

0.2

0.3

0.4

α

a

a

∧

˜

Fig. 3. Typical behaviour of ~a and â when a is the Borda winner
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the Kemeny rule. We also provided a systematic analysis of the case of three
alternatives. Due to the complexity of the problem, it was hardly possible to
go further with more alternatives.

The approach adopted here, as in the previous literature, relies on the
assumption that votes are statistically independent from one pair of alter-
natives to the other. Thus, if a voter or a judge orders alternatives pair by
pair, there is a positive probability that a cycle will emerge from the vote, even
if this probability is conditional on an order. This is inherent to the binary
approach, which Saari often criticizes in his writings. For example, Saari and
Merlin (2000) make the following remark about the Kemeny rule (KR):

The unexpected, troubling fact is that KR achieves its consistency by weakening
the crucial assumption about the individual rationality of the voters. Indeed, KR
treats certain groups of preferences as though they come from non-existent
voters with cyclic preferences.

As we saw, cyclic preferences have indeed a positive probability of
showing up in the binary approach. With a probability function that is
increasing with the distance between the two alternatives in a pair, the
probability of a cycle is reduced but not completely eliminated. Despite this
shortcoming, we remained within the binary framework since our purpose
was to verify the robustness of the results obtained so far under the
assumption of constant probability across pairs of alternatives.

The next step would consist in relaxing the independence assumption
while retaining some of the ideas of this paper to model the competence of the
judges. Another topic for further research is the strategic behavior, which has
been completely evacuated from this paper. Austen-Smith and Banks (1996)
have paved the way in analyzing information aggregation and voting
behavior in environments in which individuals have private information
about which of two alternatives is possibly the best. Rata (2002b) extends
their analysis to the case of many alternatives but the aim of this aggregation
remains the choice of a best alternative as opposed to ranking all alternatives.
This last problem does not seem to have been studied yet.
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