
Abstract. A group of friends consider renting a house but they shall first
agree on how to allocate its rooms and share the rent. We propose an auction
mechanism for room assignment-rent division problems which mimics the
market mechanism. Our auction mechanism is efficient, envy-free, individu-
ally-rational and it yields a non-negative price to each room whenever that is
possible with envy-freeness.

1 Introduction

A group of friends rent a house and they shall allocate its rooms and share the
rent. Alternatively a group of friends consider renting a house but they shall
first agree on how to allocate its rooms and share the rent. They will rent the
house only if they can find a room assignment-rent division which appeals to
each of them.

In this paper we propose an auction mechanism for room assignment-rent
division problems which mimics the market mechanism. In order to do that, a

Soc Choice Welfare (2004) 22: 515–538
DOI: 10.1007/s00355-003-0231-0

We would like to thank seminar participants at Barcelona, Boston College, Duke,
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KoçBank via the KoçBank scholar program and Turkish Academy of Sciences in the
framework of the Young Scientist Award Program via grant TS/TÜBA-GEB_IP/2002-
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key first step is formulating a notion of an overdemand. A well-known result
in discrete mathematics -Hall’s Theorem- provides an important hint con-
cerning how this shall be done. Hall’s Theorem suggests that the room market
clears at price p if and only if for any group of agents the number of different
rooms collectively demanded by the group is no less than the size of the
group. Motivated by Hall’s Theorem, Demange, Gale and Sotomayor (1986)
define a set Q of objects to be minimally overdemanded at price p if (i) the
number of agents demanding only objects in Q at price p is greater than the
number of objects in Q and (ii) no strict subset of Q has the same property.
Demange et al. (1986) introduce this notion in the context of a closely related
two-sided matching market and for their purposes it is sufficient to find an
arbitrary minimally overdemanded set of objects. We, on the other hand,
need to construct the entire set of overdemanded rooms and merely consid-
ering minimally overdemanded sets do not suffice. We iteratively apply De-
mange, Gale and Sotomayor idea in order to find the full set of overdemanded
rooms.

Once the full set of overdemanded rooms is formulated the rest is an
application of the well-known tâtonnement procedure: We initially set the
prices equal and find the full set of overdemanded rooms. If it is empty then
the procedure stops, each agent is assigned a room in her demand and she
pays an even share of the rent. Otherwise we continuously increase prices of
all rooms in the full set of overdemanded rooms and continuously decrease
prices of remaining rooms such that

(i) prices of all rooms in the full set of overdemanded rooms are increased at
the same rate,

(ii) prices of all remaining rooms are decreased at the same rate, and
(iii) summation of prices stay constant at rent.

(Note that unless the full set of overdemanded rooms consists of half of the
rooms, the rate of increase in prices of overdemanded rooms is different than
the rate of decrease in remaining rooms.) At each instant the full set of
overdemanded rooms is calculated using the updated prices and the price of a
room increases at a given instant if and only if the room is overdemanded at
that instant. The procedure stops when the full set of overdemanded rooms is
empty, each agent is assigned a room in her demand and she pays the final
price of her assignment. We refer to this tâtonnement procedure as the con-
tinuous-price auction.

The only instances that are crucial in the continuous price auction are
those when some agent’s demand set changes. It is only at those instances the
full set of overdemanded rooms may change. We can analytically derive these
instances using individual valuations and this observation allows us to for-
mulate an equivalent discrete-price auction.

While our auction is dynamic, to be realistic for its real-life consumption it
is more appropriate to interpret it as a sealed-bid auction where each agent
reports her valuations for the rooms and a computer determines a room
assignment together with a rent division via our auction.
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Our continuous-price auction (or its discrete equivalent) can be useful only
if it converges. Throughout the paper we assume that individual utilities are
quasi-linear in prices and in Theorem 1 we show that our discrete-price
auction (and hence our continuous-price auction as well) converges. We
prove this result by showing that the summation of indirect utilities strictly
decreases at each step of the discrete-price auction until it converges to a
feasible level in finite steps.

Recently Brams and Kilgour (2001) and Haake et al. (2002) introduce
other mechanisms for room assignment-rent division problems. So why shall
one care for one additional mechanism? All three mechanisms are efficient so
one cannot compare these mechanisms based on efficiency. Envy-freeness is
widely considered the central notion of fairness in the context of room
assignment-rent division problems. It can also be interpreted as a stability
requirement since it is difficult to sustain envious allocations in real-life
applications. In such situations there are agents who are eager to pay more
than their occupants for some of the rooms. If the house is not rented yet, it
will most likely not be rented unless the agents agree on an envy-free allo-
cation. Based on these points we believe envy-freeness is essential for room
assignment-rent division problems. In addition to envy-freeness, a mechanism
should charge a non-negative price to each of the rooms for otherwise agents
who are having a positive share of the rent will benefit by leaving the negative
priced rooms empty. Unfortunately there exists situations where these two
essential objectives cannot be met simultaneously. That is, there exists situ-
ations where at least one of the rooms has a negative price at each envy-free
allocation. In these situations no matter what allocation is chosen someone
will be upset. If agents have not already rented the house, they will either not
rent it or they will not rent it altogether.

Brams and Kilgour (2001) observe this difficulty and they propose a
mechanism which always charges a non-negative price to each of the rooms.
A difficulty with their mechanism is that its outcome may be envious even in
problems where there exists envy-free allocations with non-negative prices.
Haake et al. (2002), on the other hand, propose an envy-free mechanism but a
difficulty with their mechanism is that it may charge negative prices to some
of the rooms even in problems where there exists envy-free allocations with
non-negative prices. Our auction mechanism is envy-free (Corollary 1) and it
charges each room a non-negative price unless there exists no envy-free
allocation with non-negative prices (Theorem 2). We obtain this result by
relating our auction to the well-known Demange et al. (1986) exact auction
that yields the buyer-optimal competitive price for a related class of two-sided
matching markets.

There are two additional papers which are closely related to our paper.
Alkan et al. (1991) and Su (1999) analyze the structure of envy-free alloca-
tions for room-assignment-rent division problems. In addition Svensson
(1983), Maskin (1987), Tadenuma and Thomson (1991), Aragones (1995)
and Klijn (2000) analyze a closely related fair division problem where a
number of indivisible goods together with some money shall be fairly
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allocated to a number of agents. Envy-freeness plays the key role in each of
these papers.

The rest of the paper is organized as follows: In Sect. 2 we introduce
the model. In Sect. 3 we formulate the notion of the full set of overde-
manded rooms and introduce our continuous-price auction as well as its
discrete equivalent. In Sect. 4 we show that our auction converges and in
Sect. 5 we show that it is efficient, envy-free and individually rational. In
Sect. 6 we relate our auction to Demange, Gale and Sotomayor exact
auction and show that our auction yields non-negative prices whenever
there exists envy-free allocations with non-negative prices. Finally we
conclude in Sect. 7.

2 The model

A group of friends consider renting a house but they shall first agree on how
to allocate its rooms and share the rent. Formally a room assignment-rent

division problem is a four-tuple I ;R; V ; ch i where

1. I ¼ fi1; . . . ; ing is a set of agents,
2. R ¼ fr1; . . . ; rng is a set of rooms,
3. V ¼ ½vi

r�i2I ;r2R is a value matrix where vi
r denotes the value of room r for

agent i, and
4. c 2 Rþþ is the rent of the house.

Following Su (1999), Brams and Kilgour (2001), Haake et al. (2002) we
assume that

P
r2R vi

r � c for each agent i 2 I . Note that if this assumption
fails for an agent that means the agent does not think that the house is worth
the rent and hence it is not unreasonable to assume that such an agent will not
rent the house. Throughout the paper we fix a problem.

A matching l is an assignment of rooms to agents such that each agent is
assigned one and only one room. Let li denote the room assignment of agent
i under l and let M denote the set of matchings.

A price is a vector p 2 Rn: A price p is feasible if
P

r2R pr ¼ c: Let

P ¼ p 2 Rn :
X

r2R

pr ¼ c

( )

denote the set of feasible prices.
An allocation is a matching-feasible price pair ðl; pÞ 2M�P. Here agent

i 2 I is assigned room li and her share of the rent is pli
.

Each agent i 2 I is endowed with a utility function ui : R� R! R which is
quasi-linear in rent:

uiðr; prÞ ¼ vi
r � pr:

We assume that ui ¼ 0 is the reservation utility for each agent and it corre-
sponds to the utility of outside options.
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3 A market approach

How shall one determine an allocation for a given problem? In this paper we
propose an auction which mimics the market mechanism.

Given an agent i 2 I and a price p 2 Rn, define the demand of agent i at
price p as

DiðpÞ ¼ r 2 R : uiðr; prÞ � uiðs; psÞ for all s 2 Rf g:
Let DðpÞ ¼ ðDiðpÞÞi2I denote the list of individual demands at price p.

Given an agent i 2 I and a price p 2 Rn, define the indirect utility of agent i
at price p as

~uiðpÞ ¼ max
r2R

uiðr; prÞ

Given a price vector p 2 Rn, when can we find a matching which assigns
each agent a room in her demand? The answer of this question is given by
Hall (1935).

Hall’s Theorem. Let p 2 Rn: There exists a matching l 2M with li 2 DiðpÞ
for each i 2 I if and only if

8J � I [
i2J

DiðpÞ
�
�
�
�

�
�
�
� � Jj j

Hall’s Theorem suggests that the room market clears at price p if and only if
the cardinality of the union of demands of any group of agents is at least as
big as the size of the group. Hall’s Theorem is key to define the set of over-
demanded rooms at price p.

3.1 Overdemanded rooms

Motivated by Hall’s Theorem and following Demange et al. (1986) define a
set of rooms to be overdemanded at price p if the number of agents demanding
only rooms in this set is greater than the number of the rooms in the set.
Formally S � R is overdemanded if fi 2 I : DiðpÞ � Sgj j > jSj. Note that this
definition allows a room to be overdemanded even though it is not demanded
by any agent. For example suppose DiðpÞ ¼ DjðpÞ ¼ DkðpÞ ¼ fsg. Clearly the
singleton fsg is an overdemanded set. The difficulty is that fs; rg is overde-
manded as well for any r 2 R regardless of the demands. This observation
motivates the following definition: A set of rooms is a minimal overdemanded

set if it is overdemanded and none of its proper subsets is overdemanded.
Demange et al. (1986) introduce these definitions in the context of multi-

unit auctions and at each step of their auction they increase prices of objects
in an arbitrary minimal overdemanded set by one unit. Since prices of the
rooms shall add up to rent in the present context, we will increase prices of all
‘‘excessively demanded’’ rooms simultaneously and reduce prices of the
remaining rooms. As the following example shows merely considering mini-
mal overdemanded sets may not be sufficient for our purposes. Let
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I ¼ fi; j; k; lg and R ¼ fa; b; c; dg. Suppose that the value matrix V and price p
induce the following demands:

DiðpÞ ¼ DjðpÞ ¼ fag; DkðpÞ ¼ fbg; DlðpÞ ¼ fa; bg

Here the only minimal overdemanded set is fag. Nevertheless there is a clear
‘‘excess demand’’ for room b as well.

Motivated by this observation iteratively define the full set of overde-

manded rooms at price p as follows: Given p find all minimal overdemanded
sets. Remove these rooms from the demand of each agent and find the
minimal overdemanded sets for the modified demand profiles. Proceed in a
similar way until there is no minimal overdemanded set for the modified
demand profiles. The full set of overdemanded rooms is the union of each of
the sets encountered in the procedure.

In the earlier example the singleton fag is a minimal overdemanded set.
Once room a is removed from the demand of each agent we have
DkðpÞnfag ¼ DlðpÞnfag ¼ fbg and hence room b is also included in the full
set of overdemanded rooms at price p.

Let ODðpÞ denote the full set of overdemanded rooms at price p. The
following lemma will be useful to define our auction.

Lemma 1. Let p 2 Rn.

ODðpÞ ¼ ;() [
i2J

DiðpÞ
�
�
�
�

�
�
�
� � Jj j for all J � I

Proof. Let p 2 Rn and suppose that ODðpÞ ¼ ;. By definition of ODðpÞ there
is no minimal overdemanded set at price p and thus there is no overdemanded
set either. Then for each J � I we have j [

i2J
DiðpÞj � J jj for otherwise

S ¼ [
i2J

DiðpÞ would be an overdemanded set.

Conversely suppose that for every J � I we have j [
i2J

DiðpÞj � jJ j. Then
there are no overdemanded sets and hence ODðpÞ ¼ ;. j

3.2 The continuous-price auction

We are now ready to propose an auction to find a ‘‘market’’ allocation ðl; pÞ
2 M�P:
1. Set initially the price of each room to c=n. That is, set p ¼ ðcn ; . . . ; c

nÞ.
2. (a) If ODðpÞ ¼ ; then by Lemma 1 and Hall’s Theorem there exists a

matching l such that li 2 DiðpÞ for each agent i 2 I . Terminate the
procedure.

(b) If ODðpÞ 6¼ ; then continuously increase prices of all rooms in ODðpÞ
equally by dx! 0 and continuously decrease prices of all remaining
rooms (i.e. rooms in RnODðpÞ) equally by dy ! 0 such that
ODðpÞj jdx ¼ ðn� ODðpÞj jÞdy. This ensures that summation of the
prices of the rooms is equal to rent throughout the procedure.

(c) Return to beginning of Step 2 with the updated price vector.
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Note that the auction procedure terminates when we reach a price vector
p 2 P with ODðpÞ ¼ ;: In the next section we show that our continuous-price
auction converges.

4 Convergence

In the continuous-price auction the only instances that are crucial are those
instances where some agent’s demand changes. At these instances the full set
of overdemanded rooms may possibly change. Between two such instances
prices of overdemanded rooms increase uniformly and prices of the remaining
rooms decrease uniformly in such a way that the sum of the prices stay
constant at c. This observation allows us to formulate the following discrete
equivalent of our continuous-price auction.

4.1 An equivalent discrete-price auction

In order to introduce the discrete equivalent of our auction we need addi-
tional notation.

Let p 2 P be a price vector that is obtained at an instant of our contin-
uous-price auction. Define

JðpÞ ¼ fi 2 I : DiðpÞ � ODðpÞg:
That is, JðpÞ is the set of agents each of whom only demand rooms in the full
set of overdemanded rooms.

Lemma 2. For each p 2 P with ODðpÞ 6¼ ; we have JðpÞj j > ODðpÞj j:

Proof. Let p 2 P with ODðpÞ 6¼ ;. Consider the construction of the full set of
overdemanded rooms. Let S1 be an arbitrary minimal overdemanded set and
let J1 ¼ fi 2 I : DiðpÞ � S1g. By definition we have S1 � ODðpÞ and jJ1j > jS1j.
If S1 ¼ ODðpÞ then we are done. Otherwise remove rooms in S1 from the
demand of each agent and let S2 be an arbitrary minimal overdemanded set
for the modified market. Let J2 ¼ fi 2 I : DiðpÞnS1 � S2 and DiðpÞnS1 6¼ ;g.
Note that J1 and J2 are disjoint sets. By definition we have S2 � ODðpÞ and
jJ2j > jS2j. Proceeding in a similar way we obtain jJðpÞj ¼ j [ Jkj >
j [ Skj ¼ jODðpÞj. j

Let p0 be the first price vector obtained in the continuous-price auction
after price p where an agent’s demand set gets larger. Such an agent is nec-
essarily a member of JðpÞ. That is because (i) each agent in InJðpÞ demands a
room in RnODðpÞ and prices of these rooms have been falling uniformly, and
(ii) utilities are quasi-linear in prices. Therefore the full set of overdemanded
rooms may only change when an agent in JðpÞ demands a room in RnODðpÞ.
Define
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xðpÞ ¼ min
j2JðpÞ

~ujðpÞ � max
s2RnODðpÞ

ujðs; psÞ
� �

if ODðpÞ 6¼ ;

0 if ODðpÞ ¼ ;

8
<

:

Note that xðpÞ > 0 if and only if ODðpÞ 6¼ ;.
Consider any pair of rooms r; s such that r 2 ODðpÞ and s 2 R n ODðpÞ.

The price differential ðpr � psÞ increases at the same rate for any pair of such
rooms until the full set of overdemanded rooms changes. As we have already
mentioned this may only happen when an agent in JðpÞ demands a room in
R n ODðpÞ and xðpÞ is the minimum price differential needed for that to

happen. When price of room r 2 ODðpÞ increases to pr þ n� ODðpÞj j
n xðpÞ and

price of room s 2 R n ODðpÞ reduces to ps � ODðpÞj j
n xðpÞ, the price differential

ðpr � psÞ reaches xðpÞ. For each r 2 R define

frðpÞ ¼
pr � ODðpÞj j

n xðpÞ if r =2 ODðpÞ
pr þ n� ODðpÞj j

n xðpÞ if r 2 ODðpÞ

(

By construction p0 ¼ ðfrðpÞÞr2R is the first price vector obtained in the con-
tinuous-price auction where an agent’s demand set gets larger. We are now
ready to introduce the discrete equivalent of our continuous-price auction:
Step 0. Set p0 ¼ ðcn ; . . . ; c

nÞ. If ODðp0Þ ¼ ; then find a matching l such that
li 2 Diðp0Þ for each i 2 I , set p ¼ p0 and terminate the procedure. If
ODðp0Þ 6¼ ; then proceed to Step 1.

In general,
Step t. Set pt

r ¼ frðpt�1Þ for all r 2 R. If ODðptÞ ¼ ; then find a matching l
such that li 2 DiðptÞ for each i 2 I , set p ¼ pt and terminate the procedure. If
ODðptÞ 6¼ ; then proceed to Step t+1.

Before we show that the discrete-price auction converges, we give a de-
tailed example which illustrates the dynamics of the discrete-price auction.
Example. Let the set of agents be I ¼ i1; i2; i3; i4; i5; i6f g, the set of rooms be
R ¼ a; b; c; d; e; ff g, the valuation matrix be

V ¼

a b c d e f
ii 15 18 10 15 24 28
i2 18 24 3 18 25 15
i3 6 25 15 18 18 25
i4 18 5 18 12 9 25
i5 6 22 5 5 10 12
i6 6 9 2 21 25 9

and the rent be 60.

Step 0. p0 ¼ ð10; 10; 10; 10; 10; 10Þ. In order to obtain the demand of each
agent at p0, we shall find utilities of agents over rooms at p0. In the following
utility matrix indirect utilities of agents are given in bold:
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½uiðr; p0
r Þ�i2 I ; r2R ¼

a b c d e f
ii 5 8 0 5 14 18

i2 8 14 �7 8 15 5
i3 �4 15 5 8 8 15

i4 8 �5 8 2 �1 15

i5 �4 12 �5 �5 0 2
i6 �4 �1 �8 11 15 �1

Therefore the demand of each agent at p0 is as follows:

Di1ðp0Þ ¼ ff g Di3ðp0Þ ¼ b; ff g Di5ðp0Þ ¼ bf g
Di2ðp0Þ ¼ ef g Di4ðp0Þ ¼ ff g Di6ðp0Þ ¼ ef g

Next we find the full set of overdemanded rooms at p0:

Iteration 1. S1 ¼ ff g is minimally overdemanded since each of the agents in
J1 ¼ i1; i4f g demand only room f . S2 ¼ ef g is minimally overdemanded since
each of the agents in J2 ¼ i2; i6f g demand only room e. There are no other
minimal overdemanded sets. Remove S1 [ S2 from the demand of each agent.

Iteration 2. S3 ¼ fbg is minimally overdemanded once rooms f and e are
removed from the demands. That is because agents in J3 ¼ i3; i5f g demand
only room b once rooms f and e are removed from the demands. (That is,
Di3ðp0Þn S1 [ S2ð Þ ¼ Di5ðp0Þn S1 [ S2ð Þ ¼ fbg.) S3 is the unique minimal over-
demanded set once rooms e and f are removed from the demands. Remove S3

from the demand of each agent.

Iteration 3. There are no minimal overdemanded sets once rooms f , e and b
are removed from demands.

Therefore ODðp0Þ ¼ S1 [ S2 [ S3 ¼ b; e; ff g and Jðp0Þ ¼ J1 [ J2 [ J3 ¼
i1; i2; i3; i4; i5; i6f g. Since ODðp0Þ 6¼ ; we proceed with Step 1.

Step 1. We determine p1 as follows: xðp0Þ ¼ eui6ðp0Þ � ui6ðd; p0
dÞ ¼ 15� 11 ¼ 4

and ODðp0Þ
�
�

�
� ¼ 3. Therefore for each r 2 R, we have

p1
r ¼ frðp0Þ ¼ p0

r þ 2 if r 2 ODðp0Þ
p0

r � 2 otherwise

�

and hence p1 ¼ ð8; 12; 8; 8; 12; 12Þ. Utility matrix at p1 is given as follows:

uiðr; P 1
r Þ

� �
i2I ;r2R ¼

a b c d e f

ii 7 6 2 7 12 16

i2 10 12 �5 10 13 3

i3 �2 13 7 10 6 13

i4 10 �7 10 4 �3 13

i5 �2 10 �3 �3 �2 0

i6 �2 �3 �6 13 13 �3
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Therefore the demand of each agent at p1 is as follows:

Di1ðp1Þ ¼ ff g Di3ðp1Þ ¼ b; ff g Di5ðp1Þ ¼ bf g

Di2ðp1Þ ¼ ef g Di4ðp1Þ ¼ ff g Di6ðp1Þ ¼ d; ef g

Next we find the full set of overdemanded rooms at p1:

Iteration 1. S1 ¼ ff g is minimally overdemanded since each of the agents in
J1 ¼ i1; i4f g demand only room f . S1 is the unique minimal overdemanded
set. Remove S1 from the demand of each agent.

Iteration 2. S2 ¼ fbg is minimally overdemanded once room f is removed
from the demands. That is because agents in J2 ¼ i3; i5f g demand only room b
once room f is removed from the demands. S2 is the unique minimal over-
demanded set once room f is removed from the demands. Remove S2 from
the demand of each agent.

Iteration 3. There are no minimal overdemanded sets once rooms f and b are
removed from demands.

Therefore ODðp1Þ ¼ S1 [ S2 ¼ b; ff g and Jðp1Þ ¼ J1 [ J2 ¼ i1; i3; i4; i5f g.
Since ODðp1Þ 6¼ ; we proceed with Step 2.
Step 2. We determine p2 ¼ f ðp1Þ as follows: xðp1Þ ¼ eui3ðp1Þ � ui3ðd; p1dÞ ¼
13� 10 ¼ 3 and ODðp1Þ

�
�

�
� ¼ 2. Therefore for each r 2 R we have

p2
r ¼ frðp1Þ ¼ p1

r þ 2 if r 2 ODðp1Þ
p1

r � 1 otherwise

�

and hence p2 ¼ ð7; 14; 7; 7; 11; 14Þ. Utility matrix at p2 is given as follows:

uiðr; P 2
r Þ

� �
i2I ;r2R ¼

a b c d e f

ii 8 4 3 8 13 14

i2 11 10 �4 11 14 1

i3 �1 11 8 11 7 11

i4 11 �9 11 5 �2 11

i5 �1 8 �2 �2 �1 �2
i6 �1 �5 �5 14 14 �5

Therefore the demand of each agent at p2 is as follows:

Di1ðp2Þ ¼ ff g Di3ðp2Þ ¼ b; d; ff g Di5ðp2Þ ¼ bf g
Di2ðp2Þ ¼ ef g Di4ðp2Þ ¼ a; c; ff g Di6ðp2Þ ¼ d; ef g

Next we find the full set of overdemanded rooms at p2:

Iteration 1. S1 ¼ fb; d; e; f g is minimally overdemanded since each of the
agents in J1 ¼ fi1; i2; i3; i5; i6g demands only rooms from S1 and no other
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subset of S1 is overdemanded. S1 is the unique minimal overdemanded set.
Remove S1 from the demand of each agent.

Iteration 2. There are no minimal overdemanded sets once rooms b, d, e, and
f are removed from demands.

Therefore ODðp2Þ ¼ S1 ¼ b; d; e; ff g and Jðp2Þ ¼ J1 ¼ i1; i2; i3; i5; i6f g.
Since ODðp2Þ 6¼ ; we proceed with Step 3.
Step 3. We determine p3 as follows: xðp2Þ ¼ eui3ðp2Þ � ui3ðc; p2

cÞ ¼ 14� 11 ¼ 3
and ODðp2Þ

�
�

�
� ¼ 4. Therefore for each r 2 R we have

p3
r ¼ frðp2Þ ¼ p2

r þ 1 if r 2 ODðp2Þ
p2

r � 2 otherwise

�

and hence p3 ¼ ð5; 15; 5; 8; 12; 15Þ. Utility matrix at p3 is given as follows:

uiðr; P 3
r Þ

� �
i2I ;r2R ¼

a b c d e f

ii 10 3 5 7 12 13

i2 13 9 �2 10 13 0

i3 1 10 10 10 6 10

i4 13 �10 13 4 �3 10

i5 1 7 0 �3 �2 �3
i6 1 �6 �1 13 13 �6

Therefore the demand of each agent at p3 is as follows:

Di1ðp3Þ ¼ ff g Di3ðp3Þ ¼ b; c; d; ff g Di5ðp3Þ ¼ bf g
Di2ðp3Þ ¼ a; ef g Di4ðp3Þ ¼ a; cf g Di6ðp3Þ ¼ d; ef g

Next we find the full set of overdemanded rooms at p3:

Iteration 1. There are no minimal overdemanded sets.

Therefore ODðp3Þ ¼ ; and hence we terminate the procedure. We have
li 2 Diðp3Þ for all i 2 I for

l 2 fl1; l2g ¼
i1 i2 i3 i4 i5 i6
f e c a b d

� �

;
i1 i2 i3 i4 i5 i6
f a d c b e

� �� �

and therefore either of the allocations ðl1; p
3Þ or ðl2; p

3Þ can be obtained as
an outcome of our auction. j

We next show that our discrete-price auction converges which in turn
implies that our continuous-price auction converges as well.

Theorem 1. Let fptg be the price sequence in the discrete-price auction. There
exists finite T such that ODðpT Þ ¼ ;.

Proof. Let fptg be the price sequence in the discrete-price auction. Here is our
proof strategy: We will first show that the sum of indirect utilities are
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bounded below. Then we will show that the sum of indirect utilities
P

i2I
~uiðptÞ

strictly decreases at each step as long as ODðpÞ is non-empty. This implies that
(i) the sum of indirect utilities will converge and (ii) for any two steps t; u with
ODðptÞ 6¼ ; and ODðpuÞ 6¼ ; we have DðptÞ 6¼ DðpuÞ. Since there are only finite
combinations of demand profiles we obtain the desired convergence result in
finite steps.

Claim 1. For all p 2 P we have
P

i2I
euiðpÞ � 1

n

P

i2I

P

r2R
vi

r

� �

� c.

Proof of Claim 1. Let p 2 P. For all i 2 I and r 2 R we have ~uiðpÞ � uiðr; prÞ:
This implies for all i 2 I we have

~uiðpÞ �

P

r2R
uiðr; prÞ

n
¼

P

r2R
vi

r � c

n

Hence we obtain
P

i2I
~uiðpÞ � 1

n

P

i2I

P

r2R
vi

r

� �

� c.

Claim 2. For all t � 0 we have
P

i2I
~uiðptÞ �

P

i2I
~uiðptþ1Þ þ xðptÞ:

Proof of Claim 2. Let t � 0 be such that ODðptÞ 6¼ ;. We consider agents in
JðptÞ and agents in I n JðptÞ separately.
1. Let i 2 JðptÞ and a 2 DiðptÞ: By construction of JðptÞ we have a 2 ODðptÞ

and by construction of faðptÞ we have

uiða; ptþ1
a Þ ¼ vi

a � ptþ1
a

¼ vi
a � pt

a þ
n� ODðptÞj j

n
xðptÞ

� �

¼ uiða; pt
aÞ �

n� ODðptÞj j
n

xðptÞ

¼ euiðptÞ � n� ODðptÞj j
n

xðptÞ

Next consider rooms in RnDiðptÞ. We will show that uiða; ptþ1
a Þ � uiðr; ptþ1

r Þ
for all r 2 RnDiðptÞ which in turn shows that ~uiðptþ1Þ ¼ uiða; ptþ1

a Þ. We con-
sider rooms in RnODðptÞ and rooms in ODðptÞnDiðptÞ separately.

(a) Let r 2 RnODðptÞ. By construction of xðptÞ we have

~uiðptÞ � uiðr; pt
rÞ � xðptÞ ¼ min

j2JðptÞ
~ujðptÞ � max

s2RnODðptÞ
ujðs; pt

sÞ
� �

ð1Þ

and by construction of frðptÞ we have

uiðr; ptþ1
r Þ ¼ vi

r � ptþ1
r

¼ vi
r � pt

r �
ODðptÞj j

n
xðptÞ

� �

¼ uiðr; pt
rÞ þ

ODðptÞj j
n

xðptÞ
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Hence

uiða;ptþ1
a Þ�uiðr;ptþ1

r Þ¼euiðptÞ�n� ODðptÞj j
n

xðptÞ�uiðr;pt
rÞ�

ODðptÞj j
n

xðptÞ

¼euiðptÞ�uiðr;pt
rÞ�xðptÞ

and therefore uiða; ptþ1
a Þ � uiðr; ptþ1

r Þ for all r 2 R n ODðptÞ by Relation 1.

(b) Let r 2 ODðptÞnDiðptÞ: By construction of frðptÞ we have

uiðr; ptþ1
r Þ ¼ vi

r � ptþ1
r

¼ vi
r � pt

r þ
n� ODðptÞj j

n
xðptÞ

� �

¼ uiðr; pt
rÞ �

n� ODðptÞj j
n

xðptÞ

Hence

uiða; ptþ1
a Þ � uiðr; ptþ1

r Þ ¼ uiða; pt
aÞ � uiðr; pt

rÞ ¼ euiðptÞ � uiðr; pt
rÞ > 0

and therefore uiða; ptþ1
a Þ � uiðr; ptþ1

r Þ for all r 2 ODðptÞ n DiðptÞ as well.
Therefore uiða; ptþ1

a Þ � uiðr; ptþ1
r Þ for all r 2 R n DiðptÞ and hence

a 2 Diðptþ1Þ. This in turn implies

euiðptþ1Þ ¼ uiða; ptþ1
a Þ ¼ euiðptÞ � n� ODðptÞj j

n
xðptÞ ð2Þ

2. Let i 2 InJðptÞ and a 2 DiðptÞnODðptÞ. Since i 62 JðptÞ, such a room nec-
essarily exists. By construction of faðptÞ we have

uiða; ptþ1
a Þ ¼ vi

a � ptþ1
a

¼ vi
a � pt

a �
ODðptÞj j

n
xðptÞ

� �

¼ uiða; pt
aÞ þ

ODðptÞj j
n

xðptÞ

¼ euiðptÞ þ ODðptÞj j
n

xðptÞ

Next consider rooms in R n DiðptÞ. Let r 2 R n DiðptÞ. Since prices of rooms

have either decreased by
ODðptÞj j

n xðptÞ or increased by
n� ODðptÞj j

n xðptÞ, we have

uiðr; ptþ1
r Þ ¼ vi

r � ptþ1
r

� vi
r � pt

r �
ODðptÞj j

n
xðptÞ

� �

¼ uiðr; pt
rÞ þ

ODðptÞj j
n

xðptÞ

< uiða; pt
aÞ þ

ODðptÞj j
n

xðptÞ ¼ uiða; ptþ1
a Þ
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Therefore uiða; ptþ1
a Þ > uiðr; ptþ1

r Þ for all r 2 R n DiðptÞ and hence a 2 Diðptþ1Þ.
This in turn implies

euiðptþ1Þ ¼ uiða; ptþ1
a Þ ¼ euiðptÞ þ ODðptÞj j

n
xðptÞ ð3Þ

We are now ready to complete the proof of Claim 2 which in turn completes
the proof of the theorem. By Lemma 2 we have JðptÞj j � ODðptÞj j þ 1 and
InJðptÞj j ¼ n� JðptÞj j � n� ODðptÞj j � 1: These together with Equations 2
and 3 imply

X

i2I

euiðptþ1Þ¼
X

i2JðptÞ
euiðptþ1Þþ

X

i2InJðptÞ
euiðptþ1Þ

¼
X

i2JðptÞ
euiðptÞ�n� ODðptÞj j

n
xðptÞ

� �

þ
X

i2InJðptÞ
euiðptÞþ ODðptÞj j

n
xðptÞ

� �

¼
X

i2I

euiðptÞ� JðptÞj jðn� ODðptÞj jÞ
n

xðptÞþðn� JðptÞj jÞ ODðptÞj j
n

xðptÞ

�
X

i2I

euiðptÞ� ODðptÞj jþ1ð Þ n� ODðptÞj jð Þ
n

xðptÞþ n� ODðptÞj j�1ð Þ ODðptÞj j
n

xðptÞ

¼
X

i2I

euiðptÞ�xðptÞ

completing the proof of Claim 2 as well as the theorem. j

5 Efficiency, envy-freeness and individual rationality

Efficiency and fairness often play key roles in evaluation of mechanisms for
various resource allocation problems. Envy-freeness (Foley (1967)) is widely
considered the central notion of fairness in the context of room assignment-
rent division problems.

An allocation ðl; pÞ 2M�P is envy-free if and only if
uiðli; pli

Þ � uiðr; prÞ for all i 2 I and r 2 R.
An allocation ðl; pÞ 2M�P is efficient if and only if
X

i2I

uiðli; pli
Þ �

X

i2I

uiðgi; qgi
Þ for all g 2M and q 2 P:

Since utilities are quasi-linear in prices, an allocation ðl; pÞ 2M�P is effi-
cient if and only if

P

i2I
vi
li
�
P

i2I
vi
gi

for all g 2M. Therefore prices have no

significance for efficiency considerations.

Proposition 1. An allocation ðl; pÞ 2M�P is envy-free if and only if
li 2 DiðpÞ for each agent i 2 I .

Proof. Let ðl; pÞ 2M�P be such that li 2 DiðpÞ for each agent i 2 I . Then
uiðli; pli

Þ � uiðr; prÞ for all i 2 I and r 2 R. Therefore ðl; pÞ is envy-free.
Conversely let ðl; pÞ 2M�P be envy-free. Then uiðli; pli

Þ � uiðr; prÞ for
all i 2 I and r 2 R. Therefore li 2 DiðpÞ for all i 2 I . j
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Corollary 1. The outcome of our auction is envy-free.

Svensson (1983) show that envy-freeness implies efficiency in the context
of room assignment-rent division problems.

Proposition 2 (Svensson 1983). Let ðl; pÞ 2M�P be an envy-free allocation.
Then ðl; pÞ is efficient.

Proof. Let ðl; pÞ 2M�P be an envy-free allocation and consider an allo-
cation ðg; qÞ 2M�P. Since uiðli; pli

Þ � uiðr; prÞ for all i 2 I and r 2 R we
have

X

i2I

uiðli; pli
Þ �

X

i2I

uiðgi; pgi
Þ ¼

X

i2I

vi
gi
�
X

i2I

pgi

¼
X

i2I

vi
gi
� c ¼

X

i2I

vi
gi
�
X

i2I

qgi

¼
X

i2I

uiðgi; qgi
Þ

and therefore allocation ðl; pÞ 2M�P is efficient. j

Corollary 2. The outcome of our auction is efficient.

Since our auction mimics the market mechanism, Corollary 2 can be
interpreted as a First Fundamental Theorem of Welfare Economics in the
present context.

A mechanism should ensure that each agent receives a non-negative utility
in order to sustain the stability of its outcome. Otherwise agents may opt-out
and receive their reservation utilities each of which is 0.

An allocation ðl; pÞ 2M�P is individually rational if uiðli; pli
Þ � 0 for

all i 2 I .

Proposition 3. The outcome of our auction is individually rational.

Proof. Let ðl; pÞ 2M�P be the outcome of our auction. Suppose
uiðli; pli

Þ < 0 for some agent i 2 I . Since li 2 DiðpÞ we have
0 > uiðli; pli

Þ � uiðr; prÞ ¼ vi
r � pr for all r 2 R and therefore

P

r2R
vi

r <
P

r2R
pr ¼ c. But by assumption we have

P

r2R
vi

r � c for each agent i 2 I

yielding the desired contradiction. j

6 Envy-free allocations at non-negative prices

An important difficulty about envy-freeness is that for some problems at least
one of the prices is negative at each envy-free allocation: For example let
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I ¼ fi; jg, R ¼ fa; bg, c ¼ 10 and let the valuations be ðvi
a; v

i
bÞ ¼

ðvj
a; v

j
bÞ ¼ ð15; 1Þ. Here, even if pa ¼ c ¼ 10 and pb ¼ 0, both agents still prefer

room a to room b. We shall have pa ¼ 12 and pb ¼ �2 in order to ensure
envy-freeness.

Brams and Kilgour (2001) give up envy-freeness based on this difficulty
and their mechanism always gives non-negative prices. A disadvantage of
their mechanism is that it may still choose envious allocations even though
there exists envy-free allocations with non-negative prices.

We believe that cases like the earlier example are rather unlikely in real-life
applications by the nature of the problem. It is unlikely that agents i and j will
jointly rent this house when both are eager to pay more than the rent for
room a and almost nothing for room b. In this case whoever has the lease will
most likely find another roommate or rent the house alone.

Haake et al. (2002) insist on envy-freeness but their mechanism may yield
negative prices even though there exists envy-free allocations with non-neg-
ative prices. By Corollary 1 our auction is envy-free as well. Therefore it
admits negative prices if there exists no envy-free allocation with non-nega-
tive prices. However unlike the mechanism of Haake et al. (2002), our auc-
tion mechanism yields an envy-free allocation with non-negative prices
whenever such an allocation exists. We shall introduce a related model and
relate our auction to the well-known auction of Demange et al. (1986) in
order to prove this result.

6.1 A two-sided matching model

We next turn our attention to a two-sided matching model analyzed by
Demage et al. (1986).1

Let I ¼ fi1; . . . ; ing be a set of buyers and R ¼ fr1; . . . ; rng be a set of
objects. Each buyer has use for one and only one object and V ¼ ½vi

r�i2I ;r2R is a
value matrix where vi

r � 0 denotes the value of object r for buyer i.
A matching l is an assignment of objects to buyers such that each buyer is

assigned one and only one object. A price is a vector p 2 Rn. Let the reser-
vation price of each object be 0. Therefore in the present context we only
consider non-negative prices. Each buyer i 2 I is endowed with a utility
function ui : R� Rþ ! R which is quasi-linear in prices:

uiðr; prÞ ¼ vi
r � pr:

Note that the key difference between the two models is the following: The
prices shall add up to c in room assignment-rent division problems whereas
the only constraint in the present two-sided matching model is that the price
of each object shall be non-negative (i.e., no less than its reservation price).

1See Roth and Sotomayor (1990) for an extensive survey of two-sided matching
models.
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As in the case of room assignment-rent division problems, the demand of
buyer i 2 I at price p 2 Rn

þ is given by

DiðpÞ ¼ r 2 R : uiðr; prÞ � uiðs; psÞ for all s 2 Rf g:
Given a price p 2 Rn, notions of overdemanded set, minimal overdemanded
set, full set of overdemanded objects and the price differential xðpÞ are defined
as in room assignment-rent division problems. The price p 2 Rn

þ is competitive

if there exists a matching l such that li 2 DiðpÞ for all i 2 I . The pair ðl; pÞ is
referred to as a competitive equilibrium. Shapley and Shubik (1972) show that
competitive equilibria always exist and there exists a competitive price p 2 Rn

þ
such that pr � qr for all r 2 R and for any competitive price q 2 Rn

þ. We refer
to p as the buyer-optimal competitive price.

6.2 Demange, Gale and Sotomayor exact auction

Demange et al. (1986) assumes that the value matrix is integer valued and
provides the following auction which yields the buyer-optimal competitive
price.

Step 0. Set p0 ¼ ð0; . . . ; 0Þ. If there exists no minimal overdemanded set at p0

then find a matching l such that li 2 Diðp0Þ for each i 2 I , set pDGS ¼ p0 and
terminate the procedure. Otherwise proceed to Step 1.

In general,
Step t. Pick an arbitrary minimal overdemanded set S at price pt�1. Let
pt

r ¼ pt�1
r þ 1 for each r 2 S and let pt

r ¼ pt�1
r for each r 2 R n S. If there exists

no minimal overdemanded set at pt then find a matching l such that
li 2 DiðptÞ for each i 2 I , set pDGS ¼ pt and terminate the procedure. Other-
wise proceed to Step t þ 1.

We refer to this auction as DGS exact auction.
Theorem (Demange, Gale and Sotomayor). DGS exact auction yields the
buyer-optimal competitive price.

While Demange et al. (1986) assumes that valuations are integer valued, it
is straightforward to extend their auction as well as their result for real-valued
valuations.

6.3 The modified discrete-price auction

Consider the following price updating rule at any price q 2 Rn
þ: Construct the

full set of overdemanded rooms ODðqÞ at price q and find xðqÞ. Recall that

xðqÞ ¼ min
j2JðqÞ

 

eujðqÞ � max
s2RnODðqÞ

ujðs; qsÞ
!

if ODðqÞ 6¼ ;

0 if ODðqÞ ¼ ;

8
><

>:
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For any r 2 R define

grðqÞ ¼
qr if r 62 ODðqÞ
qr þ xðqÞ if r 2 ODðqÞ

�

We are now ready to define the modified discrete-price auction which will be
key to relate our discrete-price auction (and hence our continuous-price
auction as well) with DGS exact auction.

Step 0. Set q0 ¼ ð0; . . . ; 0Þ. If ODðq0Þ ¼ ; then find a matching l such that
li 2 Diðq0Þ for each i 2 I , set q ¼ q0 and terminate the procedure. If
ODðq0Þ 6¼ ; then proceed to Step 1.

In general,
Step t. Set qt

r ¼ grðqt�1Þ for all r 2 R. If ODðqtÞ ¼ ; then find a matching l
such that li 2 DiðqtÞ for each i 2 I , set q ¼ qt and terminate the procedure. If
ODðqtÞ 6¼ ; then proceed to Step t+1.

We need the following lemma in order to relate the modified discrete-price
auction and the discrete-price auction.

Lemma 3. Let p; q 2 Rn be such that pr ¼ qr þ k for all r 2 R and some k 2 R.
Then

1. DðqÞ ¼ DðpÞ and
2. xðqÞ ¼ xðpÞ.

Proof. Fix p; q 2 Rn and k 2 R such that pr ¼ qr þ k for all r 2 R. Since
utilities are quasi-linear in prices, we have uiðr; prÞ ¼ vi

r � pr ¼ vi
r � qr þ kð Þ

¼ uiðr; qrÞ � k for all i 2 I and r 2 R.

1. Fix i 2 I . For any r 2 R we have

r 2 DiðpÞ()uiðr; prÞ � uiðs; psÞ for all s 2 R

()vi
r � pr � vi

s � ps for all s 2 R

()vi
r � qr � vi

s � qs for all s 2 R

()uiðr; qrÞ � uiðs; qsÞ for all s 2 R

()r 2 DiðqÞ

and hence DiðpÞ ¼ DiðqÞ. Since i 2 I is arbitrary we have DðpÞ ¼ DðqÞ.

2. Since DðpÞ ¼ DðqÞ we have ODðpÞ ¼ ODðqÞ, JðpÞ ¼ JðqÞ and
euiðpÞ ¼ euiðqÞ � k for all i 2 I . Therefore

xðpÞ ¼
min

j2JðpÞ
eujðpÞ � max

r2RnODðpÞ
ujðr; prÞ

� �

if ODðpÞ 6¼ ;

0 if ODðpÞ ¼ ;

8
<

:
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¼
min

j2JðqÞ
eujðqÞ � k � max

r2RnODðqÞ
ujðr; qrÞ � k
� 	

� �

if ODðqÞ 6¼ ;

0 if ODðqÞ ¼ ;

8
<

:

¼
min

j2JðqÞ
eujðqÞ � max

r2RnODðpÞ
ujðr; qrÞ

� �

if ODðqÞ 6¼ ;

0 if ODðqÞ ¼ ;

8
<

:

¼ xðqÞ j

We are ready to relate the modified discrete-price auction and the discrete-
price auction. Next we will relate the modified discrete-price auction and
DGS exact auction clarifying the relation between our discrete-price auction
and DGS exact auction.

Proposition 4. Let fptgT
t¼0 be the price sequence obtained by the discrete

price auction and fqtg be the price sequence obtained by the modified discrete-
price auction. Then the modified discrete-price auction converges in T steps and

pT
r ¼ qT

r þ
c�

P

s2R
qT

s

n
for all r 2 R:

Proof. Let fptgT
t¼0 be the price sequence obtained by the discrete price auction

and fqtg be the price sequence obtained by the modified discrete-price auc-
tion.

Claim. For each t � T , we have

(i) qt
r ¼ pt

r þ

P

t�1�u�0
ODðpuÞj jxðpuÞ

� �

�c

n for all r 2 R,

(ii) xðqtÞ ¼ xðptÞ, and
(iii) DðqtÞ ¼ DðptÞ.

Proof of the Claim. We will prove the claim by induction. By construction
of the modified discrete-price auction we have q0

r ¼ p0
r � c

n. Therefore, sinceP

t�1�u�0
ODðpuÞj jxðpuÞ ¼ 0 for t ¼ 0, Claim (i) holds for t ¼ 0. Moreover by

Lemma 3 we have Dðq0Þ ¼ Dðp0Þ and xðq0Þ ¼ xðp0Þ. Hence the Claim holds
for t ¼ 0.

Next assume that 0 � t� � T and the Claim holds for t < t�. We shall
prove that the Claim holds for t ¼ t� as well. First note that the assumption
ensures that ODðqtÞ ¼ ODðptÞ 6¼ ; for any t < t�. Moreover by construction
of the price updating rule gr and since the Claim holds for t ¼ t� � 1, for any
r 2 R we have
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qt�
r ¼ grðqt��1Þ ¼ qt��1

r þ xðqt��1Þ if r 2 ODðqt��1Þ
qt��1

r if r 62 ODðqt��1Þ

�

¼ pt��1
r þ

P

t��2�u�0
ODðpuÞj jxðpuÞ

� �

�c

n þ xðpt��1Þ if r 2 ODðpt��1Þ

pt��1
r þ

P

t��2�u�0
ODðpuÞj jxðpuÞ

� �

�c

n if r 62 ODðpt��1Þ

8
>>>><

>>>>:

¼

pt��1
r þ

P

t��2�u�0
ODðpuÞj jxðpuÞ

� �

�c

n þ n� ODðpt��1Þj j
n xðpt��1Þ þ ODðpt��1Þj j

n xðpt��1Þ
if r 2 ODðpt��1Þ

pt��1
r þ

P

t��2�u�0
ODðpuÞj jxðpuÞ

� �

�c

n

if r 62 ODðpt��1Þ

8
>>>>>>>>>><

>>>>>>>>>>:

¼

P

t��2�u�0

P
ODðpuÞj jxðpuÞ

 !

� c

n
þ

ODðpt��1Þ
�
�

�
�xðpt��1Þ

n

þ
pt��1

r þ n� ODðpt��1Þj j
n xðpt��1Þ if r 2 ODðpt��1Þ

pt��1
r � ODðpt��1Þj j

n xðpt��1Þ if r 62 ODðpt��1Þ

8
<

:

¼

P

t��1�u�0
ODðpuÞj jxðpuÞ

 !

� c

n
þ pt�

r

and hence Claim (i) holds for t ¼ t�. Moreover by Lemma 3 we have
Dðqt� Þ ¼ Dðpt� Þ as well as xðqt� Þ ¼ xðpt� Þ completing the proof of the Claim.

j

We are now ready to complete the proof of Proposition 4. Let

r ¼
X

T�1�u�0
ODðpuÞj jxðpuÞ:

By the Claim we have qT
r ¼ pT

r þ r�c
n for all r 2 R. This together with equalityP

s2R
pT

s ¼ c imply that for any room r 2 R we have

qT
r þ

c�
P

s2R
qT

s

n
¼ pT

r þ
r� c

n
þ

c�
P

s2R
pT

s þ r�c
n

� 	

n

¼ pT
r þ

r� c
n
þ

c� c� n ðr�cÞ
n

n
¼ pT

r

showing the desired equality. Moreover by the Claim we have DðqT Þ ¼ DðpT Þ
and therefore ODðpT Þ ¼ ; implies ODðqT Þ ¼ ;. Hence the modified discrete-
price auction converges in T steps as well. j
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6.4 Equivalence of DGS exact auction and the modified
discrete price auction

We are now ready to relate the modified discrete-price auction and DGS exact
auction: Both auctions yield the buyer-optimal competitive price.

Proposition 5. Let fqtgT
t¼0 be the price sequence obtained by the modified dis-

crete-price auction and let pDGS be the final price obtained by DGS exact
auction. We have qT ¼ pDGS .

Proof. We will consider a general format of DGS exact auction where prices
of rooms in a minimal overdemanded set are increased by a sufficiently small
increment. Let fqtgT

t¼0 be the price sequence obtained by the modified dis-
crete-price auction. Recall that initial price vector is ð0; . . . ; 0Þ for the modi-
fied discrete-price auction as well as DGS exact auction. We will show that by
an appropriate choice of

1. the order of minimal overdemanded sets and
2. the price increments,

price q1 can be reached by DGS exact auction. Iteration of the same argument
shows that prices q2; . . . ; qT can as well be reached by DGS exact price auc-
tion. Once qT has been reached, ODðqT Þ ¼ ; implies that there exists no
minimal overdemanded set and hence DGS exact auction terminates yielding
pDGS ¼ qT .

For any p 2 Rn, recall the construction of ODðpÞ: We find all minimal
overdemanded sets. We remove these rooms from the demand of each agent
and find the minimal overdemanded sets for the modified demand profiles.
We proceed in a similar way until there exists no minimal overdemanded set
for the modified demand profiles. The full set of overdemanded rooms ODðpÞ
is the union of each of the sets encountered in the procedure.

For p ¼ q0 ¼ ð0; . . . ; 0Þ let S1
1 ; . . . ; S1

m1
be minimal overdemanded sets, let

S2
1 ; . . . ; S2

m2
be minimal overdemanded sets once

Sm1

a¼1 S1
a has been removed

from the demands,. . ., let Sk
1 ; . . . ; Sk

mk
be the last group of minimal overde-

manded sets once
Sk�1

b¼1
Smb

a¼1 Sb
a

� 	
has been removed from the demands. Define

yðq0Þ ¼ min
i2I ;r2RnDiðq0Þ

euiðq0Þ � uiðr; q0
r Þ

� 	

Note that yðq0Þ > 0 provided that ODðq0Þ 6¼ ; and moreover

yðq0Þ � xðq0Þ ¼ min
i2Jðq0Þ

euiðq0Þ � max
s2RnODðq0Þ

uiðs; q0
s Þ

� �

:

Pick an integer ‘0 such that
xðq0Þ
‘0

< yðq0Þ and let �0 ¼ xðq0Þ
‘0

. The following pair
of observations will be key to our proof.

Observation 1. Consider an increase in some of the prices while the remaining
prices stay put. A minimal overdemanded set S remains minimal overde-
manded provided that prices of the rooms in S stay put.
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Observation 2. Suppose prices of all rooms in
Sm1

a¼1 S1
a increase by �0 and the

remaining prices stay put. Then each of S2
1 ; . . . ; S2

m2
becomes a minimal over-

demanded set at updated prices. Similarly if prices of all rooms in
S2

b¼1
Smb

a¼1 Sb
a

� 	
increase by �0 while the remaining prices stay put then each of

S3
1 ; . . . ; S3

m3
becomes a minimal overdemanded set at updated prices, and so on.

Consider DGS exact price auction and initially set the price at
p ¼ q0 ¼ ð0; . . . ; 0Þ: S1

1 is a minimal overdemanded set, increase prices of all
rooms in S1

1 by �
0. Next consider S1

2 which was a minimal overdemanded set at
q0 and which remains a minimal overdemanded set at updated prices by
Observation 1. Increase prices of all rooms in S1

2 by �0 as well. Similarly
consider each of the sets S1

3 ; . . . ; S1
m1

one at a time and increase prices of all
rooms in these sets by �0 one set at a time. At this point prices of all rooms in
each of the minimally overdemanded sets at q0 is increased by �0 and by
Observation 2 each of S2

1 ; . . . ; S2
m2

became a minimally overdemanded set at
the updated prices. Similarly consider each of the sets S2

1 ; . . . ; S2
m2

one at a time
and increase prices of all rooms in these sets by �0 one set at a time. Following
in a similar way we will reach a price vector p via DGS exact auction where
pr ¼ �0 for r 2 ODðq0Þ and pr ¼ 0 for r 62 ODðq0Þ.

Here the key observation is the following: Since �0 < xðq0Þ and since the
price of each room in ODðq0Þ has only increased by �0 we have
ODðpÞ ¼ ODðq0Þ. (Recall that xðq0Þ is the minimum price differential needed
for the full set of overdemanded rooms to change). Therefore we can replicate
the same sequence of price increases ‘0 � 1 additional times through DGS
exact auction. When we do that we reach to a price p with
pr ¼ ‘0�0 ¼ xðq0Þ ¼ q1

r for each r 2 ODðq0Þ and pr ¼ 0 ¼ q1
r for each

r 62 ODðq0Þ. Hence we reach p ¼ q1 via DGS exact auction.
Next construct ODðq1Þ, define

yðq1Þ ¼ min
i2I ;r2RnDiðq1Þ

euiðq1Þ � uiðr; q1
r Þ

� 	
;

let the integer ‘1 be such that
xðq1Þ
‘1

< yðq1Þ and let �1 ¼ xðq1Þ
‘1

. Iterating the earlier
arguments we can first increase prices of all rooms in ODðq1Þ by �1 and rep-
licate this an additional ‘1 � 1 times to reach p ¼ q2 via DGS exact auction.
Proceeding in a similar way we can reach p ¼ qT via DGS exact auction. Once
we reach p ¼ qT , since ODðqT Þ ¼ ; there are no minimal overdemanded sets
and hence DGS exact auction terminates. Therefore qT ¼ pDGS . j

6.5 If there are envy-free allocations at non-negative prices
then our auction will find one

We are finally ready to show that if there exists envy-free allocations with
non-negative prices, then our auction yields such an allocation.

Theorem 2. Let ðl; pÞ 2M�P be the outcome of our continuous-price
auction (or equivalently the discrete-price auction). We have pr � 0 for all
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r 2 R if and only if there exists an envy-free allocation with non-negative
prices.

Proof. Let I ;R; V ; ch i be a room assignment-rent division problem and let
ðl; pÞ 2M�P be the outcome of our continuous-price auction. By Corol-
lary 1, ðl; pÞ is envy-free and therefore the only if part of the theorem holds
immediately.

Conversely suppose that there exists an envy-free allocation
ðg; qÞ 2M�P with qr � 0 for all r 2 R. Consider the two-sided matching
market I ;R; Vh i. By Proposition 1 we have gi 2 DiðqÞ for all i 2 I and
therefore q is a competitive price. Let qT be the price obtained by the modified
discrete-price auction and let pDGS be the price obtained by DGS exact auc-
tion. By Proposition 5 we have pDGS ¼ qT and since pDGS is the buyer optimal
competitive price we have qT

r � qr for all r 2 R. Therefore
P

s2R
qT

s �
P

s2R
qs ¼ c.

By Proposition 4 we have

pT
r ¼ qT

r þ
c�

P

s2R
qT

s

n

for all r 2 R and therefore pT
r � qT

r � 0 for all r 2 R completing the proof. j

7 Conclusion

In this paper we propose an efficient auction for room assignment-rent
division problems. Our auction is inspired by the market mechanism and it
has two key advantages over existing mechanisms: (i) its outcome is always
envy-free and (ii) it yields non-negative prices unless there exists no envy-free
allocation with non-negative prices. Based on these properties we believe our
auction mechanism can be used in real-life applications.

An important limitation of our mechanism is its vulnerability to strategic
preference manipulation.2 That is, our mechanism is not strategy-proof. Al-
kan et al. (1991) show that there exists no mechanism which is both envy-free
and strategy-proof.3 Hence one cannot insist on both envy-freeness and
strategy-proofness. Analyzing equilibria of preference manipulation games
induced by our auction mechanism is an important and interesting exercise
but this is beyond the scope of the current paper.

2The market mechanism is typically vulnerable to preference manipulation in most
resource allocation problems. An important exception was shown by Roth (1982) in
the context of housing markets (Shapley and Scarf 1974).
3It is possible to construct strategy-proof mechanisms by giving up envy-freeness. For
example one can fix a rent division, fix an initial matching to be interpreted as an initial
endowment and find the competitive allocation of the induced housing market. See
Miyagawa (2001) and Svensson and Larsson (2002) for a similar approach in housing
markets with monetary transfers.
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