
Abstract. We consider voting games induced by anonymous and top-unani-
mous social choice functions. The class of such social choice functions is quite
broad, including every ‘‘t-refinement’’ of the Plurality Rule, Plurality with a
Runoff, the Majoritarian Compromise and the Single Transferable Vote, i.e.,
any selection from either of these social choice rules which is obtained via
tie-breaking among candidates according to any total order t on the set of
alternatives. As announced in our title, the strong equilibrium outcomes of
the voting games determined by such social choice functions turn out to be
nothing but generalized Condorcet winners, namely the ‘‘(n,q)-Condorcet
winners’’. In the case of social choice functions (such as those just listed)
which are furthermore ‘‘top-majoritarian’’, they coincide with the classical
Condorcet winners.
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1 Introduction

We know, thanks to Gibbard (1973) and Satterthwaite (1975), that there
exists no singleton-valued, strategy-proof and non-dictatorial social choice
rule with a range containing at least three alternatives. From Dasgupta,
Hammond and Maskin (1979) we also know that if a singleton-valued
social choice rule is Nash-implementable on the full domain of preferences,
then it must also be truthfully implementable in dominant strategies.
Combining these two results leads to the conclusion that no singleton-
valued social choice rule whose range contains at least three alternatives
can be Nash implemented unless it is dictatorial, a result which was also
established by Muller and Satterthwaite (1977).

So, in a real sense, many social choice rules are quite manipulable, and
it is impossible to implement them via dominant strategy or Nash equi-
libria by using direct mechanisms. Regarding implementability via indirect
mechanisms, we have many positive results which partially or fully char-
acterize implementable social choice correspondences.1

Alternatively, one could inquire into the ‘‘performance’’ (see, e.g.,
Hurwicz and Sertel 1999) of a voting rule derived from a social choice rule.
Nash and strong equlibrium outcomes of direct mechanisms associated
with many social choice rules have been studied after the pioneering work
of Hurwicz (1979). In particular, Thomson (1984) determines Nash equi-
libria of manipulation games associated with resource allocation mecha-
nisms. Tadenuma and Thomson (1995) consider the problem of fairly
allocating an indivisible good and study the direct revelation games asso-
ciated with subsolutions of the no-envy solution. Otani and Sicilian (1982,
1990) characterize equilibrium outcomes of Walras preference games in-
duced by a direct mechanism as well as by a mechanism asking the agents
to reveal their demand maps. Sertel and Sanver (1999) characterize equi-
librium outcomes of Lindahl endowment pretension games2. Roth (1984)
characterizes Nash equilibrium outcomes when stable matching rules are
instituted as a direct mechanism in the marriage market.

The ‘‘performance’’ of an outcome function is especially important in the
context of voting: If we want to institute a social choice rule as a voting rule,
realistically speaking, it has to be through a direct mechanism where people

1 Among these, we have Maskin (1977, 1999), Danilov (1992) for Nash implemen-
tation; Maskin (1979), Dutta and Sen (1991) for strong implementation; Moore and
Repullo (1988), Abreu and Sen (1990) for subgame perfect implementation; Palfrey
and Srivastava (1991), Jackson, Palfrey and Srivastava (1994) for undominated Nash
implementation; Jackson (1991), Dutta and Sen (1994) for Bayesian implementation.
So we know a lot about what is implementable, and what is not, via various solution
concepts. In particular, Maskin (1979) shows that strong implementability of a social
choice correspondence is inconsistent with the weak no veto power condition.
2 Sanver (2002) offers a related analysis regarding the Nash equilibrium allocations of
an allocation rule with wealth-regressive tax rates.
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indicate their preferences. Artificial message spaces and indirect mechanisms
based on these seem to be out of the question, except in our ivory towers of
theory. As a result, we have to reckon with what will happen under ‘‘strategic
voting’’ with free coalescing, which we interpret as meaning strong equilib-
rium. Hence we ask the following question: If we were to declare a singleton-
valued social choice rule as the outcome function and naively ask for the
agents’ preferences through a ‘‘direct’’ mechanism, what would we actually
end up implementing?

A main motivation for studying the strong equilibrium outcomes of the
direct mechanism determined by a social choice rule may be found in the
following historical procedure, related by Lakeman andLambert (1959, p.101):

‘‘Rowland Hill … records that, when he was teaching in his father’s school,
his pupils were asked to elect a committee by standing beside the boy they
liked best. This first produced a number of unequal groups, but soon the
boys in the largest groups came to the conclusion that not all of them were
actually necessary for the election of their favourite and some moved on to
help another candidate, while on the other hand a few supporters of an
unpopular boy gave him up as hopeless and transferred themselves to the
candidate they considered the next best. The final result was that a number
of candidates equal to the number required for the committee were each
surrounded by the same number of supporters, with only two or three boys
left over who were dissatisfied with all those elected.’’

Lakeman and Lambert (1959) consider this as ‘‘an admirable example of
the use of the Single Transferable Vote.’’3 As shown in further detail by Sertel
and Kalaycıoğlu (1995), it is actually unclear how well the outcome of this
procedure would be approximated by the Single Transferable Vote, but in
electing a single-member committee by a small number of voters, Hill’s
procedure would stop, if it stops, at a strong equilibrium of the voting game
induced by instituting the Plurality Rule as the outcome function (a boy
receiving the maximal number of votes wins).4

Will this procedure stop, and if so at what outcome? Are there social
choice rules other than Plurality which would lead to the same outcome when
instituted as the outcome function? In investigating such questions, we allow
a social choice rule to act as an outcome function, and we study its ‘‘per-
formance correspondence’’ i.e., the correspondence which, at each preference
profile, gives the set of outcomes under the outcome function defined by this
social choice rule when each agent is to reveal his preference and the game so
determined is resolved at a strong equilibrium.

Identifying outcome functions with their respective mechanisms, it is, of
course, quite possible that the social choice rule as a mechanism does not
implement itself, as may happen when truth-telling is not an equilibrium of

3 For a comprehensive study of the Single Transferable Vote, see Tideman (1995).
4 Thus, there may be ties.
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the revelation game determined by the mechanism. Indeed, we characterize
the strong equilibrium outcomes under a wide class of voting rules as gen-
eralized Condorcet winners. This coincidence is also a positive result for
implementation by use of direct mechanisms, somewhat in contrast with the
generally negative results in this area. We also explore the extent to which the
notion of a Condorcet winner needs to be generalized in order to ensure its
existence at all preference profiles.

In Sect. 2 we give the preliminaries. Section 3 presents two notions of
effectivity and formulates certain properties for social choice rules. Section 4
contains the main characterization results. Section 5 gives the ‘‘necessary and
sufficient’’ generalization of Condorcet winners so that they always exist.
Section 6 is devoted to the application of our results to known voting rules.
Section 7 records some closing remarks.

2 Preliminaries

Taking any integer n ‡ 2, we consider a set N = {1,…,n} of voters, con-
fronting a non-empty finite set of candidates A with |A| = m ‡ 2. We denote
W for the set of all complete pre-orders5 on A, and imagine that each voter i ˛
N has a preference Ri ˛ W, so that we are always given some ‘‘preference
profile’’ R = (R1,. . .,Rn) ˛ WN. Given any coalition K � N of voters, we
denote RK ˛ WK for a preference profile restricted to K. Given any i ˛ N and
any Ri ˛ W, Pi will stand for the strict counterpart and Ii for the indifference
counterpart of Ri.

6

By a voting rule we mean any function V: WN fi A.7 For every preference
profile R ˛ W

N, a voting rule V induces a (normal form) ‘‘voting game’’ G(V,
R) = {(Mi,ui)}i˛N, where Mi = W is the message space of the generic agent i
˛ N, and ui is a real-valued utility function, defined on the message profile
space M = Pi˛N Mi, representing the preference of voter i ˛ N on M as
follows:

uiðmÞ � uiðm0Þ , VðmÞRiVðm0Þ for all m;m0 2M:

Given any voting rule V, and denoting r for the strong equilibrium8

solution concept for normal form games, at any preference profile R, we

5 A pre-order is a reflexive and transitive binary relation. Thus, a complete pre-order is
a complete (hence also reflexive) and transitive binary relation.
6 Thus, for every x, y ˛A, we have x Pi y iff x Ri y holds and y Ri x fails. Similarly, x Ii y
iff x Ri y and y Ri x.
7 Thus, a voting rule can be considered as a selection from (i.e., singleton-valued
refinement of) a social choice rule (‘‘correspondence’’) via some tie-breaking rule.
8 We say that a joint strategy m = {mi}i ˛ N ˛ M is a strong equilibrium of the game
G(V, R) = ({Mi,ui}i˛N) if and only if, given any coalition K � N, there is no m¢=
{m¢i}i ˛ N ˛ M with m¢j = mj for every j ˛ N \ K such that ui(m¢) > ui(m) for each i ˛
K.
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denote r [G(V, R)] ˝ WN for the set of strong equilibria of the game G(V,
R) and

VrðRÞ ¼ VðmÞ 2 Ajm 2 r½CðV;RÞ�f g

for the set of strong equilibrium outcomes of the voting rule V.
We characterize the correspondence Vr: WN fi 2A in terms of ‘‘(n,q)-

Condorcet winners’’, a generalization of the classical notion of a Condorcet
winner. To formulate this notion, we first define a useful ‘‘dominance’’ rela-
tion on A:

Given any q ˛ N ¨ {0, n+1}, any R ˛ W
N and any x, y ˛ A, we say that x

(n,q)-dominates y (according to R), and we write x D(R;n,q) y, if and only if
|{i˛N | x Pi y}| ‡ q.

The undominated alternatives according to the binary relation D(R;n,q)
constitute the (n,q)-Condorcet winners according to R. Given any R ˛ WN,
by the (n,q)-Condorcet Set, denoted by C(R;n,q), we mean the set of (n, q)-
Condorcet winners according to R, i.e., alternatives which are undominated
according to D(R;n,q). Thus, C(R;n,q) = {x ˛ A | [y, z ˛ A and y D(R;n,q) z]
) z „ x}.

Note that, for any q, r ˛ N ¨ {0, n+1}, we have q £ r � C(R;n,q) ˝
C(R;n,r). So, given any size n of the electoral population, the proportion of
the theoretically possible n-long preference (complete preorder) profiles at
which the set of (n,q)-Condorcet winners is non-empty will be a non-
decreasing function of q ˛ {0, 1,…,n, n+1}. In particular, taking any
positive integer n ‡ 2, there is no (n,0)-Condorcet winner, the set of (n,1)-
Condorcet winners are the alternatives unanimously considered as best,…,
the (n,n)-Condorcet winners are the alternatives which are weakly Pareto
dominated by no alternative (i.e., the set of alternatives compared with
which we can find no alternative which everybody finds strictly superior),
and of course the set of (n,n+1)-Condorcet winners is the entire set of
alternatives. Note also that, defining n** = min{q ˛ {0, 1,…,n} | q >
n ) q}, C(R;n,n**) coincides with the set of Condorcet winners in the
classical sense.9

At any preference profile R, the set Vr(R) of strong equilibrium outcomes
of a voting rule V can be expressed in terms of C(R;n,q) for a specific value of
q derived from the distribution of ‘‘effectivity’’ over the coalitions K ˝ N, as
described in the following section.

9 When n is even, we need to distinguish between strong and weak Condorcet winners.
A weak Condorcet winner is an alternative which is found to be at least as good as any
other alternative by at least n/2 people. A strong Condorcet winner is an alternative
which is found to be at least as good as any other alternative by a strict majority, thus
by more than n/2 people. Hence, C(R;n,n**) is the set of weak Condorcet winners.
This distinction vanishes when n is odd.
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3 Effectivity of voting rules

Given a voting rule V, we will consider the ability of a coalition to get an
alternative chosen under V. Following Moulin and Peleg (1982), Moulin
(1983), Peleg (1984), and Ichiishi (1986), this ability is generally referred to as
the ‘‘effectivity’’ of a coalition. We give two versions of it.

Definition 3.1.10 Given a voting rule V: WN fi A, we say that a coalition K ˝
N of voters is b-effective for x ˛ A if and only if " RN\K ˛ WN\K, there exists
some RK ˛ WK such that V(RK, RN\K) = x.

We denote bþv (x) for the set of b-effective coalitions for the alternative x
under the voting rule V. We let bþv (x) stand for the cardinality of any minimal
cardinality coalition belonging to bþv (x). By convention, for any x ˛ A, we set
bþv (x) = n+1 whenever bþv (x) is empty. We define bþV= maxx˛A{b

þ
v (x)}.

Definition 3.2. Given a voting rule V:WN fi A, we say that a coalition K ˝ N

of voters is weakly b-effective for x ˛ A if and only if there exists an alter-
native y ˛ A\{x} such that for some profile RN\K ˛ WN\K of the comple-
mentary coalition N\K with {y} = argmax Ri at every i ˛ N\K, the coalition
K has a profile RK ˛ WK such that x = V(RK, RN\K).

We denote b�v (x) for the set of weakly b-effective coalitions for the
alternative x under the voting rule V. We let b�v (x) stand for the cardinality of
any minimal cardinality coalition belonging to b�v (x). By convention, for any
x ˛ A, we set b�v (x) = n+1 whenever b�v (x) is empty. We define
b�V ¼ minx˛A{b

�
v (x)}.

Remark that, for any voting rule V, we always have b�v £ bþv , as bþv (x) ˝
b�v (x) for every x ˛ A. Moreover, for every x ˛ A we have [K ˝ K0˝ N and K
˛ b�v (x) ]) K0 ˛ b�v (x) and [K ˝ K0 ˝ N and K ˛ bþv (x) ]) K0 ˛ bþv (x).

4 Strong equilibrium outcomes of voting games and (n,q)-Condorcet winners

Now we examine some relations between the (n,q)-Condorcet sets and the set
of strong equilibria, Vr, of voting games. Our first result, for top-unanimous11

voting rules, connects the (n,q)-Condorcet sets to the strong equilibrium
outcomes:

Theorem 4.1. If V: WN fi A is an top-unanimous voting rule, then at every R ˛
WN, we have C(R;n,q) ˝ Vr(R) for q = b�v .

10 We thank Bezalel Peleg for bringing to our attention that our Definition 3.1 was the
well-known definition of b-effectivity.
11 A voting rule V: WN fi A is said to be top-unanimous if and only if for every x ˛ A,
we have V(R) = x whenever {x} = argmax Ri for every i ˛ N.
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Proof. Take any top-unanimous voting rule V, and any R ˛ WN. Consider
the game G(V, R). For any x ˛ C(R;n, bV

)) regard any message profile m

where {x} ¼ argmax mi for each i ˛ N. As V is top-unanimous, V(m) ¼ x. It
suffices to show that m ˛ r [G(V, R)]. To this end, take any y ˛ A \ {x}. As
x ˛ C(R;n, b�v ), we have |{i ˛ N | y Pi x}| < b�v £ b�v (y) and so {i˛N | y Pi x}
ˇ b�v (y). This shows that m ˛ r [G(V, R)] (hence, x ˛ Vr(R)). j

Remark 4.2. The reverse of the inclusion established in Theorem 4.1 does not
hold. Consider the top-unanimous voting rule V: WN fi A where V(R) ¼ x
whenever argmax Ri ¼ {x} for each i ˛ N and V(R) ¼ x* otherwise for some
fixed x* ˛ A. Note that b�v (x) ¼ n for every x ˛ A \ {x*} and b�v (x*) ¼ 1,
implying that b�v ¼ 1. Consider the case of a doubleton A ¼ {x, x*} and
N ¼ {1, 2}. Take a profile R ¼ (R1, R2) where x P1 x* and x* P2 x. Now
consider the game G(V, R). Take the message profile m with argmax
mi ¼ {x*} for each i ˛ {1, 2}. Clearly m ˛ r [G(V, R)]. Thus, x* ˛ Vr(R),
although x P1 x* and so x* ˇ C(R; n, b�v ).

Nevertheless, a parallel of the reverse of the inclusion established in
Theorem 4.1 holds for anonymous voting rules, as our next result tells us.

Theorem 4.3. If V: WN fi A is an anonymous12 voting rule, then at every
R ˛ WN we have Vr(R) ˝ C(R; n, q) for q ¼ bþv .

Proof. Take any anonymous voting rule V. Thus, for any x ˛ A, the family of
b-effective coalitions will be of the form bþv (x) = {K ˝ N | |K| ‡ k } for some
k ˛ N. Now take any R ˛ WN and consider any x ˛ Vr(R). Thus, there exists
m ˛ M with V(m) = x and m ˛ r [G(V, R)]. Hence, for any y ˛ A\{x}, {i˛N |
y Pi x} ˇ bþv (y). As bþv (y) is of the form {K ˝ N | |K| ‡ k } for some k ˛ N, any
K ˛ bþv (y) has a cardinality greater than the cardinality of {i˛N | y Pi x}.
Thus, |{i˛N | y Pi x}| < bþv (y) £ bþv . So, there exists no y ˛ A with y D(R; n,
bþv ) x, implying that x ˛ C(R; n, bþv ), and thereby showing that
Vr(R) ˝ C(R;n, bþv ), as desired. j

Remark 4.4. The reverse of the inclusion in Theorem 4.3 does not hold.
Consider the constant voting rule V: WN fi A (with |A| > 1) where for each
R ˛ WN we have V(R) = x* for some fixed x* ˛ A. Clearly V is anonymous.
Note that bþv (x) ¼ n + 1 for every x ˛ A\{x*}and bþv (x*) ¼ 0 implying that
bþV ¼ n + 1. Thus, for any profile R ˛ WN we have C(R;n, bþV) ¼ A, whereas
Vr(R) ¼ {x*}.

Thus, we know by Theorems 4.1 and 4.3 that, for any top-unanimous and
anonymous voting ruleV, C(R;n, b�v ) ˝ Vr(R) ˝ C(R;n, bþv ) holds at every R ˛
WN. Of course, the tighter the interval [b�v , b

þ
v ], the stronger is our result.

12 We have the usual definition of anonymity, i.e., we say that a voting rule V:
W

N ! A is anonymous if and only if, given any permutation q: N ! N of voters and
any (Ri)i ˛N ˛ W

N, we have V((Ri)i ˛N) ¼ V((Rq(i))i ˛N).
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In particular, writing n* ¼ n** ) 1, in view of Theorems 4.1 and 4.3, it is of
interest to see for which voting rules V we have {b�v , b

þ
v } ˝ {n*, n**}. For the

strong equilibriumoutcomes of the voting game induced by any such rulewould
coincide with the Condorcet winners in the classical sense.13 To explore this
case, we focus on a class of voting rules which we call top-majoritarian and
define as follows:

Definition 4.5. A voting rule V: WN fi A is said to be top-majoritarian if and
only if given any x ˛ A and any R ˛ WN with |{i ˛ N: {x} = argmax Ri }| ‡
n**, we have V(R) = x.

The following lemma characterizes the size of the b-effective and weakly
b-effective coalitions for top majoritarian voting rules.

Lemma 4.6. Let V: WN fi A be a top-majoritarian voting rule. We have

(i) b�v ¼ bþv ¼ n** if n is odd;
(ii) {b�v , b

þ
v } ˝ {n*, n**} if n is even.

Proof. Consider any top majoritarian voting rule V.

ad (i): Let n be odd. Taking any x ˛ A, we check that b�v (x) < n** (hence
bþv (x) < n**) or bþv (x) > n** (hence b�v (x) > n**) would contradict that V is
top-majoritarian. So b�v (x) ¼ bþv (x) = n** holds for every x ˛ A, showing
that b�v ¼ bþv = n**, proving (i).

ad (ii): Consider now the case where n is even. As V is top-majoritarian,
clearly {b�v (x), b

þ
v (x)} ˝ {n*, n**} for all x ˛ A, which implies {b�v , b

þ
v } ˝ {n*,

n**} as well, showing (ii), which completes the proof. j

The following result is a direct corollary to the conjunction of Theo-
rem 4.1, Theorem 4.3, Lemma 4.6 and the fact that top-majoritarianism
implies top-unanimity.

Theorem (‘‘Quasi-Characterization’’) 4.7. Let V: WN fi A be a top-majori-
tarian and anonymous voting rule. For any R ˛ WN, we have

(i) Vr(R) = C(R; n, n**) when n is odd;
(ii) C(R;n, n*) ˝ Vr(R) ˝ C(R;n, n**) when n is even.

Many interesting voting rules are covered by Theorem 4.7.14 We will give
examples of these in Sect. 6. But before this, we recall the infamous common

13 When n is even, C(R;n,n*) is the set of strong Condorcet winners and C(R;n,n**) is
the set of weak Condorcet winners. We do not have such a distinction when n is odd
and C(R; n, n**) is the set of Condorcet winners. See Footnote 9.
14 At this point, we wish to remark top-majoritarianism is not necessary for the
charaterization result of Theorem 4.7 to hold. For example, the inverse plurality rule
which picks the alternatives that are considered the worse by the highest number of
voters is not top-majoritarian (even not top-unanimous). However, when instituted, its
strong equilibrium outcomes coincide with the Condorcet winners, just as stated in
Theorem 4.7.
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weakness of Condorcet winners on the one hand and strong equilibria on the
other: They may fail to exist. So it is natural to search for the lowest value of
q for which the existence of an (n,q)-Condorcet winner is guaranteed for
every R ˛ WN. We turn to this in the next section.

5 On the existence of (n, q) – Condorcet winners

Condorcet (1785) introduced the idea of choosing an alternative which, in
comparison with every rival alternative, receives the support of a majority

(possibly different from one rival to another) in its own favor. When a
Condorcet winner does not exist, there are two natural ways of mending this
rule: lowering the hurdle according to one of the two critical words
– ‘‘majority’’ and ‘‘every’’ – in the definition of a Condorcet winner. Copeland
(1951) does this for ‘‘every’’ and proposes to choose alternatives receiving
majority support against the highest number of rivals. Such an alternative,
called a Copeland winner, may lose in pairwise comparisons against a rival by
a huge majority. Alternatively, lowering the hurdle of ‘‘majority’’, one can
choose the alternatives receiving the most populous support against all other
candidates. This is known as Kramer’s (1977) Rule.15 The generalized (n, q)-
Condorcet winner concept is in the same spirit. In fact, at any given R ˛ WN,
writing q(R) for the lowest value of q ensuring the existence of (n, q)-
Condorcet winner, the set of (n, q(R))-Condorcet winners coincides with the
set of Kramer winners.16

Given n voters confronting m alternatives, define q(n, m) = ºn. (m ) 1) /
mß + 1, where ºsß shows the integral part of any real number s. We now state
a proposition showing the acyclicity of the binary relation D(R;n, q) when q ‡
q(n, m).

Proposition (Acyclicity) 5.1. Take any k ˛ {2,…,m}. For any R ˛ WN we
have xi D(R;n, q(n, m)) xi+1 for all i ˛ {1,…,k ) 1} � not xk D(R;n, q(n, m))
x1

Proof.17 Take any k ˛ {2,…, m}, any R ˛ W
N and assume that xi D(R;n, q(n,

m)) xi+1 for all i ˛{1,…, k ) 1}. Denote Ki ¼ {j ˛ N | xi Pj xi+1} for all
i ˛{1,…, k ) 1}. First note that, by the transitivity each Ri ˛ W, for every h,
h¢ ˛ {1,…, k} with h¢ > h we have {i ˛ N | xh Pi xh¢} � ˙j ˛{h,..., h¢)1} Kj. Now,

15 Kramer’s Rule, sometimes called Simpson’s Rule, is further discussed by Moulin
(1983, 1988).
16 Kramer’s Rule is the application of the compromise idea of the Majoritarian
Compromise (which was originally called ‘‘Approval Voting with a Plurality Floor’’
by Sertel 1986) to (n,q)-Condorcet winners: Choose the alternatives which are (n-q)-
Condorcet winners for the lowest possible value of q.
17 The proof can be omitted by referring to Austen-Smith and Banks (1999) who show
the same result in a slightly different context.
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since |Kj| ‡ q(n, m) for each j ˛{h,…, h¢ ) 1}, we can compute that | ˙j ˛{h,...,

h¢)1} Kj| ‡ (h¢)h) q(n, m) ) (h¢ ) h ) 1) q(n, m). Thus, |{i ˛ N | xh Pi xh¢}| ‡
(h¢ ) h) q(n, m) ) (h¢ ) h ) 1) q(n, m). Setting h ¼ 1 and h¢ ¼ k, we have |{i
˛ N | x1 Pi xk}| ‡ (k ) 1) q(n, m) ) (k ) 2) q(n, m) and so |{i ˛ N | xk Ri x1}| £
(k ) 1) (n ) q(n, m)). The proof is completed by checking that (k ) 1)
(n ) q(n, m)) < q(n, m) for any k ˛ {2,…,m}. j

The following theorem is a direct corollary to Proposition 5.1.

Theorem 5.2. For every R ˛ WN we have C(R;n, q(n, m)) „ B.

It is easy to check that q(n, m) is minimal for Theorem 5.2 to hold, i.e.,
there exists no q < q(n, m) for which C(R;n, q) „ B would hold at every
R ˛ WN.

Theorem 5.2 tells that (n, q(n, m)) Condorcet winners always exist. Thus,
for m=4 we have 75%, for m=5 we have 80%, etc., as ‘‘benchmark’’
majorities, guaranteeing the existence of a generalized (n, q(n, m))-Condorcet
winner, i.e., an alternative which is regarded as worse than no alternative by
more than this majority of voters.

6 Applications

Write T for the set of total orders18 over A. We say that a voting rule V: WN

fi A is a t-refinement of a social choice correspondence F: WN fi 2A \ {B} if
and only if there exists some ‘‘tie-breaking rule’’ t ˛ T such that, at any R ˛
WN, V(R) = argmaxF(R) t. Clearly, every t-refinement of every anonymous
social choice correspondence F will be anonymous.

6.1 Refinements of anonymous top-majoritarian social choice correspondences

We say that a social choice correspondence F: WN fi 2A \ {B} is top-
majoritarian if and only if the following two conditions hold for all x ˛ A:

(i) F(R) = {x} whenever {x} = argmax Ri " i ˛ K for some K � N with
|K| ‡ n**

(ii) x ˛ F(R) whenever {x} = argmax Ri " i ˛ K for some K � N with |K| =
n*, if n is even.

Proposition 6.1. Any t-refinement of an anonymous top-majoritarian social
choice correspondence is anonymous and top-majoritarian.

We omit the proof which is obvious. Nevertheless, we wish to note that
Plurality, Plurality with a Runoff, the Single Transferable Vote, the Majori-
tarian Compromise (Sertel 1986, Sertel and Yılmaz 1999) are all anonymous,

18 We recall that a total order is a complete, transitive and antisymmetric binary
relation.
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top-majoritarian social choice correspondences. So, thanks to
Proposition 6.1, we know that any t-refinement of these will be covered
by Theorem 4.7, whereby the strong equilibrium outcomes of their voting
game will coincide, at any preference profile, with the Condorcet winners in
the classical sense.

6.2 Refinements of Borda’s rule

It is easy to construct examples where Borda’s Rule B:WN fi 2A \ {B} selects
some singleton x ˛ A, although n is odd and n** of the voters i ˛ N have
{y} = argmaxA Ri for some y ˛ A\{x}. Thus, B has no top-majoritarian
t-refinement and escapes Theorem 4.7. Of course, for any voting rule V

equated to a t-refinement of B, by Theorems 4.1 and 4.3, we have C(R;n, b�V)
˝ Vr(R) ˝ C(R;n, bþv ), since Borda’s Rule (hence V) is anonymous and top-
unanimous. But b�v and bþv may be quite disparete in this case, as we see from
the next proposition.

For any real number s, let hsi stand for the smallest integer which is no less
than s.

Proposition 6.2. Let V: WN fi A be a t-refinement of B. We have

(i)ii bþv = n** when n is odd;
(ii)i bþv ˛ {n*, n**} when n is even;
(iii) b�v = Æ(1/m)næ if n is not divisible by m;
(iv) b�v ˛ {Æ(1/m)næ, Æ(1/m)næ + 1} if n is divisible by m.

Proof. Let V be any t-refinement of B. It is easy to see that for every x ˛ A

we have bþv (x) = n** when n is odd and bþv (x) ˛ {n*, n**} when n is even,
which is sufficient to show that bþv = n** when n is odd and bþv ˛ {n*, n**}
when n is even. Now, for any n ‡ 2, consider some K ˝ N with |K| ¼ k
whose members rank some y ˛ A as the best and some x ˛ A \ {y} as the
second best alternative, i.e., for every i ˛ K, we have argmaxA Ri = {y}
and argmaxA\{y} Ri = {x}. If the remaining agents N\K wish to ensure that
x ˛ A is chosen, then the best thing they can do is to rank x as the best and
y as the worst, i.e., for every i ˛ N\K, let argmaxA Ri = {x} and argminA
Ri = {y}. In this case x will get a Borda score B(x) = k(m ) 1) + (n ) k)m
and y a Borda score B(y) = km + (n ) k). Thus, B(x) ‡ B(y) � k £
n[(m ) 1)/m] � n ) k ‡ n(1/m) and similarly B(x) > B(y) � n ) k > n(1/
m). Thus if n is not divisible by m, for any t-refinement V, a coalition of size
Æn(1/m)æ will be weakly b-effective over x. If n is divisible by m, then,
depending on the tie-breaking rule used in the refinements, a coalition of
size Æn(1/m)æ or Æn(1/m)æ + 1 will be weakly b-effective over x. This com-
pletes the proof. j
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6.3 k-majority rules

Given any integer k > n ) k, what we mean by a k-majority rule is a voting
rule Vk: W

N fi A which is defined as follows: For some ‘‘status quo’’ s ˛ A,
every x ˛ A and every R ˛ WN,

VkðRÞ ¼
x if there exists K � N with jKj � k and fxg= argmax Ri

for all i 2 K;

s otherwise.

8
><

>:

Proposition 6.3. Let Vk: W
N fi A (for some k > n – k) be a k-majority rule.

Regardless of the status quo s ˛ A, Vk is top-unanimous and anonymous (so
that Theorems 4.1 and 4.3 apply). Furthermore, we have b�v = n – k + 1 and
bþv = k.

Proof. Take any integer k > n ) k and any status quo s ˛ A. It is clear that
Vk is top-unanimous and anonymous. One can directly check that we have
bþv (x) = b�v (x) = k for every x ˛ A \ {s} and b�V(s) = bþv (s) = n ) k + 1,
thus implying b�v = n ) k + 1 and bþv = k, completing the proof. j

Thus, given any integer k > n – k, we have C(R;n, n–k+1) ˝ V
r(R) ˝

C(R;n, k) at every R ˛ WN when a k-majority rule Vk is instituted as the
outcome function.

6.4 (n, q)-Condorcet winners as a social choice correspondence

We know by Theorem 5.2 that, for every integer q ‡ q(n, m), we have C(R;n,
q) „ B at every R ˛ WN. So, taking such a q ‡ q(n, m), we can use C( . ; n, q)
= F as a social choice correspondence F: WN fi 2A \ {B}. Let V: WN fi A be
any t-refinement of such a social choice correspondence F. One can check that
V is top-unanimous and anonymous, so that Theorems 4.1 and 4.3 apply. In
fact, we have bþv (x) = b�v (x) = n – q + 1 for every x ˛ A, thus implying b�V =
bþv = n ) q + 1. Hence, given any integer q ‡ q(n, m), instituting any
t-refinement of C(R;n, q) as outcome function, we have Vr(R) = C(R;n,
n–q+1) at every R ˛ WN.

Given any positive integer q < q(n, m), from C(R; n, q) we can still derive
a social choice correspondence F: WN fi 2A \ {B} by setting F(R) = s for
some previously fixed s ˛ A whenever C(R;n, q) is empty. Let V: WN fi A be
any t-refinement of such a social choice correspondence F. One can check that
V is unanimous and anonymous, whereby Theorems 4.1 and 4.3 apply. One
can directly verify that bþv (x) = b�v (x) = n – q + 1 for every x ˛ A \ {s} and
b�v (s) = bþv (s) = q, thus implying b�v = q and bþv = n – q + 1. Thus, given
any positive integer q < q(n, m), we have C(R;n,q) ˝ Vr(R) ˝ C(R;n,
n–q+1) at every R ˛ WN when we institute any t-refinement V of F as
outcome function.
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7 Closing remarks

In this paper we characterized the strong equilibrium outcomes of certain
voting games. It turns out, for many well-known social choice rules, that if we
refine them to singleton-valued functions by use of tie-breaking rules and
employ them in the role of the outcome function of a direct mechanism, at the
strong equilibria of the voting games so determined, we obtain the Condorcet
winners when they exist. It may be regarded as a somewhat striking irony that
many social choice rules which themselves fail to be Condorcet-consistent,
turn out to induce a Condorcet-consistent outcome at the strong equilibria of
the voting games they determine.19

Our results also afford an interpretation in the spirit of implementing the
classical Condorcet social choice rule on a restricted domain of preference
profiles where it is non-empty-valued, e.g. where preferences are single-
peaked. On such a domain, we implement the Condorcet social choice rule
via strong equilibrium by use of direct mechanisms employing outcome
functions which are refinements obtained through tie-breaking rules of
certain well-known social choice rules: Theorem 4.7 is a full implementation
result via top-majoritarian social choice rules, while Theorem 4.3 is a partial
implementation result via anonymous social choice rules. This should con-
stitute a certain rehabilitation of Condorcet’s social choice rule: In partic-
ular, when q = n**, the Condorcet Rule implements itself under strong
equilibrium on the domain of preference profiles where a Condorcet winner
exists.

This positive implementation result loses some of its bite when we allow
an unrestricted domain of preferences, as it is based on our equivalence
result between the set of generalized Condorcet winners and the set of
strong equilibrium outcomes of the voting game determined by instituting a
social choice function as the outcome function of a mechanism. For this
equivalence result may turn out to be the trivial equivalence of the empty
set to the empty set when there are no generalized Condorcet winners at a
given preference profile.20 So one may ask how far we should generalize
(and weaken) the notion of a ‘‘Condorcet winner’’ in order to guarantee its
existence independent of the preference profile. We know that an (n, q)-
Condorcet winner always exists whenever q ‡ ºn. (m ) 1) / mß + 1. Since

19 Neither of the social choice rules (Plurality, Plurality with a Runoff, the
Majoritarian Compromise and the Single Transferable Vote) which we found in Sect.
6 to give Condorcet winners at the strong equilibrium of the voting game they
determine is Condorcet-consistent in the sense of always choosing a Condorcet winner
when it exists. Furthermore, Plurality and the Majoritarian Compromise are both
capable of choosing a Condorcet loser (i.e., Condorcet winner with all preferences
reversed) even in the presence of a Condorcet winner. See Sertel and Yılmaz (1997).
20 In fact, one can check the existence of strong equilibria of the voting game at some
preference profile just by checking the existence of (n,q)-Condorcet winners, for the
appropriate q, at that preference profile.
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n(m ) 1)/m approaches n as the cardinality m of our set of alternatives
increases, however, this generalization may have gone too far when we have
a large number of alternatives. Indeed, the set of generalized Condorcet
winners converges to the set of weakly Pareto optimal outcomes as the
cardinality of the set of alternatives increases beyond bound.

To sum up, we show, for a large class of social choice rules (including
Plurality, Plurality with a Runoff, the Majoritarian Compromise and the
Single Tranferable Vote), that when strong equilibrium is used as the solution
concept, the social choice rule employed in the role of outcome function of a
direct mechanism implements on the domain of profiles with Condorcet
winners, not necessarily itself21, but a Condorcet social choice rule.22 These
results, although simple and intuitive23, can be considered as positive from an
implementation viewpoint, in some contrast with the prevalence of impossi-
bility results in this field.

Research questions: It is natural to question for which shrinkings and for
which swellings (expansions) of the strong equilibrium solution concept our
characterization results, Theorems 4.1, 4.3 and 4.7, remain valid. The strong
equilibrium being hard to shrink, we address the swelling question.24 At the
extreme, it is easy to see that under every social choice function which satisfies
the weak no veto power condition, the entire set A of alternatives is attainable
as outcomes of our voting games under Nash equilibrium. As to the case of
coalition-proof Nash equilibrium, a generally smaller swelling of the strong
equilibrium, the question becomes more interesting.25

Here we focus on the central question of whether, in the case of voting
games, all coalition-proof Nash equilibrium outcomes can actually be mat-
ched in welfare by strong equilibrium outcomes. The answer is negative, for
reason of the following simple example:

21 In fact, Condorcet-consistent social choice correspondences are self-implementable
on this domain of preference profiles with Condorcet winners.
22 It is not surprising that Borda’s Rule is not in this list.
23 Regarding the intuitiveness of our results, some caution may be advisable. For it is
possible to think, as we admit having done ourselves at the outset, that the Condorcet
consistency of the outcomes of a voting game under strong equilibrium is more or less
a direct consequence of definitions. This paper is witness to our having educated
ourselves into realizing that this was far from being so. In fact, Borda’s Rule and
k-majority rules defy the easy credo which we had to abandon.
24 A natural shrinking is to allow blocking coalitions whose members weakly improve,
as long as one of these members strictly improves. For Theorems 4.1 and 4.7 to be
valid under this stronger definition of equilibrium, we need to adopt the corresponding
stronger definition of an (n, q)-Condorcet winner: An alternative x is an (n, q)-
Condorcet winner if and only if there exist no other alternative y such that the number
of agents who find y at least as good as x is no less than q while at least one agent
strictly prefers y to x.
25 We thank an anonymous referee for leading us to this question.
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In the context of A = {x, y, z} and N = {1, 2, 3}, given a preference
profile R with

R1 R2 R3

x y z
y x x
z z y

under Plurality refined by any tie-breaking rule with z beating x and y,
regarding any declaration where all three agents find y better than both x and
z, such a declaration will be a coalition-proof Nash equilibrium, resulting in
the outcome y, while y cannot be attained as a strong equilibrium outcome
here. The strong equilibrium outcome here is x, of course, and the welfare of x
and y differ for our three-agent society.

It is to be noted, furthermore, that while strong equilibria of a voting game
exist precisely when a Condorcet winner exists, coalition-proof Nash equi-
libria may exist even in the absence of Condorcet winners. The example of

R1 R2 R3

x y z
y z x
z x y

where we use Plurality refined by any tie-breaking rule with y beating x and z
suffices to show this, as here we have no Condorcet winner but any
declaration where all three agents find x better than both y and z is a coali-
tion-proof Nash equilibrium of the associated voting game, resulting in the
outcome x.

Summarily, the strong equilibrium concept gives a rather perfect fit with
Condorcet’s notion while the coalition-proof Nash equilibrium concept is too
‘‘fat’’.26 Are there, then, interesting shrinkings or swellings of the strong
equilibrium for which our characterization results, Theorems 4.1, 4.3 and 4.5,
are preserved?
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