
New Generation Computing (2024) 42:429–448
https://doi.org/10.1007/s00354-024-00267-0

RESEARCH PAPER

NP-Completeness and Physical Zero-Knowledge Proofs for
Sumplete, a Puzzle Generated by ChatGPT

Kyosuke Hatsugai1 · Suthee Ruangwises1 · Kyoichi Asano1 · Yoshiki Abe1,2

Received: 14 December 2023 / Accepted: 29 May 2024 / Published online: 31 July 2024
© The Author(s) 2024

Abstract
Sumplete is a logic puzzle generated by ChatGPT in March 2023. The puzzle consists
of a rectangular grid, with each cell containing an integer. Each row and column also
has an integer called target value assigned to it. The objective of this puzzle is to cross
out some numbers in the grid such that the sum of uncrossed numbers in each row
and column is equal to the corresponding target value. In this paper, we prove that
Sumplete is NP-complete. We also propose a physical zero-knowledge proof protocol
for the puzzle using physical cards.

Keywords Physical zero-knowledge proof · Card-based cryptography ·
NP-completeness · Sumplete · Puzzle

1 Introduction

1.1 Background

Chat Generative Pre-trained Transformer (ChatGPT) is an artificial intelligence chat-
bot developed by OpenAI [2]. ChatGPT is famous for its ability to answer questions

A preliminary version of this paper [1] was published in the proceedings of COCOON 2023.

B Kyosuke Hatsugai
hatsugai@uec.ac.jp

Suthee Ruangwises
ruangwises@uec.ac.jp

Kyoichi Asano
k.asano@uec.ac.jp

Yoshiki Abe
yoshiki@uec.ac.jp

1 The University of Electro-Communications, 1–5–1 Chofugaoka, Chofu, Tokyo 182–8585, Japan

2 National Institute of Advanced Industrial Science and Technology, 2–3–26 Aomi, Koto-ku, Tokyo
135–0064, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00354-024-00267-0&domain=pdf

430 New Generation Computing (2024) 42:429–448

Fig. 1 An example of a 5 × 5 Sumplete puzzle (left) and its solution (right)

more naturally than other chatbots. Furthermore, it can perform generative tasks,
including writing essays, drawing pictures, coding, and making puzzles.

In March 2023, ChatGPT created a puzzle named Sumplete1 [3], which is a logic
puzzle similar to Sudoku, Kakuro, and Hitori. The Sumplete puzzle consists of an
m × n rectangular grid, with each cell containing an integer. Each row and column
also has an integer called target value assigned to it. The objective of this puzzle is to
cross out some numbers in the grid such that the sum of uncrossed numbers in each
row and column is equal to the corresponding target value [4]. See Fig. 1.

The official rule does not have any constraint on the number in each cell, which
means it can be any integer. However, in all example puzzles displayed on the official
website, all numbers x are limited to 0 < |x | < 20 [4]. We call a variant with this
constraint restricted Sumplete, and a variant without this constraint general Sumplete
(or simply just Sumplete).

As there are 2mn possible combinations of cells to cross out, it seems difficult to
determine whether a given Sumplete puzzle has a solution for a large puzzle. In fact,
deciding the solvability of Sumplete is NP-complete, as will be shown later.

1.2 Physical Zero-Knowledge Proof Protocols

Consider a situation where a contestant wants to convince a challenger that a given
Sumplete puzzle has a solution but does not want to reveal the solution to them.
Although these requirements may seem contradictory, they can be satisfied simulta-
neously using a cryptographic technique called zero-knowledge proof (ZKP).

ZKP is an interactive protocol introduced by Goldwasser et al. in 1989 [5]. A
ZKP allows a prover who knows the solution of a problem to convince a verifier of the
existence of the problem’s solutionwithout revealing the solution itself. Typically, ZKP
protocols are implemented using computers. However, ZKP protocols using physical
objects such as playing cards are also widely studied. The first physical ZKP protocol
was developed by Gradwohl et al. in 2007 for a pencil puzzle Sudoku [6]. Since
then, physical ZKP protocols for many other puzzles have been proposed, including
Sudoku [7, 8] and Kakuro [9, 10].

1 This name was also generated by ChatGPT.

123

New Generation Computing (2024) 42:429–448 431

Most operations used in physical ZKP protocols come from previous work in card-
based cryptography, a study in secure multi-party computation using cards. This area
of study began with the protocols to compute the logical AND function by den Boar
in 1989 [11] and the logical XOR function by Crepeau and Kilian in 1993 [12]. After
their work, shuffling operations called scramble shuffle, pile-shifting shuffle [13], and
pile-scramble shuffle [14] were proposed to compute more complex functions. These
operations will be used in this paper.

1.3 Our Contribution

Neither an NP-completeness proof of Sumplete nor a ZKP protocol for Sumplete has
been proposed before. In this paper, we prove that Sumplete is NP-complete in two
ways. The NP-completeness of general Sumplete can be proven by a reduction from
the Subset Sub problem (SSP). Moreover, even if the grid contains only two different
integers, the NP-completeness still holds (which implies restricted Sumplete is NP-
complete). This fact cannot be proven by the reduction from SSP. Instead of SSP,
we show NP-completeness of the restricted sumplete by a reduction from the XSAT
problem for 3-CNF3+, which is a satisfiability problem for special logic circuits. Both
the SSP and the XSAT problem for 3-CNF3+ are known to be NP-complete.

We also propose a physical card-based ZKP protocol for Sumplete. Because of the
NP-completeness of the puzzle, it is worth developing a ZKP protocol for it.

The main difference from the conference version [1] is the addition of the second
NP-completeness proof of Sumplete. The second proof is stronger than the first one;
it shows that even restricted Sumplete is also NP-complete.

1.4 Organization of Paper

The rest of this paper is organized as follows. In Sect. 2, we introduce zero-knowledge
proof and card operations. Section 3 is devoted to the NP-completeness proofs of
Sumplete. In Sect. 4, we propose a physical ZKP protocol for Sumplete. Then, in
Sect. 5, we show that our proposed protocol satisfies all ZKP properties. Finally,
Sect. 6 concludes this paper.

2 Preliminaries

2.1 Notation

(Multi)sets are denoted by calligraphic uppercase letters, e.g., A = {a1, a2, a3}. In
particular, let {·} denote a set without duplication, and {{·}} denote a multiset. Vectors
are denoted by boldfaced lowercase letters, and the i-th element of a vector v is denoted
by vi , e.g., v = (v1, v2, v3). Matrices are denoted by boldfaced uppercase letters, and

123

432 New Generation Computing (2024) 42:429–448

the element of the i-th row and j-th column of a matrixM is denoted by mi, j , e.g.,

M =
(
m1,1 m1,2
m2,1 m2,2

)
.

2.2 Zero-Knowledge Proof

A zero-knowledge proof (ZKP) is an interactive protocol between a prover P and
a verifier V . We assume that P is a probabilistic Turing machine with unbounded
computational ability and V is a probabilistic polynomial-time Turing machine. Let x
be an instance of an NP language. For a given x which has the witness, we suppose that
P can calculate the witness from x , but V cannot. Note that x has the witness if and
only if P knows the witness, as the computational ability of P is unbounded. In ZKP,
P interacts with V and finally convinces V that the problem x has the witness without
revealing the witness. ZKP protocols must achieve the following three properties.

Completeness. If P knows the witness, V is always convinced.
Soundness. If P does not know the witness, V is not convinced with more than

negligible probability. The probability that V is convinced when P
does not know the witness is called soundness error. If the soundness
error is less than 1, it approaches asymptotically to 0 by executing
proofmany times. However, repeating physical protocolswith human
hands is hard. Therefore, it is desirable that the soundness error of
physical zero-knowledge proof is 0.

Zero-Knowledge. V cannot obtain any information about the witness. Formally, for
every V , there exists a probabilistic polynomial-time algorithm S
that does not know the witness. If the output of S is indistinguishable
from the output of the interaction of P and V , no information about
the solution is leaked during the interaction.

2.3 Card Operations

In this paper, we use cards whose front side is either ♣ or ♥ and whose back side

is ? . We assume that the front sides of cards with the same suit are identical. The
back sides of all cards are also assumed to be indistinguishable. For understanding,
we denote a face-down card ♣ (resp., ♥) by ?

♣
(resp., ?

♥
).

2.3.1 Cyclic Shift

Let c := (c1, c2, . . . , ck) be a sequence of k cards. A left cyclic shift over c is an
operation that outputs

(cρ−1(1), cρ−1(2), . . . , cρ−1(k)),

where ρ is a cyclic permutation ρ := (1 k k − 1 · · · 3 2).

123

New Generation Computing (2024) 42:429–448 433

Analogously, a right cyclic shift over c is an operation that outputs

(cσ−1(1), cσ−1(2), . . . , cσ−1(k)),

where σ is a cyclic permutation σ := (1 2 3 · · · k − 1 k).

2.3.2 Scramble Shuffle

Let c := (c1, c2, . . . , ck) be a sequence of k cards. A scramble shuffle over c is an
operation that outputs

(cπ−1(1), cπ−1(2), . . . , cπ−1(k)),

where a permutation π is an element of Sk , the symmetric group of degree k. We
assume that the permutation π is kept secret from every party.

2.3.3 Pile-Scramble Shuffle

Let p := (p1, p2, . . . , pk) be a sequence of k piles of cards, with each pile having the
same number of cards. A pile-scramble shuffle [14] over p is an operation that outputs

(pπ−1(1), pπ−1(2), . . . , pπ−1(k)),

where a permutation π is an element of Sk , the symmetric group of degree k. We
assume that the permutation π is kept secret to every party.

2.4 Representation of an Integer

In this subsection, we will show how to represent an integer using cards. In card-based
cryptography protocols, e.g., [15, 16], each integer from 1 to k is represented by a
sequence of k cards, which consists of a ♥ and k − 1 ♣ s. Specifically, an integer

i (1 ≤ i ≤ k) is represented by the position of the ♥ in the sequence: if the ♥ is at
the i-th leftmost position, the sequence represents the integer i . For example, 1 and 3
are represented as follows.

1 = ♥ ♣ ♣ ♣ ♣
3 = ♣ ♣ ♥ ♣ ♣

In this paper, we apply thismethod to represent any integer, including zero and negative
integers.

Definition 1 (Integer Counter) Let α and β be positive integers. An integer i (−α ≤
i ≤ β) is represented by a sequence of α +β + 1 cards, consisting of one ♥ card and

α + β ♣ cards. Specifically, if ♥ is at the i-th leftmost position of the sequence, the
sequence represents the integer −α + i − 1. We call such card sequence an integer
counter.

123

434 New Generation Computing (2024) 42:429–448

For example, 0 and −2 are represented as follows when α = 3 and β = 2.

0 = ♣ ♣ ♣ ♥ ♣ ♣
−2 = ♣ ♥ ♣ ♣ ♣ ♣

We execute the addition by shifting the counter. This method is used by Shinagawa
et al. [13] and by Ruangwises and Itoh [17]. Suppose there is an integer counter
representing x ∈ Z, where the number of cards (i.e., the values α and β for the
counter) is large enough so that ♥ does not overflow. Then, we can obtain the counter
representing x + y (y ∈ Z) as follows: if y < 0, we execute the left cyclic shift over
the card sequence |y| times; otherwise (i.e., if y ≥ 0), we execute the right cyclic shift
over the card sequence |y| times. Since these cyclic shift operations can be performed
even if the cards of the counter are face-down, the addition of y can be performed
without revealing the value of x .

3 NP-Completeness of Sumplete

In this section, we provide two NP-completeness proofs of Sumplete via polynomial-
time reductions from NP-complete problems. In Sect. 3.1, we prove that general
Sumplete isNP-complete via a reduction fromSSP. InSect. 3.2,weprove that restricted
Sumplete is NP-complete via a reduction from XSAT for 3-CNF3+.

3.1 General Sumplete

First, we will prove that general Sumplete is NP-complete. To do so, we will show
that every SSP instance can be reduced to a Sumplete instance in polynomial time.

3.1.1 Formal Definitions of Problems

Before proving Sumplete’s NP-completeness, we formally define the decisional ver-
sion of SSP and general Sumplete.

Definition 2 (Subset Sum Problem) The Subset Sum Problem (SSP) consists of a
multiset A ⊆ Z and an integer N ∈ Z. The answer of the instance SSP = (A, N) is
Yes if there exists a subsetA′ ⊆ A that satisfies

∑
a∈A′ a = N ; if there is no suchA′,

the answer is No. We call such subset A′ a solution of the instance SSP.

For example, consider an instance SSP = (A, N) where A := {{−3, 3, 2,−7, 9}}
and N := −8. The answer of this instance is Yes since there exists a solution A′ =
{{−3, 2,−7}} ⊆ A.

Definition 3 (General Sumplete) A (general) Sumplete instance consists of three ele-
ments: an m × n matrix G ∈ Z

m×n representing each number in the grid, a vector
r ∈ Z

m representing each row’s target value, and a vector c ∈ Z
n representing each

123

New Generation Computing (2024) 42:429–448 435

column’s target value. The answer of the instance S = (G, r, c) is Yes if there exists
an m × n matrix Ĝ ∈ {0, 1}m×n satisfying the following equations:

ri =
n∑
j=1

gi, j ĝi, j for all i ∈ {1, . . . ,m} , (1)

c j =
m∑
i=1

gi, j ĝi, j for all j ∈ {1, . . . , n} ; (2)

if there is no such Ĝ, the answer isNo. We call such matrix Ĝ a solution of the instance
S.

For example, the puzzle in Fig. 1 can be represented as follows:

G =

⎛
⎜⎜⎜⎜⎝

3 5 5 7 1
5 1 4 1 8
4 7 2 5 2
6 2 4 9 4
3 3 4 9 6

⎞
⎟⎟⎟⎟⎠ ,

r = (
13 14 11 6 15

)
,

c = (
11 18 11 9 10

)
.

The answer of this instance is Yes since there exists the following solution Ĝ:

Ĝ =

⎛
⎜⎜⎜⎜⎝

1 1 1 0 0
1 1 0 0 1
0 1 1 0 1
0 1 1 0 0
1 1 0 1 0

⎞
⎟⎟⎟⎟⎠ .

3.1.2 NP-Completeness Proof of General Sumplete

Theorem 1 General Sumplete is NP-complete.

Proof To prove the NP-completeness, we will show that the following two conditions
hold.

(1) Sumplete is in NP.
(2) Sumplete is polynomial-time reductive from SSP.

First, wewill prove (1) by showing the existence of a non-deterministic polynomial-
time algorithm that can decide whether a given Sumplete instance is Yes or No.
Consider a non-deterministic algorithm M that works as follows.

1. M chooses some cells non-deterministically.
2. M crosses out numbers in the chosen cells.

123

436 New Generation Computing (2024) 42:429–448

Fig. 2 A Sumplete instance
constructed from an SSP
instance

3. For every row and column, M calculates the sum of uncrossed numbers and com-
pares it with the target value. If there is a row or column whose sum is not equal
to the target value, M rejects the instance; otherwise, M accepts.

Since each operation terminates in polynomial time, M halts in polynomial time, so
(1) holds.

Next, We will prove (2) by showing that the following three conditions hold.

(i) There exists a polynomial-time reduction f from SSP to Sumplete.
(ii) For an arbitrary SSP instance, say SSP, if the answer of SSP is Yes, then the answer

of the reduced Sumplete instance S′ := f (SSP) is Yes.
(iii) For an arbitrary SSP instance, SSP, if the answer of S′ := f (SSP) is Yes, then the

answer of SSP is Yes.

First, wewill show that (i) holds. Consider the following polynomial-time reduction
f . See Fig. 2.

1. f receives an SSP instance SSP := (A, N), where A := {{a1, a2, . . . , an}} ⊆ Z

and N ∈ Z.
2. f outputs a Sumplete instance S′ := (G′, r′, c′), where G′, r′, and c′ are defined

as follows:

G′ :=

⎛
⎜⎜⎜⎝

a1 a2 · · · an
aρ−1(1) aρ−1(2) · · · aρ−1(n)

...
...

. . .
...

aρ−(n−1)(1) aρ−(n−1)(2) · · · aρ−(n−1)(n)

⎞
⎟⎟⎟⎠ ,

r′ := (
N N · · · N)

,

c′ := (
N N · · · N)

,

where ρ := (1 n n − 1 · · · 3 2) is a cyclic permutation.

Note that all the target values in S′ are N . In addition, each element ofA appears once
for each row and column. During the reduction, n2 + 2n times of writing numbers
and n times of shifting are executed, so the running time of f is polynomial in n.
Therefore, (ii) holds.

123

New Generation Computing (2024) 42:429–448 437

Next, we will show that (ii) holds. Suppose the answer of SSP is Yes. From the
solution A′ of SSP, construct a matrix Ĝ′ ∈ {0, 1}n×n , whose (i, j)-element ĝ′

i, j is
defined as follows:

ĝ′
i, j =

{
1, if g′

i, j ∈ A′;
0, if g′

i, j /∈ A′.

We will show that the following equations hold:

r ′
i =

n∑
j=1

g′
i, j ĝ

′
i, j for all i ∈ {1, . . . , n} , (1)’

c′
j =

n∑
i=1

g′
i, j ĝ

′
i, j for all j ∈ {1, . . . , n} . (2)’

As the integers in i-th row of G′ are aρ−(i−1)(1), aρ−(i−1)(2), . . . , aρ−(i−1)(n), all ele-
ments of A appear exactly once. Moreover, ĝ′

i, j is 1 (resp., 0) when g′
i, j ∈ A′ (resp.,

g′
i, j /∈ A′). Thus, for all 1 ≤ i ≤ n we have

n∑
j=1

g′
i, j ĝ

′
i, j =

∑
a∈A′

a = N = r ′
i .

As the integers in j-th column ofG′ are a j , aρ−1(j), . . . , aρ−(n−1)(j), all elements of
A appear exactly once. Moreover, ĝ′

i, j is 1 (resp., 0) when g
′
i, j ∈ A′ (resp., g′

i, j /∈ A′).
Thus, for all 1 ≤ j ≤ n we have

n∑
i=1

g′
i, j ĝ

′
i, j =

∑
a∈A′

a = N = c′
j .

From above, equations (1)’ and (2)’ hold, which implies the answer of f (SSP) is
Yes as it has Ĝ′ as a solution. Therefore, (ii) holds.

Finally, we will show that (iii) holds. Suppose the answer of f (SSP) is Yes. From
the solution Ĝ′ of f (SSP), construct a multiset A′ ⊆ A as follows:

A′ = {g′
1, j | for 1 ≤ j ≤ n, ĝ′

1, j = 1}.

We will show that the equation
∑

a∈A′ a = N holds. As mentioned above, in the first
row of G′, all elements ofA appear exactly once. From the definition of Ĝ′, we have

n∑
j=1

g′
1, j ĝ

′
1, j = r ′

1 = N ,

123

438 New Generation Computing (2024) 42:429–448

which means the summation of g′
1, j such that ĝ′

1, j is 1 is equal to N , the target
value of SSP. Since A′ is exactly the set of g′

1, j such that ĝ′
1, j is 1, the equation∑

a∈A′ a = ∑n
j=1 g

′
1, j ĝ

′
1, j = N holds. Therefore, since the subsetA′ can be regarded

as the solution of SSP, (iii) holds.
From (i)–(iii), the condition (2) holds.
From (1) and (2), we can conclude that general Sumplete is NP-complete. 	

3.2 Restricted Sumplete

It is more challenging to prove the NP-completeness of restricted Sumplete. In par-
ticular, the technique in Sect. 3.1 cannot be applied to restricted Sumplete, as SSP in
the setting where each element in the set is bounded by a constant is solvable in linear
time (e.g., by dynamic programming). Therefore, we have to develop a new technique
to prove the NP-completeness of restricted Sumplete.

In this subsection, we will prove a stronger statement that Sumplete is NP-complete
even if the grid contains only two different integers, p and 3p, where p is an arbitrary
nonzero integer. We call such instance a (p, 3p)-Sumplete instance.

3.2.1 Formal Definitions of Problems

XSAT problem for 3-CNF3+ is the satisfiability problem for the special kind of logic
circuits, 3-CNF3+. 3-CNF3+ is a set of logic circuits where each clause contains exactly
three positive literals, and each variable appears in exactly three clauses.

Definition 4 (3-CNF3+) Suppose that x1, x2, . . . , xn denote n literals and #α(xi)
denotes the number of literal xi in the logic circuit α. 3-CNF3+ is the following set.

3-CNF3+ =
⎧⎨
⎩

(ci, j ∈ {x1, x2, . . . , xn})
α = ∧n

i=1
∨3

j=1 ci, j ∧ (for 1 ≤ i ≤ n, 1 ≤ k, l ≤ 3, k �= l ⇔ ci,k �= ci,l)
∧ (for 1 ≤ i ≤ n, #α(xi) = 3)

⎫⎬
⎭

For 1 ≤ i ≤ n, ci,1 ∨ ci,2 ∨ ci,3 is called clause and denoted by Ci .

XSAT problem for 3-CNF3+ is a decision problem of whether there is a Boolean
assignment of the circuit in 3-CNF3+, in which every clause has exactly one literal that
evaluates to true. This problem is known to be NP-complete [18].

Definition 5 (XSAT for 3-CNF3+) An instance of XSAT for 3-CNF3+ is an n-input
logic circuit

∧n
i=1 Ci which belongs to 3-CNF3+.

The answer of an XSAT instance is Yes if there exists a truth assignment that for
arbitrary clause Ci , {{ci,1, ci,2, ci,3}} are assigned to {{TRUE, FALSE, FALSE}}; if
there does not exist such truth assignment, the answer is No. We call such assignment
a solution of the instance XSAT.

123

New Generation Computing (2024) 42:429–448 439

Definition 6 ((p, 3p)-Sumplete) Let p be a nonzero integer. A (p, 3p)-Sumplete
instance consists of three elements: an m × n matrix G ∈ {p, 3p}m×n represent-
ing each number in the grid, a vector r ∈ Z

m representing each row’s target value, and
a vector c ∈ Z

n representing each column’s target value. The answer of the instance
S = (G, r, c) is Yes if there exists an m × n matrix Ĝ ∈ {0, 1}m×n satisfying the
following equations:

ri =
n∑
j=1

gi, j ĝi, j for all i ∈ {1, . . . ,m} , (3)

c j =
m∑
i=1

gi, j ĝi, j for all j ∈ {1, . . . , n} ; (4)

if there is no such Ĝ, the answer isNo. We call such matrix Ĝ a solution of the instance
RS.

3.2.2 NP-Completeness Proof of Restricted Sumplete

Since (p, 3p)-Sumplete for −6 ≤ p ≤ 6 are special cases of restricted Sumplete,
we can prove NP-completeness of restricted Sumplete by proving that of (p, 3p)-
Sumplete for arbitrary nonzero integer p.Note thatwe canprove that (p, 3p)-Sumplete
is in NP as well as we prove that for general Sumplete. Therefore, it is sufficient to
prove that (p, 3p)-Sumplete isNP-hard.Wewill do so by showing that it is polynomial
reductive from 3-CNF3+.

Theorem 2 For any given nonzero integer p, (p, 3p)-Sumplete is NP-complete.

Proof Consider for any nonzero integer p. To prove the NP-completeness, we will
show that the following three conditions hold.

(i) There exists a polynomial-time reduction f ′ from XSAT for 3-CNF3+ to
(p, 3p)-Sumplete.

(ii) For an arbitrary instance of XSAT for 3-CNF3+, say XSAT, if the answer of
XSAT is Yes, then the answer of the reduced (p, 3p)-Sumplete instance RS′ :=
f (XSAT) is Yes.

(iii) For an arbitrary instance of XSAT for 3-CNF3+, XSAT, if the answer of RS′ :=
f (XSAT) is Yes, then the answer of XSAT is Yes.

First, we will show (i). Consider the following polynomial-time reduction f ′. See
Figs. 3 and 4.

1. f ′ recieves an instance of XSAT for 3-CNF3+ XSAT := ∧n
i=1

∨3
j=1 ci, j , where

ci, j ∈ {x1, x2, . . ., xn}.

123

440 New Generation Computing (2024) 42:429–448

Fig. 3 An XSAT problem for 3-CNF3+ (left) and its solution (right)

2. f outputs a (p, 3p)-Sumplete instance S′ := (G′, r′, c′), where G′, r′, and c′ are
defined as follows:

G′ :=

⎛
⎜⎜⎜⎜⎜⎝

b1,1 b1,2 · · · b1,n
b2,1 b2,2 · · · b2,n
...

...
. . .

...

bn,1 bn,2 · · · bn,n

3p 3p · · · 3p

⎞
⎟⎟⎟⎟⎟⎠

,

r′ := (
p p · · · p 2pn

)
,

c′ := (
3p 3p · · · 3p) ,

where each bi, j is defined as follows:

bi, j =
{
p, if x j appears in clause Ci ;
3p, if x j does not appear in clause Ci .

During the reduction, n(n+1)+n+ (n+1) = n2 +3n+1 times of writing numbers
are executed, so the running time of f ′ is polynomial in n. Therefore, (i) holds.

Next, we will show that (ii) holds. Suppose the answer of XSAT is Yes. From the
solution of XSAT, construct a matrix Ĝ′ ∈ {0, 1}(n+1)×n , whose (i, j)-element ĝ′

i, j is
defined as follows:

ĝ′
i, j =

⎧⎪⎪⎨
⎪⎪⎩
1,

if
(
(1 ≤ i ≤ n) ∧ (x j is assigned to TRUE.) ∧ (g′

i, j = p)
)

∨ (
(i = n + 1) ∧ (x j is assigned to FALSE.)

);
0, otherwise.

We will show that the following equations hold:

r ′
i =

n∑
j=1

g′
i, j ĝ

′
i, j for all i ∈ {1, . . . , n} , (3)’

123

New Generation Computing (2024) 42:429–448 441

Fig. 4 A (p, 3p)-Sumplace instance constructed from the XSAT problem in Fig. 3 (left) and its solution
(right)

c′
j =

n∑
i=1

g′
i, j ĝ

′
i, j for all j ∈ {1, . . . , n} . (4)’

First, we will show that (4)’ holds. For each j (1 ≤ j ≤ n), since x j appears in
exactly three clauses, in the j-th column of G′ there must be exactly three elements
in the first n row being p, with the rest being 3p. Suppose p appears in the d j,1, d j,2,
and d j,3-th row.

If x j is assigned to TRUE, the (d j,1, j), (d j,2, j) and (d j,3, j)-elements are 1 and
all other elements are 0. Thus,

n+1∑
i=1

g′
i, j ĝ

′
i, j =

3∑
k=1

g′
d j,k , j =

3∑
k=1

p = 3p = c′
i .

On the other hand, if x j is assigned to FALSE, then (n + 1, j)-element is 1 and all
other elements are 0. Thus,

n+1∑
i=1

g′
i, j ĝ

′
i, j = g′

n+1, j = 3p = c′
i .

Therefore, (4)’ holds for all 1 ≤ j ≤ n.
Next, we will show that (3)’ holds. Recall that for each 1 ≤ i, j ≤ n, the (i, j)-

element ofG′ is p (resp., 3p) when x j appears (resp., does not appear) in Ci . For each
i (1 ≤ i ≤ n), since exactly one literal in Ci is assigned to TRUE, there is exactly one
1 in the i-th row of Ĝ′, and its corresponding element of G′ is p. Thus, we have

n∑
j=1

g′
i, j ĝ

′
i, j = p = r ′

i .

123

442 New Generation Computing (2024) 42:429–448

Now consider the sum of the (n + 1)-st row of G′. From the obtained equation and
(4)’, we have

n∑
j=1

g′
n+1, j ĝ

′
n+1, j =

n∑
j=1

(
n+1∑
i=1

g′
i, j ĝ

′
i, j

)
−

n∑
i=1

⎛
⎝ n∑

j=1

g′
i, j ĝ

′
i, j

⎞
⎠

= n · 3p − n · p
= 2pn = r ′

n+1.

Therefore, (3)’ holds for all 1 ≤ i ≤ n + 1.2

From (3)’ and (4)’, the answer of f (XSAT) isYes as it has Ĝ′ as a solution. Therefore,
(ii) holds.

Finally, we will show that (iii) holds. Suppose the answer of f (XSAT) is Yes. From
the solution Ĝ′ of f (XSAT), construct an assignment T for XSAT, which is defined as
follows:

x j =
{
TRUE, if there are exactly three 1s in the j-th column of Ĝ′;
FALSE, if there is exactly one 1 in the j-th column of Ĝ′.

We will show that exactly one literal is assigned to TRUE in every clause of XSAT.
For each i (1 ≤ i ≤ n), since the target value of i-th row of f (XSAT) is p, exactly one
element (let it be the (i, ei)-element) in the i-th row of Ĝ′ is 1, and its corresponding
element of G′ is p. This means xei appears in Ci and is assigned to TRUE, and all
other literals in Ci are assigned to FALSE. Thus, only one literal in Ci is assigned to
TRUE. For each j (1 ≤ j ≤ n), since the target value of j-th column of f (XSAT)
is 3p, if there exists one 1 in j-th column of Ĝ′ (let it be the (e j , j)-element) and its
corresponding element of G′ is p, then there exists two 1s in j-th column of Ĝ′ other
than the (e j , j)-element and their corresponding elements of G′ are p. This means
that x j appears three times in XSAT and all three x j are assigned to the same value.
Thus, since the assignment T can be regarded as the solution of XSAT, the condition
(iii) holds.

From (i)–(iii), there exists a polynomial reduction fromXSAT problem for 3-CNF3+
to (p, 3p)-Sumplete.

Hence, we can conclude that (p, 3p)-Sumplete is NP-complete for any given
nonzero integer p. 	

2 In (n+ 1)-st row, the equation (3)’ holds only when n is a multiple of 3. Since our proof assumes that the
answer of XSAT is Yes, the equation (3)’ always holds in (n + 1)-st row. It is because if the answer of XSAT
is Yes, then n is a multiple of 3. Since there exists three x j (1 ≤ j ≤ n) in XSAT, there exists 3n literals in

XSAT. From the condition of the solution of XSAT problem for 3-CNF3+, if the answer of XSAT is Yes, then
n out of 3n literals are assigned to TRUE. Since all three x j must be assigned to the same value, if it is not
a multiple of 3, then there does not exist the assignment that can be regarded as the solution of XSAT. This
means that if n is not a multiple of 3, the answer of XSAT is No. From the contraposition, the statement “if
the answer of XSAT is Yes, then n is a multiple of 3” holds.

123

New Generation Computing (2024) 42:429–448 443

Recall that in restricted sumplete, the integer of cells, say x , is constrained to be
−20 < |x | < 20. Since (1, 3)-Sumplete (where p = 1) is a special case of restricted
Sumplete, restricted Sumplete is also NP-complete.

4 Physical ZKP Protocol for Sumplete

4.1 Idea of Proposed Protocol

In this subsection, we will construct a physical ZKP protocol for general Sumplete
(which clearly works for restricted Sumplete and (p, 3p)-Sumplete as well). In our
proposed protocol, the prover represents the solution of a Sumplete instance using
cards, and calculates the sum of uncrossed numbers in each row and column of the
grid using an integer counter. Then, the verifier checks whether the sum of uncrossed
numbers in each row and column is equal to the target value. If the sum is equal to the
target value for every row and column, the verifier accepts.
Decoy Technique
To realize the above protocol without revealing the solution, i.e., the locations of cells
whose numbers are crossed out, we prepare two integer counters called a true counter
and a false counter for each row and column. The true (resp., false) counter is used
to calculate the sum of uncrossed (resp., crossed) numbers in a row or column. For
each number in a row or column, the prover adds it to either the true or false counter
depending on its status in the solution: if it is uncrossed (resp., crossed), it is added
to the true (resp., false) counter. By using a technique called decoy technique, we can
add integers while hiding the solution, i.e., which counter they were added to. Similar
techniques are widely seen in physical cryptography, e.g., [19, 20].

4.2 Proposed Protocol

The proposed protocol proceeds as follows.

1. On each cell, the prover places a pair of face-down cards ?
♥

?
♣

if the number in

that cell is uncrossed or ?
♣

?
♥

if the number in that cell is crossed out.

2. For each row and column, the prover and the verifier execute the following oper-
ations.

(a) The prover computes α (resp., β), an absolute value of the sum of all negative
(resp., positive) integers in that row or column. The prover also makes a true
counter and a false counter, which can represent an integer i (−α ≤ i ≤ β).
Then, the prover places the false counter below the true counter and the verifier
checks that both counters indicate 0.

(b) The prover places ♥ on the left of the true counter and ♣ on the left of the
false counter. Then, the prover makes all the cards face-down. We call these
two sequences of cards a card matrix.

123

444 New Generation Computing (2024) 42:429–448

?
♥

? · · · ?︸ ︷︷ ︸
the true counter

?
♣

? · · · ?︸ ︷︷ ︸
the false counter

(c) For each cell in the row or column, the prover and the verifier execute the
following operations.
(i) The prover picks a pair of cards on the cell and places the left (resp., right)

card of the pair to the left of the upper (resp., lower) sequence of the card
matrix made in Step 2(b).

?
♥

?︸︷︷︸
left card

? · · · ?︸ ︷︷ ︸
the true counter

?
♣

?︸︷︷︸
right card

? · · · ?︸ ︷︷ ︸
the false counter

(ii) The prover regards each of the upper and lower rows of the matrix made
in Step 2(c)i as a pile and applies the pile-scramble shuffle to these two
piles.

(iii) The prover turns over the leftmost card of each row and adds the number in
the cell to the counter in the row whose leftmost card is ♥ . Note that this
addition must be executed by keeping the cards off the counter face-down.

?♣ ? · · · ?

?♥ ? · · · ? add number︸ ︷︷ ︸
the true/false counter

(iv) The prover turns all cards face-down, regards each of the upper and lower
rows as a pile, and applies the pile-scramble shuffle in the same way as in
Step 2(c)ii.

(v) The verifier opens the second leftmost card of each row and swaps the
two rows (if necessary) such that the row having an opened ♥ becomes
the upper row.

♥? ? · · · ?

♣? ? · · · ?

(vi) The prover turns all cards face-down and returns the pair of leftmost cards
of both rows to their original cells.

?
♥

?︸︷︷︸
left card

? · · · ?

?
♣

?︸︷︷︸
right card

? · · · ?

123

New Generation Computing (2024) 42:429–448 445

(d) The verifier turns over the leftmost card of each row and reveals the counter in
the row whose leftmost card is ♥ . If the value indicated by the counter is not
equal to the target value, the verifier rejects the instance. If the verifier does
not reject the instance, the prover applies scramble shuffle to both truth and
decoy counter. After the scramble shuffles, the prover opens all the counters
and resets the value to 0.

3. If the verifier did not reject the instance for all rows and columns, the verifier
accepts.

4.3 Decoy Technique

The decoy technique is used in Steps 2(c)ii and 2(c)iii. In Step 2(c)iii, the counter in
the same row as ♥ is the true (resp., false) counter if the number is uncrossed (resp.,

crossed). Because of the pile-scramble shuffle in Step 2(c)ii, the location of ♥ in the
leftmost column is independent of the card matrix made in Step 2(c)i. Therefore, the
verifier does not know which counter appears on the right of ♥ .

4.4 Numbers of Cards and Shuffles

Consider the number of cards used in our protocol. In Step 1, the prover usesmn pairs
of ♥ and ♣ cards. In Step 2, the prover and the verifier checkm rows and n columns.
Let k be the max value of α + β in each row and column, where α and β are those
in Step 2(a). Then, Step 2(a) requires one ♥ card and at most k ♣ cards for each

counter. In addition, Step 2(b) needs one ♥ card and one ♣ card. Since we can reuse
the cards required for Steps 2(a) and 2(b), it is sufficient to consider the maximum
number of cards required for the counter within them+n checks. Therefore, we need
3 ♥ cards and 2k + 1 ♣ cards in Step 2.

In total, our protocol uses 2mn + 2k + 4 = O(mn + k) cards (mn + 3 ♥ cards

and mn + 2k + 1 ♣ cards). As the input size is measured by m, n, and log2 k (the
grid size and the binary size of the integers in the grid), the number of cards is actually
pseudo-polynomial (exponential in terms of log2 k). Therefore, we need to reduce the
number of cards further.

We can lower the number of cards to polynomials ofm, n, and log2 k by representing
each integer in two’s complements. By encoding 0 and 1 as ♣ ♥ and ♥ ♣ , respec-
tively, integers (10)10 = (01010)2 and (−6)10 = (11010)2 digits can be encoded as
follows.

(10)2 = ♣ ♥ ♥ ♣ ♣ ♥ ♥ ♣ ♣ ♥
(−6)2 = ♥ ♣ ♥ ♣ ♣ ♥ ♥ ♣ ♣ ♥

The addition of the counter to the number of cells in two’s complements can be
executed by card-based half-adder and card-based AND protocol with two additional
cards [21]. When using two’s complements, we need 2�log2 k� · 2 cards for two

123

446 New Generation Computing (2024) 42:429–448

counters instead of 2k + 2 cards, additional 2�log2 k� cards for the number of cells,
and additional 4 cards for the addition operation. Hence, the total number of cards is
2mn + 6�log2 k� + 6.

Next, consider the number of shuffles in our protocol. Since pile-scramble shuffles
are executed in Steps 2(c)ii and 2(c)iv, 2n (resp., 2m) shuffles are executed in Step 2(c)
for each row (resp., column). Moreover, one scramble shuffle is applied to each of the
true and false counters in Step 2(d). Also, both of Step 2(c) and step 2(d) are executed
m times for all rows and n times for all columns in Step 2. In total, our protocol
requires m · (2n + 2) + n · (2m + 2) = 4mn + 2m + 2n shuffles. When using two’s
complements, we need additional 7�log2 k� shuffles for each addition operation. Since
the addition operation is executed for 2mn times in the proposed protocol, the total
number of shuffles is 14mn�log2 k� + 4mn + 2m + 2n.

5 Proof of Security

In this section, we will show that our protocol satisfies the three properties of ZKP.

5.1 Completeness

Lemma 1 If the prover knows the solution, then the verifier always accepts.

Proof If the prover knows the solution, then the sum of the numbers in cells where
two cards ♥ ♣ are placed in this order is equal to the target value for all rows and
columns. Therefore, the verifier does not reject the instance for all rows and columns.
Hence, the verifier always accepts. 	

5.2 Soundness

Lemma 2 If the prover does not know the solution, then the verifier always rejects the
instance, i.e., the soundness error is 0.

Proof Wewill prove a contraposition of this statement: if the verifier accepts, then the
prover knows the solution of the given Sumplete instance.

If the verifier accepts, then for every row and column, the sum of cells where ♥ ♣
are placed is equal to the target value. Consider the m × n matrix Ĝ ∈ {0, 1}m×n such
that

ĝi, j =
{
1 (♥ ♣ are placed in (i, j)-cell.)

0 (♣ ♥ are placed in (i, j)-cell.)
.

Ĝ is the solution of given instance of Sumplete. Thus, the prover knows the solution
Ĝ. Since the contraposition holds, the soundness error is 0. 	

123

New Generation Computing (2024) 42:429–448 447

5.3 Zero-Knowledge

Lemma 3 During the protocol, the verifier learns nothing about the solution.

Proof To prove the zero-knowledge property, it is sufficient to show that all distri-
butions of cards opened during the protocol execution can be simulated without the
solution.

• In Step 2(c)iii, we open the leftmost column in the card matrix. Before the oper-
ation, we apply the pile-scramble shuffle to the two piles of the upper row and
the lower row of the matrix. Thus, ♥ appears at each row with probability 1/2.
Therefore, the distribution of cards opened in Step 2(c)iii can be simulated without
the solution.

• In Step 2(c)v, we open the second leftmost column in the card matrix. Before the
operation, we apply the pile-scramble shuffle to the two piles of the upper row and
the lower row of the matrix. Thus, ♥ appears at each row with the probability
1/2. Therefore, the distribution of cards opened in Step 2(c)v can be simulated
without the solution.

• In Step 2(d), we open the true counter after adding numbers in the row or column.
If the prover knows the solution, the value represented by the true counter is equal
to the target value of that row or column. Therefore, the distribution of the true
counter’ cards opened in Step 2(d) can be simulated without the solution.

Hence, the verifier learns nothing about the solution. 	

6 Conclusion

We proved that Sumplete, a puzzle generated by ChatGPT, is NP-complete and pro-
posed a physical ZKP protocol for it. In our ZKP protocol, we realized the addition of
not only positive integers but also negative integers by expanding the usual technique.
Moreover, we use the decoy technique to conceal the solution from the verifier.

Acknowledgements This work was supported by JSPS KAKENHI Grant Numbers JP22KJ1362 and
JP23KJ0968.

Data availability No data was used for the research described in the article.

Declarations

Conflict of interest The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

448 New Generation Computing (2024) 42:429–448

References

1. Hatsugai, K., Asano, K., Abe, Y.: A physical zero-knowledge proof for Sumplete, a puzzle generated
by chatgpts. In: COCOON (2023)

2. OpenAI: GPT-4 Technical Report (2023)
3. Puzzled Penguin: ChatGPT invented its own puzzle game. https://puzzledpenguin.substack.com/p/

chatgpt-invented-its-own-puzzle-game (2023)
4. Hey, Good Game: Sumplete. https://sumplete.com/
5. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM

J. Comput. 18(1), 186–208 (1989)
6. Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical zero-knowledge

proof systems for solutions of Sudoku puzzles. Theory Comput. Syst. 44(2), 245–268 (2009)
7. Ruangwises, S.: Two standard decks of playing cards are sufficient for a ZKP for sudoku. New Gener.

Comput. 40(1), 49–65 (2022)
8. Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge proof for sudoku.

Theor. Comput. Sci. 839, 135–142 (2020)
9. Bultel, X., Dreier, J., Dumas, J., Lafourcade, P.: Physical zero-knowledge proofs for Akari, Takuzu,

Kakuro and KenKen. In: FUN, vol. 49, pp. 8–1820 (2016)
10. Miyahara, D., Sasaki, T., Mizuki, T., Sone, H.: Card-based physical zero-knowledge proof for Kakuro.

IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 102-A(9), 1072–1078 (2019)
11. Boer, B.: More efficient match-making and satisfiability: the five card trick. In: EUROCRYPT, vol.

434, pp. 208–217 (1989)
12. Crépeau, C., Kilian, J.: Discreet solitary games. In: CRYPTO, pp. 319–330 (1993)
13. Shinagawa, K., Mizuki, T., Schuldt, J.C.N., Nuida, K., Kanayama, N., Nishide, T., Hanaoka, G.,

Okamoto, E.: Card-based protocols using regular polygon cards. IEICE Trans. Fundam. Electron.
Commun. Comput. Sci. 100-A(9), 1900–1909 (2017)

14. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a hidden random
permutation without fixed points. In: UCNC, vol. 9252, pp. 215–226 (2015)

15. Miyahara, D., Hayashi, Y., Mizuki, T., Sone, H.: Practical card-based implementations of Yao’s mil-
lionaire protocol. Theor. Comput. Sci. 803, 207–221 (2020)

16. Takashima, K., Abe, Y., Sasaki, T., Miyahara, D., Shinagawa, K., Mizuki, T., Sone, H.: Card-based
protocols for secure ranking computations. Theor. Comput. Sci. 845, 122–135 (2020)

17. Ruangwises, S., Itoh, T.: How to physically verify a rectangle in a grid: a physical ZKP for Shikaku.
In: FUN, pp. 24–12412 (2022)

18. Porschen, S., Schmidt, T., Speckenmeyer, E.,Wotzlaw, A.: XSAT andNAE-SAT of linear CNF classes.
Discrete Appl. Math. 167, 1–14 (2014)

19. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: FAW, pp. 358–369 (2009)
20. Nakai, T., Tokushige, Y., Misawa, Y., Iwamoto, M., Ohta, K.: Efficient card-based cryptographic

protocols for millionaires’ problem utilizing private permutations. In: CANS, pp. 500–517 (2016)
21. Nishida, T., Hayashi, Y.-i., Mizuki, T., Sone, H.: Card-based protocols for any Boolean function. In:

Theory andApplications ofModels ofComputation: 12thAnnualConference, TAMC2015, Singapore,
18–20 May 2015, Proceedings 12, pp. 110–121. Springer (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://puzzledpenguin.substack.com/p/chatgpt-invented-its-own-puzzle-game
https://puzzledpenguin.substack.com/p/chatgpt-invented-its-own-puzzle-game
https://sumplete.com/

	NP-Completeness and Physical Zero-Knowledge Proofs for Sumplete, a Puzzle Generated by ChatGPT
	Abstract
	1 Introduction
	1.1 Background
	1.2 Physical Zero-Knowledge Proof Protocols
	1.3 Our Contribution
	1.4 Organization of Paper

	2 Preliminaries
	2.1 Notation
	2.2 Zero-Knowledge Proof
	2.3 Card Operations
	2.3.1 Cyclic Shift
	2.3.2 Scramble Shuffle
	2.3.3 Pile-Scramble Shuffle

	2.4 Representation of an Integer

	3 NP-Completeness of Sumplete
	3.1 General Sumplete
	3.1.1 Formal Definitions of Problems
	3.1.2 NP-Completeness Proof of General Sumplete

	3.2 Restricted Sumplete
	3.2.1 Formal Definitions of Problems
	3.2.2 NP-Completeness Proof of Restricted Sumplete

	4 Physical ZKP Protocol for Sumplete
	4.1 Idea of Proposed Protocol
	4.2 Proposed Protocol
	4.3 Decoy Technique
	4.4 Numbers of Cards and Shuffles

	5 Proof of Security
	5.1 Completeness
	5.2 Soundness
	5.3 Zero-Knowledge

	6 Conclusion
	Acknowledgements
	References

