
Vol.:(0123456789)

New Generation Computing (2022) 40:49–65
https://doi.org/10.1007/s00354-021-00146-y

123

Two Standard Decks of Playing Cards are Sufficient
for a ZKP for Sudoku

Suthee Ruangwises1 

Received: 31 August 2021 / Accepted: 4 December 2021 / Published online: 24 January 2022
© Ohmsha, Ltd. and Springer Japan KK, part of Springer Nature 2021

Abstract
Sudoku is a famous logic puzzle where the player has to fill a number between 1 and
9 into each empty cell of a 9 × 9 grid such that every number appears exactly once
in each row, each column, and each 3 × 3 block. In 2020, Sasaki et al., developed
a physical card-based protocol of zero-knowledge proof (ZKP) for Sudoku, which
enables a prover to convince a verifier that he/she knows a solution of the puzzle
without revealing it. Their protocol uses 90 cards, but requires nine identical copies
of some cards, which cannot be found in a standard deck of playing cards (consist-
ing of 52 different cards and two jokers). Hence, nine identical standard decks are
required to perform that protocol, making the protocol not very practical. In this
paper, we propose a new ZKP protocol for Sudoku that can be performed using only
two standard decks of playing cards, regardless of whether the two decks are identi-
cal or different. In general, we also develop the first ZKP protocol for a generalized
n × n Sudoku that can be performed using a deck of all different cards.

Keywords  Zero-knowledge proof · Card-based cryptography · Sudoku · Puzzle

Introduction

Sudoku is one of the world’s most popular logic puzzles. A standard Sudoku puz-
zle consists of a 9 × 9 grid divided into nine blocks of size 3 × 3 , with some of
the cells already filled with numbers between 1 and 9. The objective of Sudoku is
to fill a number into each empty cell such that every number from 1 to 9 appears
exactly once in each row, each column, and each 3 × 3 block [19] (see Fig. 1). In a
generalized version of Sudoku, the grid has size n × n and is divided into n blocks

This paper is an extended version of [23], which appeared at COCOON 2021.

 *	 Suthee Ruangwises
	 ruangwises@gmail.com

1	 Department of Mathematical and Computing Science, Tokyo Institute of Technology, Tokyo,
Japan

http://orcid.org/0000-0002-2820-1301
http://crossmark.crossref.org/dialog/?doi=10.1007/s00354-021-00146-y&domain=pdf

50	 New Generation Computing (2022) 40:49–65

123

of size
√
n ×

√
n , where n is a perfect square. A generalized Sudoku is proven to

be NP complete [28].

Zero‑Knowledge Proof

We aim to construct a zero-knowledge proof (ZKP) for Sudoku, which enables a
prover P to convince a verifier V that he/she knows a solution of the puzzle with-
out revealing any information about it. Formally, a ZKP is an interactive proof
between P and V where both of them are given a computational problem x, but
only P knows a solution w of x. A ZKP with perfect completeness and perfect
soundness must satisfy the following three properties.

1.	 Perfect completeness: If P knows w, then V always accepts.
2.	 Perfect soundness: If P does not know w, then V always rejects.
3.	 Zero knowledge: V learns nothing about w. Formally, there exists a probabilistic

polynomial time algorithm S (called a simulator), not knowing w but having a
black-box access to V, such that the outputs of S follow the same probability
distribution as the outputs of the actual protocol.

The concept of a ZKP was first introduced by Goldwasser et al. [5]. Instead of
computational ZKPs, recently many results have been focusing on constructing
physical ZKPs using portable objects found in everyday life such as a deck of
cards. These physical protocols have benefits that they do not require electronic
devices and also allow external observers to check that the prover truthfully exe-
cutes the protocol (which is often a challenging task for digital protocols). They
also have great didactic values and can be used to teach the concept of a ZKP to
non-experts.

3 7 4 1

5 2 3 7

6 5 4

3 6 1

1 5 4 6 3

5 9 2 6 1 3

7 1 8

9 8 2 3 7 4 5 6 1

4 5 1 9 6 2 3 7 8

7 3 6 1 8 5 4 2 9

2 4 8 7 5 3 1 9 6

3 6 9 2 1 8 7 4 5

1 7 5 4 9 6 8 3 2

5 9 4 8 2 7 6 1 3

8 1 3 6 4 9 2 5 7

6 2 7 5 3 1 9 8 4

Fig. 1   An example of a 9 × 9 Sudoku puzzle (left) and its solution (right)

51New Generation Computing (2022) 40:49–65	

123

Previous Protocols

In 2009, Gradwohl et al. [6] developed the first card-based ZKP protocols for Sudoku,
and also the first for any kind of logic puzzle. Each of the six developed protocols,
however, either has a nonzero soundness error or requires special tools such as scratch-
off cards. Later in 2020, Sasaki et al. [27] developed an improved ZKP protocol for
Sudoku that achieves perfect soundness without using special tools.

Uniqueness Verification Protocol

Before showing the protocol of Sasaki et al., we first explain the following uniqueness
verification protocol, which was also developed by the same authors [27]. This protocol
allows the prover P to convince the verifier V that a sequence � of n face-down cards
is a permutation of different cards a1, a2,… , an in some order, without revealing their
orders. It also preserves the orders of the cards in � (so that the sequence can be later
used in other protocols).

Let x1, x2,… , xn be another set of n different cards. P performs the following steps.

1.	 Publicly place face-down cards x1, x2,… , xn below the face-down sequence � in
this order from left to right to form a 2 × n matrix of cards (see Fig. 2).

2.	 Rearrange all columns of the matrix by a uniformly random permutation. (This
step can be performed in real world by putting both cards in each column into an
envelope and scrambling all envelopes together.)

3.	 Turn over all cards in the top row. V verifies that the sequence is a permutation
of a1, a2,… , an . Otherwise, V rejects.

4.	 Turn over all face-up cards. Rearrange all columns of the matrix by a uniformly
random permutation.

5.	 Turn over all cards in the bottom row. Rearrange the columns such that the cards
in the bottom rows are x1, x2,… , xn in this order from left to right. The sequence
in the top row now returns to its original state.

Protocol of Sasaki et al.

Sasaki et al. [27] developed a protocol to verify a solution of an n × n Sudoku puzzle.
This protocol has three slightly different variants. Here we will show only the first vari-
ant, which is the one using the least number of cards.

Each card used in this protocol has a positive number on the front side (denoted by
1  , 2 , ...). All cards have identical back sides (denoted by ?  ). First, on each cell

Fig. 2   A 2 × n matrix con-
structed in Step 1 σ: ? ? ... ?

? ? ... ?
x1 x2 xn

52	 New Generation Computing (2022) 40:49–65

123

already having a number j, P publicly places a face-down j  ; on each empty cell that
has a number j in P’s solution, P secretly places a face-down j .

P then applies the uniqueness verification protocol to verify that every row, column,
and block contains a permutation of 1  , 2  , ..., n .

In total, this protocol uses n2 + n cards: n identical copies of 1  , 2  , ..., n (to
encode the numbers in the grid), and another set of n different cards (to use in the
uniqueness verification protocol). For a standard 9 × 9 puzzle, the protocol uses 90
cards, which is less than the number of cards in two standard decks (108). However,
the protocol requires nine identical copies of 1  , 2  , ..., 9  . As a standard deck con-
sists of 54 different cards (including two different jokers), nine identical decks are actu-
ally required in order to perform this protocol, making the protocol not very practical.
Another choice is to use a different kind of deck (e.g. cards from board games) that
includes several identical copies of some cards, but these decks are more difficult to
find in everyday life.

Considering the drawback of this protocol, we aim to develop a more practical ZKP
protocol for a 9 × 9 Sudoku that can be performed using only two standard decks of
playing cards.

Related Work

After the development of card-based ZKP protocols for Sudoku, card-based ZKP pro-
tocols for other popular logic puzzles have also been proposed, including Nonogram [3,
22], Akari [1], Takuzu [1, 15], Kakuro [1, 16], KenKen [1], Makaro [2], Norinori [4],
Slitherlink [13], Juosan [15], Numberlink [24], Suguru [21], Ripple Effect [25], Nuri-
kabe [20], Hitori [20], Cryptarithmetic [9], and Bridges [26].

Apart from verifying solutions of logic puzzles, card-based protocols have also been
extensively studied in secure multi-party computation, a setting where multiple parties
want to jointly compute a function of their secret inputs without revealing them. The
vast majority of the developed protocols, however, also uses multiple identical cop-
ies of two different cards (usually denoted by ♣ and ♡  ), making them not imple-
mentable by a single standard deck of playing cards. The only exceptions are [10, 12,
17, 18] which introduced AND, XOR, and copy protocols using a standard deck, and
[14] which introduced a Yao’s millionaire protocol using a standard deck. In [12], the
authors also posed an open problem to develop ZKP protocols for logic puzzles using a
standard deck.

Pratically, a standard deck of playing cards consists of 54 different cards (includ-
ing two different jokers). Theoretically, it is also a challenging problem to develop a
protocol that can be implemented using a deck of all different cards, so we also study
the setting where the deck consists of 1  , 2  , ...where each card can have an arbitrarily
large number on it.

53New Generation Computing (2022) 40:49–65	

123

Our Contribution

In this paper, we propose a new ZKP protocol for a generalized n × n Sudoku puzzle
with perfect completeness and soundness using a deck of all different cards.

There are two slightly different methods to implement our protocol. The first
one uses n2 + n

√
n + n +

√
n cards and 4n

√
n shuffles. The second one uses

n2 + 2n + 3
√
n cards and at most 2n2(

√
n − 1) + 2 shuffles (see Table 1).

In particular, for a standard 9 × 9 Sudoku puzzle, our protocol (with the second
method of implementation) uses 108 cards and can be performed using two standard
decks of playing cards, regardless of whether the two decks are identical or different
(see Table 2).

Theoretically, this work is an important step in card-based cryptography as it is
the first ZKP protocol for any kind of logic puzzle that can be performed using a
deck of all different cards, answering the open problem posed in [12].

The main difference from the conference version of this paper [23] is the inclu-
sion of an optimization of the number of shuffles in Sect. 7, which was omitted in
the conference version.

Preliminaries

At first, we assume that all cards used in our protocols have different front sides and
identical back sides (although we will later show that some pairs of cards can have
identical front sides or different back sides, and our protocols still work correctly).

Marked Matrix

Suppose we have a k × � matrix of face-down cards (we call these cards encoding
cards). Let Row i denote an i-th topmost row and let Column j denote a j-th leftmost

Table 1   The number of required cards and shuffles for each protocol for an n × n Sudoku

Protocol Standard Deck? #Cards #Shuffles

Sasaki et al. [27] No n
2
+ n 5n

Ours (Section “Method A”) Yes n
2
+ n

√
n + n +

√
n 4n

√
n

Ours (Section “Method B”) Yes n
2
+ 2n + 3

√
n 2n2(

√
n − 1) for even n;

2n2(
√
n − 1) + 2 for odd

n > 9

Table 2   The number of required
cards and shuffles for each
protocol for a 9 × 9 Sudoku

Protocol Standard Deck? #Cards #Shuffles

Sasaki et al. [27] No 90 45
Ours (Section “Method A”) Yes 120 108
Ours (Section “Method B”) Yes 108 322

54	 New Generation Computing (2022) 40:49–65

123

column. To the left of Column 1, publicly place face-down cards p1, p2,… , pk in
this order from top to bottom; this new column is called Column 0. Analogously,
above Row 1, publicly place face-down cards q1, q2,… , q

�
 in this order from left to

right; this new row is called Row 0.
We call this new structure a k × � marked matrix (see Fig. 3), and we call the

cards in Row 0 and Column 0 marking cards.

Shuffle Operations

Given a k × � marked matrix and a set S ⊆ {1, 2,… , k} , an operation row_
shuffle(S) rearranges the rows of the matrix with indices in S (including marking
cards in Column 0) by a uniformly random permutation. For example, row_shuf-
fle({3, 4, 5} ) rearranges Row 3, Row 4, and Row 5 of the matrix by a uniformly
random permutation. This operation can be performed in real world by putting all
cards in each row with an index in S into an envelope and scrambling all envelopes
together.

Analogously, for a set S ⊆ {1, 2,… ,�} , an operation col_shuffle(S) rearranges
the columns of the matrix with indices in S (including marking cards in Row 0) by a
uniformly random permutation.

Rearrangement Protocol

After applying some shuffle operations to a marked matrix, a rearrangement pro-
tocol reverts the matrix back to its original state. Slightly different variants of this
protocol with the same idea has been used in previous work [2, 7, 8, 24, 25, 27].

Suppose we have a k × � marked matrix M with marking cards p1, p2,… , pk in
Column 0 and q1, q2,… , q

�
 in Row 0. We perform the following steps.

1.	 Apply row_shuffle({1, 2,… , k} ) and col_shuffle({1, 2,… ,�} ) to M.
2.	 Turn over all marking cards in Column 0 and Row 0. Rearrange the rows of M

such that the marking cards in Column 0 are p1, p2,… , pk in this order from top
to bottom. Rearrange the columns of M such that the marking cards in Row 0 are
q1, q2,… , q

�
 in this order from left to right.

Fig. 3   An example of a 4 × 5
marked matrix

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

q1 q2 q3 q4 q5

?

?

?

?

p4

p3

p2

p1

4

3

2

1

0

Row

0 1 2 3 4 5

Column

55New Generation Computing (2022) 40:49–65	

123

Standard Deck Chosen Cut Protocol

Given a k × � marked matrix M, a standard deck chosen cut protocol allows the
prover P to choose a card located at Row i and Column j of M he/she wants with-
out revealing i or j to the verifier V. This protocol was modified from an original
chosen cut protocol of Koch and Walzer [11] (which uses identical copies of a
♣ and a ♡  ) so that it can be performed using a standard deck. P performs the

following steps.

1.	 On each of the k� encoding cards in the matrix, secretly stack each of face-down
cards x1, x2,… , xk� (called helping cards) such that x1 is located at Row i and
Column j, and x2, x3,… , xk� are in a uniformly random permutation (which is
known to P but not to V).

2.	 Apply row_shuffle({1, 2,… , k} ) and col_shuffle({1, 2,… ,�} ) to M.
3.	 Turn over all helping cards. Locate the position of x1 . The encoding card from

that stack is the one originally located at Row i and Column j as desired.
4.	 Remove all helping cards. Apply the rearrangement protocol to revert M to its

original state.

This protocol will be implicitly used in our main protocol, with Step 2 being
replaced by equivalent operations.

Main Protocol

For simplicity, we will show a protocol for a standard 9 × 9 Sudoku puzzle. Our
protocol can be straightforwardly generalized to an n × n puzzle.

We use the following cards in our protocol.

–	 encoding cards aj, bj, cj, dj, ej, fj, gj, hj, ij ( j = 1, 2,… , 9)
–	 marking cards pj ( j = 1, 2, 3 ) and qj ( j = 1, 2,… , 9)
–	 helping cards xj, yj, zj ( j = 1, 2,… , 9)

Suppose the grid is divided into blocks A,B,… , I (see Fig. 4). We use a card
aj ( j = 1, 2,… , 9 ) to encode a number j in Block A. Analogously, we use cards
bj, cj,… , ij ( j = 1, 2,… , 9 ) to encode numbers j in blocks B,C,… , I , respectively.

On each cell already having a number, P publicly places a face-down corre-
sponding card (e.g. places a card b3 on a cell with a number 3 in Block B). On
each empty cell, P secretly places a face-down corresponding card according to
his/her solution.

56	 New Generation Computing (2022) 40:49–65

123

Block Verification

First, P performs the following steps to verify that every number from 1 to 9
appears exactly once in each block.

1.	 Apply the uniqueness verification protocol in section “Uniqueness Verification
Protocol” to verify that Block A consists of cards a1, a2,… , a9 in some order.

2.	 Analogously perform Step 1 for Blocks B,C,… , I.

Now V is convinced that every number from 1 to 9 appears exactly once in each
block.

Row/Column Verification

Next, P will verify that every number from 1 to 9 appears exactly once in each row
and column. There are two methods to do this.

Method A

P performs Steps 1–6 as shown below to verify that a number 1 appears exactly
once in each of the three topmost rows.

1.	 Take the cards from the three topmost rows to form a 3 × 9 matrix and publicly
place marking cards p1, p2, p3 in Column 0 and q1, q2,… , q9 in Row 0 to create a
3 × 9 marked matrix M.

2.	 On each encoding card in Block A, secretly stack each of face-down cards
x1, x2,… , x9 such that x1 is on a1 , and x2, x3,… , x9 are in a uniformly random
permutation (which is known to P but not to V).

3.	 Do the same for cards y1, y2,… , y9 in Block B (with y1 on b1 ) and z1, z2,… , z9 in
Block C (with z1 on c1).

4.	 Apply row_shuffle({1, 2, 3} ), col_shuffle({1, 2, 3} ), col_shuffle({4, 5, 6} ),
and col_shuffle({7, 8, 9} ) to M.

Fig. 4   Blocks
A, B, C, D, E, F, G, H, and I in
the grid A B C

D E F
G H I

57New Generation Computing (2022) 40:49–65	

123

5.	 Turn over all helping cards. Locate the positions of x1 , y1 , and z1 . Turn over the
encoding cards in these three stacks to show that they are a1 , b1 , and c1 , respec-
tively, and that they are all located at different rows. Otherwise, V rejects.

6.	 Remove all helping cards and turn all encoding cards face-down. Apply the rear-
rangement protocol in section “Rearrangement Protocol” to revert M to its origi-
nal state.

Note that Steps 2–6 are equivalent to applying the standard deck chosen cut protocol
in section “Standard Deck Chosen Cut Protocol” to Blocks A, B, and C, simultane-
ously. These steps ensure that the three 1s in Blocks A, B, and C are all located at
different rows. Since it has already been shown that each block contains exactly one
1, this implies there is exactly one 1 in each of the three topmost rows.

7.	 Perform Steps 1–6 analogously for numbers 2, 3,… , 9 . Now V is convinced that
every number appears exactly once in each of the three topmost rows.

8.	 Perform Steps 1–7 analogously for Blocks D, E, and F, and for Blocks G, H, and
I to verify the rest of the rows. The verification for columns also works similarly
(take the cards from Blocks A, D, and G, from Blocks B, E, and H, and from
Blocks C, F, and I, and just transpose the marked matrix).

Now V is convinced that every number from 1 to 9 appears exactly once in each
block, each row, and each column.

This method uses 81 encoding cards, 12 marking cards, and 27 helping cards,
resulting in the total of 120 cards, slightly more than the number of cards in two
standard decks. It uses 18 + 6 × 9 × 3 × 2 = 342 shuffles (which can be reduced to
108 after the optimization in section “Method A”). We aim to further reduce the
number of required cards as a trade-off between the numbers of cards and shuffles.

Method B

Observe that in Steps 1–6 of Method A, we verify that the three 1s in Blocks A, B,
and C are all located at different rows by verifying these three blocks at the same
time, which requires a lot of marking and helping cards. Instead, we can first verify
that the two 1s in Blocks A and B are located at different rows, then do the same for
Blocks A and C, and for Blocks B and C. This leads to the same conclusion that the
three 1s in Blocks A, B, and C are all located at different rows.

P performs Steps 1–6 as shown below to verify that the two 1s in Blocks A and B
are located at different rows.

1.	 Take the cards from blocks A and B to form a 3 × 6 matrix and publicly place
marking cards p1, p2, p3 in Column 0 and q1, q2,… , q6 in Row 0 to create a 3 × 6
marked matrix M.

2.	 On each encoding card in Block A, secretly stack each of face-down cards
x1, x2,… , x9 such that x1 is on a1 , and x2, x3,… , x9 are in a uniformly random
permutation (which is known to P but not to V).

58	 New Generation Computing (2022) 40:49–65

123

3.	 Do the same for cards y1, y2,… , y9 in Block B (with y1 on b1).
4.	 Apply row_shuffle({1, 2, 3} ), col_shuffle({1, 2, 3} ), and col_shuf-

fle({4, 5, 6} ) to M.
5.	 Turn over all helping cards. Locate the positions of x1 and y1 . Turn over the encod-

ing cards in both stacks to show that they are a1 and b1 , respectively, and that they
are located at different rows. Otherwise, V rejects.

6.	 Remove all helping cards and turn all encoding cards face-down. Apply the rear-
rangement protocol in section “Rearrangement Protocol” to revert M to its origi-
nal state.

Now V is convinced that the two 1s in Blocks A and B are located at different rows.

7.	 Perform Steps 1–6 analogously for numbers 2, 3,… , 9.
8.	 Perform Steps 1–7 analogously for Blocks A and C, and for Blocks B and C.

Now V is convinced that every number appears exactly once in each of the three
topmost rows.

9.	 Perform Steps 1–8 analogously to verify the rest of the rows. The verification for
columns also works similarly.

Now V is convinced that every number from 1 to 9 appears exactly once in each
block, each row, and each column.

This method uses 81 encoding cards, nine marking cards, and 18 helping cards,
resulting in the total of 108 cards, which is exactly the number of cards from two
standard decks (including jokers). It uses 18 + 5 × 9 × 3 × 3 × 2 = 828 shuffles
(which can be reduced to 322 after the optimization in section “Method B”).

We say that two cards are from the same set if they are denoted by the same let-
ter with different indices (e.g. d2 and d5 are from the same set). Notice that in both
methods, cards from different sets never get mixed together. Therefore, cards from
different sets can have identical front sides or different back sides (or even different
sizes) and our protocol still works correctly. The only requirement is that all cards
from the same set must have different front sides and identical back sides.

Therefore, when implementing Method B using two standard decks of playing
cards, we can, for example, use 54 cards from the first deck in the sets aj, bj,… , fj
and 54 cards from the second deck in the remaining sets. The protocol always works
correctly regardless of whether the two decks are identical or different, since it
allows cards from different sets to have identical front sides (in case of identical
decks) or different back sides or sizes (in case of different decks). Note that in some
decks, the two jokers are identical; in that case, we just need to make sure that the
two jokers are in different sets.

Generalization

This protocol can be straightforwardly generalized to an n × n Sudoku puzzle.
Method A uses n2 encoding cards, n +

√
n marking cards, and n

√
n

helping cards, resulting in the total of n2 + n
√
n + n +

√
n cards. It uses

59New Generation Computing (2022) 40:49–65	

123

2n + (

√
n + 3) × n ×

√
n × 2 = 2n2 + 6n

√
n + 2n shuffles (which can be reduced

to 4n
√
n after the optimization in section “Method A”).

Method B uses n2 encoding cards, 3
√
n marking cards, and 2n helping cards,

resulting in the total of n2 + 2n + 3
√
n cards. It uses

2n + 5 × n ×

�√
n

2

�
×

√
n × 2 = 5n2(

√
n − 1) + 2n shuffles (which can be

reduced to at most 2n2(
√
n − 1) + 2 after the optimization in section “Method

B”).

Proof of Correctness and Security

We will prove the perfect completeness, perfect soundness, and zero-knowledge
properties of our protocol.

Lemma 1  (Perfect Completeness) If P knows a solution of the Sudoku puzzle, then V
always accepts.

Proof  Suppose P knows a solution and places cards on the grid accordingly. Every
number from 1 to 9 will appear exactly once in each row, each column, and each
block. Hence, the uniqueness verification protocol will pass for every block. Also,
the same numbers from different blocks are always located at different rows and col-
umns, so both Methods A and B will pass. Therefore, V always accepts. 	� ◻

Lemma 2  (Perfect Soundness) If P does not know a solution of the Sudoku puzzle,
then V always rejects.

Proof  Suppose P does not know a solution. There will be a number that appears
at least twice in the same row, column, or block. If it appears twice in a block, the
uniqueness verification protocol for that block will fail. If it appears twice in differ-
ent blocks in the same row (resp. column), Method A will fail when verifying the
three blocks containing that row (resp. column); also, method B will fail when veri-
fying the two blocks where these two numbers appear. Therefore, V always rejects. 	
� ◻

Lemma 3  (Zero-Knowledge) During the verification, V learns nothing about P’s
solution.

Proof  It is sufficient to show that all distributions of cards that are turned face-up
can be simulated by a simulator S that does not know P’s solution.

–	 In Steps 3 and 5 of the uniqueness verification protocol in section “Unique-
ness Verification Protocol”, the orders of the n cards are uniformly distributed
among all n! permutations. Hence, it can be simulated by S.

60	 New Generation Computing (2022) 40:49–65

123

–	 In Step 2 of the rearrangement protocol in section “Rearrangement Protocol”, the
orders of p1, p2,… , pk and q1, q2,… , q

�
 are uniformly distributed among all k!

permutations and �! permutations, respectively. Hence, it can be simulated by S.
–	 In Step 5 of Method A in section “Row/Column Verification”, the rows where x1 ,

y1 , and z1 are located are uniformly distributed among all 3! = 6 permutations of
the first three rows; the columns where they are located are uniformly distributed
among all 33 = 27 combinations of three columns from Blocks A, B, and C. Also,
the orders of x2, x3,… , x9 are uniformly distributed among all 8! permutations of
the remaining cards in Block A; the same goes for y2, y3,… , y9 in Block B and
z2, z3,… , z9 in Block C. Hence, it can be simulated by S.

–	 In Step 5 of Method B in section “Row/Column Verification”, the rows where
x1 and y1 are located are uniformly distributed among all 3!

1!
= 6 permutations of

two rows chosen from the first three rows; the columns where they are located
are uniformly distributed among all 32 = 9 combinations of two columns from
Blocks A and B. Also, the orders of x2, x3,… , x9 are uniformly distributed
among all 8! permutations of the remaining cards in Block A; the same goes for
y2, y3,… , y9 in Block B. Hence, it can be simulated by S.

	� ◻

Optimization of the Number of Shuffles

Method A

–	 In the block verification in section “Block Verification”, we can verify three
blocks at a time using cards xj, yj, zj ( j = 1, 2,… , 9 ) as 27 additional cards in the
uniqueness verification protocol (with a condition that all cards in the sets xj , yj ,
and zj must have different front sides and identical back sides). This reduces the
number of shuffles by 2 × 9 − 2 × 3 = 12 from 342 to 330.

–	 In Step 7 of Method A in ssection “Row/Column Verification”, we do not need
to verify that a number 9 appears exactly once in each row and column. Since we
have already verified that each of the numbers 1, 2,… , 8 appears exactly once in
each row (resp. column), the only remaining position in each row (resp. column)
must contain a 9. This reduces the number of shuffles by 6 × 3 × 2 = 36 from
330 to 294.

–	 In Step 4 of Method A, we can apply col_shuffle({1, 2,… , 9} ) instead of
col_shuffle({1, 2, 3} ), col_shuffle({4, 5, 6} ), and col_shuffle({7, 8, 9} ) to M
(with a condition that all cards in the sets xj , yj , and zj must have different front
sides, so that we can tell different blocks apart after turning over helping cards).
This reduces the number of shuffles by 2 × 8 × 3 × 2 = 96 from 294 to 198.

–	 In Step 6 of Method A, After verifying that numbers j ( j = 1, 2,… , 7 ) in three
selected blocks are all located at different rows (resp. columns), we do not have
to revert M back to its original state. Since P knows exactly where the number
j + 1 in each block is (because P knows which helping card is stacked on the
encoding card corresponding to number j + 1 from Steps 2 and 3), P can imme-

61New Generation Computing (2022) 40:49–65	

123

diately start the next round by performing the chosen cut protocol to find the
number j + 1 . This reduces the number of shuffles by 2 × 7 × 3 × 2 = 84 from
198 to 114.

–	 In Step 8 of Method A, after verifying that numbers 8 in three selected blocks are
all located at different columns, we do not have to revert M back to its original
state since the cards in these three blocks will not be used anymore. This reduces
the number of shuffles by 2 × 3 = 6 from 114 to 108.

The formal steps of the optimized protocol for row/column verification are as
follows:

1.	 Take the cards from the three topmost rows to form a 3 × 9 matrix and publicly
place marking cards p1, p2, p3 in Column 0 and q1, q2,… , q9 in Row 0 to create a
3 × 9 marked matrix M.

2.	 On each encoding card in Block A, secretly stack each of face-down cards
x1, x2,… , x9 such that x1 is on a1 , and x2, x3,… , x9 are in a uniformly random
permutation (which is known to P but not to V).

3.	 Do the same for cards y1, y2,… , y9 in Block B (with y1 on b1 ) and z1, z2,… , z9 in
Block C (with z1 on c1).

4.	 Apply row_shuffle({1, 2, 3} ), col_shuffle({1, 2,… , 9} ) to M.
5.	 Turn over all helping cards. Locate the positions of x1 , y1 , and z1 . Turn over the

encoding cards in these three stacks to show that they are a1 , b1 , and c1 , respec-
tively, and that they are all located at different rows. Otherwise, V rejects.

6.	 Remove all helping cards and turn all encoding cards face-down.
7.	 Perform Steps 1–6 analogously for numbers 2, 3,… , 8 . Apply the rearrangement

protocol in section “Rearrangement Protocol” to revert M to its original state.
8.	 Perform Steps 1–7 analogously for Blocks D, E, and F, and for Blocks G, H, and

I to verify the rest of the rows. The verification for columns also works similarly,
but without applying the rearrangement protocol in Step 7.

For an n × n puzzle, originally this method uses
2n + (

√
n + 3) × n ×

√
n × 2 = 2n2 + 6n

√
n + 2n shuffles. After the optimization, it

uses 2
√
n + (2(n − 1) + 2) ×

√
n × 2 − 2

√
n = 4n

√
n shuffles.

Method B

–	 In the block verification in section “Block Verification”, we can verify three
blocks at a time using cards xj, yj ( j = 1, 2,… , 9 ), pj ( j = 1, 2, 3 ), and qj
( j = 1, 2,… , 6 ) as 27 additional cards in the uniqueness verification protocol
(with a condition that all cards in the sets xj , yj , pj and qj must have different
front sides and identical back sides). This reduces the number of shuffles by
2 × 9 − 2 × 3 = 12 from 828 to 816.

Note that this optimization cannot be straightforwardly generalized to an n × n
puzzle. For an n × n puzzle with n > 9 , we can verify two blocks (not

√
n blocks)

62	 New Generation Computing (2022) 40:49–65

123

at a time using 2n helping cards (as we have only 2n + 3
√
n marking and helping

cards). Hence, the block verification uses 2⌈ n

2
⌉ shuffles.

–	 In Step 7 of Method B in section “Row/Column Verification”, we do not
need to verify that a number 9 appears exactly once in each row and column.
Since we have already verified that each of the numbers 1, 2,… , 8 appears
exactly once in each row (resp. column), the only remaining position in each
row (resp. column) must contain a 9. This reduces the number of shuffles by
5 × 3 × 3 × 2 = 90 from 816 to 726.

–	 In Step 4 of Method B, we can apply col_shuffle({1, 2,… , 6} ) instead of
col_shuffle({1, 2, 3} ) and col_shuffle({4, 5, 6} ) to M (with a condition that
all cards in the sets xj and yj must have different front sides, so that we can tell
different blocks apart after turning over helping cards). This reduces the num-
ber of shuffles by 8 × 3 × 3 × 2 = 144 from 726 to 582.

–	 In Step 6 of Method B, after verifying that numbers j ( j = 1, 2,… , 7 ) in two
selected blocks are located at different rows (resp. columns), we do not have
to revert M back to its original state. Since P knows exactly where the number
j + 1 in each block is (because P knows which helping card is stacked on the
encoding card corresponding to number j + 1 from Steps 2 and 3), P can imme-
diately start the next round by performing the chosen cut protocol to find the
number j + 1 . This reduces the number of shuffles by 2 × 7 × 3 × 3 × 2 = 252
from 582 to 330.

–	 Among the 3 × 3 × 2 = 18 adjacent pairs of blocks we have to verify in Steps
8 and 9 of Method B, notice that the order of pairs we verify does not mat-
ter. Hence, we can set the order of verification such that the last four pairs of
blocks we verify are Blocks A and D, Blocks B and E, Blocks C and F, and
Blocks G and H. For these four pairs of blocks, after verifying that numbers 8
in the two blocks are located at different rows or columns, we do not have to
revert M back to its original state since the cards in these two blocks will not
be used anymore. This reduces the number of shuffles by 2 × 4 = 8 from 330
to 322.

Note that for an n × n puzzle, we set the order of verification such that the last ⌊ n

2
⌋

pairs of blocks we verify contain 2⌊ n

2
⌋ different blocks, hence reducing the num-

ber of shuffles by 2⌊ n

2
⌋.

The formal steps of the optimized protocol for row/column verification are as
follows.

1.	 Take the cards from blocks A and B to form a 3 × 6 matrix and publicly place
marking cards p1, p2, p3 in Column 0 and q1, q2,… , q6 in Row 0 to create a 3 × 6
marked matrix M.

2.	 On each encoding card in Block A, secretly stack each of face-down cards
x1, x2,…… , x9 such that x1 is on a1 , and x2, x3,… , x9 are in a uniformly random
permutation (which is known to P but not to V).

3.	 Do the same for cards y1, y2,… , y9 in Block B (with y1 on b1).

63New Generation Computing (2022) 40:49–65	

123

4.	 Apply row_shuffle({1, 2, 3} ), col_shuffle({1, 2,… , 6} ) to M.
5.	 Turn over all helping cards. Locate the positions of x1 and y1 . Turn over the encod-

ing cards in both stacks to show that they are a1 and b1 , respectively, and that they
are located at different rows. Otherwise, V rejects.

6.	 Remove all helping cards and turn all encoding cards face-down.
7.	 Perform Steps 1 to 6 analogously for numbers 2, 3,… , 8 . Apply the rearrangement

protocol in section “Rearrangement Protocol” to revert M to its original state.
8.	 Perform Steps 1 to 7 analogously for other 17 pairs of adjacent blocks in any

order, but the last four pairs must be Blocks A and D, Blocks B and E, Blocks C
and F, and Blocks G and H. Do not apply the rearrangement protocol in Step 7
for the last four pairs.

For an n × n puzzle with n > 9 , originally this method uses

2n + 5 × n ×

�√
n

2

�
×

√
n × 2 = 5n2(

√
n − 1) + 2n shuffles. After the optimiza-

tion, it uses 2⌈ n

2
⌉ + (2(n − 1) + 2) ×

�√
n

2

�
×

√
n × 2 − 2⌊ n

2
⌋ = 2n2(

√
n − 1)

shuffles for an even n and 2n2(
√
n − 1) + 2 shuffles for an odd n.

Future Work

We developed the first card-based ZKP protocol for Sudoku, and also the first
one for any kind of logic puzzle, that can be performed using a deck of all differ-
ent cards. Our protocol for a standard 9 × 9 Sudoku can be performed using two
standard decks of playing cards, regardless of whether the two decks are identical
or different. However, the drawback of our protocol is that it uses a large number
of shuffles, which makes it not very practical. A possible future work is to develop
an equivalent protocol for Sudoku that uses asymptotically less number of shuffles.
Other challenging future work includes developing ZKP protocols for other logic
puzzles (e.g. Kakuro, Numberlink) that can be performed using a deck of all differ-
ent cards.

References

	 1.	 Bultel, X., Dreier, J., Dumas, J.-G., Lafourcade, P.: Physical zero-knowledge proofs for Akari,
Takuzu, Kakuro and KenKen. In: Proceedings of the 8th international conference on fun with
algorithms (FUN), pp. 8:1–8:20 (2016)

	 2.	 Bultel, X., Dreier, J., Dumas, J.-G., Lafourcade, P., Miyahara, D., Mizuki, T., Nagao, A., Sasaki,
T., Shinagawa, K., Sone, H.: Physical zero-knowledge proof for makaro. In: Proceedings of the
20th international symposium on stabilization, safety, and security of distributed systems (SSS),
pp. 111–125 (2018)

	 3.	 Chien, Y.-F., Hon, W.-K.: Cryptographic and physical zero-knowledge proof: from sudoku to
nonogram. In: Proceedings of the 5th international conference on fun with algorithms (FUN),
pp. 102–112 (2010)

64	 New Generation Computing (2022) 40:49–65

123

	 4.	 Dumas, J.-G., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: Interactive physi-
cal zero-knowledge proof for norinori. In: Proceedings of the 25th international computing and
combinatorics conference (COCOON), pp. 166–177 (2019)

	 5.	 Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems.
SIAM J. Comput. 18(1), 186–208 (1989)

	 6.	 Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical zero-knowl-
edge proof systems for solutions of sudoku puzzles. Theory Comput. Syst. 44(2), 245–268
(2009)

	 7.	 Hashimoto, Y., Shinagawa, K., Nuida, K., Inamura, M., Hanaoka, G.: Secure grouping protocol
using a deck of cards. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 101A(9), 1512–
1524 (2018)

	 8.	 Ibaraki, T., Manabe, Y.: a more efficient card-based protocol for generating a random permuta-
tion without fixed points. In: Proceedings of the 3rd international conference on mathematics and
computers in sciences and industry (MCSI), pp. 252–257 (2016)

	 9.	 Isuzugawa, R., Miyahara, D., Mizuki, T.: Zero-knowledge proof protocol for cryptarithmetic
using dihedral cards. In: Proceedings of the 19th international conference on unconventional
computation and natural computation (UCNC), pp. 51–67 (2021)

	10.	 Koch, A., Schrempp, M., Kirsten, M.: Card-based cryptography meets formal verification. New
Gener. Comput. 39(1), 115–158 (2021)

	11.	 Koch, A., Walzer, S.: Foundations for actively secure card-based cryptography. In: Proceedings
of the 10th international conference on fun with algorithms (FUN), pp. 17:1–17:23 (2020)

	12.	 Koyama, H., Miyahara, D., Mizuki, T., Sone, H.: A secure three-input and protocol with a stand-
ard deck of minimal cards. In: Proceedings of the 16th international computer science sympo-
sium in Russia (CSR), pp. 242–256 (2021)

	13.	 Lafourcade, P., Miyahara, D., Mizuki, T., Robert, L., Sasaki, T., Sone, H.: How to construct
physical zero-knowledge proofs for puzzles with a single loop condition. Theor. Comput. Sci.
888, 41–55 (2021)

	14.	 Miyahara, D., Hayashi, Y., Mizuki, T., Sone, H.: Practical card-based implementations of Yao’s
millionaire protocol. Theor. Comput. Sci. 803, 207–221 (2020)

	15.	 Miyahara, D., Robert, L., Lafourcade, P., Takeshige, S., Mizuki, T., Shinagawa, K., Nagao, A.,
Sone, H.: Card-Based ZKP Protocols for Takuzu and Juosan. In: Proceedings of the 10th interna-
tional conference on fun with algorithms (FUN), pp. 20:1–20:21 (2020)

	16.	 Miyahara, D., Sasaki, T., Mizuki, T., Sone, H.: Card-based physical zero-knowledge proof for
Kakuro. IEICE Trans. Fundam. Electr. Commun. Comput. Sci. E102A(9), 1072–1078 (2019)

	17.	 Mizuki, T.: Efficient and secure multiparty computations using a standard deck of playing
cards. In: Proceedings of the 15th international conference on cryptology and network security
(CANS), pp. 484–499 (2016)

	18.	 Niemi, V., Renvall, A.: Solitaire zero-knowledge. Fundam. Inf. 38(12), 181–188 (1999)
	19.	 Nikoli: Sudoku. https://​www.​nikoli.​co.​jp/​en/​puzzl​es/​sudoku.​html (2021)
	20.	 Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Interactive physical ZKP for connectivity:

applications to nurikabe and Hitori. In: Proceedings of the 17th conference on computability in
Europe (CiE), pp. 373–384 (2021)

	21.	 Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Physical zero-knowledge proof for suguru
puzzle. In: Proceedings of the 22nd international symposium on stabilization, safety, and secu-
rity of distributed systems (SSS), pp. 235–247 (2020)

	22.	 Ruangwises, S.: An improved physical ZKP for nonogram. In: Proceedings of the 15th annual
international conference on combinatorial optimization and applications (COCOA), pp. 262–272
(2021)

	23.	 Ruangwises, S.: Two standard decks of playing cards are sufficient for a ZKP for Sudoku. In:
Proceedings of the 27th international computing and combinatorics conference (COCOON), pp.
631–642 (2021)

	24.	 Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for numberlink puzzle and k vertex-
disjoint paths problem. New Gener. Comput. 39(1), 3–17 (2021)

	25.	 Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for ripple effect. Theor. Comput. Sci.
895, 115–123 (2021)

	26.	 Ruangwises, S., Itoh, T.: Physical ZKP for connected spanning subgraph: applications to bridges
puzzle and other problems. In: Proceedings of the 19th international conference on unconven-
tional computation and natural computation (UCNC), pp. 149–163 (2021)

https://www.nikoli.co.jp/en/puzzles/sudoku.html

65New Generation Computing (2022) 40:49–65	

123

	27.	 Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge proof for
Sudoku. Theor. Comput. Sci. 839, 135–142 (2020)

	28.	 Yato, T., Seta, T.: Complexity and completeness of finding another solution and its application to
puzzles. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 86A(5), 1052–1060 (2003)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Two Standard Decks of Playing Cards are Sufficient for a ZKP for Sudoku
	Abstract
	Introduction
	Zero-Knowledge Proof

	Previous Protocols
	Uniqueness Verification Protocol
	Protocol of Sasaki et al.
	Related Work

	Our Contribution
	Preliminaries
	Marked Matrix
	Shuffle Operations
	Rearrangement Protocol
	Standard Deck Chosen Cut Protocol

	Main Protocol
	Block Verification
	RowColumn Verification
	Method A
	Method B

	Generalization

	Proof of Correctness and Security
	Optimization of the Number of Shuffles
	Method A
	Method B

	Future Work
	References

