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Abstract
Sudoku is a famous logic puzzle where the player has to fill a number between 1 and 
9 into each empty cell of a 9 × 9 grid such that every number appears exactly once 
in each row, each column, and each 3 × 3 block. In 2020, Sasaki et al., developed 
a physical card-based protocol of zero-knowledge proof (ZKP) for Sudoku, which 
enables a prover to convince a verifier that he/she knows a solution of the puzzle 
without revealing it. Their protocol uses 90 cards, but requires nine identical copies 
of some cards, which cannot be found in a standard deck of playing cards (consist-
ing of 52 different cards and two jokers). Hence, nine identical standard decks are 
required to perform that protocol, making the protocol not very practical. In this 
paper, we propose a new ZKP protocol for Sudoku that can be performed using only 
two standard decks of playing cards, regardless of whether the two decks are identi-
cal or different. In general, we also develop the first ZKP protocol for a generalized 
n × n Sudoku that can be performed using a deck of all different cards.

Keywords  Zero-knowledge proof · Card-based cryptography · Sudoku · Puzzle

Introduction

Sudoku is one of the world’s most popular logic puzzles. A standard Sudoku puz-
zle consists of a 9 × 9 grid divided into nine blocks of size 3 × 3 , with some of 
the cells already filled with numbers between 1 and 9. The objective of Sudoku is 
to fill a number into each empty cell such that every number from 1 to 9 appears 
exactly once in each row, each column, and each 3 × 3 block [19] (see Fig. 1). In a 
generalized version of Sudoku, the grid has size n × n and is divided into n blocks 
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of size 
√
n ×

√
n , where n is a perfect square. A generalized Sudoku is proven to 

be NP complete [28].

Zero‑Knowledge Proof

We aim to construct a zero-knowledge proof (ZKP) for Sudoku, which enables a 
prover P to convince a verifier V that he/she knows a solution of the puzzle with-
out revealing any information about it. Formally, a ZKP is an interactive proof 
between P and V where both of them are given a computational problem x, but 
only P knows a solution w of x. A ZKP with perfect completeness and perfect 
soundness must satisfy the following three properties. 

1.	 Perfect completeness: If P knows w, then V always accepts.
2.	 Perfect soundness: If P does not know w, then V always rejects.
3.	 Zero knowledge: V learns nothing about w. Formally, there exists a probabilistic 

polynomial time algorithm S (called a simulator), not knowing w but having a 
black-box access to V, such that the outputs of S follow the same probability 
distribution as the outputs of the actual protocol.

The concept of a ZKP was first introduced by Goldwasser et  al. [5]. Instead of 
computational ZKPs, recently many results have been focusing on constructing 
physical ZKPs using portable objects found in everyday life such as a deck of 
cards. These physical protocols have benefits that they do not require electronic 
devices and also allow external observers to check that the prover truthfully exe-
cutes the protocol (which is often a challenging task for digital protocols). They 
also have great didactic values and can be used to teach the concept of a ZKP to 
non-experts.

3 7 4 1

5 2 3 7

6 5 4

3 6 1

1 5 4 6 3

5 9 2 6 1 3

7 1 8

9 8 2 3 7 4 5 6 1

4 5 1 9 6 2 3 7 8

7 3 6 1 8 5 4 2 9

2 4 8 7 5 3 1 9 6

3 6 9 2 1 8 7 4 5

1 7 5 4 9 6 8 3 2

5 9 4 8 2 7 6 1 3

8 1 3 6 4 9 2 5 7

6 2 7 5 3 1 9 8 4

Fig. 1   An example of a 9 × 9 Sudoku puzzle (left) and its solution (right)
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Previous Protocols

In 2009, Gradwohl et al. [6] developed the first card-based ZKP protocols for Sudoku, 
and also the first for any kind of logic puzzle. Each of the six developed protocols, 
however, either has a nonzero soundness error or requires special tools such as scratch-
off cards. Later in 2020, Sasaki et al. [27] developed an improved ZKP protocol for 
Sudoku that achieves perfect soundness without using special tools.

Uniqueness Verification Protocol

Before showing the protocol of Sasaki et al., we first explain the following uniqueness 
verification protocol, which was also developed by the same authors [27]. This protocol 
allows the prover P to convince the verifier V that a sequence � of n face-down cards 
is a permutation of different cards a1, a2,… , an in some order, without revealing their 
orders. It also preserves the orders of the cards in � (so that the sequence can be later 
used in other protocols).

Let x1, x2,… , xn be another set of n different cards. P performs the following steps.

1.	 Publicly place face-down cards x1, x2,… , xn below the face-down sequence � in 
this order from left to right to form a 2 × n matrix of cards (see Fig. 2).

2.	 Rearrange all columns of the matrix by a uniformly random permutation. (This 
step can be performed in real world by putting both cards in each column into an 
envelope and scrambling all envelopes together.)

3.	 Turn over all cards in the top row. V verifies that the sequence is a permutation 
of a1, a2,… , an . Otherwise, V rejects.

4.	 Turn over all face-up cards. Rearrange all columns of the matrix by a uniformly 
random permutation.

5.	 Turn over all cards in the bottom row. Rearrange the columns such that the cards 
in the bottom rows are x1, x2,… , xn in this order from left to right. The sequence 
in the top row now returns to its original state.

Protocol of Sasaki et al.

Sasaki et al. [27] developed a protocol to verify a solution of an n × n Sudoku puzzle. 
This protocol has three slightly different variants. Here we will show only the first vari-
ant, which is the one using the least number of cards.

Each card used in this protocol has a positive number on the front side (denoted by 
1  , 2 , ...). All cards have identical back sides (denoted by ?  ). First, on each cell 

Fig. 2   A 2 × n matrix con-
structed in Step 1 σ: ? ? ... ?

? ? ... ?
x1 x2 xn
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already having a number j, P publicly places a face-down j  ; on each empty cell that 
has a number j in P’s solution, P secretly places a face-down j .

P then applies the uniqueness verification protocol to verify that every row, column, 
and block contains a permutation of 1  , 2  , ..., n .

In total, this protocol uses n2 + n cards: n identical copies of 1  , 2  , ..., n  (to 
encode the numbers in the grid), and another set of n different cards (to use in the 
uniqueness verification protocol). For a standard 9 × 9 puzzle, the protocol uses 90 
cards, which is less than the number of cards in two standard decks (108). However, 
the protocol requires nine identical copies of 1  , 2  , ..., 9  . As a standard deck con-
sists of 54 different cards (including two different jokers), nine identical decks are actu-
ally required in order to perform this protocol, making the protocol not very practical. 
Another choice is to use a different kind of deck (e.g. cards from board games) that 
includes several identical copies of some cards, but these decks are more difficult to 
find in everyday life.

Considering the drawback of this protocol, we aim to develop a more practical ZKP 
protocol for a 9 × 9 Sudoku that can be performed using only two standard decks of 
playing cards.

Related Work

After the development of card-based ZKP protocols for Sudoku, card-based ZKP pro-
tocols for other popular logic puzzles have also been proposed, including Nonogram [3, 
22], Akari [1], Takuzu [1, 15], Kakuro [1, 16], KenKen [1], Makaro [2], Norinori [4], 
Slitherlink [13], Juosan [15], Numberlink [24], Suguru [21], Ripple Effect [25], Nuri-
kabe [20], Hitori [20], Cryptarithmetic [9], and Bridges [26].

Apart from verifying solutions of logic puzzles, card-based protocols have also been 
extensively studied in secure multi-party computation, a setting where multiple parties 
want to jointly compute a function of their secret inputs without revealing them. The 
vast majority of the developed protocols, however, also uses multiple identical cop-
ies of two different cards (usually denoted by ♣  and ♡  ), making them not imple-
mentable by a single standard deck of playing cards. The only exceptions are [10, 12, 
17, 18] which introduced AND, XOR, and copy protocols using a standard deck, and 
[14] which introduced a Yao’s millionaire protocol using a standard deck. In [12], the 
authors also posed an open problem to develop ZKP protocols for logic puzzles using a 
standard deck.

Pratically, a standard deck of playing cards consists of 54 different cards (includ-
ing two different jokers). Theoretically, it is also a challenging problem to develop a 
protocol that can be implemented using a deck of all different cards, so we also study 
the setting where the deck consists of 1  , 2  , ...where each card can have an arbitrarily 
large number on it.
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Our Contribution

In this paper, we propose a new ZKP protocol for a generalized n × n Sudoku puzzle 
with perfect completeness and soundness using a deck of all different cards.

There are two slightly different methods to implement our protocol. The first 
one uses n2 + n

√
n + n +

√
n cards and 4n

√
n shuffles. The second one uses 

n2 + 2n + 3
√
n cards and at most 2n2(

√
n − 1) + 2 shuffles (see Table 1).

In particular, for a standard 9 × 9 Sudoku puzzle, our protocol (with the second 
method of implementation) uses 108 cards and can be performed using two standard 
decks of playing cards, regardless of whether the two decks are identical or different 
(see Table 2).

Theoretically, this work is an important step in card-based cryptography as it is 
the first ZKP protocol for any kind of logic puzzle that can be performed using a 
deck of all different cards, answering the open problem posed in [12].

The main difference from the conference version of this paper [23] is the inclu-
sion of an optimization of the number of shuffles in Sect. 7, which was omitted in 
the conference version.

Preliminaries

At first, we assume that all cards used in our protocols have different front sides and 
identical back sides (although we will later show that some pairs of cards can have 
identical front sides or different back sides, and our protocols still work correctly).

Marked Matrix

Suppose we have a k × � matrix of face-down cards (we call these cards encoding 
cards). Let Row i denote an i-th topmost row and let Column j denote a j-th leftmost 

Table 1   The number of required cards and shuffles for each protocol for an n × n Sudoku

Protocol Standard Deck? #Cards #Shuffles

Sasaki et al. [27] No n
2
+ n 5n

Ours (Section “Method A”) Yes n
2
+ n

√
n + n +

√
n 4n

√
n

Ours (Section “Method B”) Yes n
2
+ 2n + 3

√
n 2n2(

√
n − 1) for even n; 

2n2(
√
n − 1) + 2 for odd 

n > 9

Table 2   The number of required 
cards and shuffles for each 
protocol for a 9 × 9 Sudoku

Protocol Standard Deck? #Cards #Shuffles

Sasaki et al. [27] No 90 45
Ours (Section “Method A”) Yes 120 108
Ours (Section “Method B”) Yes 108 322
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column. To the left of Column 1, publicly place face-down cards p1, p2,… , pk in 
this order from top to bottom; this new column is called Column 0. Analogously, 
above Row 1, publicly place face-down cards q1, q2,… , q

�
 in this order from left to 

right; this new row is called Row 0.
We call this new structure a k × � marked matrix (see Fig. 3), and we call the 

cards in Row 0 and Column 0 marking cards.

Shuffle Operations

Given a k × � marked matrix and a set S ⊆ {1, 2,… , k} , an operation row_
shuffle(S) rearranges the rows of the matrix with indices in S (including marking 
cards in Column 0) by a uniformly random permutation. For example, row_shuf-
fle({3, 4, 5} ) rearranges Row 3, Row 4, and Row 5 of the matrix by a uniformly 
random permutation. This operation can be performed in real world by putting all 
cards in each row with an index in S into an envelope and scrambling all envelopes 
together.

Analogously, for a set S ⊆ {1, 2,… ,�} , an operation col_shuffle(S) rearranges 
the columns of the matrix with indices in S (including marking cards in Row 0) by a 
uniformly random permutation.

Rearrangement Protocol

After applying some shuffle operations to a marked matrix, a rearrangement pro-
tocol reverts the matrix back to its original state. Slightly different variants of this 
protocol with the same idea has been used in previous work [2, 7, 8, 24, 25, 27].

Suppose we have a k × � marked matrix M with marking cards p1, p2,… , pk in 
Column 0 and q1, q2,… , q

�
 in Row 0. We perform the following steps. 

1.	 Apply row_shuffle({1, 2,… , k} ) and col_shuffle({1, 2,… ,�} ) to M.
2.	 Turn over all marking cards in Column 0 and Row 0. Rearrange the rows of M 

such that the marking cards in Column 0 are p1, p2,… , pk in this order from top 
to bottom. Rearrange the columns of M such that the marking cards in Row 0 are 
q1, q2,… , q

�
 in this order from left to right.

Fig. 3   An example of a 4 × 5 
marked matrix

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

q1 q2 q3 q4 q5

?

?

?
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4

3

2

1

0
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Standard Deck Chosen Cut Protocol

Given a k × � marked matrix M, a standard deck chosen cut protocol allows the 
prover P to choose a card located at Row i and Column j of M he/she wants with-
out revealing i or j to the verifier V. This protocol was modified from an original 
chosen cut protocol of Koch and Walzer [11] (which uses identical copies of a 
♣  and a ♡  ) so that it can be performed using a standard deck. P performs the 

following steps. 

1.	 On each of the k� encoding cards in the matrix, secretly stack each of face-down 
cards x1, x2,… , xk� (called helping cards) such that x1 is located at Row i and 
Column j, and x2, x3,… , xk� are in a uniformly random permutation (which is 
known to P but not to V).

2.	 Apply row_shuffle({1, 2,… , k} ) and col_shuffle({1, 2,… ,�} ) to M.
3.	 Turn over all helping cards. Locate the position of x1 . The encoding card from 

that stack is the one originally located at Row i and Column j as desired.
4.	 Remove all helping cards. Apply the rearrangement protocol to revert M to its 

original state.

This protocol will be implicitly used in our main protocol, with Step 2 being 
replaced by equivalent operations.

Main Protocol

For simplicity, we will show a protocol for a standard 9 × 9 Sudoku puzzle. Our 
protocol can be straightforwardly generalized to an n × n puzzle.

We use the following cards in our protocol.

–	 encoding cards aj, bj, cj, dj, ej, fj, gj, hj, ij ( j = 1, 2,… , 9)
–	 marking cards pj ( j = 1, 2, 3 ) and qj ( j = 1, 2,… , 9)
–	 helping cards xj, yj, zj ( j = 1, 2,… , 9)

Suppose the grid is divided into blocks A,B,… , I (see Fig.  4). We use a card 
aj ( j = 1, 2,… , 9 ) to encode a number j in Block A. Analogously, we use cards 
bj, cj,… , ij ( j = 1, 2,… , 9 ) to encode numbers j in blocks B,C,… , I , respectively.

On each cell already having a number, P publicly places a face-down corre-
sponding card (e.g. places a card b3 on a cell with a number 3 in Block B). On 
each empty cell, P secretly places a face-down corresponding card according to 
his/her solution.
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Block Verification

First, P performs the following steps to verify that every number from 1 to 9 
appears exactly once in each block. 

1.	 Apply the uniqueness verification protocol in section “Uniqueness Verification 
Protocol” to verify that Block A consists of cards a1, a2,… , a9 in some order.

2.	 Analogously perform Step 1 for Blocks B,C,… , I.

Now V is convinced that every number from 1 to 9 appears exactly once in each 
block.

Row/Column Verification

Next, P will verify that every number from 1 to 9 appears exactly once in each row 
and column. There are two methods to do this.

Method A

P performs Steps 1–6 as shown below to verify that a number 1 appears exactly 
once in each of the three topmost rows. 

1.	 Take the cards from the three topmost rows to form a 3 × 9 matrix and publicly 
place marking cards p1, p2, p3 in Column 0 and q1, q2,… , q9 in Row 0 to create a 
3 × 9 marked matrix M.

2.	 On each encoding card in Block A, secretly stack each of face-down cards 
x1, x2,… , x9 such that x1 is on a1 , and x2, x3,… , x9 are in a uniformly random 
permutation (which is known to P but not to V).

3.	 Do the same for cards y1, y2,… , y9 in Block B (with y1 on b1 ) and z1, z2,… , z9 in 
Block C (with z1 on c1).

4.	 Apply row_shuffle({1, 2, 3} ), col_shuffle({1, 2, 3} ), col_shuffle({4, 5, 6} ), 
and col_shuffle({7, 8, 9} ) to M.

Fig. 4   Blocks 
A, B, C, D, E, F, G, H, and I in 
the grid A B C

D E F
G H I
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5.	 Turn over all helping cards. Locate the positions of x1 , y1 , and z1 . Turn over the 
encoding cards in these three stacks to show that they are a1 , b1 , and c1 , respec-
tively, and that they are all located at different rows. Otherwise, V rejects.

6.	 Remove all helping cards and turn all encoding cards face-down. Apply the rear-
rangement protocol in section “Rearrangement Protocol” to revert M to its origi-
nal state.

Note that Steps 2–6 are equivalent to applying the standard deck chosen cut protocol 
in section “Standard Deck Chosen Cut Protocol” to Blocks A, B, and C, simultane-
ously. These steps ensure that the three 1s in Blocks A, B, and C are all located at 
different rows. Since it has already been shown that each block contains exactly one 
1, this implies there is exactly one 1 in each of the three topmost rows. 

7.	 Perform Steps 1–6 analogously for numbers 2, 3,… , 9 . Now V is convinced that 
every number appears exactly once in each of the three topmost rows.

8.	 Perform Steps 1–7 analogously for Blocks D, E, and F, and for Blocks G, H, and 
I to verify the rest of the rows. The verification for columns also works similarly 
(take the cards from Blocks A, D, and G, from Blocks B, E, and H, and from 
Blocks C, F, and I, and just transpose the marked matrix).

Now V is convinced that every number from 1 to 9 appears exactly once in each 
block, each row, and each column.

This method uses 81 encoding cards, 12 marking cards, and 27 helping cards, 
resulting in the total of 120 cards, slightly more than the number of cards in two 
standard decks. It uses 18 + 6 × 9 × 3 × 2 = 342 shuffles (which can be reduced to 
108 after the optimization in section “Method A”). We aim to further reduce the 
number of required cards as a trade-off between the numbers of cards and shuffles.

Method B

Observe that in Steps 1–6 of Method A, we verify that the three 1s in Blocks A, B, 
and C are all located at different rows by verifying these three blocks at the same 
time, which requires a lot of marking and helping cards. Instead, we can first verify 
that the two 1s in Blocks A and B are located at different rows, then do the same for 
Blocks A and C, and for Blocks B and C. This leads to the same conclusion that the 
three 1s in Blocks A, B, and C are all located at different rows.

P performs Steps 1–6 as shown below to verify that the two 1s in Blocks A and B 
are located at different rows. 

1.	 Take the cards from blocks A and B to form a 3 × 6 matrix and publicly place 
marking cards p1, p2, p3 in Column 0 and q1, q2,… , q6 in Row 0 to create a 3 × 6 
marked matrix M.

2.	 On each encoding card in Block A, secretly stack each of face-down cards 
x1, x2,… , x9 such that x1 is on a1 , and x2, x3,… , x9 are in a uniformly random 
permutation (which is known to P but not to V).
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3.	 Do the same for cards y1, y2,… , y9 in Block B (with y1 on b1).
4.	 Apply row_shuffle({1, 2, 3} ), col_shuffle({1, 2, 3} ), and col_shuf-

fle({4, 5, 6} ) to M.
5.	 Turn over all helping cards. Locate the positions of x1 and y1 . Turn over the encod-

ing cards in both stacks to show that they are a1 and b1 , respectively, and that they 
are located at different rows. Otherwise, V rejects.

6.	 Remove all helping cards and turn all encoding cards face-down. Apply the rear-
rangement protocol in section “Rearrangement Protocol” to revert M to its origi-
nal state.

Now V is convinced that the two 1s in Blocks A and B are located at different rows. 

7.	 Perform Steps 1–6 analogously for numbers 2, 3,… , 9.
8.	 Perform Steps 1–7 analogously for Blocks A and C, and for Blocks B and C. 

Now V is convinced that every number appears exactly once in each of the three 
topmost rows.

9.	 Perform Steps 1–8 analogously to verify the rest of the rows. The verification for 
columns also works similarly.

Now V is convinced that every number from 1 to 9 appears exactly once in each 
block, each row, and each column.

This method uses 81 encoding cards, nine marking cards, and 18 helping cards, 
resulting in the total of 108 cards, which is exactly the number of cards from two 
standard decks (including jokers). It uses 18 + 5 × 9 × 3 × 3 × 2 = 828 shuffles 
(which can be reduced to 322 after the optimization in section “Method B”).

We say that two cards are from the same set if they are denoted by the same let-
ter with different indices (e.g. d2 and d5 are from the same set). Notice that in both 
methods, cards from different sets never get mixed together. Therefore, cards from 
different sets can have identical front sides or different back sides (or even different 
sizes) and our protocol still works correctly. The only requirement is that all cards 
from the same set must have different front sides and identical back sides.

Therefore, when implementing Method B using two standard decks of playing 
cards, we can, for example, use 54 cards from the first deck in the sets aj, bj,… , fj 
and 54 cards from the second deck in the remaining sets. The protocol always works 
correctly regardless of whether the two decks are identical or different, since it 
allows cards from different sets to have identical front sides (in case of identical 
decks) or different back sides or sizes (in case of different decks). Note that in some 
decks, the two jokers are identical; in that case, we just need to make sure that the 
two jokers are in different sets.

Generalization

This protocol can be straightforwardly generalized to an n × n Sudoku puzzle.
Method A uses n2 encoding cards, n +

√
n marking cards, and n

√
n 

helping cards, resulting in the total of n2 + n
√
n + n +

√
n cards. It uses 
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2n + (

√
n + 3) × n ×

√
n × 2 = 2n2 + 6n

√
n + 2n shuffles (which can be reduced 

to 4n
√
n after the optimization in section “Method A”).

Method B uses n2 encoding cards, 3
√
n marking cards, and 2n helping cards, 

resulting in the total of n2 + 2n + 3
√
n cards. It uses 

2n + 5 × n ×

�√
n

2

�
×

√
n × 2 = 5n2(

√
n − 1) + 2n shuffles (which can be 

reduced to at most 2n2(
√
n − 1) + 2 after the optimization in section “Method 

B”).

Proof of Correctness and Security

We will prove the perfect completeness, perfect soundness, and zero-knowledge 
properties of our protocol.

Lemma 1  (Perfect Completeness) If P knows a solution of the Sudoku puzzle, then V 
always accepts.

Proof  Suppose P knows a solution and places cards on the grid accordingly. Every 
number from 1 to 9 will appear exactly once in each row, each column, and each 
block. Hence, the uniqueness verification protocol will pass for every block. Also, 
the same numbers from different blocks are always located at different rows and col-
umns, so both Methods A and B will pass. Therefore, V always accepts. 	�  ◻

Lemma 2  (Perfect Soundness) If P does not know a solution of the Sudoku puzzle, 
then V always rejects.

Proof  Suppose P does not know a solution. There will be a number that appears 
at least twice in the same row, column, or block. If it appears twice in a block, the 
uniqueness verification protocol for that block will fail. If it appears twice in differ-
ent blocks in the same row (resp. column), Method A will fail when verifying the 
three blocks containing that row (resp. column); also, method B will fail when veri-
fying the two blocks where these two numbers appear. Therefore, V always rejects. 	
� ◻

Lemma 3  (Zero-Knowledge) During the verification, V learns nothing about P’s 
solution.

Proof  It is sufficient to show that all distributions of cards that are turned face-up 
can be simulated by a simulator S that does not know P’s solution.

–	 In Steps 3 and 5 of the uniqueness verification protocol in section “Unique-
ness Verification Protocol”, the orders of the n cards are uniformly distributed 
among all n! permutations. Hence, it can be simulated by S.
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–	 In Step 2 of the rearrangement protocol in section “Rearrangement Protocol”, the 
orders of p1, p2,… , pk and q1, q2,… , q

�
 are uniformly distributed among all k! 

permutations and �! permutations, respectively. Hence, it can be simulated by S.
–	 In Step 5 of Method A in section “Row/Column Verification”, the rows where x1 , 

y1 , and z1 are located are uniformly distributed among all 3! = 6 permutations of 
the first three rows; the columns where they are located are uniformly distributed 
among all 33 = 27 combinations of three columns from Blocks A, B, and C. Also, 
the orders of x2, x3,… , x9 are uniformly distributed among all 8! permutations of 
the remaining cards in Block A; the same goes for y2, y3,… , y9 in Block B and 
z2, z3,… , z9 in Block C. Hence, it can be simulated by S.

–	 In Step 5 of Method B in section “Row/Column Verification”, the rows where 
x1 and y1 are located are uniformly distributed among all 3!

1!
= 6 permutations of 

two rows chosen from the first three rows; the columns where they are located 
are uniformly distributed among all 32 = 9 combinations of two columns from 
Blocks A and B. Also, the orders of x2, x3,… , x9 are uniformly distributed 
among all 8! permutations of the remaining cards in Block A; the same goes for 
y2, y3,… , y9 in Block B. Hence, it can be simulated by S.

	�  ◻

Optimization of the Number of Shuffles

Method A

–	 In the block verification in section “Block Verification”, we can verify three 
blocks at a time using cards xj, yj, zj ( j = 1, 2,… , 9 ) as 27 additional cards in the 
uniqueness verification protocol (with a condition that all cards in the sets xj , yj , 
and zj must have different front sides and identical back sides). This reduces the 
number of shuffles by 2 × 9 − 2 × 3 = 12 from 342 to 330.

–	 In Step 7 of Method A in ssection “Row/Column Verification”, we do not need 
to verify that a number 9 appears exactly once in each row and column. Since we 
have already verified that each of the numbers 1, 2,… , 8 appears exactly once in 
each row (resp. column), the only remaining position in each row (resp. column) 
must contain a 9. This reduces the number of shuffles by 6 × 3 × 2 = 36 from 
330 to 294.

–	 In Step 4 of Method A, we can apply col_shuffle({1, 2,… , 9} ) instead of 
col_shuffle({1, 2, 3} ), col_shuffle({4, 5, 6} ), and col_shuffle({7, 8, 9} ) to M 
(with a condition that all cards in the sets xj , yj , and zj must have different front 
sides, so that we can tell different blocks apart after turning over helping cards). 
This reduces the number of shuffles by 2 × 8 × 3 × 2 = 96 from 294 to 198.

–	 In Step 6 of Method A, After verifying that numbers j ( j = 1, 2,… , 7 ) in three 
selected blocks are all located at different rows (resp. columns), we do not have 
to revert M back to its original state. Since P knows exactly where the number 
j + 1 in each block is (because P knows which helping card is stacked on the 
encoding card corresponding to number j + 1 from Steps 2 and 3), P can imme-
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diately start the next round by performing the chosen cut protocol to find the 
number j + 1 . This reduces the number of shuffles by 2 × 7 × 3 × 2 = 84 from 
198 to 114.

–	 In Step 8 of Method A, after verifying that numbers 8 in three selected blocks are 
all located at different columns, we do not have to revert M back to its original 
state since the cards in these three blocks will not be used anymore. This reduces 
the number of shuffles by 2 × 3 = 6 from 114 to 108.

The formal steps of the optimized protocol for row/column verification are as 
follows: 

1.	 Take the cards from the three topmost rows to form a 3 × 9 matrix and publicly 
place marking cards p1, p2, p3 in Column 0 and q1, q2,… , q9 in Row 0 to create a 
3 × 9 marked matrix M.

2.	 On each encoding card in Block A, secretly stack each of face-down cards 
x1, x2,… , x9 such that x1 is on a1 , and x2, x3,… , x9 are in a uniformly random 
permutation (which is known to P but not to V).

3.	 Do the same for cards y1, y2,… , y9 in Block B (with y1 on b1 ) and z1, z2,… , z9 in 
Block C (with z1 on c1).

4.	 Apply row_shuffle({1, 2, 3} ), col_shuffle({1, 2,… , 9} ) to M.
5.	 Turn over all helping cards. Locate the positions of x1 , y1 , and z1 . Turn over the 

encoding cards in these three stacks to show that they are a1 , b1 , and c1 , respec-
tively, and that they are all located at different rows. Otherwise, V rejects.

6.	 Remove all helping cards and turn all encoding cards face-down.
7.	 Perform Steps 1–6 analogously for numbers 2, 3,… , 8 . Apply the rearrangement 

protocol in section “Rearrangement Protocol” to revert M to its original state.
8.	 Perform Steps 1–7 analogously for Blocks D, E, and F, and for Blocks G, H, and 

I to verify the rest of the rows. The verification for columns also works similarly, 
but without applying the rearrangement protocol in Step 7.

For an n × n puzzle, originally this method uses 
2n + (

√
n + 3) × n ×

√
n × 2 = 2n2 + 6n

√
n + 2n shuffles. After the optimization, it 

uses 2
√
n + (2(n − 1) + 2) ×

√
n × 2 − 2

√
n = 4n

√
n shuffles.

Method B

–	 In the block verification in section “Block Verification”, we can verify three 
blocks at a time using cards xj, yj ( j = 1, 2,… , 9 ), pj ( j = 1, 2, 3 ), and qj 
( j = 1, 2,… , 6 ) as 27 additional cards in the uniqueness verification protocol 
(with a condition that all cards in the sets xj , yj , pj and qj must have different 
front sides and identical back sides). This reduces the number of shuffles by 
2 × 9 − 2 × 3 = 12 from 828 to 816.

Note that this optimization cannot be straightforwardly generalized to an n × n 
puzzle. For an n × n puzzle with n > 9 , we can verify two blocks (not 

√
n blocks) 
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at a time using 2n helping cards (as we have only 2n + 3
√
n marking and helping 

cards). Hence, the block verification uses 2⌈ n

2
⌉ shuffles.

–	 In Step 7 of Method B in section “Row/Column Verification”, we do not 
need to verify that a number 9 appears exactly once in each row and column. 
Since we have already verified that each of the numbers 1, 2,… , 8 appears 
exactly once in each row (resp. column), the only remaining position in each 
row (resp. column) must contain a 9. This reduces the number of shuffles by 
5 × 3 × 3 × 2 = 90 from 816 to 726.

–	 In Step 4 of Method B, we can apply col_shuffle({1, 2,… , 6} ) instead of 
col_shuffle({1, 2, 3} ) and col_shuffle({4, 5, 6} ) to M (with a condition that 
all cards in the sets xj and yj must have different front sides, so that we can tell 
different blocks apart after turning over helping cards). This reduces the num-
ber of shuffles by 8 × 3 × 3 × 2 = 144 from 726 to 582.

–	 In Step 6 of Method B, after verifying that numbers j ( j = 1, 2,… , 7 ) in two 
selected blocks are located at different rows (resp. columns), we do not have 
to revert M back to its original state. Since P knows exactly where the number 
j + 1 in each block is (because P knows which helping card is stacked on the 
encoding card corresponding to number j + 1 from Steps 2 and 3), P can imme-
diately start the next round by performing the chosen cut protocol to find the 
number j + 1 . This reduces the number of shuffles by 2 × 7 × 3 × 3 × 2 = 252 
from 582 to 330.

–	 Among the 3 × 3 × 2 = 18 adjacent pairs of blocks we have to verify in Steps 
8 and 9 of Method B, notice that the order of pairs we verify does not mat-
ter. Hence, we can set the order of verification such that the last four pairs of 
blocks we verify are Blocks A and D, Blocks B and E, Blocks C and F, and 
Blocks G and H. For these four pairs of blocks, after verifying that numbers 8 
in the two blocks are located at different rows or columns, we do not have to 
revert M back to its original state since the cards in these two blocks will not 
be used anymore. This reduces the number of shuffles by 2 × 4 = 8 from 330 
to 322.

Note that for an n × n puzzle, we set the order of verification such that the last ⌊ n

2
⌋ 

pairs of blocks we verify contain 2⌊ n

2
⌋ different blocks, hence reducing the num-

ber of shuffles by 2⌊ n

2
⌋.

The formal steps of the optimized protocol for row/column verification are as 
follows. 

1.	 Take the cards from blocks A and B to form a 3 × 6 matrix and publicly place 
marking cards p1, p2, p3 in Column 0 and q1, q2,… , q6 in Row 0 to create a 3 × 6 
marked matrix M.

2.	 On each encoding card in Block A, secretly stack each of face-down cards 
x1, x2,…… , x9 such that x1 is on a1 , and x2, x3,… , x9 are in a uniformly random 
permutation (which is known to P but not to V).

3.	 Do the same for cards y1, y2,… , y9 in Block B (with y1 on b1).
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4.	 Apply row_shuffle({1, 2, 3} ), col_shuffle({1, 2,… , 6} ) to M.
5.	 Turn over all helping cards. Locate the positions of x1 and y1 . Turn over the encod-

ing cards in both stacks to show that they are a1 and b1 , respectively, and that they 
are located at different rows. Otherwise, V rejects.

6.	 Remove all helping cards and turn all encoding cards face-down.
7.	 Perform Steps 1 to 6 analogously for numbers 2, 3,… , 8 . Apply the rearrangement 

protocol in section “Rearrangement Protocol” to revert M to its original state.
8.	 Perform Steps 1 to 7 analogously for other 17 pairs of adjacent blocks in any 

order, but the last four pairs must be Blocks A and D, Blocks B and E, Blocks C 
and F, and Blocks G and H. Do not apply the rearrangement protocol in Step 7 
for the last four pairs.

For an n × n puzzle with n > 9 , originally this method uses 

2n + 5 × n ×

�√
n

2

�
×

√
n × 2 = 5n2(

√
n − 1) + 2n shuffles. After the optimiza-

tion, it uses 2⌈ n

2
⌉ + (2(n − 1) + 2) ×

�√
n

2

�
×

√
n × 2 − 2⌊ n

2
⌋ = 2n2(

√
n − 1) 

shuffles for an even n and 2n2(
√
n − 1) + 2 shuffles for an odd n.

Future Work

We developed the first card-based ZKP protocol for Sudoku, and also the first 
one for any kind of logic puzzle, that can be performed using a deck of all differ-
ent cards. Our protocol for a standard 9 × 9 Sudoku can be performed using two 
standard decks of playing cards, regardless of whether the two decks are identical 
or different. However, the drawback of our protocol is that it uses a large number 
of shuffles, which makes it not very practical. A possible future work is to develop 
an equivalent protocol for Sudoku that uses asymptotically less number of shuffles. 
Other challenging future work includes developing ZKP protocols for other logic 
puzzles (e.g. Kakuro, Numberlink) that can be performed using a deck of all differ-
ent cards.
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