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Abstract
Data stream classification is widely popular in the field of network monitoring, sen-
sor network and electronic commerce, etc. However, in the real-world applications, 
recurring concept drifting and label missing in data streams seriously aggravate the 
difficulty on the classification solutions. And this challenge has received little atten-
tion from the research community. Motivated by this, we propose a new ensemble 
classification approach based on the recurring concept drifting detection and model 
selection for data streams with unlabeled data. First, we build an ensemble model 
based on the classifiers and clusters. To improve the classification accuracy, we use 
the ensemble model to predict each data chunk and partition clusters according to 
the distribution of predicted class labels. Second, we adopt a new concept drifting 
detection method based on the divergence of concept distributions between adjoin-
ing data chunks to distinguish recurring concept drifts. All historical new concepts 
will be maintained. Meanwhile, we introduce the time-stamp-based weights for base 
models in the ensemble model. In the selection of the base model, we consider the 
time-stamp-based weight and the divergence between concept distributions simulta-
neously. Finally, extensive experiments conducted on four benchmark data sets show 
that our approach can quickly adapt to data streams with recurring concept drifts, 
and improve the classification accuracy compared to several state-of-the-art classifi-
cation algorithms for data streams with concept drifts and unlabeled data.
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Introduction

With the rapid development and broad applications of information technologies, 
streaming data have become universal, such as Internet search requests, sensor 
data, supermarket transactions, telephone call records, data from satellites and 
astronomy and alike. However, in contrast to the traditional data sources of data 
mining, these data present new characteristics as being continuous, high-volume, 
open-ended, especially concept drifting and label missing. Meanwhile, in the real 
world, recurring events will cause recurring concepts in data streams, such as 
weather changes and buyer habits. It is hence a large challenge for most exist-
ing work on classification of data streams, because existing approaches probably 
ignore the facts of concept drifts let alone recurring concept drifts, or they always 
assume that all streaming data are labeled and the class labels are immediately 
available.

Considering the issue of concept drifts in data streams, namely the poten-
tial and fundamental changes for the target concepts interested by people [1], 
researchers have proposed many ensemble models for concept drifting data 
streams [2, 3]. Contrary to the traditional online learning approaches based on a 
single model [4–7], ensemble learning employs a divide-and-conquer approach 
to first split the continuous data streams into small data chunks, and then builds 
light-weight base classifiers from the small chunks. Finally, all base classifiers 
are combined together for prediction. Thus, there are several advantages for the 
ensemble model, such as achieving lower variances, easily to be parallelized and 
easily adapting to the concept drifting data streams. However, these approaches 
only store the current concept and have to re-learn every time when a new con-
cept occurs. Re-learning significantly affects the performance of these classifica-
tion models. Therefore, an ideal classification model for streaming data mining 
should be capable of learning in one pass, be able to do any-time classification, 
track the drift in the data over time, and remember historically learned concepts.

Considering the label missing issue in data streams, namely a large number 
of unlabeled instances with a few labeled instances, it is challenging for ensem-
ble approaches mentioned above in the classification accuracy, because they 
always assume the incoming data streams completely have the class labels. In 
fact, researchers also have proposed some classification approaches for data 
streams with unlabeled data, such as an ensemble model combining both classi-
fiers and clusters together [8], a single incremental decision tree-based classifi-
cation algorithm [9], an efficient semi-supervised classification algorithm based 
on cluster-impurity measure [10] and an online data stream classification using 
selective self-training [11]. These approaches mentioned above have explored the 
challenges in the classification on data streams with concept drifts and unlabeled 
data, but they mainly recover from concept drifts by updating the ensemble model 
without the concept drifting detection or they utilize the classification error-based 
mechanism to detect the concept drifts. There is hence still plenty of room to 
improve the classification accuracy and the performance in the concept drifting 
detection.
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Therefore, we propose a new ensemble classification approach based on recurring 
concept drifting detection and model selection for data stream with concept drifts 
and unlabeled data. Our contributions are as follows.

First, with the influence from the work in [8], we also use an ensemble model 
combining classifiers with clusters. However, the difference is that the clusters are 
built using the distribution of class labels predicted in the current ensemble model 
instead of the k-means algorithm mentioned in [8]. This is because it is beneficial to 
avoid the disadvantages of the selection in the inherent k value and the impact from 
noisy data in k-means.

Second, our approach can handle two major challenges in data streams with 
recurring concept drifts and unlabeled data. More specifically, considering the first 
challenge of how to detect the recurring concept drifts in data streams with unla-
beled data, we adopt a new concept drifting detection method based on the diver-
gence of concept distributions between two adjoining data chunks. In this paper, we 
use the clusters in each data chunk approximately to represent the concept distribu-
tion, and use the distance between clusters to evaluate the divergence between two 
concept distributions. For adapting to recurring concept drifts, in our approach, we 
maintain all historical concepts. Considering the second issue of how to choose the 
base model to predict the incoming data chunk, especially when the concept dis-
tribution in the latest data chunk is similar to that of multiple base models in the 
ensemble model, we first use the time stamp weighting mechanism to weight each 
base model. In the selection of the base model, we consider both the weights and the 
divergence between concept distributions.

Finally, extensive studies on benchmark data sets show that our approach can 
quickly adapt to the recurring concept drifting data streams. Meanwhile, it can 
improve the classification accuracy compared to the state-of-the-art classification 
approaches for data streams with concept drifts and unlabeled data.

The rest of this paper is organized as follows. The next section surveys related 
work. The subsequent section describes our ensemble model based on concept drift 
detection and model selection in detail. The penultimate section analyzes the experi-
mental results, and we conclude this paper in the final section.

Related Work

In this section, we will introduce the state-of-the-art non-recurring and recurring 
concept drifting classification approaches for data streams without and with unla-
beled data respectively.

Classification on Concept Drifting Data Streams Without Unlabeled Data

Regarding the state-of-the-art classification algorithms for non-recurring and recur-
ring concept drifting data streams without unlabeled data, we can divide these algo-
rithms into two categories such as the single model-based and the ensemble-based 
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approaches, where the single model-based approaches can be divided into the 
following.

Decision tree-based algorithms Hulten et al. [12] proposed an efficient algorithm 
for mining decision trees from continuously changing data streams, called CVFDT 
(Concept-adapting Very Fast Decision Tree learner). It is based on a single Hoef-
fding tree, and adopts the “single window of time” and “alternative sub-trees” to 
tackle concept drifts. Rutkowski et al. [13] proposed a new Hoeffding tree algorithm 
for data stream classification. It has a solid mathematical basis in the best attribute 
selection. In the following year, Gama et al. [14] proposed a concept drift detection 
method using Page Hinkley test from prequential error estimates. It is built on the 
refined classifiers of Hoeffding tree implemented in MOA [15]. Pears et al. [16] pro-
posed a sequential change detection model with reservoir sampling to detect concept 
drifts, and it is integrated with the Hoeffding Adaptive Decision tree to validate the 
better classification performance.

Decision rule-based algorithms Almeida et  al. [17] presented Adaptive Model 
Rules (AMRules), the first streaming rule learning algorithm for regression prob-
lems. Kpotufe and Orabona [18] proposed a regression-tree tuning-based algorithm 
for data streams. It proved a new regression lower-bound which is independent of 
a given data size, and hence it is more appropriate for the streaming setting. Shao 
et al. [19] proposed an incremental learning algorithm based on the prototype and 
hypercubic decision rules for mining numeric data streams. It concerns with the 
simplicity of the model and the time complexity as primary goals. Kosina and Gama 
[20] presented the Very Fast Decision Rules (VFDR) algorithm for data streams and 
they further presented the adaptive extension (AVFDR) to detect changes in data 
streams and adapt to the decision model. That is, each individual rule in AVFDR 
monitors the evolution of performance metrics to detect concept drifts.

Other model-based algorithms Mena-Torres and Aguilar-Ruiz [21] introduced 
a similarity-based data stream classifier. It adopts a novel insertion/removal policy 
that quickly adapts to the data tendency and maintains a representative, small set of 
examples and estimators. And it removes useless classes that do not add any value 
to the classification process to detect novel classes. Rosa et  al. [22] introduced a 
new algorithmic approach for nonparametric learning in data streams. It learns a 
model that covers the input space using simple local classifiers. The distribution of 
these classifiers dynamically adapts to the local (unknown) complexity of the clas-
sification problem. Frías-Blanco et al. proposed new concept drifting methods based 
on Hoeffding’s Bounds [23] to monitor the performance metrics measured during 
the learning process, to trigger drift signals when a significant variation has been 
detected. It adopts a Naïve Bayes classifier and a Perceptron to evaluate the perfor-
mance of the methods over synthetic and real data. Chen et al. proposed a new selec-
tive prototype-based learning (SPL) method on evolving data streams. It dynami-
cally maintains a set of important instances to capture the time-changing concepts 
[24], and then uses these instances to predict the labels of new incoming instances 
with nearest neighbor classifier. If there are many wrongly classified examples with 
the same label in a period, it speculates that a concept drift may emerge.

However, all aforementioned approaches only depend on a single classifica-
tion model in the tackling of the data streaming classification, thus there is still 
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a lot of room to improve the classification accuracy compared to the ensemble 
model-based approaches.

In fact, the study actually found that constructing a series of simple classi-
fiers is simpler and more feasible than building a complex single classifier [25, 
26]. Therefore, many ensemble-based approaches for data streams have been 
proposed as follows. More precisely, Kolter and Maloof proposed an additive 
expert ensemble algorithm [25] and Sun et  al. proposed an ensemble multi-
classifier-based method to detect concept changes from the data streams in an 
incremental way [27]. Fan et  al. proposed a concept drifting method based on 
random decision trees [26]. It uses the new and old data corresponding to the 
accuracy of the model to detect whether it has the concept drifts, and uses the 
cross validation mechanism to improve the classification accuracy. Ramamurthy 
and Bhatnagar proposed an ensemble learning-based approach to handling data 
streams with multiple underlying modes [28]. The proposed approach builds a 
global set of decision trees from sequential data chunks and creates new clas-
sifiers to represent the recurrent concept in the stream. Li et  al. proposed an 
ensemble algorithm based on random decision trees [29]. It adopts the Hoef-
fding boundary inequality to specify the thresholds in the concept drifting detec-
tion. Zhu et  al. proposed a random decision tree-based ensemble classification 
algorithm for data streams [30]. It uses the changes of the original data distribu-
tion monitored in double windows to distinguish concept drifts. Bardda et  al. 
presented the scale-free network classifier-based ensemble method for data 
streams [31]. It represents the ensemble as a network to extract centrality met-
rics, which are used to perform a weighted majority vote, where the weight of 
a classifier is proportional to its centrality value. Islam proposed a class-based 
ensemble of classification model addressing the issues of recurring and novel 
class in the presence of concept drift and noise [32]. Zahra et  al. proposed a 
GraphPool framework that keeps the concepts and the transition among concepts 
by first-order Markov chain [33], and it refines the pool of concepts by applying 
a merging mechanism when necessary. Ikonomovska et  al. proposed an online 
bagging algorithm with Hoeffding-based model trees and an online Random 
Forest method for regression in data stream [3]. Anderson et  al. proposed an 
algorithm that always trains both a new classifier and a reused classifier [34], 
and retains the more accurate classifier when a concept drift occurs. Chiu et al. 
proposed a framework that makes use of diversity to decide which classifier to 
keep in the pool once the classifier pool reaches the maximum size [35]. Gomes 
et al. proposed a data stream classification system to address the challenges of 
learning recurring concepts in a dynamic feature space [36]. To handle recurring 
concepts, all stored models are combined in a dynamically weighted ensemble. 
Sakthithasan et al. applied ensembles of Fourier-encoded spectra to capture and 
mine recurring concepts in a data stream environment [37].

In sum, aforementioned algorithms mainly concerned the concept drifting 
detection in an ensemble classification model and few ones concerned recurring 
concept drifts. Meanwhile, they all are supervised and cannot handle the data 
streams with unlabeled data.
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Classification on Concept Drifting Data Streams with Unlabeled Data

Researchers have proposed some classification algorithms for data streams with 
unlabeled data. For instances, Li et  al. proposed a Semi-supervised classifica-
tion algorithm for data streams with concept drifts and UNlabeled data called 
SUN [9]. The SUN algorithm is based on an incremental decision tree model. It 
uses the k-Modes algorithm to generate clusters at leaves, and uses the information 
of the labeled instances to label the unlabeled ones. Meanwhile, it adopts the dif-
ference between clusters to detect the concept drifts. Loo and Marsono proposed 
an online data stream classification approach that learns with limited labels using 
selective self-training [11]. Patil et  al. presented an adaptive model for electricity 
demand supply and prices by detecting and adapting changes in trends and values 
[38]. Meanwhile, it uses a correlation-based similarity method to produce concept 
clusters to handle unlabeled data and trend analysis. Sethi et  al. proposed a new 
incremental grid density-based learning framework [39] to perform classification of 
streaming data with concept drift and limited labeling. Silva and Krohling proposed 
an online elastic ELM based framework with a semi-supervised forgetting parameter 
for data streams with concept drifts [40]. Ferreira proposed an online semi-super-
vised approach based on density-based adaptive model [41]. However, these algo-
rithms mentioned above are built on a single model, there is hence a lot of room to 
improve the classification accuracy.

Thus, some ensemble classification algorithms for data streams with unlabeled 
data have been proposed below. For instances, Zhang et al. proposed an ensemble 
model which combines both classifiers and clusters together for mining data streams 
with unlabeled data [8]. It uses a small number of labeled instances to train a few 
classifiers, and uses a large number of unlabeled instances to build clusters from 
data streams. Masud et al. proposed an efficient semi-supervised classification algo-
rithm based on cluster-impurity measure [10]. It builds a classification model as a 
collection of micro-clusters using semi-supervised clustering, and uses an ensemble 
of these models to classify unlabeled data. Haque et al. proposed a semi-supervised 
framework which uses change detection on classifier confidence to detect concept 
drifts [42] and to determine chunk boundaries dynamically.

Din et al. proposed an online semi-supervised learning algorithm based on micro-
clusters and error-based representative learning [43]. However, the above approaches 
mainly recover from concept drifts by updating the ensemble model without the 
concept drifting detection or they use the classification error-based mechanism to 
detect concept drifts. It is hence incapable of detecting recurring concepts.

In fact, there exit some semi-supervised algorithms with recurring concept detec-
tion. For example, Li et al. build a decision tree for the task of detecting recurring 
concepts in semi-supervised datasets, called REDLLA [44]. It uses the k-means 
clustering algorithm to produce concept clusters and label unlabeled data in the 
method of majority-class at leaves of the decision tree. To detect recurring concepts, 
it measures the deviation between two concept clusters based on their radius and dis-
tance. However, there is still some room to improve the prediction accuracy because 
the REDLLA algorithm is based on a single classifier. In the following years, many 
ensemble algorithms for recurring concept detection have been proposed. More 
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precisely, Gonçalves et  al. proposed a framework for detecting recurring concept 
drifts [45]. It works by storing classifiers and samples of data used to build the clas-
sifiers. When a new concept drift occurs by the concept drift detector (e.g., DDM), 
the algorithm compares the new context to previous ones using a non-parametric 
multivariate statistical test to verify if both contexts come from the same distribu-
tion. Hosseini et al. proposed an ensemble algorithm to classify instances of non-
stationary data streams in a semi-supervised environment [46]. It maintains a pool 
of classifiers with each classifier being representative of one single concept.

In the processing, it uses the similarity between a data chunk of instances and a 
classifier of the pool (namely the accuracy of that classifier on the labeled instances 
of that data chunk) to detect concept drifts.

Ren et al. proposed an ensemble framework that supervised information comes 
from the knowledge of the past chunks [47], it reuses the information of previous 
hypotheses and the labelled data of recurrent concepts.

Unlike the above algorithm, the proposed approach in this paper considers both 
recurring concept drifting and label missing issues. Considering the classification 
accuracy, we build the cluster models using the distribution of class labels predicted 
in the current ensemble model instead of the k-means algorithm used in [8]. Mean-
while, our approach simultaneously adopts the recurring concept drifting detection 
mechanism and the base model selection mechanism for improving the classification 
performance.

Our Approach

In this section, we give the details of our approach based on the recurring concept 
drifting detection and model selection. With the influence from the model men-
tioned in [8], our work is also built on an ensemble model combined with classifiers 
and clusters, but our work further considers the improvement of the classification 
accuracy in the ensemble model and the recurring concept drifting detection. We 
can formalize our problem as follows.

Suppose a streaming data consists of N instances ( xi, yai  ) ( N → ∞ ), where xi ∈ Rd 
indicates an instance with d dimensions, ya

i
∈ Y = {c1, c2,… , cv} indicates the class 

label, and a ∈ {u, l} , u and l indicates the class label is unknown and known, respec-
tively, v indicates the number of class labels. To build the ensemble model, we 
divide the streaming data S into m data chunks with p labeled data chunks (denoted 
as D) and m − p unlabeled data chunks (denoted as U), namely S = {D,U} , 
D = {Dl

1
,Dl

2
,… ,Dl

p
} , and U = {Du

1
,Du

2
,… ,Du

m−p
} . As shown in Fig.  1, with the 

arrival of data chunks, we first build a classifier or clusters using the latest data 
chunk, denoted as f. In terms of the recurring concept drifting detection, we use the 
K data chunks in the same concept distribution to build a base classifier model Ej . 
Suppose the streaming data S contains n difference concepts, our ensemble model 
can be represented by E = {E1,E2,… ,En} , where Ej = {f a

j1
, f a
j2
,… , f a

jK
}

(1 ≤ j ≤ n, a ∈ {u, l} ), f a
jk

(1 ≤ k ≤ K ) indicates a sub-model built on the k th data 
chunk with the same concept in Ej , namely the classifier or the cluster model. In 
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sum, our work aims to train an ensemble model F ∶ E∑m

i=1
Da

i
 → Y  that maps a feature 

vector to a set of labels and can adaptively adjust varying with the seen streaming 
data with recurring concept drifts and unlabeled data.

According to the framework of our ensemble model, we require fixing the fol-
lowing three issues.

Building, prediction and updating for the ensemble model: In the analysis of 
the ensemble model in [8], on one hand, it requires extra time consumption using 
k-means to build clusters. On the other hand, the accuracy of clusters impacts the 
prediction accuracy and it relies in the selection on the initial k centers. However, 
the k-means algorithm is sensitive to the noise especially in the concept drifting 
data streams. It is hence hard to maintain the accuracy of clusters. Therefore, to 
improve the effectiveness, we partition the clusters in terms of the class labels 
predicted in the ensemble model instead of the k-means algorithm mentioned in 
[8]. That is, we use the ensemble model to predict the unlabeled data chunk and 
partition the clusters according to the distribution of the predicted class labels. In 
this paper, we use the prequential evaluation [14, 48] to predict the testing data for 
drawing the classification accuracy curves.

Recurring concept drifting detection It is inevitable for recurring concept 
drifts and noise hidden in the real data streams. To build a robust ensemble 
model, it is necessary to distinguish the recurring concept drifts from noisy data 
for updating the ensemble model in time. However, we cannot directly apply 
existing concept drifting detection approaches based on the classification error, 
because there are large amounts of unlabeled data in data streams. Thus, we give 
the definition on the concept distribution and propose the divergence between 
concept distribution-based concept drifting detection mechanism. In this pro-
cessing, we will maintain all historically learned new concepts.

Selection on the base model For better adapting to infinite concept drifting 
data streams, we update the model selectively, especially when the concept 
distribution of the latest data chunk is similar to that of multiple base models. 
Thus, we propose a model selection method based on the time stamp weighting 
mechanism and the divergence between concept distributions.

Details of the above techniques are as follows.

Fig. 1   Our framework of ensemble classifiers and clusters
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Building, Prediction and Updating for the Ensemble Model

Our ensemble model is built as shown in Fig.  2. More specifically, with the 
incoming of the new data chunk in S, if the current data chunk are labeled, 
denoted as Dl

i
 , we first generate a classifier ci on the labeled data chunk Dl

i
 , and 

then partition the clusters according to the class labels predicted by the current 
ensemble model, denoted as cli = {gi1, gi2,… , giv} , where v indicates the number 
of class labels, gij indicates the jth cluster ( 1 ≤ j ≤ v ). Thus, we can get the model 
combined the classifier and the clusters together built on the current data chunk, 
denoted as f l

i
= {ci, cli} . According to the recurring concept drifting detection 

method (for more details please refer to “Recurring Concept Drifting Detection”), 
if the concept distribution of the current data chunk represents a new concept, let 
the model f l

i
 as a new base model Enew and add into the ensemble model E; Oth-

erwise (namely non-drift or only recurring concept drift), in terms of the model 
selection method (for more details please refer to “Model Selection”), select the 
most similar base model Ex from the ensemble model E to predict the current data 
chunk and update the model f l

i
 into the base model Ex.

On the other hand, if the current data chunk is unlabeled, denoted as Du
i
 , we 

use each base model Ej in the current ensemble model E to predict Du
i
 and parti-

tion the clusters according to the distribution of the predicted class labels. Cor-
respondingly, we can get n sets of clusters (n indicates the count of base mod-
els). According to the concept drifting detection method, compute the similarity 
between each set of clusters and the concept distribution in the corresponding 
base model, select the most similar base model Ex by the threshold � and use the 
selected model (denoted as f u

i
= {cli} ) to predict on the current data chunk, and 

Fig. 2   Generation of our ensemble model
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update f u
i
 into the base model Ex . In this processing, all concepts hidden in data 

streams will be maintained in the ensemble model.
It is worth to mention that given an unlabeled data chunk, if we cannot find 

the most similar base model Ex from the ensemble model E, this data chunk will 
be stored temporally. After a new base model is generated, we will partition the 
stored data chunk into clusters according to the distribution of class labels pre-
dicted by the new base model, called the cluster model f u

i
 . Meanwhile, we will 

compute the similarity of the concept distributions between the base model and 
the f u

i
 model, if it is similar by the threshold, update the prediction results on the 

stored data chunk using that of the new base model.
Based on the ensemble model E, the prediction method is as follows. Given the 

testing data set D, the predicted label for each instance x ( x ∈ D ) satisfies Eq. (1).

where the probability on the instance x predicted by each base model Ej can be rep-
resented by the weighted probability sum on x predicted by the classifier f l

jk
 and the 

cluster model f u
jk

 in Ej , denoted as Eq. (2).

where a and b indicates the number of the classifier f l
jk

 and the cluster model f u
jk

 , 
respectively, wk indicates the weight of the corresponding sub-model, it is set to an 
equal value (e.g., 1) in this paper.

In Eq. (2), the prediction in the model f l
jk

 indicates the prediction in the classi-
fier cjk , namely P(y|x, f l

jk
) = P(y|x, cjk) , while the prediction in the cluster model f u

jk
 

uses the prediction method mentioned in [8], which can be rewritten in Eq. (3).

where v indicates the cluster count (equal to the number of class labels), the cluster 
gji ∈ clj and clj indicates the cluster set in the model f u

jk
 . In our problem setting, each 

clustering model can only assign an instance a cluster ID that doesn’t carry any class 
label information. Formally, for each test example x, a clustering model f u

jk
 will 

assign it a group ID with the probability P(gji|x , f u
jk

 ), instead of the genuine class 
label P(y|x, f u

jk
 ). To bridge these two different probabilities, the probability P(y|gji ) is 

introduced, which reflects the mapping relationship between each cluster ID gji and 
the genuine class label y ∈ Y  . Thus, for each clustering model f u

jk
 , the posterior 

probability P(y|x, f u
jk

 ) can be estimated by integrating all the v mappings together as 
shown in Eq. (3).

(1)y∗ = argMaxy∈YP(y|x,E) = argMaxy∈Y

n∑

j=1

P(y|x,Ej),

(2)P(y|x,Ej) =

a∑

k=1

wkP(y|x, f ljk) +
a+b∑

k=a+1

wkP(y|x, f ujk),

(3)P(y|x, f u
jk
) =

v∑

i=1

P(y|gji)P(gji|x, f ujk),
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Recurring Concept Drifting Detection

Before introducing details of the recurring concept drifting detection mechanism, 
we first give the definition on the formalization of the concept drift and recur-
ring concept drift. More specifically, concept drift refers to the data distribution 
(denoted as P) evolving over time, i.e., Pt(X,y)≠ Pt+Δ(X,y), where Pt(X,y) and 
Pt+Δ(X,y) indicates the data distribution at time t and t + Δ , respectively, where 
X indicates the feature vector and y indicates the label vector. A recurring concept 
drift occurs when the instances at time t + Δ are generated from the same distri-
bution as that at the previously observed time t, i.e., Pt+Δ(X, y) = Pt(X, y ). That is, 
a concept appears at a point of the past, then it has disappeared for a long time 
and now reappears again. For more details please refer to the survey in [49].

To improve the efficiency of our approach, we compare the concept distribu-
tions between two data chunks instead of those between two instances for concept 
drifting detection. In this paper, we represent the concept distribution of each 
data chunk using clusters partitioned by the predicted class labels in the ensemble 
model, thus the model built on the current data chunk Da

i
 can be represented by 

f a
i
 , correspondingly the hidden concept distribution indicates the distribution of 

clusters, denoted as cli = {gi1, gi2,… , giv} , where v indicates the label count, gij 
indicates the jth cluster ( 1 ≤ j ≤ v ). To determine whether concept drifts occur 
in the current data chunk, we adopt the distance evaluation method based on the 
divergence of the concept distributions. Thus, we require computing the diver-
gence between the concept distributions of the current data chunk and the ensem-
ble model with all historically learned new concepts. That is, we need to, respec-
tively, compare the distance between clusters of the current data chunk with those 
of the base model Ej from E. Therefore, we can formalize the distance mentioned 
above as shown in Eq. (4).

where f a
i
(a ∈ {u, l} ) and f a

jk
 indicates the classifier or the cluster model built on the 

data chunk Da
i
 and the kth data chunk in the base model Ej , respectively, and K indi-

cates the size of a base model Ej . Let f a
j
= f a

jk
 , we can rewrite the distance between 

concept distributions of the above two models by the average distance between cor-
responding clusters as shown in Eq. (5).

where v indicates the cluster count, cli and clj indicates the cluster set in the corre-
sponding models of f a

i
 and f a

j
 , respectively, denoted as cli = {gik|1 ≤ k ≤ v} and 

clj = {gjt|1 ≤ t ≤ v} , gik and gjt indicates the partitioned clusters on the data chunks 
of Da

i
 and Da

j
 , respectively. According to Eq. (5), the distance between clusters can 

be represented in Eq. (6).

(4)dist(f a
i
,Ej) =

1

K

K∑

k=1

dist(f a
i
, f a
jk
),

(5)dist(f a
i
, f a
j
) = dist(cli, clj) =

1

v

v∑

k=1

Min1≤t≤vdist(gik, gjt),
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where ūik and ūjt indicates the center of the clusters gik and gjt , respectively, denoted 
as ūik =

1

�gik�
∑gik

j=1
xij , || ⋅ ||2 indicates the Euclidean distance, rik and rjt indicates the 

corresponding radius of the clusters gik and gjt , respectively, denoted as 
rik =

1

�gik�
∑gik

j=1
��xij, ūik��2 , and xij indicates the instance consisted in the cluster gik.

According to the above definitions, we can write the divergence between the con-
cept distribution of the current data chunk and that in the base model in Eq. (7).

In terms of Eq.  (7), we can see that the smaller the distance between clusters, the 
less difference between the concept distribution on the current data chunk and that 
in the ensemble model. In this case, it is considered as no concept drift or recurring 
concept drift occurring. Figure  3 gives an illustration to the simplest case, that is, 
the ensemble model E only contains a base model and the base model is composed 
of a cluster model with only one cluster. Thus, the value of dist(f a

i
,E) depends on 

the possible relationship between the center distance and the radiuses of the two 
clusters. This figure shows two cases about the distance between clusters dist(gi, gj) 
below.

In case (a), we can get dist(f a
i
,E) ≥ 1 , it indicates the current two clusters are 

not overlapping and even are separated. It is hence considered as a concept drift. 
In case (b), two clusters partially overlap or even completely overlap, namely 
0 < dist(f a

i
,E) < 1 . In this case, we need to distinguish how much the overlapping 

degree can be thought in the same concept. In another word, we consider the con-
cept drift is occurring if the divergence between two concept distributions is larger 
enough. Because we know that a single data chunk only represents partial data dis-
tribution, there are variants of the data distributions in different data chunks. In addi-
tion, noisy data also impact the data distribution. It leads to the divergence between 
the data distributions of the two data chunks. Therefore, we introduce a threshold to 

(6)dist(gik, gjt) =
||ūik, ūjt||2
(rik + rjt)

,

(7)

dist(f a
i
,E) = argMinEj∈E

dist(f a
i
,Ej)

= argMinEj∈E

1

Kv

K∑

j=1

v∑

k=1

Min1≤t≤v
||gik, gjt||2
rik + rjt

.

Fig. 3   Illustration to the distance between clusters
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determine the concept drifting cases. If dist(f a
i
,E) > 𝛿 is met, it is considered as the 

concept drift, otherwise, it has no concept drift or recurring concept drift.

Model Selection

We now introduce the model selection based on the time stamp weighting mecha-
nism and the divergence between concept distributions. For better adapting to infi-
nite concept drifting data streams, it is necessary to select a more suitable base 
model, especially if the concept distribution of the latest data chunk is similar to 
that of multiple base models in the current ensemble model, namely in the case with 
recurring concept drifts. Details of our model selection method are below.

First, according to the assumption the concept distributions hidden in the two 
neighbouring data chunks are more similar, we believe that the divergence of the 
concept distribution between the latest chunk and the latest base model in the 
ensemble model is less. Therefore, we define a time stamp-based weight for each 
base model Ej in the ensemble model E as shown in Eq. (8).

where K indicates the number of sub-models in each base model Ej , T(i) indicates 
the time stamp of a sub-model f a

jk
 in the base model, it is initialized by 0. As a new 

data chunk arrives, the corresponding sub-model is generated, the time stamps for 
all sub-models in the current ensemble model are added by 1. Figure 4 illustrates the 
updating in the current ensemble model as the three new data chunks arrive. In this 
figure, the ensemble model E is initialized by ∅ , suppose the concept distributions 
hidden in data chunks Da

1
 and Da

2
 are different, and the concept distribution hidden in 

the data chunk Da
3
 is as same as that in the base model E1 . According to Eq. (8), we 

can get that the older the sub-model, the larger the value of T(i), the smaller the 
weight sum of the base model Ej in the ensemble model E.

Second, according to the concept drifting detection method mentioned in “Recur-
ring Concept Drifting Detection”, if the divergence of the concept distributions 
between the current data chunk and a base model Ej in E is lower than the threshold 
� , it is considered as no concept drift or recurring concept drift occurring. That is, 
the concept distributions are consistent, belonging to the same concept. To select 

(8)wj = 1 +

K∑

k=1

1

2T(k)
,

Fig. 4   Time stamp update for sub-models in our ensemble model
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the base model with the most similar concept distribution to that on the current data 
chunk, we take consideration of both the divergence between concept distributions 
and the weight of the base model, namely selecting the base model with the largest 
value defined in Eq. (9).

Finally, Algorithm  1 gives the framework of our Concept Drifting detection and 
Model Selection-based Ensembling classification approach for data streams with 
recurring concept drifts and unlabeled data, called CDMSE.

Experiments

In this section, we first outline the experimental settings, including the benchmark 
data sets, evaluation measures and all competing approaches. Second, we give 
the parameter analysis for several important parameters involved in our approach. 
Finally, we evaluate the effectiveness and efficiency of our approach.

Algorithm Our CDMSE Approach
1: Input a streaming data S, the size of a data chunk M , the threshold in the concept

drifting detection δ and the label count v;
2: Partition streaming data S into labeled and unlabeled data chunks with equal size

M ;
3: for each data chunk Da

i (1 ≤ i ≤ n)
4: if it is not the first data chunk
5: for each instance x ∈ Da

i
6: Predict the label for x using Eq. (1);
7: Output the prediction accuracy on Da

i ;
8: Build the corresponding model fa

i according to the labeling status on Da
i ;

9: Detect concept drifts according to Eq. (6) and the threshold δ;
10: if dist(fa

i , E)> δ
11: Build the new base model Enew (namely fa

i → Enew) and add it into
the ensemble mode;

12: else
13: Select the most similar base model Ex by Eq. (9) and add the model fa

i into
Ex (namely fa

i → Ex);

Experimental Settings

Benchmark data sets we use four benchmark synthetic data sets, such as Sea, 
Waveform21, Waveform40 and Hyperplane. Table  1 summarizes the details of 
these four data sets, including the size of the data set, the number of attributes, 
the label count and the ratio of unlabeled instances in the current data set. Our 
data sets are generated by the MOA (an experimental tool for Massive Online 
Analysis) [15] experimental tool. Each data set contains four different concepts 

(9)v(Ej) = argMaxEj∈E

wj

dist(f a
i
,Ej)

.
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and each concept contains 2000 instances. In our experiments, we specify the 
four concepts repeatedly occurring one by one, correspondingly each data set 
contains 100 concepts with 99 concept drifts. The first data chunk is considered 
as the initial training data, while the remaining data chunks will be first consid-
ered as the testing data and then as the training data.

In the following experiments of parameter evaluation and concept drifting 
detection, we generate three representative sets for each data set by specifying 
different ratios of unlabeled data (denoted as ulr), namely ulr = 0% , ulr = 50% 
and ulr = 80% . This is because in the case with ulr = 0% , all semi-supervised 
approaches used in experiments are conducted in an extreme case with all labeled 
data. In the case with ulr = 50% , our approach could beat all competing ones, 
while in the case with ulr = 80% , our approach could beat most of competing 
ones. For more details please refer to the following experimental analysis on 
Fig. 10. It is necessary to mention how to set the value of ulr. In our experiments, 
as each data chunk arrives, it has the probability of ulr as the unlabeled data 
chunk. In this case, we can make sure ulr unlabeled instances and 1-ulr labeled 
instances in all training data.

Evaluation measures we introduce four evaluation measures for concept drift-
ing detection mentioned in [48], including (1) False Alarm: the rate that false 
alarms occur in the concept drifting detection; (2) missing: the rate of concepts 
missed in the drifting detection; (3) delay: the mean count of instances required 
to detect a concept drift after the occurrence of a concept drift. (4) MTFA (Mean 
Time between False Alarm) [50]: It characterizes how often we get false alarms 
when there is no change. We use the evaluation measures for the classification 
performance including accuracy with variance and the count of win/tie/lose. 
According to the prequential evaluation [14, 48], namely testing before training, 
in our approach, as each data chunk arrives, if it is the first data chunk, we will 
use the current data chunk to build a model. Otherwise, we first use the gener-
ated training model to predict the current data chunk and then use the current 
data chunk to build a model for the updating of ensemble model. Therefore, the 
accuracy on each data chunk can be obtained by the ratio of the number of cor-
rect instances to the total number of testing instances. And accuracy here indi-
cates the average value over the prediction accuracies on all data chunks. Vari-
ance indicates the variance of accuracies over data chunks, the smaller the 
variance, the more stable the accuracy predicted in the ensemble model. win/tie/
lose indicates the times our approach wins/ties/loses compared to the competing 

Table 1   Data sets used in our experiments

Data set Sea Waveform21 Waveform40 Hyperplane

Size (k) 200 200 200 200
#Attribute 3 21 40 50
#Label 2 3 3 2
Noise 10% 10% 19 Irrelevant attributes 10%
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approach, respectively. In addition, we further investigate the significance differ-
ence between our approach and these four competing data stream classification 
approaches by the Nemenyi test.

Competing approaches We will investigate the performance of our approach in 
two directions. One is to investigate the performance in the concept drifting detec-
tion. We select eight state-of-the-art concept drifting detectors in data streams as the 
baselines. Details are shown in Table 2. And the other is to investigate the perfor-
mance in the classification. We select four competing approaches for data streams 
with unlabeled data, including the Ensemble classification approach combining both 
Classifiers and clUsters together called ECU [8] , a Single incremental decision tree-
based classification approach for data streams with concept drifts and UNlabeled 
data called SUN [9], a Semi-supervised classification algorithm for data streams 
with REcurring concept Drifts and Limited LAbeled data called REDLLA [44], and 
an online learning algorithm based on micro-clusters and error-based representa-
tive learning called MC [43]. Since the MC method requires a certain amount of 
instances to be initialized, the first data chunk is selected for initialization, other 
parameter settings follow the settings of the original paper [43]. In our experiments, 
we use C4.5 decision tree as a base classifier and the k-means as the base clustering 
algorithm in ECU. Both algorithms are from the Weka experimental platform [51]. 
And the number of sub-models in the ensemble model for the ECU approach is set 
to 10. All experiments are performed on a P4, 2.5 GHz PC with 4 G main memory, 
running Windows7 with the program platform of Eclipse Jdk1.7. 

Parameter Evaluation

In this subsection, we aim to select the optimum values of all important parameters 
involved in our approach, including the size of a base model Ej namely K, the weight 
ratio of a classifier vs. a cluster model in our approach, the size of a data chunk M 
and the threshold used in the recurring concept drifting detection � . All experiments 
are conducted in cases varying with values of the specified parameter while keeping 
others unchanged. Details of parameter settings are as follows.

Table 2   Concept drifting detectors

DDM [6] Drift detection method
EDDM [7] Early drift detection method

Drift detection method based on Cusum (Cumulative Sum of
CusumDM [52] Recursive residual)
PageHinkleyDM [14] Drift detection using Page Hinkley test

Online drift detection based on Hoeffding’s bounds using the
HDDM_W_Test [23] EWMA (Exponentially weighted moving average) statistic
SUN [9]/REDLLA [8] Cluster distance-based drifting detection
RDDM [53] Reactive drift detection method

Unsupervised concept drift detection with a discriminative
d3 [54] Classifier
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We first take the prediction accuracy of our CDSME approach varying with 
values of K from 6 to 20 on four data sets to show the selection on the optimal 
value of K. In the observation of experimental results as shown in Fig. 5, we can 
see that as values of K increase, the prediction accuracy of our approach is first 
increasing and and then maintaining stably on data sets of Sea and Hyperplane, 
while it is continuously increasing by a narrow range on data sets of Waveform21 
and Waveform40. We can get a high prediction accuracy on other three data sets 
even up to the highest accuracy on Hyperplane if specifying K ≥ 10. In the mean-
while, considering the larger the number of K is, the more the resource consumes. 
Therefore, in the following experiments, we select K = 10 as a candidate optimal 
value for our approach. This value also follows the setting in ECU [8].

Second, Fig. 6 reports the prediction accuracy of our approach in three cases 
of ulr varying with weight ratios of a classifier vs. a cluster model in [2:1, 1,5:1, 
1:1, 1:1.5, 1:2] on four benchmark data sets. From experimental results we can 
observe that our approach performs the best in the case with the weight ratio of a 
classifier vs. a cluster model as 1:1. That is, the base models in our approach have 
the equal weights. Thus, we specify wk = 1 as an optimal value involved in Eq. 
(2).

Third, Fig.  7 reports the prediction accuracy of our approach in three cases 
of ulr varying with values of M from 100 to 300 with a step 50 on four bench-
mark data sets. In the observation of experimental results, we can see that as val-
ues of M increase, the prediction accuracy of our approach is firstly increasing 
up to a peak value at M = 200 , then decreasing to a relatively stable point on 
three benchmark data sets including Sea, Hyperplane and Waveform21. While the 
prediction accuracy of our approach on Waveform40 is continuously increasing. 
This is because the data set of Waveform40 contains 19 irrelevant attributes, as 
the size of a data chunk varies from 200 to 300, the useful information will be 

Fig. 5   Performance of our approach varying with different sizes of ensemble model (K)
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more sufficient. The prediction accuracy is correspondingly increasing. For unity, 
M = 200 is hence set to a candidate optimal value.

Finally, we investigate the prediction accuracy of our approach in three cases 
of ulr varying with values of � from 0.12 to 0.18 with a step 0.01 on four bench-
mark data sets. According to experimental results as shown in Fig. 8, we can see 
that as values of � increase, the prediction accuracy of our approach is firstly 
increasing then decreasing to a relatively stable value on data sets of Sea and 
Waveform21, while the prediction accuracies of our approach are increasing and 
then maintains stably on data sets of Waveform40 and Hyperplane. All prediction 
accuracies are either up to a peak value or maintain a higher value at delta = 0.15 . 

Fig. 6   Performance of our approach varying with different weights of classifiers and clusters

Fig. 7   Performance of our approach varying with sizes of a data chunk (M)
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Thus, we select delta = 0.15 as a candidate optimal value in our concept drifting 
detection.

In summary, the optimal parameter settings in our approach are specified below. 
The number of sub-models in each base model for our approach is set to K = 10 and 
the weights of all sub-models are specified equally. The size of a data chunk is set 
to M = 200 and the threshold used in the recurring concept drifting detection is set 
to � = 0.15 . The following experimental results of our approach are obtained using 
these optimal values of all important parameters.

Performance Analysis

This section will investigate the performance of our approach in two dimensions. 
First, we compare our approaches with and without the time stamp-based weight in 
the model selection as shown in Eq. (8), and then compare our approach with well-
known semi-supervised approaches in the classification performance. Second, we 
compare our approaches with well-known concept drifting detection methods in the 
recurring concept drifting detection. Details of our experiments are as follows.

Classification Performance

We first compare our approaches with and without the time stamp based weight in 
the model selection as shown in Fig.  9. It can be seen from experimental results 
that our approach with the time stamp-based weight in the model selection actually 
outperforms that without this handling. And then we investigate the effectiveness 
and efficiency of our approach compared to four well-known semi-supervised data 
stream classification approaches as follows.

Fig. 8   Performance of our approach varying with values of delta
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Fig. 9   Performance of our approaches without and with time weights in the model selection

Fig. 10   Performance of our approach varying with values of ulr
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On the one hand, Fig. 10 reports the prediction accuracies of our approach com-
pared to competing ones varying with values of ulr ranging from 0 to 90% with a 
step 10%. From experimental results, we can observe the followings.

First, with the increasing of the ratios of unlabeled data, the performance of all 
approaches in the classification accuracy is deteriorating. This is because the more 
unlabeled data indicate the less useful information especially for labels used in the 
classification, which leads to the deterioration in the classification accuracy.

Second, as compared to three competing approaches of ECU, SUN and REDLLA, 
our approach is superior or comparable to them in the case with ulr no more than 
80%. This is because instead of using the k-means algorithm in ECU, clusters are 
built in our approach according to the distribution of class labels predicted in the 
ensemble model. It cannot significantly reduce the classification accuracy, while it 
probably enables improving the classification accuracy. Meanwhile, it validates that 
introducing the concept drifting detection and the model selection is actually condu-
cive to improve the classification accuracy of the ensemble model. In addition, the 
ensemble model in our approach is also beneficial to the improvement of the clas-
sification accuracy compared to the single model in SUN and REDLLA.

Third, as compared to the MC approach, our approach can beat it in case of ulr no 
more than 50% while it is inferior to MC in case of ulr > 50% . This is because the 
MC method maintains a group of 1000 flexible micro-clusters. These micro-clusters 
may contain more recurring concepts due to their large sizes. But these micro-clus-
ters are sensitive to noise, as the values of ulr increases more than 50%, the predic-
tion accuracy of the method MC may be increasing on several data sets such as Sea 
and Hyperplane. This anomaly is because the MC method is based on error-based 
representative learning. With the increasing value of ulr, the amount of labeled noise 
instance is decreasing, which means that the probability of noise data interfering 
with the reliability of the micro-clusters is reduced. And the probability of unneces-
sary and false micro-clusters deleting is reduced.

In summary, our approach outperforms all competing ones in the case with ulr no 
more than 50%, while our approach could beat other three competing ones except of 
the MC approach in the case with ulr ≤ 80%. Thus, in terms of the prediction accu-
racy, we further select three representative cases (namely ulr = 0% , ulr = 50% and 
ulr = 80% ) to compare the statistics of win/tie/lose as shown in Tables 3, 4 and 5. In 
these tables, the statistics of win/tie/lose in our approach indicate the average values 
over four competing approaches, and all best results are highlighted in bold. In the 
case of ulr = 0% , there is only a set of experimental results for SUN and REDLLA, 
because both approaches are based on the same single decision tree. In the observa-
tion of experimental results, we can obtain the same conclusions mentioned above. 
These data further validate the effectiveness of our approach compared to well-
known competing ones in the handling of data streams with unlabeled data. 

On the other hand, Fig. 11 shows the comparison experiments of all competing 
approaches in time consumptions. According to experimental results in Fig. 11, our 
CDMSE approach is comparable to approaches of SUN, REDLLA and ECU, while 
all of them are superior to the MC method in the time performance. The analy-
sis is below. The ensemble model in our CDMSE approach is developed from the 
ECU algorithm, the time complexity of the basic classifier is mainly denoted as O 
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( k ⋅M2 + v ⋅M ⋅ d ), where k indicates the number of clusters on each data chunk, 
v indicates the number of class labels, d indicates the number of dimensions, and 
M indicates the size of a data chunk, which is set to 200 in our experiments. The 
difference in the time consumptions as shown in Fig. 11 lies that our approach will 
update model according to the results of recurring concept drifting detection, while 
the latter always update the model as the new data chunk arrives. Thus, the whole 
time consumptions of our approach are lower. As compared to SUN and REDLLA 
approaches, they are built on a single Hoeffding decision tree with clusters at leaves. 
The used models are similar as ours, the time consumptions are hence similar. As 
compared to the MC method, its time complexity of basic classifier is denoted as 
O(k∗∕v ⋅ |Dinit|2+maxMC2 ), where k∗ indicates the number of clusters, Dinit indi-
cates the total number of instances in the initial data set (which is set to 1000), and 
maxMC indicates the maximum number of micro-clusters in the model (which is set 
to 1000). As the data stream flows, our method will update as the new data chunk 
arrives (the size of a data chunk is only M), while the MC method will update as the 
new instance arrives (the number of instances in the data stream is m). Obviously, 
the value of m is more larger than the value of M. Thus, the total time consumption 
of the MC method is much larger than that of our method.

Table 3   Performance comparison between our approach and competing ones on synthetic data sets with 
ulr = 0%

Data set Approach Accuracy ± variance Win/tie/lose

Sea ECU 0.835 (3) ± 0.002 77/643/279 (4)
SUN/REDLLA 0.850 (1) ± 0.001 509/70/420 (2)
MC 0.847 (2) ± 0.001 519/15/465 (1)
CDMSE 0.847 (2) ± 0.001 396/200/403 (3)

Waveform21 ECU 0.589 (4) ± 0.021 110/39/850 (4)
SUN/REDLLA 0.696 (3) ± 0.001 135/31/833 (3)
MC 0.731 (2) ± 0.001 489/13/497 (2)
CDMSE 0.736 (1) ± 0.001 753/29/217 (1)

Waveform40 ECU 0.715 (4) ± 0.009 123/33/843 (4)
SUN/REDLLA 0.777 (3) ± 0.001 194/35/770 (3)
MC 0.787 (2) ± 0.001 304/9/686 (2)
CDMSE 0.798 (1) ± 0.005 767/28/204 (1)

Hyperplane ECU 0.705 (1) ± 0.003 0/999/0 (4)
SUN/REDLLA 0.641 (3) ± 0.001 163/17/819 (3)
MC 0.686 (2) ± 0.001 327/10/662 (2)
CDMSE 0.705 (1) ± 0.003 575/261/163 (1)

Average Ranking ECU 3 4
SUN/REDLLA 2.5 2.75
MC 2 1.75
CDMSE 1.25 1.5
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Obviously, the time complexity of MC is much greater than the method CDMSE, 
therefore our CDMSE is better than MC method in time performance. In particu-
lar, the cause of above phenomenon is that our CDMSE approach uses an efficient 
ensemble method for classification, which can learn from the previous concepts in 
a very short time. Therefore, our method achieves a comprehensive consideration of 
time and accuracy performance.

In addition, we employ the Nemenyi test to further analyze the classification 
performance among comparing approaches in three representative cases. We treat 
our approach as the dominating approach, the difference between the average ranks 
of our approach and one comparing approach is compared with the critical differ-
ence (CD): For the Nemenyi test, we have CD = 2.749 ( q0.10 = 2.459 , the number 
of competing approaches = 5 , the number of used data sets = 4 ) on data stream 
classification at significance level � = 0.10 . Accordingly, the performance between 
our approach and one comparing approach is deemed to be significantly different if 

Table 4   Performance comparison between our approach and competing ones on synthetic data sets with 
ulr = 50%

Data set Approach Accuracy ± variance Win/tie/lose

Sea ECU 0.832 (2) ± 0.002 411/104/484 (2)
SUN 0.827 (3) ± 0.001 353/51/595 (3)
REDLLA 0.826 (4) ± 0.001 333/49/617 (5)
MC 0.827 (3) ± 0.001 340/11/649 (4)
CDMSE 0.833 (1) ± 0.002 586/54/359 (1)

Waveform21 ECU 0.583 (5) ± 0.019 78/18/903 (4)
SUN 0.661 (4) ± 0.001 68/15/916 (5)
REDLLA 0.685 (3) ± 0.001 147/39/813 (3)
MC 0.720 (2) ± 0.002 490/9/500 (2)
CDMSE 0.722 (1) ± 0.002 783/20/196 (1)

Waveform40 ECU 0.686 (5) ± 0.009 123/61/815 (5)
SUN 0.751 (2) ± 0.001 241/49/709 (2)
REDLLA 0.746 (3) ± 0.001 196/33/770 (4)
MC 0.745 (4) ± 0.002 231/10/758 (3)
CDMSE 0.773 (1) ± 0.003 763/38/198 (1)

Hyperplane ECU 0.596 (2) ± 0.007 325/32/642 (4)
SUN 0.596 (2) ± 0.001 377/32/590 (3)
REDLLA 0.596 (2) ± 0.001 397/23/579 (2)
MC 0.561 (3) ± 0.003 196/3/800 (5)
CDMSE 0.628 (1) ± 0.007 653/22/324 (1)

Average ranking ECU 3.5 3.75
SUN 2.75 3.25
REDLLA 3 3.5
MC 3 3.5
CDMSE 1 1
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their average ranks over all data sets differ by at least one CD as shown in Fig. 12. 
From the experimental results, we can observe that on the accuracy, all competing 
approaches have no significant differences, but our CDMSE approach takes the first 
place in the cases of ulr = 0% and ulr = 50% . And in the case of ulr = 80% , our 
approach presents the significant advantage compared to the ECU approach. On the 
time consumption, our CDMSE approach is comparable to the single model-based 
approaches such as SUN and REDLLA, and it is superior to the ensemble approach 
ECU. Meanwhile, all of them present the significant advantages compared to the 
MC approach in all three cases of ulr. These data also reveal the advantages of our 
approach in the effectiveness and efficiency.

Recurring Concept Drifting Detection
In this subsection, we want to evaluate whether the concept drifting detection 

technique in our approach could handle scenarios of recurring concept drifts. Table 6 
summarizes the statistics on three evaluation measures for the concept drifting 
detection in our approach varying with different values of ulr and eight competing 

Table 5   Performance 
comparison between our 
approach and competing ones 
on synthetic data sets with 
ulr = 80%

Data set Approach Accuracy ± variance Win/tie/lose

Sea ECU 0.821 (2) ± 0.002 484/56/459 (2)
SUN 0.818 (3) ± 0.001 464/43/492 (4)
REDLLA 0.792 (5) ± 0.001 303/18/678 (5)
MC 0.847 (1) ± 0.001 745/8/246 (1)
CDMSE 0.807 (4) ± 0.004 469/31/499 (3)

Waveform21 ECU 0.565 (5) ± 0.012 91/27/881 (5)
SUN 0.611 (4) ± 0.002 116/14/869 (4)
REDLLA 0.658 (3) ± 0.001 326/35/638 (3)
MC 0.700 (1) ± 0.002 700/6/293 (1)
CDMSE 0.678 (2) ± 0.002 670/21/308 (2)

Waveform40 ECU 0.644 (4) ± 0.010 172/98/729 (5)
SUN 0.710 (3) ± 0.001 394/42/563 (4)
REDLLA 0.710 (3) ± 0.001 415/44/540 (3)
MC 0.729 (1) ± 0.003 580/8/411 (1)
CDMSE 0.712 (2) ± 0.005 561/48/390 (2)

Hyperplane ECU 0.541 (5) ± 0.005 328/88/583 (5)
SUN 0.555 (3) ± 0.001 507/29/463 (2)
REDLLA 0.554 (4) ± 0.001 533/21/445 (3)
MC 0.619 (1) ± 0.002 783/3/213 (1)
CDMSE 0.562 (2) ± 0.007 426/35/538 (4)

Average ranking ECU 4 4.25
SUN 3.25 3.5
REDLLA 3.75 3.5
MC 1 1
CDMSE 2.5 2.75
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approaches. In this table, if there are no drifts detected in the concept drifting detec-
tion, we mark the corresponding values of evaluation measures in ‘/’. For the sim-
plification, we only give the best statistics of all competing drifting detectors using 
all labeled data over three base classifiers, including Naïve Bayes, Perceptron and 

Fig. 11   Time consumptions between our approach and four classification methods over four data sets
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OzaBagASHT based on ensemble of adaptive Hoeffding trees. All competing drift-
ing detectors and the base classifiers are from the open source experimental platform 
of MOA [15]. From the statistical results, we can see the followings.

First, considering the performance on the evaluation measures of False alarm and 
Missing, our approach can beat all baselines in the performance of Missing, while 
it is comparable to others in the performance of False alarm. This is because our 
approach uses the similarity-based clusters to detect recurring concept drifts instead 
of the classification error-based approaches in all competing detectors. It is condu-
cive to distinguish recurring concept drifts caused by changes of conditional prob-
abilities of attribute-values in our experimental data, while it can reduce the impact 
from class labels. Second, considering the performance on the evaluation measure 
of Delay, our approach wins the four place at least in eight approaches. Third, con-
sidering the performance on the evaluation measure of MTFA, our approach wins 
the first place in eight approaches except on Waveform40. These data validate the 
concept drifting detection mechanism in our approach is effective even in the case 
with unlabeled data up to 80%. It is comparable or superior to the detectors in the 
case with all labeled data.

It is necessary to mention that our CDMSE approach is not the best on the data 
set of Waveform40 and cannot detect any drifts on the data set of Hyperplane in 
the case with ulr = 0% . In fact, if the value of � decreases, namely in the case of 
� ≤ 0.12, our approach can beat all competing approaches in the recurring concept 
drifting detection. The reason is analyzed below. The Waveform40 data set adds 19 
irrelevant attributes compared to the Waveform21 data set. More noisy data indicate 
the increasing of the distance between cluster centers and the radii of corresponding 
concept clusters. According to Eq.  (6), both values of numerator and denominator 

Fig. 12   The Nemenyi test on four benchmark data sets with different values of ulr
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are increasing, but the increasing ratio of radius is larger than that of distance 
between cluster center, thus, our approach can distinguish the recurring concept 
drifts only if the threshold of � decreases. Considering the data set of Hyperplane in 
the case with ulr = 0% , we know that the more labeled data indicate the lower drift 
rate according to the concept drifting theory in [55]. To detect concept drifts, the 
threshold of � should be less in the handling of Hyperplane without unlabeled data 
than those with more unlabeled data.

Table 6   Statistics of drift detection

Data set Approach False alarm Missing Delay MTFA

Sea DDM 0.14 98.99 709 8400
EDDM 0.36 96.97 378 4088
CusumDM 0.00 98.99 17 /
PageHinkleyDM / / / /
HDDM_W_Test 1.28 97.98 284 9815
REDLLA 45.00 92.93 257 440
RDDM / / / /
d3 / / / /
CDMSE(ulr = 0%) 0.20 66.66 170 91200
CDMSE(ulr = 50%) 0.40 78.78 229 41750
CDMSE(ulr = 80%) 3.00 58.58 371 6593

Waveform21 DDM 0.00 73.74 300 /
EDDM 0.08 96.97 0 24800
CusumDM 0.00 73.74 169 /
PageHinkleyDM 0.00 84.85 1160 /
HDDM_W_Test 1.60 66.67 166 4034
REDLLA 79.58 1.01 380 249
RDDM 0.4 21.22 29 37650
d3 13.70 3.04 131 1539
CDMSE(ulr = 0%) 0.00 0.00 0.00 /
CDMSE(ulr = 50%) 0.80 0.00 0.00 22900
CDMSE(ulr = 80%) 0.70 0.00 0.00 23914

Waveform40 DDM 0.30 93.94 433 4933
EDDM / / / /
CusumDM 0.00 50.51 216 /
PageHinkleyDM 0.00 94.95 600 /
HDDM_W_Test 0.01 17.18 202 2100
REDLLA / / / /
RDDM 0.8 21.22 586 16475
d3 0.14 2.03 12 1410
CDMSE(ulr = 0%) 0.4 80.81 330 1750
CDMSE(ulr = 50%) 0.4 80.81 330 1750
CDMSE(ulr = 80%) 0.4 80.81 330 1750
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In addition, since approaches of ECU, SUN and MC have no statistical results 
of concept drifting detection, we now give the accuracy curves to show the per-
formance in the recurring concept drifting environment in the case with ulr = 50% . 
Figures 13, 14, and 15 draw the curves of the classification accuracy in our approach 
and competing approaches with the concept drifting detection mechanisms. In these 
figures, the dotted line indicates the real recurring concept drifting point in the cor-
responding data set, the solid line indicates the concept drifting point detected by 
our CDMSE approach. From the experimental results, we can observe the follow-
ing conclusion. As compared with competing approaches ECU, SUN and MC, our 
CDMSE approach can quickly adapt to the recurring concept drifts. That is, the clas-
sification accuracy in our approach is higher than that of the competing approaches, 
especially when the concept drifts are detected correctly in our approach. The rea-
son is analyzed below.

Regarding the competing approach ECU, it only adapts to the concept drifts by 
updating the ensemble model, which leads to the adaptation to concept drifts slowly. 
However, our CDMSE approach adopts the recurring concept drifting detection 
mechanism based on the divergence between concept distributions. When the con-
cept drifts occur as the incoming data chunks arrive, our approach can distinguish 
recurring concept drifts in most cases and update the base model in time. Regarding 
the competing approach SUN, it adopts a similar concept drifting detection mecha-
nism based on the clusters partitioned in k-Modes, but it is built on a single classi-
fier. Thus, the reaction to the concept drifts is probably more sensitive and causes the 
unnecessary updating. Therefore, the classification accuracy in SUN is usually lower 
than ours in the concept drifting detection. Regarding the MC method, it is also 
susceptible to noise interference due to k-means, which means it is easy to delete 
a micro-cluster as a concept and cause unnecessary deleting and adding, this may 
cause that concept drift cannot be correctly identified. All of the above experimental 

Table 6   (continued)

Data set Approach False alarm Missing Delay MTFA

Hyperplane DDM / / / /

EDDM / / / /

CusumDM 0.00 78.79 1107 /

PageHinkleyDM / / / /

HDDM_W_Test 0.87 92.93 700 7911

REDLLA 83.95 0 326 236

RDDM 0.00 94.95 1447 /

d3 0.00 95.96 496 /

CDMSE(ulr = 0%) / / / /

CDMSE(ulr = 50%) 1.80 62.6 859 9855

CDMSE(ulr = 80%) 3.70 41.41 576 5354
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(a)

(b)

(c)

(d)

Fig. 13   Concept drifting detection curves of CDMSE and ECU on four data sets
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(a)

(b)

(c)

(d)

Fig. 14   Concept drifting detection curves of CDMSE and SUN on four data sets
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Fig. 15   Concept drifting detection curves of CDMSE and MC on four data sets
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results involved in Figs. 13, 14 and 15 are given in the case of ulr = 50% , we can 
draw the similar conclusions in cases with the value ulr no more than 80%.

Application on Real Data Sets

Finally, we also conduct experiments on two real data sets to investigate the effec-
tiveness and efficiency of our approach. These two real data sets are from the UCI 
Repository1 as follows. Adult is known as “Census Income” dataset. It contains 
48842 samples with two labels, and each sample has 14 features, such as age, edu-
cation-num and capital-gain. We do not know whether it contains the concept drift. 
Occupancy data set contains 20560 samples. Each sample has five features, such as 
temperature, humidity, light and CO2 , and these features are used to classify whether 
the room is occupied or not. Because we cannot know the concept drifts hidden in 
the real data sets. Thus, we only compare our approach with well-known semi-super-
vised data stream classification approaches in the classification accuracy and in the 
time consumption. In the observation of experimental results of Table 7 and Fig. 16, 
we can see that our approach is not always the first place on these two real data sets 
in three cases of ulr, but in general, our approach is comparable or superior to com-
peting approaches in the classification accuracy. While our approach has obvious 
advantages compared to other competing algorithms in the time consumptions.

Conclusions

In the real-world applications, recurring concept drifting and label missing in data 
streams impose the challenges for classic data streaming classification approaches 
due to the lower effectiveness. Therefore, we proposed an ensemble classification 
method based on the recurring concept drifting detection and model selection for 
data streams with concept drifts and unlabeled data. First, we built an ensemble 
model composed of classifiers and clusters. Meanwhile, we divided the data chunk 
and built the clusters based on the distribution of class labels predicted in the ensem-
ble model. Second, we adopted a new concept drifting detection method based on 
the divergence between concept distributions and a base model selection method for 
adapting to the recurring concept drifts. Finally, experimental studies demonstrated 
that our approach is effective and efficient in the classification on data stream with 
recurring concept drifts and unlabeled data compared to several well-known com-
peting algorithms. However, how to improve the performance in the handling of 
gradual concept drifts will be our future work.

1  https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets.​php

https://archive.ics.uci.edu/ml/datasets.php
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Table 7   Performance 
comparison between our 
approach and competing ones 
on real data sets

Data set Approach Accuracy ± variance Win/tie/lose

In the case of ulr = 0%
 Adult ECU 0.827 (2) ± 0.001 0/162/0 (4)

SUN/REDLLA 0.834 (1) ± 0.001 110/13/39 (1)
MC 0.784 (3) ± 0.001 5/4/153 (3)
CDMSE 0.827 (2) ± 0.001 58/48/56 (2)

 Occupancy ECU 0.988 (2) ± 0.001 7/85/10 (3)
SUN/REDLLA 0.989 (1) ± 0.001 30/19/53 (2)
MC 0.988 (2) ± 0.001 7/81/14 (4)
CDMSE 0.988 (2) ± 0.001 32/51/19 (1)

In the case of ulr = 50%
 Adult ECU 0.822 (1) ± 0.001 0/162/0 (5)

SUN 0.818 (2) ± 0.001 70/9/83 (2)
REDLLA 0.818 (2) ± 0.001 70/6/86 (3)
MC 0.777 (3) ± 0.001 8/4/150 (4)
CDMSE 0.822 (1) ± 0.001 80/45/37 (1)

 Occupancy ECU 0.987 (2) ± 0.001 5/88/9 (5)
SUN 0.981 (4) ± 0.001 22/20/60 (4)
REDLLA 0.982 (3) ± 0.001 26/48/28 (3)
MC 0.989 (1) ± 0.001 42/30/30 (1)
CDMSE 0.987 (2) ± 0.001 32/47/23 (2)

In the case of ulr = 80%
 Adult ECU 0.807 (1) ± 0.001 0/162/0 (5)

SUN 0.797 (2) ± 0.001 61/4/97 (2)
REDLLA 0.796 (3) ± 0.001 58/7/97 (3)
MC 0.763 (4) ± 0.001 31/10/121 (4)
CDMSE 0.807 (1) ± 0.001 79/46/38 (1)

 Occupancy ECU 0.983 (1) ± 0.001 12/71/19 (5)
SUN 0.973 (4) ± 0.001 29/24/49 (4)
REDLLA 0.98 (3) ± 0.001 40/22/40 (1)
MC 0.983 (1) ± 0.001 31/50/21 (3)
CDMSE 0.981 (2) ± 0.001 32/42/28 (2)

Fig. 16   Time consumptions of all competing approaches on two real data sets in three cases of ulr
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