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Abstract
It is known that secure computation can be done by using a deck of physical cards. 
This area is called card-based cryptography. Shinagawa et  al. (in: Provable secu-
rity—9th international conference, ProvSec 2015, Kanazawa, Japan, 2015) pro-
posed regular n-sided polygon cards that enable to compute functions over ℤ∕nℤ . 
In particular, they designed efficient protocols for linear functions (e.g. addition and 
constant multiplication) over ℤ∕nℤ . Here, efficiency is measured by the number of 
cards used in the protocol. In this paper, we propose a new type of cards, dihedral 
cards, as a natural generalization of regular polygon cards. Based on them, we con-
struct efficient protocols for various interesting functions such as carry of addition, 
equality, and greater-than, whose efficient construction has not been known before. 
Beside this, we introduce a new protocol framework that captures a wide class of 
card types including binary cards, regular polygon cards, dihedral cards, and so on.

Keywords  Secure computation · Card-based cryptography · Invisible ink

Introduction

Secure computation enables a set of parties each having inputs to jointly compute a 
predetermined function of their inputs without revealing their inputs beyond the output. 
Card-based cryptography (ex. [2, 4, 9]) is secure computation that can be done by using 
a deck of physical cards, instead of computer devices. This makes people understand 
the correctness and security of secure computation, even for people who are not famil-
iar with mathematics. Indeed, it is applied to educational situations; some universities 
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(e.g., Cornell University [7], University of Waterloo [3], and Tohoku University [8]) 
adopt card-based cryptography as a teaching material for beginner students.

While most of all existing works [1, 3–6, 9–12, 16] are mainly focused on binary 
computation only, a lot of secure computation that arises in everyday and classroom 
situations needs to take multi-valued inputs. For instance, secure computation of the 
average score, which takes a number of scores and outputs the average of them, is such 
a canonical example. In order to compute multi-valued functions efficiently, Shinagawa 
et al. [15] proposed a deck of regular polygon cards, whose shape is a regular n-sided 
polygon for the base number n. They proposed a two-card addition protocol that out-
puts x + y mod n given two cards having x, y ∈ ℤ∕nℤ.

Does a deck of regular polygon cards realize sufficiently efficient secure computa-
tion for multi-valued functions? Up until now, there exist efficient protocols only for a 
very restrictive class of functions such as addition and subtraction, however, it requires 
a large number of cards for computing a function in the outside of the class (in gen-
eral, it requires O(nk) cards for k inputs). Unfortunately, there are no efficient protocols 
even for very simple functions such as addition with carry, where given two integers 
x, y ∈ {0, 1,… , n − 1} , it outputs a carry of addition, the predicate “ x + y ≥ n ”. To 
compute a carry of addition efficiently is one of the open problems in this area. In this 
paper, we solve it by designing a new type of cards.

Our Contribution

Dihedral cards We design a new type of cards, dihedral cards, which is based on the 
use of invisible ink. It enables to construct several efficient protocols. Introducing invis-
ible ink in the area of card-based cryptography is also our contribution. We construct an 
efficient protocol for computing interesting predicates: a carry of addition “ x + y ≥ n ”, 
equality with zero “ x = 0 ”, equality “ x = y ”, and greater than “ x ≥ y ”. Table 1 shows 
a comparison between our protocols and the previous protocols [15] with regular poly-
gon cards (RPC). Somewhat surprisingly, our protocols with dihedral cards (DC) for 
these predicates requires only two cards while all existing RPC-based protocols for the 
same predicates requires a large number of cards depending on the modulus n.

A unified protocol model We introduce a new protocol model for describing pro-
tocols with our new cards (Sect. 2). Our model has somewhat generality. It captures 
a wide class of protocols not only our dihedral cards but also other type of cards. For 
example, our model also captures regular polygon cards [14, 15]. See Appendix for the 
definition of regular polygon cards in our model. We believe that our model will be 
applied to future works proposing new cards. We left to give concrete definitions for 
other cards as future works.

A Unified Protocol Model

In this section, we introduce a protocol model for describing not only our dihe-
dral cards but also other cards. Roughly speaking, a card-based protocol can be 
specified by a deck of cards and a set of operations. Thus in order to describe a 
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new type of cards, we must define a suitable deck of cards and a suitable set of 
operations. In this section, we explain the model with the case of the standard 
binary cards  in order to make it easier to read for those who are familiar 
with the ordinary card-based cryptography. We give definitions for dihedral cards 
in Sect. 3. We also give definitions for other cards in Appendix.

Deck, Sequence, and Visible Sequence

In Mizuki-Shizuya model, a deck is defined by a finite multiset. For example, 
D = {♣,♣,♣,♡,♡,♡} denotes a deck consists of six cards: three clubs and three 
hearts. All backsides are assumed to be “ ? ”. (Thus, it is required the condition 
that D ∩ {?} = � .) Although it captures some class of decks including decks of 
binary cards  and number cards  , it is not sufficient if non-standard 
cards (like dihedral cards) are used.

In our model, we define a deck as follows:

Definition 1  (Deck) A deck D is defined by a five-tuple as follows:

where C is a finite set called a card set, T ⊂ {t ∣ t ∶ C → C} is called a transformation 
set, � is a finite set called a symbol set, 𝗏𝗂𝗌 ∶ C → � is a function called a vision 
function, and D is a finite multiset called a deck set, where the base set is C . We 

D ∶= (C, T,�, ���,D),

Table 1   Comparison between 
our protocols and previous 
protocols: “RPC”, and “DC” 
denote regular polygon cards 
and dihedral cards, respectively

Type of cards Number of cards Number 
of shuf-
fles

◦  Addition and Subtraction
Shinagawa et al. [15] RPC 2 1
Ours DC 2 1
◦  Carry: the predicate “ x + y ≥ n”
Shinagawa et al. [15] RPC n

2
+ n + 2 2

Ours DC 2 5
◦  Equality with zero: the predicate “ x = 0”
Shinagawa et al. [15] RPC 2n + 1 1
Ours DC 2 4
◦  Equality: the predicate “ x = y”
Shinagawa et al. [15] RPC n

2
+ n + 2 2

Ours DC 2 6
◦  Greater than: the predicate “ x ≥ y”
Shinagawa et al. [15] RPC n

2
+ n + 2 2

Ours DC 2 5
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assume that T  always contains the identity function 𝗂𝖽 ∶ C → C . The former four-
tuple (C, T,�, ���) is called a card specification. � ▪

Example 1  Consider a deck of cards  whose back sides are  , which is 
used by the Five-Card Trick [2]. The deck is described by the following:

•	 The card set is C = {♣∕?,♡∕?, ?∕♣, ?∕♡};
•	 The symbol set is � = {♣,♡, ?};
•	 The transformation set is T = {��, ����} , where the function ���� is defined by 

����(X∕Y) = Y∕X for any X, Y ∈ �;
•	 The vision function ��� is defined by ���(X∕Y) = X for any X, Y ∈ �;
•	 The deck set is D = {♣∕?,♣∕?,♡∕?,♡∕?,♡∕?} = {(♣∕?)2, (♡∕?)3}.

For the card set C , the element “ ♣∕? ” (resp. “ ♡∕? ”) means a face-up card  
(resp.  ) and the element “ ?∕♣ ” (resp. “ ?∕♡ ”) means a face-down card  whose 
front side is  (resp.  ). The transformation set has a turning transformation 
���� . By applying ���� to a card, a face-up card is changed to a face-down card 
(and vice versa). The vision function specifies what information is revealed from 
a card. From face-up cards “ ♣∕? ” and “ ♡∕? ”, it reveals the symbols “ ♣ ” and 
“ ♡ ”, on the other hand, from face-down cards “ ?∕♣ ” and “ ?∕♡ ”, it reveals “ ? ” 
only. This card specification (C, T,�, ���) is called the binary cards. Hereafter, we 
denote the binary cards by ������ = (C�, T�,��, ����) .� ▪

Sequence We define a sequence as follows:

Definition 2  (Sequence) Let D = (C, T,�, ���,D) be a deck. A sequence s in D is 
defined as follows:

where t1, t2,… , t|D| ∈ T  and D = {x1, x2,… , x|D|} as a multiset. The set of all 
sequences in D is denoted by ���D . � ▪

Example 2  Let D = (������,D) be the deck in Example 1. An example of a sequence 
s of D is as follows:

This is because s is represented as follows:

It represents a sequence  . � ▪

Visible sequence We define a visible sequence as follows:

s = (t1(x1), t2(x2),… , t|D|(x|D|)),

s = (?∕♣, ?∕♡,♡∕?, ?∕♡, ?∕♣).

s = (����(♣∕?), ����(♡∕?), ��(♡∕?), ����(♡∕?), ����(♣∕?)).
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Definition 3  (Visible sequence) Let D = (C, T,�, ���,D) be a deck and let 
s = (x1, x2,… , x|D|) ∈ ���D be a sequence in D . The visible sequence of s in D is 
defined as follows:

The set of all visible sequences in D is defined as follows:

� ▪

Example 3  Let s be the sequence in Example  2. The visible sequence of s is 
���(s) = (?, ?,♡, ?, ?) . We sometimes write it by (?2,♡, ?2) or ?2♡?2 .� ▪

Operation

Let D be a deck. Let s ∈ ���D be a sequence in D . We consider two types of opera-
tions, conversion and opening, as follows:

•	 Conversion: It converts s into a new sequence s� ∈ ���D . When it is deterministic, 
it is called a deterministic operation (e.g. permutation and turn). When it is rand-
omized, it is called a probabilistic operation (e.g. shuffle).

•	 Opening: It reveals some information on s when a visible sequence of the sequence 
is not changed (e.g. sign opening in Sect. 3.2).

Now we define the most standard set of operations (of conversion) for binary 
cards. Let D = (������,D) be a deck of binary cards such that |D| = � and let 
s = (c1, c2,… , c

�
) ∈ ���D be a sequence in D . We define three sets of operations, per-

mutation, turning, and shuffle as follows:
Permutation For � ∈ S

�
 (here S

�
 denotes the �-th symmetric group), a permutation 

operation (����,�) generates a new sequence in D as follows:

That is, the card in the i-th position in s is moved to the �(i)-th position in the new 
sequence. The set of permutations ����

�
 for sequences of � cards is defined as 

follows:

Turn For a set of positions T ⊂ [�] (here [�] denotes the set {1, 2,… ,�} ), a turning 
operation (����,T) takes s as input and returns a new sequence s� ∈ ���D as follows:

���(s) ∶= (���(x1), ���(x2),… , ���(x|D|)).

���D = {���(s) ∣ s ∈ ���D}.

(c1, c2,… , c
�
) → (c�−1(1), c�−1(2),… , c�−1(�)).

����
�
∶= {(����,�) ∣ � ∈ S

�
}.

(c1, c2,… , c
�
) → (c�

1
, c�

2
,… , c�

�
),
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where for i ∈ T  , it holds c�
i
= ����(ci) , where this “ ���� ” is a transformation (i.e., 

���� ∈ T
� ), and for i ∉ T  , it holds c�

i
= ci . The set of turnings ����

�
 for sequences of 

� cards is defined as follows:

We note that a turning operation is not an opening but a conversion since it changes 
the view of a sequence. Opening is used for operations that do not change the view 
of a sequence.

Shuffle A shuffle operation is defined by a tuple (����� ��,� ,D) , where 𝛱 ⊂ S
�
 is a 

subset of permutations and D is a probability distribution on � . It randomly generates 
a new sequence s� ∈ ���D as follows:

where � ∈ � is independently and randomly chosen according to D. The set of 
shuffles ����

�
 for sequences of � cards is defined as follows:

View

Let D be a deck. Let O be a set of operations. For a sequence s ∈ ���D , an opera-
tion �� ∈ O converts it into a new sequence s� ∈ ���D with revealed information 
r ∈ {0, 1}∗ as follows:

where if �� is conversion, revealed information is defined by r = ⊥ , and if �� is 
opening, s′ is identical to s. What is revealed from this process to the players? Before 
applying �� , they observe a visible sequence ���(s) . After applying �� , they observe 
a visible sequence ���(s�) and revealed information r. Thus, all information revealed 
from the above process is (���(s), ���(s�), r) . See sign opening and value opening in 
Sect. 3.2 for concrete example of openings.

Suppose that a list of k operations �� ∈ O
k is applied to a sequence s0 as follows:

Assume that the i-th operation brings revealed information ri ∈ {0, 1}∗ . Then, all 
information revealed from the above process is given as follows:

where r0 = ⊥ and ri = ⊥ if the i-th operation is conversion. This is called a view of 
�� starting with the sequence s0 . The set of views ����D is defined as follows:

����
�
∶= {(����, T) ∣ T ⊂ [�]}.

(c1, c2,… , c
�
) → (c�−1(1), c�−1(2),… , c�−1(�)),

����
�
∶= {(����� ��,𝛱 ,D) ∣ 𝛱 ⊂ S

�
,D is a distribution on 𝛱}.

s → s′ revealed information r,

s0 → s1 → s2 → ⋯ → sk.

(𝗏𝗂𝗌(s0), r0) → (𝗏𝗂𝗌(s1), r1) → (𝗏𝗂𝗌(s2), r2) → ⋯ → (𝗏𝗂𝗌(sk), rk),

����D =
(
���D × {0, 1}∗

)∗

.
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Example 4  Let D = (������,D) be the deck in Example 1. Let O be a set of opera-
tions O = ����5 ∪ ����5 . Let �� be a list of operations defined as follows:

When it is applied to a sequence s0 = (?∕♣, ?∕♡, ?∕♣) as follows:

a view of �� starting with the sequence s0 is given as follows:

We sometimes omit revealed information it is clear that all operations are conversion 
as follows:

We also write the above by ?3 → ?
3 → ♡♣? → ?♣♡ . ▪

Protocol

Protocol We define a protocol as follows:

Definition 4  (Protocol) A protocol P is defined by a five-tuple as follows:

where

•	 n ∈ ℕ is any natural number called the number of inputs;
•	 X is a finite set called an input domain;
•	 D = (C, T,�, ���,D) is a deck;
•	 O is a finite set called an operation set;
•	 A ∶ 𝖵𝗂𝖾𝗐D → O ∪ {⊥} is an action function.� ▪

Execution of a protocol Let P = (n,X,D,O,A) be a protocol. Let s0 ∈ ���D be a 
sequence. An execution of P starting with s0 proceeds as follows: 

1.	 The initial sequence is set to s0 as follows: 

Set s ← s0 and v ← (𝗏𝗂𝗌(s0),⊥) , where s is a variable of the current sequence and 
v is a variable of the entire view of an execution.

�� =
(
(����, (1 2)), (����, {1, 2}), (����, (1 3))

)
.

(?∕♣, ?∕♡, ?∕♣) → (?∕♡, ?∕♣, ?∕♣) → (♡∕?,♣∕?, ?∕♣) → (?∕♣,♣∕?,♡∕?),

((?, ?, ?),⊥) → ((?, ?, ?),⊥) → ((♡,♣, ?),⊥) → ((?,♣,♡),⊥).

(?, ?, ?) → (?, ?, ?) → (♡,♣, ?) → (?,♣,♡).

P = (n,X,D,O,A),

s0 = ? ? ? · · · ? .
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2.	 Compute the action function A(v) = � ; if 𝛼 ≠ ⊥ , apply the operation � to the 
sequence s; and obtain a new sequence s′ with revealed information r ∈ {0, 1}∗ ; Set 
s ← s′ and append “ → (𝗏𝗂𝗌(s�), r) ” to v; Repeat this step until it happens 𝛼 = ⊥.

3.	 If A(v) = ⊥ , terminate the execution.

Example 5  We describe a (slightly modified version of) six-card AND protocol by 
Mizuki and Sone [9] as follows:

The deck D is defined by D = (������, {(♣∕?)3, (♡∕?)3}) . The operation set O is 
defined by O = ����6 ∪ ����6 ∪ ����6 . The action function A is defined by:

•	 A(v0) = (����, (2 4 3));
•	 A(v1) = (����� ��,� ,D) where � = {��, (1 4)(2 5)(3 6)} and D is a uniform dis-

tribution over �;
•	 A(v2) = (����, (2 4 3)−1);
•	 A(v3) = (����, {1, 2});
•	 A(v4) = (����, (1 2)(3 5)(4 6));
•	 A(v) = ⊥ for any v ∉ {v0, v1, v2, v3, v4}.

where

•	 v0 = (?6,⊥);
•	 v1 = (?6,⊥) → (?6,⊥);
•	 v2 = (?6,⊥) → (?6,⊥) → (?6,⊥);
•	 v3 = (?6,⊥) → (?6,⊥) → (?6,⊥) → (?6,⊥);
•	 v4 = (?6,⊥) → (?6,⊥) → (?6,⊥) → (?6,⊥) → (♡♣?4,⊥).

We describe an execution of this protocol starting with an initial sequence 
s0 = (���(x1), ���(x2), ���(1)) as follows:

where the commitment ���(b) ( b ∈ {0, 1} ) be two face-down cards whose front 
sides are  if b = 0 and  otherwise. The protocol proceeds as follows: 

1.	 (����, (2 4 3)) : Rearrange the order of the sequence as follows: 

(2, {0, 1},D,O,A).

s0 = ? ?
︸︷︷︸

x1

? ?
︸︷︷︸

x2

? ?
︸︷︷︸

1

,
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2.	 (����� ��,� ,D) : Apply the shuffle: 

 This shuffle is called a random bisection cut.
3.	 (����, (2 4 3)−1) : Rearrange the order of the sequence as follows: 

4.	 (����, {1, 2}) : Turn the leftmost commitment as follows: 

 If it is the former case, i.e., the opened symbols are  , the protocol termi-
nates. Otherwise, it proceeds to the next Step.

5.	 (����, (1 2)(3 5)(4 6)}) : Rearrange the order of the sequence as follows: 

After Steps 4 and 5, the protocol terminates. Then, the finial sequence is given as 
follows:

Since it contains a commitment to x1 ∧ x2 , it is said to be an AND protocol.� ▪

Functionality

In order to define the correctness and the security of protocols, we introduce a 
notion of functionality. Informally speaking, a functionality is a pair of sequences 
parametrized by input variables � ∈ Xn . For example, the following is the function-
ality FAND of Mizuki-Sone’s AND protocol (See Example 5).
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It is also described as follows:

When some part of input/output sequences in a functionality are not important, ⊥ is 
used. For example, when the AND protocol does not care about the rightmost com-
mitment in the output sequence, it is described as follows:

Sequence with a dummy symbol Let D = (C, T,�, ���,D) be a deck with C ∩ {⊥} = � , 
where ⊥ is a dummy symbol. Let s = (c1, c2,… , c

�
) ∈ ���D be a sequence. A 

sequence s� = (c�
1
, c�

2
,… , c�

�

) ∈ (C ∪ {⊥})� is said to be a dummy sequence of s if 
c�
i
∈ {ci,⊥} for all i ∈ [�] . Thus, there exist 2� dummy sequences of any sequence of 

� cards. The set of dummy sequences of s is denoted by ���⊥(s) . The set of dummy 
sequences of D is defined by

We say that s ∈ ���D is matched with s� ∈ ���D
⊥

 if s� ∈ ���⊥(s).

Example 6  For a sequence s = (c1, c2, c3) , ���⊥(s) is given as follows:

For a sequence s� = (c1, c2, c
�
3
) with c′

3
≠ c3 , s′ is matched with (c1, c2,⊥) . � ▪

Variable sequence Let D be a deck, X be an input domain, and n be the 
number of inputs. A variable sequence s over ���D is defined by a function 
s ∶ Xn → 𝖲𝖾𝗊D . A variable dummy sequence s over ���D

⊥
 is defined by a function 

s ∶ Xn → 𝖲𝖾𝗊D
⊥

.

Example 7  An input sequence s(x) of Mizuki-Sone’s AND protocol is a variable 
sequence s ∶ {0, 1}2 → 𝖲𝖾𝗊D defined as follows:

An output sequence s�(x) of Mizuki-Sone’s AND protocol is a variable dummy 
sequence s� ∶ {0, 1}2 → 𝖲𝖾𝗊D

⊥
 defined as follows:

FAND ∶ (𝖼𝗈𝗆(x1), 𝖼𝗈𝗆(x2), 𝖼𝗈𝗆(1)) ⇒ (♣♡, 𝖼𝗈𝗆(x1 ∧ x2), 𝖼𝗈𝗆(x1 ∧ x2)).

F
�
AND

∶ (𝖼𝗈𝗆(x1), 𝖼𝗈𝗆(x2), 𝖼𝗈𝗆(1)) ⇒ (♣♡, 𝖼𝗈𝗆(x1 ∧ x2),⊥
2).

���D
⊥
=

⋃
s∈���D

���⊥(s).

���⊥(s) = {(c1, c2, c3), (⊥, c2, c3), (c1,⊥, c3), (c1, c2,⊥),

(⊥,⊥, c3), (c1,⊥,⊥), (⊥, c2,⊥), (⊥,⊥,⊥)}.

s(x) =

⎧
⎪⎨⎪⎩

(?∕♣, ?∕♡, ?∕♣, ?∕♡, ?∕♣, ?∕♡) if x = (0, 0)

(?∕♣, ?∕♡, ?∕♡, ?∕♣, ?∕♣, ?∕♡) if x = (0, 1)

(?∕♡, ?∕♣, ?∕♣, ?∕♡, ?∕♣, ?∕♡) if x = (1, 0)

(?∕♡, ?∕♣, ?∕♡, ?∕♣, ?∕♣, ?∕♡) otherwise.
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� ▪

Functionality A functionality is defined as follows:

Definition 5  (Functionality) Let D be a deck, X be an input domain, and n be the 
number of inputs. A functionality F  is defined by a pair:

where s𝗂𝗇 ∶ Xn → 𝖲𝖾𝗊D is a variable sequence over ���D and s𝗈𝗎𝗍 ∶ Xn → 𝖲𝖾𝗊D
⊥

 is a 
variable dummy sequence over ���D

⊥
 . � ▪

Correctness

Correctness The correctness of protocols is defined as follows:

Definition 6  (Correctness) Let P = (n,X,D,O,A) be a protocol. Let F = (s��, s���) 
be a functionality. We say that P correctly realizes F  if for any input � ∈ Xn , any 
execution of P starting with s��(�) terminates with a sequence s that is matched with 
s���(�) . � ▪

The correctness of protocols in a committed format is defined as follows:

Definition 7  (Correctness in a committed format) Let D = (C, T,�, ���,D) and 
D

�
= (C, T,�, ���,D�) be decks such that D contains n copies of D′ as multi-

set. ( C, T,� , and ��� are common.) Let P = (n,X,D,O,A) be a protocol. Let 
F = (s��, s���) be a functionality. Let f ∶ Xn → X be a function. Let 𝖼𝗈𝗆 ∶ X → 𝖲𝖾𝗊D

�

 
be a function that takes an input and returns a sequence. We say that P correctly 
computes f if it satisfies the following:

•	 P correctly realizes F ;
•	 s�� = (���(x1), ���(x2),… , ���(xn), s) where s is a (possibly empty) fixed 

sequence;
•	 s��� contains ���(f (x1, x2,… , xn)) . � ▪

Security

The probability distribution of a view Let P = (n,X,D,O,A) be a protocol. Let 
s0 ∈ ���D be a sequence and let x ∈ Xn be an input. The probability distribution of a 
view of P with input x and starting with sequence s0 is denoted by ����P(s0) , where 
randomness comes from probability operations (e.g., shuffles).

s�(x) =

{
(♣∕?,♡∕?, ?∕♡, ?∕♣,⊥2) if x = (1, 1)

(♣∕?,♡∕?, ?∕♣, ?∕♡,⊥2) otherwise.

F = (s��, s���),
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Security The security of protocols is defined as follows:

Definition 8  (Security) Let P = (n,X,D,O,A) be a protocol. Let F = (s��, s���) be 
a functionality. We say that P securely realizes F  if for every x, x� ∈ Xn , it holds 
����P(s��(x)) = ����P(s��(x

�)) . � ▪

Example 8  Let us prove that the protocol given in Example 5 securely realizes the 
functionality FAND = (s��, s���) defined as follows:

Let x ∈ {0, 1}2 be any input. The probability distribution of a view of the protocol 
starting with the sequence s��(x) = (���(x1), ���(x2), ���(1)) is given as follows:

where v = (?6,⊥) → (?6,⊥) → (?6,⊥) → (?6,⊥) . Due to the random bisection cut, 
the above probability distribution ����(s��(x)) is the same for any x ∈ {0, 1}2 . There-
fore, it securely realizes the functionality.�  ▪

Composition of Protocols

Subroutine operation Let P = (n,X,D,O,A) be a protocol. A subroutine of P 
is a “magical box” that executes the protocol P in a single step: it takes a sequence 
s0 ∈ ���D as an input and outputs a final sequence of P when the initial sequence is s0 
as follows:

Formally, a subroutine operation for a protocol P is defined as follows:

where T ⊂ [�] is a subset of positions such that |T| is the number of cards of P . (We 
assume that the number of cards of P is equal to or less than � .) The set of subrou-
tine operations with P is denoted as follows:

For protocols P1,P2,… ,Pk , we define the set of subroutine operations as follows:

FAND ∶ (𝖼𝗈𝗆(x1), 𝖼𝗈𝗆(x2), 𝖼𝗈𝗆(1)) ⇒ (♣♡, 𝖼𝗈𝗆(x1 ∧ x2), 𝖼𝗈𝗆(x1 ∧ x2)).

𝗏𝗂𝖾𝗐(s𝗂𝗇(x)) =

{
v → (♣♡?4,⊥) with probability 1∕2

v → (♡♣?4,⊥) → (♣♡?4,⊥) with probability 1∕2

Protocol P
︷ ︸︸ ︷

? . . . ?
︸ ︷︷ ︸

s0

→ ? . . . ?
︸ ︷︷ ︸

s1

→ . . . → ? . . . ?
︸ ︷︷ ︸

sk−1

→ ? . . . ?
︸ ︷︷ ︸

sk

? . . . ?
︸ ︷︷ ︸

s0

→ subroutine of P → ? . . . ?
︸ ︷︷ ︸

sk

(����������,P, T),

����������
�
[P] = {(����������,P, T) ∣ T ⊂ [�]}.
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We define an subroutine-respecting protocol as follows:

Definition 9  (Subroutine-respecting protocol) Let Fsub = (s��, s���) be a functional-
ity using �sub cards. Let Psub = (nsub,Xsub,Dsub,Osub,Asub) be a protocol using �sub 
cards. Let P = (n,X,D,O,A) be a protocol using � cards ( � ≥ �sub ). We say that P 
is subroutine-respecting for Psub and Fsub if it satisfies as follows:

•	 ����������
�
[Psub] ⊂ O;

•	 For any input x ∈ {0, 1}n , whenever P enters an operation (����������,Psub, T) , 
the cards on positions T in the current sequence is identical to s��(x�) for some 
input x� ∈ Xsub . Here, the input x′ for Psub can be varied for each call of the 
subroutine for Psub . � ▪

Example 9  Let PAND2 be a two-bit AND protocol defined as follows:

that correctly and securely realizes a functionality FAND2 as follows:

This is obtained from Mizuki and Sone’s AND protocol in Example 5 with a small 
modification. By using the subroutine of PAND2 , we construct an eight-card three-bit 
AND protocol PAND3 defined as follows:

that realizes a functionality FAND3 = (s��, s���) as follows:

It proceeds as follows: 

1.	 (����������,PAND2, {1, 2, 3, 4, 7, 8}) : Apply the two-bit AND protocol for cards 
on {1, 2, 3, 4, 7, 8} as follows: 

2.	 (����������,PAND2, {3, 4, 5, 6, 7, 8}) : Apply the two-bit AND protocol for cards 
on {3, 4, 5, 6, 7, 8} as follows: 

����������
𝓁
[P1,P2,… ,Pk] = ����������

𝓁
[P1] ∪ ����������

𝓁
[P2] ∪⋯ ∪ ����������

𝓁
[Pk].

PAND2 = (2, {0, 1}, (������, {(♣∕?)3, (♡∕?)3}), ����6 ∪ ����6 ∪ ����6,A),

PAND3 = (3, {0, 1}, (������, {(♣∕?)4, (♡∕?)4}), ����������8[PAND2],A
�).
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We can observe that the protocol PAND3 is subroutine-respecting for PAND2 and 
FAND2 : the first condition in Definition 9 is satisfied since the operation set of PAND3 
is ����������8[PAND2] ; and, the second condition in Definition 9 is satisfied since for 
each call of the subroutine PAND2 , the cards on positions T in the sequence is identical 
to s��(x�) for some x� ∈ {0, 1}2 . � ▪

Proposition 1  (Composition theorem) Let Pi = (ni,Xi,Di,Oi,Ai) ( i ∈ [k] ) 
be a protocol that correctly and securely realizes a functionality Fi . Let 
P = (n,X,D,O ∪ ����������

�
[P1,P2,… ,Pk],A) be a protocol that is subroutine-

respecting for Pi and Fi , and O is upward compatible with Oi for every i ∈ [k] . If 
P correctly and securely realizes a functionality F  , then there exists a protocol 
P
� = (n,X,D,O,A) that correctly and securely realizes F  . � ▪

Proof  The protocol P′ is obtained from the protocol P by replacing all subrou-
tine calls of Pi with the protocols Pi for all i ∈ [k] . We can observe that the final 
sequence of P and that of P′ are the same since P is subroutine-respecting. Thus, P′ 
correctly realizes F  . We can also observe that a view of P′ is obtained from a view 
of P by replacing all subroutine calls of Pi with a view of Pi for all i ∈ [k] . Since P 
and Pi securely realize F  and Fi , respectively, for all i ∈ [k] . Thus, P′ also securely 
realizes F  . � ▪

Dihedral Cards

Dihedral Cards

Let m ≥ 2 be any integer. A dihedral card of modulus m is a card as follows:

•	 It holds a non-binary value x ∈ ℤ2m;
•	 A transformation from x to x + c (for any constant c ∈ ℤ2m ) is allowed;
•	 A transformation from x to −x + c (for any constant c ∈ ℤ2m ) is allowed;
•	 For a card holding x, it is possible to observe whether x ≥ m only;
•	 For a card holding x, it is possible to observe x mod m only.

Thus, the shape of dihedral cards of modulus m is a regular 2m-sided polygon. For 
example, a dihedral card of modulus 4 is implemented as follows:
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Four vertices among eight vertices have blue dots and an arrow is written on the 
center. The front side and the back side are the same pattern satisfying that any ver-
tex having a blue dot in the front side also has a dot in the back side. Here, all blue 
circles and arrows are written by invisible ink1 in order to hide a value of a card. 
Since it is a hexagon, it can hold a value x ∈ ℤ8 as follows:

The first transformation from x to x + c is done by a rotation with (360c∕2m)◦ as 
in the case of cyclic cards. A nontrivial property is to allow the second transforma-
tion from x to −x + c . This is done by a flipping. Say c = 0 . A transformation from x 
to −x is done by a flipping with a vertical line as follows:

For m = 4 , each axis of line symmetry corresponds to some c ∈ ℤ8 as follows:

Indeed, a transformation from x to −x + 7 is done by a flipping as follows:

1  Invisible ink is used for writing, which is invisible but can be made visible with illuminating a black 
light. It can be used for steganography, which hides the existence of plain texts while cryptography hides 
the contents of plain texts.
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For a general modulus m, an axis of line symmetry rotated by (180c∕2m)◦ from 
the vertical line corresponds to c ∈ ℤ2m . Finally, we need to open a bit �(x ≥ m) and 
a value x mod m . Here, �(statement) is a predicate that outputs 1 if the statement is 
true and 0 false. Thanks to the property of invisible ink, this is done by illuminating 
a black light with a cover. For a card holding x, it is possible to observe �(x ≥ m) 
only as follows:

In the above case, since the vertex has a blue dot, the predicate �(x ≥ m) is 0. (We 
can observe that for a card holding x, the vertex has a blue dot if and only if x < 4 .) 
Similarly, it is possible to observe the value x mod m only as follows:

In the above case, since the card holds either 1 or 5, the value x mod m is 1. For 
x ∈ ℤ2m , �(x ≥ m) is called a sign of x and x mod m is called a value of x.

A card specification of dihedral cards For x ∈ ℤ2m , we denote a card holding x 
by [[x]] . The card set of dihedral cards of modulus m, denoted by C�

m
 , is defined as 

follows:

Let [[x]] ∈ C
�
m
 be a card holding a value x ∈ ℤ2m . For any constant a ∈ ℤ2m , a rota-

tion operation with a degree a is defined as follows:

For any constant a ∈ ℤ2m , a flipping operation with an axis a is defined as follows:

The transformation set of dihedral cards of modulus m, denoted by T�
m
 , is defined as 

follows:

The symbol set of dihedral cards of modulus m, denoted by ��
m
 , is defined as follows:

C
�
m
= {[[0]], [[1]],… , [[2m − 1]]}.

���a([[x]]) = [[x + a]]

� ���a([[x]]) = [[−x + a]].

T
�
m
= {��, ���, ���2,… , ���2m−1, � ���0, � ���1,… , � ���2m−1}.
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The vision function 𝗏𝗂𝗌𝖽
m
∶ C

𝖽
m
→ �𝖽

m
 of dihedral cards of modulus m is defined as 

follows:

A card specification of dihedral cards of modulus m, denoted by ��������m , is 
defined as follows:

Commitment A commitment to x ∈ ℤ2m is defined by [[x]].

Operations for Dihedral Cards

For dihedral cards, we introduce eight operations: permutation, rotation, rotation 
shuffle, flipping, flipping shuffle, two-sided rotation shuffle, sign opening, and value 
opening.

Permutation This operation is the same as permutation for binary cards in Sect. 2.2. 
For modulus m, the set of permutations ����m,� for sequences of � dihedral cards with 
modulus m is defined as follows:

Rotation For T ⊂ [�] and a ∈ ℤm , a rotation operation is defined as follows:

For a sequence s = (c1, c2,… , c
�
) ∈ ���D , by applying a rotation operation 

(���,T , a) , it is transformed into a new sequence s� = (c�
1
, c�

2
,… , c�

�

) ∈ ���D such 
that c�

i
= ���a(ci) for all i ∈ T  and c�

i
= ci for all i ∉ T  . For example, for a sequence 

s = (0, 1, [[2]], [[3]]) with modulus m = 4 , a rotation operation (���, {1, 2, 4}, 1) trans-
forms it into a new sequence s� = (1, 2, [[2]], [[2]]) as follows:

The set of rotations ���m,� is defined as follows:

Rotation shuffle For T ⊂ [�] , a rotation shuffle is defined as follows:

For all i ∈ T  , the i-th card in the sequence is rotated with a degree r ∈ ℤm , here 
r is uniformly and randomly chosen from ℤm and this r is common for all i ∈ T  . 

�
�
m
= {?}.

����
m
([[x]]) = ? for any x ∈ ℤ2m.

��������m = (C�
m
, T�

m
,��

m
, ����

m
).

����m,� ∶= {(����,�) ∣ � ∈ S
�
}.

(���,T , a).

↑
︸︷︷︸

0

↑

︸︷︷︸

1
︸︷︷︸

[[2]]
︸︷︷︸

[[3]]

→ ↑

︸︷︷︸

1

↑

︸︷︷︸

2
︸︷︷︸

[[2]]
︸︷︷︸

[[2]]

.

���m,� = {(���,T , a) ∣ T ⊂ [�], a ∈ ℤm}.

(������� , T).
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The other cards are unchanged. For example, for a sequence ([[x1]], [[x2]], [[x3]], [[x4]]) 
with modulus m = 4 , a rotation shuffle (������� , {1, 2, 3}) generates a sequence 
([[x1 − r]], [[x2 − r]], [[x3 − r]], [[x4]]) for a random r ∈ ℤ∕4ℤ as follows:

The set of rotation shuffles is defined as follows:

Flipping A flipping operation is defined as follows:

where a ∈ ℤ2m is an axis of flipping and T ⊂ [�] is a subset of positions. By apply-
ing a flipping operation (� ���, a, T) , a sequence is converted as follows:

where x�
i
= −xi + a for all i ∈ T  and x�

i
= xi for all i ∉ T  . For example, for a sequence 

([[0]], [[2]], [[5]], [[7]]) of modulus m = 4 , a flipping operation (� ���, 0, {1, 2, 3, 4}) con-
verts it into a new sequence ([[0]], [[6]], [[3]], [[1]]) . The set of flipping operations 
����m,� is defined as follows:

Flipping shuffle A flipping shuffle is defined as follows:

where k ∈ [�] is the number of axes, a1, a2,… , ak ∈ ℤ2m are axes of flipping and 
T1, T2,… , Tk ⊂ [�] are disjoint subsets of positions. For all 1 ≤ i ≤ k , all cards on Ti 
are flipped (by � ���ai ) randomly and simultaneously. Here, the random bit designat-
ing whether flipped or not is common for all i. The other cards are unchanged. For 
example, for a sequence ([[0]], [[2]], [[5]], [[7]]) of modulus m = 4 , a flipping shuffle 
(� ������� , (0, 1), {1, 2}, {3, 4}) generates a new sequence:

A flipping shuffle is implemented by using two wooden boards as follows:

︸︷︷︸

[[x1]]
︸︷︷︸

[[x2]]
︸︷︷︸

[[x3]]
︸︷︷︸

[[x4]]

→
︸︷︷︸

[[x1−r]]
︸︷︷︸

[[x2−r]]
︸︷︷︸

[[x3−r]]
︸︷︷︸

[[x4]]

.

�������m,� = {(������� ,T) ∣ T ⊂ [�]}.

(� ���, a, T),

([[x1]], [[x2]],… , [[x
�
]]) → ([[x�

1
]], [[x�

2
]],… , [[x�

�
]]),

����m,� = {(� ���, j, T) ∣ j ∈ ℤ2m, T ⊂ [�]}.

(� ������� , (a1, a2,… , ak), T1, T2,… , Tk),

([[0]], [[2]], [[5]], [[7]]) →

{
([[0]], [[2]], [[5]], [[7]]) with probability 1∕2

([[0]], [[6]], [[4]], [[2]]) with probability 1∕2
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The set of flipping shuffles is defined as follows:

Two-sided rotation shuffle A two-sided rotation shuffle is defined by:

where T ⊂ [�] is a subset of positions. By applying a two-sided rotation shuffle 
(������� , T) , a sequence is converted as follows:

where x�
i
= xi + rm for a random bit r ∈ {0, 1} if i ∈ T  and x�

i
= xi other-

wise. Note that the random bit r is common for all i ∈ T  . For example, for a 
sequence ([[0]], [[2]], [[5]], [[7]]) of modulus m = 4 , a two-sided rotation shuffle 
(������� , {1, 2, 3, 4}) generates a new sequence as follows:

A two-sided rotation shuffle is implemented by using two clips as follows:

The set of two-sided rotation shuffles is defined as follows:

Sign opening A sign opening is defined as follows:

where i ∈ [�] is a position. For a sequence ([[x1]], [[x2]],… , [[x
�
]]) , it publicly reveals 

a bit value �(xi ≥ m) ∈ {0, 1} . It is treated as revealed information. That is, it outputs 
revealed information r = �(xi ≥ m) without changing the sequence. For example, for 
a sequence ([[0]], [[2]], [[5]], [[7]]) of modulus m = 4 , a sign opening (�������, 3) out-
puts the sign of the third card “1” ( �(5 ≥ 4) ) as revealed information. The set of sign 
openings is defined as follows:

Value opening A value opening is defined as follows:

��������m,� = {(� ������� , (a1, a2,… , ak), T1, T2,… , Tk) ∣

k ∈ [�], a1, a2,… , ak ∈ ℤ2m,

T1, T2,… , Tk ⊂ [�] s.t. ∀a, b ∈ [k], Ta ∩ Tb = �}.

(������� , T),

([[x1]], [[x2]],… , [[x
�
]]) → ([[x�

1
]], [[x�

2
]],… , [[x�

�
]]),

([[0]], [[2]], [[5]], [[7]]) →

{
([[0]], [[2]], [[5]], [[7]]) with probability 1∕2

([[4]], [[6]], [[1]], [[3]]) with probability 1∕2

�������m,� = {(������� , T) ∣ T ⊂ [�]}.

(�������, i),

�������m,� = {(�������, i) ∣ i ⊂ [�]}.
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where i ∈ [�] is a position. For a sequence ([[x1]], [[x2]],… , [[x
�
]]) , it publicly reveals 

a value xi mod m ∈ ℤm . It is treated as revealed information. That is, it outputs 
revealed information r = (xi mod m) without changing the sequence. For example, 
for a sequence ([[0]], [[2]], [[5]], [[7]]) of modulus m = 4 , a value opening (�������, 4) 
outputs the value of the fourth card “3” ( = 7 mod 4 ) as revealed information. The 
set of value openings is defined as follows:

Full opening A full opening is defined as follows:

where i ∈ [�] is a position. For a sequence ([[x1]], [[x2]],… , [[x
�
]]) , it publicly reveals 

a value xi ∈ ℤ2m . It is treated as revealed information. Note that it is equivalent to 
applying a sign opening and a value opening successively. Thus, the full opening 
can be viewed as a syntax sugar of applying a sign opening and a value opening 
successively.

Notations

Hereafter, we use notations as follows.
Operations We assume that the set of operations is O�

m,�
 defined as follows:

Protocols with Dihedral Cards

Initialization Protocol

Functionality A functionality Fd
init

 is defined as follows:

where x ∈ ℤ2m.
Protocol An initialization protocol Pd

init
 is defined as follows:

It proceeds as follows: 

1.	 (������� , {1}) : Apply a rotation shuffle to it: 

(�������, i),

�������m,� = {(�������, i) ∣ i ⊂ [�]}.

(����, i),

O
�
m,�

=����m,� ∪ ���m,� ∪ �������m,� ∪ ����m,� ∪ ��������m,�

∪�������m,� ∪ �
�����m,� ∪ 
	�����m,� .

F
d
init

∶ [[x]] ⇒ [[0]].

P
d
init

= (1,ℤ2m, (��������m, {[[0]]}),O
�
m,1

,A).
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2.	 (����, 1) : Apply a full opening operation to it. Let x� ∈ ℤ2m be the opened value, 
which is treated as revealed information. 

3.	 (���, {1},−x�) : Rotate it with a degree −x� as follows: 

 The protocol terminates.
Correctness The correctness is trivial.

Security Let x ∈ ℤ2m be any input. The probability distribution of a view of the pro-
tocol starting with the sequence s��(x) = [[x]] is given as follows:

where x� = x + r for a uniform random value r ∈ ℤ2m . This is equivalent to a prob-
ability distribution ����∗ defined as follows:

where r� ∈ ℤ2m is a uniform random value. The distribution ����∗ does not depend 
on x. Thus, for every x, x� ∈ ℤ2m , the following holds:

Therefore, Pd
init

 securely realizes Fd
init

.
Efficiency The number of cards is one. Note that this is the minimum number of 

cards. The number of probabilistic operations is one (one rotation shuffle).

Addition Protocol

Functionality A functionality Fd
add

 is defined as follows:

where x1, x2 ∈ ℤ2m.
Protocol An addition protocol Pd

add
 is defined as follows:

It proceeds as follows: 

1.	 (� ���, 0, {1}) : Flip the left card along with the 0-axis as follows: 

[[x]] → [[x�]].

revealed information x′.

[[x�]] → [[0]]

𝗏𝗂𝖾𝗐
P
d
init
(s𝗂𝗇(x)) =

(
(?,⊥) → (?,⊥) → (?, x�) → (?,⊥)

)
,

𝗏𝗂𝖾𝗐∗ =
(
(?,⊥) → (?,⊥) → (?, r�) → (?,⊥)

)
,

����
P
d
init
(s��(x)) = ����

P
d
init
(s��(x

�)) = ����∗.

F
d
add

∶ ([[x1]], [[x2]]) ⇒ ([[0]], [[x1 + x2]]) .

P
d
add

= (2,ℤ2m, (��������m, {[[0]], [[0]]}),O
�
m,2

,A).

([[x1]], [[x2]]) → ([[−x1]], [[x2]]).
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2.	 (������� , {1, 2}) : Apply a rotation shuffle to them: 

3.	 (����, 1) : Apply a full opening operation to the left card. Let x�
1
∈ ℤ2m be the 

opened value, which is treated as revealed information. 

4.	 (���, {1, 2},−x�
1
) : Rotate them so that they are added by −x�

1
 : 

Correctness By the rotation shuffle, x�
1
= −x1 + r and x�

2
= x2 + r for a 

uniform random value r ∈ ℤ2m . The right card in the final sequence is 
[[x�

2
− x�

1
]] = [[(x2 + r) − (−x1 + r)]] = [[x1 + x2]] . Therefore, the above protocol Pd

add
 

correctly realizes the functionality Fd
add

.
Security Let x = (x1, x2) ∈ (ℤ2m)

2 be any input. The probability distribution of 
a view of the protocol starting with the sequence s��(x) = ([[x1]], [[x2]]) is given as 
follows:

Since x�
1
= x1 + r for a uniform random value r ∈ ℤ2m is distributed uniformly ran-

domly, the above distribution is equivalent to a probability distribution ����∗ defined 
as follows:

where r� ∈ ℤ2m is a uniform random value. The distribution ����∗ does not depend 
on x. Thus, for every x, x� ∈ ℤ2m , the following holds:

Therefore, Pd
add

 securely realizes Fd
add

.
Efficiency The number of cards is two. Note that this is the minimum number of 

cards since the number of inputs is two. The number of probabilistic operations is 
one (one rotation shuffle).

Sign Normalization Protocol

Functionality A functionality Fd
sign

 is defined as follows:

where x ∈ ℤ2m.
Protocol A protocol Pd

sign
 is defined as follows:

([[−x1]], [[x2]]) → ([[x�
1
]], [[x�

2
]]).

revealed information x′
1
.

([[x�
1
]], [[x�

2
]]) → ([[0]], [[x�

2
− x�

1
]])

𝗏𝗂𝖾𝗐
P
d
add
(s𝗂𝗇(x)) =

(
(?2,⊥) → (?2,⊥) → (?2,⊥) → (?2, x�

1
) → (?2,⊥)

)
,

𝗏𝗂𝖾𝗐∗ =
(
(?2,⊥) → (?2,⊥) → (?2,⊥) → (?2, r�) → (?2,⊥)

)
.

����
P
d
add
(s��(x)) = ����

P
d
add
(s��(x

�)) = ����∗.

F
d
sign

∶ [[x]] ⇒ [[x mod m]],
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It proceeds as follows: 

1.	 (������� , {1}) : Apply a two-sided rotation shuffle to the input card as follows: 

 where x� = x + rm for a uniform random bit r ∈ {0, 1}.
2.	 (�������, 1) : Apply the sign opening to the card. Let s� ∈ {0, 1} be the sign of the 

card, which is treated as revealed information. 

3.	 (���, {1}, s�m) : Rotate the card with a degree s′m : 

Correctness Let x = v + sm for v ∈ ℤm and s ∈ {0, 1} . Due to the property of a two-
sided rotation shuffle, x′ is represented by x� = v + (s⊕ r)m and s′ is represented by 
s� = s⊕ r . Thus, the card in the final sequence is 
[[x� + s�m]] = [[v + (s⊕ r)m + s�m]] = [[v + (s⊕ r)m + (s⊕ r)m]] = [[v]] . (Note that 
every computation is done over ℤ2m .) Therefore, the above protocol Pd

sign
 correctly 

realizes the functionality Fd
sign

.
Security Let x = v + sm ∈ ℤ2m ( v ∈ ℤm and s ∈ {0, 1} ) be any input. The prob-

ability distribution of a view of the protocol starting with the sequence s��(x) = [[x]] 
is given as follows:

where s� = s⊕ r ∈ {0, 1} for a uniform random bit r. It is equivalent to a probability 
distribution ����∗ defined as follows:

where r� ∈ {0, 1} is a uniform random value. Thus, for every x, x� ∈ ℤ2m , the follow-
ing holds:

Therefore, Pd
sign

 securely realizes Fd
sign

.
Efficiency The number of cards is one. Note that this is the minimum number of 

cards. The number of probabilistic operations is one (one two-sided rotation shuffle).

Sign‑to‑Value Protocol

Functionality A functionality Fd
sv

 is defined as follows:

P
d
sign

= (1,ℤ2m, (��������m, {[[0]]}),O
�
m,1

,A).

[[x]] → [[x�]],

[[x�]] → [[x�]], revealed information s�.

[[x�]] → [[x� + s�m]].

𝗏𝗂𝖾𝗐
P
d
sign
(s𝗂𝗇(x)) =

(
(?,⊥) → (?, s�) → (?,⊥) → (?,⊥)

)
,

𝗏𝗂𝖾𝗐∗ =
(
(?,⊥) → (?, r�) → (?,⊥) → (?,⊥)

)
.

����
P
d
sign
(s��(x)) = ����

P
d
sign
(s��(x

�)) = ����∗.
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where x ∈ ℤ2m.
Protocol A protocol Pd

sv
 is defined as follows:

It proceeds as follows: 

1.	 (������� , {1}) : Apply a two-sided rotation shuffle to the input card as follows: 

 where r1 ∈ {0, 1} is a uniform random bit.
2.	 (�������, 1) : Apply the sign opening to the left card. Let s1 ∈ {0, 1} be the sign 

of the left card, which is treated as revealed information. (We can observe that 
s1 = �(x ≥ m)⊕ r1.)

3.	 (���, {2}, s1m) : Rotate the right card with a degree s1m : 

4.	 (����������,Pd
����
, {1}) : Apply the initialization protocol Pd

����
 as follows: 

5.	 (� ������� , (� ���1, � ���m), (1, 2)) : Apply a flipping shuffle as follows: 

 where r2 ∈ {0, 1} is a uniform random bit.
6.	 (�������, 2) : Apply the sign opening to the right card. Let s2 ∈ {0, 1} be the sign 

of the right card, which is treated as revealed information. (We can observe that 
s2 = r1 ⊕ s1 ⊕ r2 .) If s2 = 0 , the protocol terminates.

7.	 (���, {2},m) : If s2 = 1 , rotate the right card with a degree m: 

8.	 (� ���, 1, {1}) : If s2 = 1 , apply a flipping with an axis 1 as follows: 

 The protocol terminates.
Correctness If s2 = 0 at Step 6, the protocol terminates. In this case, the left card in 
the final sequence is given as follows:

If s2 = 1 at Step 6, the protocol proceeds to Step 8. In this case, the left card in the 
final sequence is given as follows:

F
d
sv
∶ ([[x]], [[0]]) ⇒ ([[𝗉(x ≥ m)]], [[0]]),

P
d
sv
= (1,ℤ2m, (��������m, {[[0]], [[0]]}),O

�
m,2

∪ ����������[Pd
����
],A).

([[x]], [[0]]) → ([[x + r1m]], [[r1m]]),

([[x + r1m]], [[r1m]]) → ([[x + r1m]], [[(r1 ⊕ s1)m]]).

([[x + r1m]], [[(r1 ⊕ s1)m]]) → ([[0]], [[(r1 ⊕ s1)m]]).

([[0]], [[(r1 ⊕ s1)m]]) → ([[r2]], [[(r1 ⊕ s1 ⊕ r2)m]]),

([[r2]], [[m]]) → ([[r2]], [[0]]).

([[r2]], [[0]]) → ([[−r2 + 1]], [[0]]).

[[r2]] = [[r1 ⊕ s1]] = [[�(x ≥ m)]].

[[−r2 + 1]] = [[−(1 − r1 ⊕ s1) + 1]] = [[r1 ⊕ s1]] = [[�(x ≥ m)]].
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Therefore, the above protocol Pd
sv

 correctly realizes the functionality Fd
sv

.
Security Let x = v + sm ∈ ℤ2m ( v ∈ ℤm and s ∈ {0, 1} ) be any input. The 

probability distribution of a view of the protocol starting with the sequence 
s��(x) = ([[x]], [[0]]) is given as follows:

where s1 = �(x ≥ m)⊕ r1 ∈ {0, 1} for a uniform random bit r1 , 
s2 = r1 ⊕ s1 ⊕ r2 ∈ {0, 1} for a uniform random bit r2 , and the last two components 
“ → (?2,⊥) → (?2,⊥) ” appears only when s2 = 0 . It is equivalent to a probability 
distribution ����∗ defined as follows:

where r�
1
, r�

2
∈ {0, 1} are uniform random bits and the last two components appears 

only when r�
2
= 0 . Thus, for every x, x� ∈ ℤ2m , the following holds:

Therefore, Pd
sv

 securely realizes Fd
sv

.
Efficiency The number of cards is two. The number of subroutine calls is one 

(one call of the initialization protocol). From Proposition 1, a sign-to-value protocol 
without subroutines can be obtained. The number of probabilistic operations is three 
(one rotation shuffle, one two-sided rotation shuffle, and one flipping shuffle).

Carry Protocol

Functionality A functionality Fd
carry

 is defined as follows:

where x1, x2 ∈ ℤm.
Protocol A protocol Pd

carry
 is defined as follows:

It proceeds as follows: 

1.	 (����������,Pd
add

, {1, 2}) : Apply the addition protocol in Sect. 4.2 to the sequence 
as follows: 

𝗏𝗂𝖾𝗐
P
d
sv
(s𝗂𝗇(x)) =

(
(?2,⊥) → (?2,⊥) → (?2, s1) → (?2,⊥) → (?2,⊥)

→ (?2,⊥) → (?2, s2)
[
→ (?2,⊥) → (?2,⊥)

]s2),

𝗏𝗂𝖾𝗐∗ =
(
(?2,⊥) → (?2,⊥) → (?2, r�

1
) → (?2,⊥) → (?2,⊥)

→ (?2,⊥) → (?2, r�
2
)
[
→ (?2,⊥) → (?2,⊥)

]r�
2

)
,

����P
d
sv
(s��(x)) = ����P

d
sv
(s��(x

�)) = ����∗.

F
d
carry

= ([[x1]], [[x2]]) ⇒ ([[𝗉(x1 + x2 ≥ m)]], [[0]]),

P
d
carry

= (2,ℤm, (��������2m, {[[0]], [[0]]}),O
�
2m,2

∪ ����������[Pd
add

,Pd
sv
],A).

([[x1]], [[x2]]) → ([[x1 + x2]], [[0]]).
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2.	 (����������,Pd
sv
, {1}) : Apply the sign-to-value protocol in Sect. 4.4 to the first 

card as follows: 

Correctness The correctness is trivial.
Security Let x = (x1, x2) ∈ (ℤm)

2 be any input. The probability distribution of 
a view of the protocol starting with the sequence s��(x) = ([[x1]], [[x2]]) is given as 
follows:

It does not depend on x since it is just a fixed sequence. Thus, for every x, x� ∈ (ℤm)
2 , 

the following holds:

Therefore, Pd
carry

 securely realizes Fd
carry

.
Efficiency The number of cards is two. The number of subroutine calls is two 

(one call of the addition protocol and one call of the sign-to-value protoocol). From 
Proposition 1, a carry protocol without subroutines can be obtained. The number of 
probabilistic operations is four (two rotation shuffles, one two-sided rotation shuffle, 
and one flipping shuffle).

Equality with Zero Protocol

Functionality A functionality Fd
zero

 is defined as follows:

where x ∈ ℤm.
Protocol A protocol Pd

zero
 is defined as follows:

It proceeds as follows: 

1.	 (� ���,m, {1}) : Flip the first card along with the axis m as follows: 

2.	 (����������,Pd
sv
, {1}) : Apply the sign-to-value protocol in Sect. 4.4 to the first 

card as follows: 

 where s = �(m − x ≥ m).
3.	 (� ���, 1, {1}) : Flip the first card along with the axis 1 as follows: 

([[x1 + x2]], [[0]]) → ([[𝗉(x1 + x2 ≥ m)]], [[0]]).

𝗏𝗂𝖾𝗐
P
d
carry

(s𝗂𝗇(x)) =
(
(?2,⊥) → (?2,⊥) → (?2,⊥)

)
.

����
P
d
carry

(s��(x)) = ����
P
d
carry

(s��(x
�)).

F
d
zero

= ([[x]], [[0]]) ⇒ ([[𝗉(x = 0)]], [[0]]),

P
d
zero

= (1,ℤm, (��������2m, {[[0]], [[0]]}),O
�
2m,2

∪ ����������[Pd
sv
],A).

([[x]], [[0]]) → ([[m − x]], [[0]]).

([[m − x]], [[0]]) → ([[s]], [[0]]),
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 The protocol terminates.
Correctness For any x ∈ ℤm , it holds �(m − x ≥ m) = 0 if and only if x = 0 . Thus, the 
above protocol Pd

zero
 correctly realizes the functionality Fd

zero
.

Security Let x ∈ ℤm be any input. The probability distribution of a view of the pro-
tocol starting with the sequence s��(x) = ([[x]], [[0]]) is given as follows:

It does not depend on x since it is just a fixed sequence. Thus, for every x, x� ∈ (ℤm)
2 , 

the following holds:

Therefore, Pd
zero

 securely realizes Fd
zero

.
Efficiency The number of cards is two. The number of subroutine calls is one (one 

call of the sign-to-value protocol). From Proposition 1, an equality with zero protocol 
without subroutines can be obtained. The number of probabilistic operations is three 
(one rotation shuffle, one two-sided rotation shuffle, and one flipping shuffle).

Equality Protocol

Functionality A functionality Fd
equal

 is defined as follows:

where x1, x2 ∈ ℤm.
Protocol A protocol Pd

equal
 is defined as follows:

It proceeds as follows: 

1.	 (����������,Pd
sub

, {1}) : Apply the subtraction protocol to the sequence as follows: 

2.	 (����������,Pd
sign

, {1}) : Apply the sign normalization protocol in Sect. 4.3 to the 
first card as follows: 

3.	 (����������,Pd
zero

, {1, 2}) : Apply the equality with zero protocol in Sect. 4.6 as 
follows: 

([[s]], [[0]]) → ([[−s + 1]], [[0]]).

𝗏𝗂𝖾𝗐
P
d
zero
(s𝗂𝗇(x)) =

(
(?2,⊥) → (?2,⊥) → (?2,⊥)

)
.

����
P
d
zero
(s��(x)) = ����

P
d
zero
(s��(x

�)).

F
d
equal

= ([[x1]], [[x2]]) ⇒ ([[𝗉(x1 = x2)]], [[0]]),

P
d
equal

= (2,ℤm, (��������2m, {[[0]], [[0]]}),O
�
2m,2

∪ ����������[Pd
sub

,Pd
sign

,Pd
zero

],A).

([[x1]], [[x2]]) → ([[x2 − x1]], [[0]]).

([[x2 − x1]], [[0]]) → ([[z]], [[0]]).

([[z]], [[0]]) → ([[𝗉(z = 0)]], [[0]]).



68	 New Generation Computing (2021) 39:41–71

123

Correctness By the sign normalization protocol Pd
sign

 , z = x2 − x1 mod m . Thus, the 
sequence ([[z]], [[0]]) is matched with a subroutine of Pd

zero
 . We can also observe that 

z = 0 if and only if x1 = x2 . Thus, the above protocol Pd
equal

 correctly realizes the func-
tionality Fd

equal
.

Security Let x = (x1, x2) ∈ (ℤm)
2 be any input. The probability distribution of a 

view of the protocol starting with the sequence s��(x) = ([[x1]], [[x2]]) is given as follows:

It does not depend on x since it is just a fixed sequence. Thus, for every x, x� ∈ (ℤm)
2 , 

the following holds:

Therefore, Pd
equal

 securely realizes Fd
equal

.
Efficiency The number of cards is two. The number of subroutine calls is three (one 

call of the subtraction protocol, one call of the sign normalization protocol, and one call 
of the equality with zero protocol). From Proposition 1, an equality protocol without 
subroutines can be obtained. The number of probabilistic operations is five (two rota-
tion shuffles, two two-sided rotation shuffles, and one flipping shuffle).

Greater‑than Protocol

Functionality A functionality Fd
gr

 is defined as follows:

where x1, x2 ∈ ℤm.
Protocol A protocol Pd

gr
 is defined as follows:

It proceeds as follows: 

1.	 (����������,Pd
sub

, {1, 2}) : Apply the subtraction protocol in Sect.  4.2 to the 
sequence as follows: 

2.	 (����������,Pd
sv
, {1, 2}) : Apply the sign-to-value protocol in Sect. 4.4 as follows: 

3.	 (� ���, 1, {1}) : Flip the first card along with the axis 1 as follows: 

 The protocol terminates.

𝗏𝗂𝖾𝗐P
d
equal

(s𝗂𝗇(x)) =
(
(?2,⊥) → (?2,⊥) → (?2,⊥) → (?2,⊥)

)
.

����P
d
equal

(s��(x)) = ����P
d
equal

(s��(x
�)).

F
d
gr
= ([[x1]], [[x2]]) ⇒ ([[𝗉(x2 ≥ x1)]], [[0]]),

P
d
gr
= (2,ℤm, (��������2m, {[[0]], [[0]]}),O

�
2m,2

∪ ����������[Pd
sub

,Pd
sv
],A).

([[x1]], [[x2]]) → ([[x2 − x1]], [[0]]).

([[x2 − x1]], [[0]]) → ([[1 − 𝗉(x2 ≥ x1)]], [[0]]).

([[1 − 𝗉(x2 ≥ x1)]], [[0]]) → ([[𝗉(x2 ≥ x1)]], [[0]]).
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Correctness The correctness is trivial.
Security Let x = (x1, x2) ∈ (ℤm)

2 be any input. The probability distribution of 
a view of the protocol starting with the sequence s��(x) = ([[x1]], [[x2]]) is given as 
follows:

It does not depend on x since it is just a fixed sequence. Thus, for every x, x� ∈ (ℤm)
2 , 

the following holds:

Therefore, Pd
gr

 securely realizes Fd
gr

.
Efficiency The number of cards is two. The number of subroutine calls is two (one 

call of the subtraction protocol and one call of the sign-to-value protocol). From 
Proposition  1, a greater than protocol without subroutines can be obtained. The 
number of probabilistic operations is four (two rotation shuffles, one two-sided rota-
tion shuffle, and one flipping shuffle).

Conclusion and Future Work

In this paper, we designed a new type of cards, dihedral cards, with invisible ink, 
and constructed efficient protocols for various interesting predicates. We believe that 
the use of invisible ink makes it easier to design a new type of cards that enable to 
construct efficient secure computation protocols. An interesting research direction is 
to find such a new type of cards and objects, e.g., polyhedron.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

Appendix

Definition for Regular Polygon Cards

We define the card specification of regular polygon cards. Regular polygon cards are 
also known as cyclic cards. Hereafter, we call them cyclic cards. The card specifica-
tion of cyclic cards is given as follows.

𝗏𝗂𝖾𝗐
P
d
gr
(s𝗂𝗇(x)) =

(
(?2,⊥) → (?2,⊥) → (?2,⊥) → (?2,⊥)

)
.

����
P
d
gr
(s��(x)) = ����

P
d
gr
(s��(x

�)).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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For x ∈ ℤm , we denote a face-up card having x by x and a face-down card hav-
ing x by [[x]] . The card set of cyclic cards of modulus m, denoted by C�

m
 , is defined as 

follows:

For a card c ∈ C
�
m
 , we define two types of transformations: rotation and turning. For 

any j ∈ ℤm , a rotation operation with a degree j is defined as follows:

Physically, this is a rotation with (360∕m)◦ . Note that a face-down card [[i]] is trans-
formed into a face-down card [[i − j]] since a rotation of face-down cards is a back-
ward rotation of face-up cards. A turning operation is defined as follows:

The transformation set of cyclic cards of modulus m, denoted by T�
m
 , is defined as 

follows:

The symbol set of cyclic cards of modulus m, denoted by ��
m
 , is defined as follows:

The vision function 𝗏𝗂𝗌𝖼
m
∶ C

𝖼
m
→ �𝖼

m
 of cyclic cards of modulus m is defined as 

follows:

A card specification of cyclic cards of modulus m, denoted by ������m , is defined as 
follows:

Operations for cyclic cards are defined similarly to operations for binary cards 
and dihedral cards. Specifically, permutations and turnings are defined almost the 
same as binary cards, and rotations and rotation shuffles are defined almost the 
same as dihedral cards.

C
�
m
= {0, 1,… ,m − 1, [[0]], [[1]],… , [[m − 1]]}.

rotj(c) =

{

i+ j if c = i for some i ∈ Zm

[[i− j]] if c = [[i]] for some i ∈ Zm

����(c) =

{
[[i]] if c = i for some i ∈ ℤm

i if c = [[i]] for some i ∈ ℤm

T
�
m
= {��, ���, ���2,… , ���m−1, ����}.

�
�
m
= {0, 1, 2,… ,m − 1, ?}.

����
m
(c) =

{
i if c = i for 0 ≤ i ≤ m − 1

? otherwise.

������m = (C�
m
, T�

m
,��

m
, ����

m
).
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