
Vol.:(0123456789)

New Generation Computing (2021) 39:41–71
https://doi.org/10.1007/s00354-020-00117-9

123

Card‑based Cryptography with Dihedral Symmetry

Kazumasa Shinagawa1,2 

Received: 6 May 2020 / Accepted: 9 October 2020 / Published online: 4 January 2021
© The Author(s) 2021

Abstract
It is known that secure computation can be done by using a deck of physical cards.
This area is called card-based cryptography. Shinagawa et al. (in: Provable secu-
rity—9th international conference, ProvSec 2015, Kanazawa, Japan, 2015) pro-
posed regular n-sided polygon cards that enable to compute functions over ℤ∕nℤ .
In particular, they designed efficient protocols for linear functions (e.g. addition and
constant multiplication) over ℤ∕nℤ . Here, efficiency is measured by the number of
cards used in the protocol. In this paper, we propose a new type of cards, dihedral
cards, as a natural generalization of regular polygon cards. Based on them, we con-
struct efficient protocols for various interesting functions such as carry of addition,
equality, and greater-than, whose efficient construction has not been known before.
Beside this, we introduce a new protocol framework that captures a wide class of
card types including binary cards, regular polygon cards, dihedral cards, and so on.

Keywords  Secure computation · Card-based cryptography · Invisible ink

Introduction

Secure computation enables a set of parties each having inputs to jointly compute a
predetermined function of their inputs without revealing their inputs beyond the output.
Card-based cryptography (ex. [2, 4, 9]) is secure computation that can be done by using
a deck of physical cards, instead of computer devices. This makes people understand
the correctness and security of secure computation, even for people who are not famil-
iar with mathematics. Indeed, it is applied to educational situations; some universities

A preliminary conference version appeared at [13]. The main additions from the conference version
are Sect. 2 (formal protocol definition) and all security proofs in Sect. 4. This article is a part of my
PhD dissertation.

 *	 Kazumasa Shinagawa
	 shinagawakazumasa@uec.ac.jp

1	 The University of Electro-Communications, 1‑5‑1, Chofugaoka, Chofu, Tokyo 182‑8585, Japan
2	 National Institute of Advanced Industrial Science and Technology (AIST), Tokyo Waterfront

Bio‑IT Research Building 2‑4‑7 Aomi, Koto City, Tokyo 135‑0064, Japan

http://orcid.org/0000-0002-5219-1975
http://crossmark.crossref.org/dialog/?doi=10.1007/s00354-020-00117-9&domain=pdf

42	 New Generation Computing (2021) 39:41–71

123

(e.g., Cornell University [7], University of Waterloo [3], and Tohoku University [8])
adopt card-based cryptography as a teaching material for beginner students.

While most of all existing works [1, 3–6, 9–12, 16] are mainly focused on binary
computation only, a lot of secure computation that arises in everyday and classroom
situations needs to take multi-valued inputs. For instance, secure computation of the
average score, which takes a number of scores and outputs the average of them, is such
a canonical example. In order to compute multi-valued functions efficiently, Shinagawa
et al. [15] proposed a deck of regular polygon cards, whose shape is a regular n-sided
polygon for the base number n. They proposed a two-card addition protocol that out-
puts x + y mod n given two cards having x, y ∈ ℤ∕nℤ.

Does a deck of regular polygon cards realize sufficiently efficient secure computa-
tion for multi-valued functions? Up until now, there exist efficient protocols only for a
very restrictive class of functions such as addition and subtraction, however, it requires
a large number of cards for computing a function in the outside of the class (in gen-
eral, it requires O(nk) cards for k inputs). Unfortunately, there are no efficient protocols
even for very simple functions such as addition with carry, where given two integers
x, y ∈ {0, 1,… , n − 1} , it outputs a carry of addition, the predicate “ x + y ≥ n ”. To
compute a carry of addition efficiently is one of the open problems in this area. In this
paper, we solve it by designing a new type of cards.

Our Contribution

Dihedral cards We design a new type of cards, dihedral cards, which is based on the
use of invisible ink. It enables to construct several efficient protocols. Introducing invis-
ible ink in the area of card-based cryptography is also our contribution. We construct an
efficient protocol for computing interesting predicates: a carry of addition “ x + y ≥ n ”,
equality with zero “ x = 0 ”, equality “ x = y ”, and greater than “ x ≥ y ”. Table 1 shows
a comparison between our protocols and the previous protocols [15] with regular poly-
gon cards (RPC). Somewhat surprisingly, our protocols with dihedral cards (DC) for
these predicates requires only two cards while all existing RPC-based protocols for the
same predicates requires a large number of cards depending on the modulus n.

A unified protocol model We introduce a new protocol model for describing pro-
tocols with our new cards (Sect. 2). Our model has somewhat generality. It captures
a wide class of protocols not only our dihedral cards but also other type of cards. For
example, our model also captures regular polygon cards [14, 15]. See Appendix for the
definition of regular polygon cards in our model. We believe that our model will be
applied to future works proposing new cards. We left to give concrete definitions for
other cards as future works.

A Unified Protocol Model

In this section, we introduce a protocol model for describing not only our dihe-
dral cards but also other cards. Roughly speaking, a card-based protocol can be
specified by a deck of cards and a set of operations. Thus in order to describe a

43New Generation Computing (2021) 39:41–71	

123

new type of cards, we must define a suitable deck of cards and a suitable set of
operations. In this section, we explain the model with the case of the standard
binary cards in order to make it easier to read for those who are familiar
with the ordinary card-based cryptography. We give definitions for dihedral cards
in Sect. 3. We also give definitions for other cards in Appendix.

Deck, Sequence, and Visible Sequence

In Mizuki-Shizuya model, a deck is defined by a finite multiset. For example,
D = {♣,♣,♣,♡,♡,♡} denotes a deck consists of six cards: three clubs and three
hearts. All backsides are assumed to be “ ? ”. (Thus, it is required the condition
that D ∩ {?} = � .) Although it captures some class of decks including decks of
binary cards and number cards  , it is not sufficient if non-standard
cards (like dihedral cards) are used.

In our model, we define a deck as follows:

Definition 1  (Deck) A deck D is defined by a five-tuple as follows:

where C is a finite set called a card set, T ⊂ {t ∣ t ∶ C → C} is called a transformation
set, � is a finite set called a symbol set, 𝗏𝗂𝗌 ∶ C → � is a function called a vision
function, and D is a finite multiset called a deck set, where the base set is C . We

D ∶= (C, T,�, ���,D),

Table 1   Comparison between
our protocols and previous
protocols: “RPC”, and “DC”
denote regular polygon cards
and dihedral cards, respectively

Type of cards Number of cards Number
of shuf-
fles

◦ Addition and Subtraction
Shinagawa et al. [15] RPC 2 1
Ours DC 2 1
◦ Carry: the predicate “ x + y ≥ n”
Shinagawa et al. [15] RPC n

2
+ n + 2 2

Ours DC 2 5
◦ Equality with zero: the predicate “ x = 0”
Shinagawa et al. [15] RPC 2n + 1 1
Ours DC 2 4
◦ Equality: the predicate “ x = y”
Shinagawa et al. [15] RPC n

2
+ n + 2 2

Ours DC 2 6
◦ Greater than: the predicate “ x ≥ y”
Shinagawa et al. [15] RPC n

2
+ n + 2 2

Ours DC 2 5

44	 New Generation Computing (2021) 39:41–71

123

assume that T always contains the identity function 𝗂𝖽 ∶ C → C . The former four-
tuple (C, T,�, ���) is called a card specification. � ▪

Example 1  Consider a deck of cards whose back sides are  , which is
used by the Five-Card Trick [2]. The deck is described by the following:

•	 The card set is C = {♣∕?,♡∕?, ?∕♣, ?∕♡};
•	 The symbol set is � = {♣,♡, ?};
•	 The transformation set is T = {��, ����} , where the function ���� is defined by

����(X∕Y) = Y∕X for any X, Y ∈ �;
•	 The vision function ��� is defined by ���(X∕Y) = X for any X, Y ∈ �;
•	 The deck set is D = {♣∕?,♣∕?,♡∕?,♡∕?,♡∕?} = {(♣∕?)2, (♡∕?)3}.

For the card set C , the element “ ♣∕? ” (resp. “ ♡∕? ”) means a face-up card
(resp.  ) and the element “ ?∕♣ ” (resp. “ ?∕♡ ”) means a face-down card whose
front side is (resp.  ). The transformation set has a turning transformation
���� . By applying ���� to a card, a face-up card is changed to a face-down card
(and vice versa). The vision function specifies what information is revealed from
a card. From face-up cards “ ♣∕? ” and “ ♡∕? ”, it reveals the symbols “ ♣ ” and
“ ♡ ”, on the other hand, from face-down cards “ ?∕♣ ” and “ ?∕♡ ”, it reveals “ ? ”
only. This card specification (C, T,�, ���) is called the binary cards. Hereafter, we
denote the binary cards by ������ = (C�, T�,��, ����) .� ▪

Sequence We define a sequence as follows:

Definition 2  (Sequence) Let D = (C, T,�, ���,D) be a deck. A sequence s in D is
defined as follows:

where t1, t2,… , t|D| ∈ T and D = {x1, x2,… , x|D|} as a multiset. The set of all
sequences in D is denoted by ���D . � ▪

Example 2  Let D = (������,D) be the deck in Example 1. An example of a sequence
s of D is as follows:

This is because s is represented as follows:

It represents a sequence  . � ▪

Visible sequence We define a visible sequence as follows:

s = (t1(x1), t2(x2),… , t|D|(x|D|)),

s = (?∕♣, ?∕♡,♡∕?, ?∕♡, ?∕♣).

s = (����(♣∕?), ����(♡∕?), ��(♡∕?), ����(♡∕?), ����(♣∕?)).

45New Generation Computing (2021) 39:41–71	

123

Definition 3  (Visible sequence) Let D = (C, T,�, ���,D) be a deck and let
s = (x1, x2,… , x|D|) ∈ ���D be a sequence in D . The visible sequence of s in D is
defined as follows:

The set of all visible sequences in D is defined as follows:

� ▪

Example 3  Let s be the sequence in Example 2. The visible sequence of s is
���(s) = (?, ?,♡, ?, ?) . We sometimes write it by (?2,♡, ?2) or ?2♡?2 .� ▪

Operation

Let D be a deck. Let s ∈ ���D be a sequence in D . We consider two types of opera-
tions, conversion and opening, as follows:

•	 Conversion: It converts s into a new sequence s� ∈ ���D . When it is deterministic,
it is called a deterministic operation (e.g. permutation and turn). When it is rand-
omized, it is called a probabilistic operation (e.g. shuffle).

•	 Opening: It reveals some information on s when a visible sequence of the sequence
is not changed (e.g. sign opening in Sect. 3.2).

Now we define the most standard set of operations (of conversion) for binary
cards. Let D = (������,D) be a deck of binary cards such that |D| = � and let
s = (c1, c2,… , c

�
) ∈ ���D be a sequence in D . We define three sets of operations, per-

mutation, turning, and shuffle as follows:
Permutation For � ∈ S

�
 (here S

�
 denotes the �-th symmetric group), a permutation

operation (����,�) generates a new sequence in D as follows:

That is, the card in the i-th position in s is moved to the �(i)-th position in the new
sequence. The set of permutations ����

�
 for sequences of � cards is defined as

follows:

Turn For a set of positions T ⊂ [�] (here [�] denotes the set {1, 2,… ,�} ), a turning
operation (����,T) takes s as input and returns a new sequence s� ∈ ���D as follows:

���(s) ∶= (���(x1), ���(x2),… , ���(x|D|)).

���D = {���(s) ∣ s ∈ ���D}.

(c1, c2,… , c
�
) → (c�−1(1), c�−1(2),… , c�−1(�)).

����
�
∶= {(����,�) ∣ � ∈ S

�
}.

(c1, c2,… , c
�
) → (c�

1
, c�

2
,… , c�

�
),

46	 New Generation Computing (2021) 39:41–71

123

where for i ∈ T  , it holds c�
i
= ����(ci) , where this “ ���� ” is a transformation (i.e.,

���� ∈ T
� ), and for i ∉ T  , it holds c�

i
= ci . The set of turnings ����

�
 for sequences of

� cards is defined as follows:

We note that a turning operation is not an opening but a conversion since it changes
the view of a sequence. Opening is used for operations that do not change the view
of a sequence.

Shuffle A shuffle operation is defined by a tuple (����� ��,� ,D) , where 𝛱 ⊂ S
�
 is a

subset of permutations and D is a probability distribution on � . It randomly generates
a new sequence s� ∈ ���D as follows:

where � ∈ � is independently and randomly chosen according to D. The set of
shuffles ����

�
 for sequences of � cards is defined as follows:

View

Let D be a deck. Let O be a set of operations. For a sequence s ∈ ���D , an opera-
tion �� ∈ O converts it into a new sequence s� ∈ ���D with revealed information
r ∈ {0, 1}∗ as follows:

where if �� is conversion, revealed information is defined by r = ⊥ , and if �� is
opening, s′ is identical to s. What is revealed from this process to the players? Before
applying �� , they observe a visible sequence ���(s) . After applying �� , they observe
a visible sequence ���(s�) and revealed information r. Thus, all information revealed
from the above process is (���(s), ���(s�), r) . See sign opening and value opening in
Sect. 3.2 for concrete example of openings.

Suppose that a list of k operations �� ∈ O
k is applied to a sequence s0 as follows:

Assume that the i-th operation brings revealed information ri ∈ {0, 1}∗ . Then, all
information revealed from the above process is given as follows:

where r0 = ⊥ and ri = ⊥ if the i-th operation is conversion. This is called a view of
�� starting with the sequence s0 . The set of views ����D is defined as follows:

����
�
∶= {(����, T) ∣ T ⊂ [�]}.

(c1, c2,… , c
�
) → (c�−1(1), c�−1(2),… , c�−1(�)),

����
�
∶= {(����� ��,𝛱 ,D) ∣ 𝛱 ⊂ S

�
,D is a distribution on 𝛱}.

s → s′ revealed information r,

s0 → s1 → s2 → ⋯ → sk.

(𝗏𝗂𝗌(s0), r0) → (𝗏𝗂𝗌(s1), r1) → (𝗏𝗂𝗌(s2), r2) → ⋯ → (𝗏𝗂𝗌(sk), rk),

����D =
(
���D × {0, 1}∗

)∗

.

47New Generation Computing (2021) 39:41–71	

123

Example 4  Let D = (������,D) be the deck in Example 1. Let O be a set of opera-
tions O = ����5 ∪ ����5 . Let �� be a list of operations defined as follows:

When it is applied to a sequence s0 = (?∕♣, ?∕♡, ?∕♣) as follows:

a view of �� starting with the sequence s0 is given as follows:

We sometimes omit revealed information it is clear that all operations are conversion
as follows:

We also write the above by ?3 → ?
3 → ♡♣? → ?♣♡ . ▪

Protocol

Protocol We define a protocol as follows:

Definition 4  (Protocol) A protocol P is defined by a five-tuple as follows:

where

•	 n ∈ ℕ is any natural number called the number of inputs;
•	 X is a finite set called an input domain;
•	 D = (C, T,�, ���,D) is a deck;
•	 O is a finite set called an operation set;
•	 A ∶ 𝖵𝗂𝖾𝗐D → O ∪ {⊥} is an action function.� ▪

Execution of a protocol Let P = (n,X,D,O,A) be a protocol. Let s0 ∈ ���D be a
sequence. An execution of P starting with s0 proceeds as follows:

1.	 The initial sequence is set to s0 as follows:

Set s ← s0 and v ← (𝗏𝗂𝗌(s0),⊥) , where s is a variable of the current sequence and
v is a variable of the entire view of an execution.

�� =
(
(����, (1 2)), (����, {1, 2}), (����, (1 3))

)
.

(?∕♣, ?∕♡, ?∕♣) → (?∕♡, ?∕♣, ?∕♣) → (♡∕?,♣∕?, ?∕♣) → (?∕♣,♣∕?,♡∕?),

((?, ?, ?),⊥) → ((?, ?, ?),⊥) → ((♡,♣, ?),⊥) → ((?,♣,♡),⊥).

(?, ?, ?) → (?, ?, ?) → (♡,♣, ?) → (?,♣,♡).

P = (n,X,D,O,A),

s0 = ? ? ? · · · ? .

48	 New Generation Computing (2021) 39:41–71

123

2.	 Compute the action function A(v) = � ; if 𝛼 ≠ ⊥ , apply the operation � to the
sequence s; and obtain a new sequence s′ with revealed information r ∈ {0, 1}∗ ; Set
s ← s′ and append “ → (𝗏𝗂𝗌(s�), r) ” to v; Repeat this step until it happens 𝛼 = ⊥.

3.	 If A(v) = ⊥ , terminate the execution.

Example 5  We describe a (slightly modified version of) six-card AND protocol by
Mizuki and Sone [9] as follows:

The deck D is defined by D = (������, {(♣∕?)3, (♡∕?)3}) . The operation set O is
defined by O = ����6 ∪ ����6 ∪ ����6 . The action function A is defined by:

•	 A(v0) = (����, (2 4 3));
•	 A(v1) = (����� ��,� ,D) where � = {��, (1 4)(2 5)(3 6)} and D is a uniform dis-

tribution over �;
•	 A(v2) = (����, (2 4 3)−1);
•	 A(v3) = (����, {1, 2});
•	 A(v4) = (����, (1 2)(3 5)(4 6));
•	 A(v) = ⊥ for any v ∉ {v0, v1, v2, v3, v4}.

where

•	 v0 = (?6,⊥);
•	 v1 = (?6,⊥) → (?6,⊥);
•	 v2 = (?6,⊥) → (?6,⊥) → (?6,⊥);
•	 v3 = (?6,⊥) → (?6,⊥) → (?6,⊥) → (?6,⊥);
•	 v4 = (?6,⊥) → (?6,⊥) → (?6,⊥) → (?6,⊥) → (♡♣?4,⊥).

We describe an execution of this protocol starting with an initial sequence
s0 = (���(x1), ���(x2), ���(1)) as follows:

where the commitment ���(b) ( b ∈ {0, 1} ) be two face-down cards whose front
sides are if b = 0 and otherwise. The protocol proceeds as follows:

1.	 (����, (2 4 3)) : Rearrange the order of the sequence as follows:

(2, {0, 1},D,O,A).

s0 = ? ?
︸︷︷︸

x1

? ?
︸︷︷︸

x2

? ?
︸︷︷︸

1

,

49New Generation Computing (2021) 39:41–71	

123

2.	 (����� ��,� ,D) : Apply the shuffle:

 This shuffle is called a random bisection cut.
3.	 (����, (2 4 3)−1) : Rearrange the order of the sequence as follows:

4.	 (����, {1, 2}) : Turn the leftmost commitment as follows:

 If it is the former case, i.e., the opened symbols are  , the protocol termi-
nates. Otherwise, it proceeds to the next Step.

5.	 (����, (1 2)(3 5)(4 6)}) : Rearrange the order of the sequence as follows:

After Steps 4 and 5, the protocol terminates. Then, the finial sequence is given as
follows:

Since it contains a commitment to x1 ∧ x2 , it is said to be an AND protocol.� ▪

Functionality

In order to define the correctness and the security of protocols, we introduce a
notion of functionality. Informally speaking, a functionality is a pair of sequences
parametrized by input variables � ∈ Xn . For example, the following is the function-
ality FAND of Mizuki-Sone’s AND protocol (See Example 5).

50	 New Generation Computing (2021) 39:41–71

123

It is also described as follows:

When some part of input/output sequences in a functionality are not important, ⊥ is
used. For example, when the AND protocol does not care about the rightmost com-
mitment in the output sequence, it is described as follows:

Sequence with a dummy symbol Let D = (C, T,�, ���,D) be a deck with C ∩ {⊥} = � ,
where ⊥ is a dummy symbol. Let s = (c1, c2,… , c

�
) ∈ ���D be a sequence. A

sequence s� = (c�
1
, c�

2
,… , c�

�

) ∈ (C ∪ {⊥})� is said to be a dummy sequence of s if
c�
i
∈ {ci,⊥} for all i ∈ [�] . Thus, there exist 2� dummy sequences of any sequence of

� cards. The set of dummy sequences of s is denoted by ���⊥(s) . The set of dummy
sequences of D is defined by

We say that s ∈ ���D is matched with s� ∈ ���D
⊥

 if s� ∈ ���⊥(s).

Example 6  For a sequence s = (c1, c2, c3) , ���⊥(s) is given as follows:

For a sequence s� = (c1, c2, c
�
3
) with c′

3
≠ c3 , s′ is matched with (c1, c2,⊥) . � ▪

Variable sequence Let D be a deck, X be an input domain, and n be the
number of inputs. A variable sequence s over ���D is defined by a function
s ∶ Xn → 𝖲𝖾𝗊D . A variable dummy sequence s over ���D

⊥
 is defined by a function

s ∶ Xn → 𝖲𝖾𝗊D
⊥

.

Example 7  An input sequence s(x) of Mizuki-Sone’s AND protocol is a variable
sequence s ∶ {0, 1}2 → 𝖲𝖾𝗊D defined as follows:

An output sequence s�(x) of Mizuki-Sone’s AND protocol is a variable dummy
sequence s� ∶ {0, 1}2 → 𝖲𝖾𝗊D

⊥
 defined as follows:

FAND ∶ (𝖼𝗈𝗆(x1), 𝖼𝗈𝗆(x2), 𝖼𝗈𝗆(1)) ⇒ (♣♡, 𝖼𝗈𝗆(x1 ∧ x2), 𝖼𝗈𝗆(x1 ∧ x2)).

F
�
AND

∶ (𝖼𝗈𝗆(x1), 𝖼𝗈𝗆(x2), 𝖼𝗈𝗆(1)) ⇒ (♣♡, 𝖼𝗈𝗆(x1 ∧ x2),⊥
2).

���D
⊥
=

⋃
s∈���D

���⊥(s).

���⊥(s) = {(c1, c2, c3), (⊥, c2, c3), (c1,⊥, c3), (c1, c2,⊥),

(⊥,⊥, c3), (c1,⊥,⊥), (⊥, c2,⊥), (⊥,⊥,⊥)}.

s(x) =

⎧
⎪⎨⎪⎩

(?∕♣, ?∕♡, ?∕♣, ?∕♡, ?∕♣, ?∕♡) if x = (0, 0)

(?∕♣, ?∕♡, ?∕♡, ?∕♣, ?∕♣, ?∕♡) if x = (0, 1)

(?∕♡, ?∕♣, ?∕♣, ?∕♡, ?∕♣, ?∕♡) if x = (1, 0)

(?∕♡, ?∕♣, ?∕♡, ?∕♣, ?∕♣, ?∕♡) otherwise.

51New Generation Computing (2021) 39:41–71	

123

� ▪

Functionality A functionality is defined as follows:

Definition 5  (Functionality) Let D be a deck, X be an input domain, and n be the
number of inputs. A functionality F is defined by a pair:

where s𝗂𝗇 ∶ Xn → 𝖲𝖾𝗊D is a variable sequence over ���D and s𝗈𝗎𝗍 ∶ Xn → 𝖲𝖾𝗊D
⊥

 is a
variable dummy sequence over ���D

⊥
 . � ▪

Correctness

Correctness The correctness of protocols is defined as follows:

Definition 6  (Correctness) Let P = (n,X,D,O,A) be a protocol. Let F = (s��, s���)
be a functionality. We say that P correctly realizes F if for any input � ∈ Xn , any
execution of P starting with s��(�) terminates with a sequence s that is matched with
s���(�) . � ▪

The correctness of protocols in a committed format is defined as follows:

Definition 7  (Correctness in a committed format) Let D = (C, T,�, ���,D) and
D

�
= (C, T,�, ���,D�) be decks such that D contains n copies of D′ as multi-

set. ( C, T,� , and ��� are common.) Let P = (n,X,D,O,A) be a protocol. Let
F = (s��, s���) be a functionality. Let f ∶ Xn → X be a function. Let 𝖼𝗈𝗆 ∶ X → 𝖲𝖾𝗊D

�

be a function that takes an input and returns a sequence. We say that P correctly
computes f if it satisfies the following:

•	 P correctly realizes F ;
•	 s�� = (���(x1), ���(x2),… , ���(xn), s) where s is a (possibly empty) fixed

sequence;
•	 s��� contains ���(f (x1, x2,… , xn)) . � ▪

Security

The probability distribution of a view Let P = (n,X,D,O,A) be a protocol. Let
s0 ∈ ���D be a sequence and let x ∈ Xn be an input. The probability distribution of a
view of P with input x and starting with sequence s0 is denoted by ����P(s0) , where
randomness comes from probability operations (e.g., shuffles).

s�(x) =

{
(♣∕?,♡∕?, ?∕♡, ?∕♣,⊥2) if x = (1, 1)

(♣∕?,♡∕?, ?∕♣, ?∕♡,⊥2) otherwise.

F = (s��, s���),

52	 New Generation Computing (2021) 39:41–71

123

Security The security of protocols is defined as follows:

Definition 8  (Security) Let P = (n,X,D,O,A) be a protocol. Let F = (s��, s���) be
a functionality. We say that P securely realizes F if for every x, x� ∈ Xn , it holds
����P(s��(x)) = ����P(s��(x

�)) . � ▪

Example 8  Let us prove that the protocol given in Example 5 securely realizes the
functionality FAND = (s��, s���) defined as follows:

Let x ∈ {0, 1}2 be any input. The probability distribution of a view of the protocol
starting with the sequence s��(x) = (���(x1), ���(x2), ���(1)) is given as follows:

where v = (?6,⊥) → (?6,⊥) → (?6,⊥) → (?6,⊥) . Due to the random bisection cut,
the above probability distribution ����(s��(x)) is the same for any x ∈ {0, 1}2 . There-
fore, it securely realizes the functionality.� ▪

Composition of Protocols

Subroutine operation Let P = (n,X,D,O,A) be a protocol. A subroutine of P
is a “magical box” that executes the protocol P in a single step: it takes a sequence
s0 ∈ ���D as an input and outputs a final sequence of P when the initial sequence is s0
as follows:

Formally, a subroutine operation for a protocol P is defined as follows:

where T ⊂ [�] is a subset of positions such that |T| is the number of cards of P . (We
assume that the number of cards of P is equal to or less than � .) The set of subrou-
tine operations with P is denoted as follows:

For protocols P1,P2,… ,Pk , we define the set of subroutine operations as follows:

FAND ∶ (𝖼𝗈𝗆(x1), 𝖼𝗈𝗆(x2), 𝖼𝗈𝗆(1)) ⇒ (♣♡, 𝖼𝗈𝗆(x1 ∧ x2), 𝖼𝗈𝗆(x1 ∧ x2)).

𝗏𝗂𝖾𝗐(s𝗂𝗇(x)) =

{
v → (♣♡?4,⊥) with probability 1∕2

v → (♡♣?4,⊥) → (♣♡?4,⊥) with probability 1∕2

Protocol P
︷ ︸︸ ︷

? . . . ?
︸ ︷︷ ︸

s0

→ ? . . . ?
︸ ︷︷ ︸

s1

→ . . . → ? . . . ?
︸ ︷︷ ︸

sk−1

→ ? . . . ?
︸ ︷︷ ︸

sk

? . . . ?
︸ ︷︷ ︸

s0

→ subroutine of P → ? . . . ?
︸ ︷︷ ︸

sk

(����������,P, T),

����������
�
[P] = {(����������,P, T) ∣ T ⊂ [�]}.

53New Generation Computing (2021) 39:41–71	

123

We define an subroutine-respecting protocol as follows:

Definition 9  (Subroutine-respecting protocol) Let Fsub = (s��, s���) be a functional-
ity using �sub cards. Let Psub = (nsub,Xsub,Dsub,Osub,Asub) be a protocol using �sub
cards. Let P = (n,X,D,O,A) be a protocol using � cards ( � ≥ �sub ). We say that P
is subroutine-respecting for Psub and Fsub if it satisfies as follows:

•	 ����������
�
[Psub] ⊂ O;

•	 For any input x ∈ {0, 1}n , whenever P enters an operation (����������,Psub, T) ,
the cards on positions T in the current sequence is identical to s��(x�) for some
input x� ∈ Xsub . Here, the input x′ for Psub can be varied for each call of the
subroutine for Psub . � ▪

Example 9  Let PAND2 be a two-bit AND protocol defined as follows:

that correctly and securely realizes a functionality FAND2 as follows:

This is obtained from Mizuki and Sone’s AND protocol in Example 5 with a small
modification. By using the subroutine of PAND2 , we construct an eight-card three-bit
AND protocol PAND3 defined as follows:

that realizes a functionality FAND3 = (s��, s���) as follows:

It proceeds as follows:

1.	 (����������,PAND2, {1, 2, 3, 4, 7, 8}) : Apply the two-bit AND protocol for cards
on {1, 2, 3, 4, 7, 8} as follows:

2.	 (����������,PAND2, {3, 4, 5, 6, 7, 8}) : Apply the two-bit AND protocol for cards
on {3, 4, 5, 6, 7, 8} as follows:

����������
𝓁
[P1,P2,… ,Pk] = ����������

𝓁
[P1] ∪ ����������

𝓁
[P2] ∪⋯ ∪ ����������

𝓁
[Pk].

PAND2 = (2, {0, 1}, (������, {(♣∕?)3, (♡∕?)3}), ����6 ∪ ����6 ∪ ����6,A),

PAND3 = (3, {0, 1}, (������, {(♣∕?)4, (♡∕?)4}), ����������8[PAND2],A
�).

54	 New Generation Computing (2021) 39:41–71

123

We can observe that the protocol PAND3 is subroutine-respecting for PAND2 and
FAND2 : the first condition in Definition 9 is satisfied since the operation set of PAND3
is ����������8[PAND2] ; and, the second condition in Definition 9 is satisfied since for
each call of the subroutine PAND2 , the cards on positions T in the sequence is identical
to s��(x�) for some x� ∈ {0, 1}2 . � ▪

Proposition 1  (Composition theorem) Let Pi = (ni,Xi,Di,Oi,Ai) ( i ∈ [k] )
be a protocol that correctly and securely realizes a functionality Fi . Let
P = (n,X,D,O ∪ ����������

�
[P1,P2,… ,Pk],A) be a protocol that is subroutine-

respecting for Pi and Fi , and O is upward compatible with Oi for every i ∈ [k] . If
P correctly and securely realizes a functionality F  , then there exists a protocol
P
� = (n,X,D,O,A) that correctly and securely realizes F  . � ▪

Proof  The protocol P′ is obtained from the protocol P by replacing all subrou-
tine calls of Pi with the protocols Pi for all i ∈ [k] . We can observe that the final
sequence of P and that of P′ are the same since P is subroutine-respecting. Thus, P′
correctly realizes F  . We can also observe that a view of P′ is obtained from a view
of P by replacing all subroutine calls of Pi with a view of Pi for all i ∈ [k] . Since P
and Pi securely realize F and Fi , respectively, for all i ∈ [k] . Thus, P′ also securely
realizes F  . � ▪

Dihedral Cards

Dihedral Cards

Let m ≥ 2 be any integer. A dihedral card of modulus m is a card as follows:

•	 It holds a non-binary value x ∈ ℤ2m;
•	 A transformation from x to x + c (for any constant c ∈ ℤ2m ) is allowed;
•	 A transformation from x to −x + c (for any constant c ∈ ℤ2m ) is allowed;
•	 For a card holding x, it is possible to observe whether x ≥ m only;
•	 For a card holding x, it is possible to observe x mod m only.

Thus, the shape of dihedral cards of modulus m is a regular 2m-sided polygon. For
example, a dihedral card of modulus 4 is implemented as follows:

55New Generation Computing (2021) 39:41–71	

123

Four vertices among eight vertices have blue dots and an arrow is written on the
center. The front side and the back side are the same pattern satisfying that any ver-
tex having a blue dot in the front side also has a dot in the back side. Here, all blue
circles and arrows are written by invisible ink1 in order to hide a value of a card.
Since it is a hexagon, it can hold a value x ∈ ℤ8 as follows:

The first transformation from x to x + c is done by a rotation with (360c∕2m)◦ as
in the case of cyclic cards. A nontrivial property is to allow the second transforma-
tion from x to −x + c . This is done by a flipping. Say c = 0 . A transformation from x
to −x is done by a flipping with a vertical line as follows:

For m = 4 , each axis of line symmetry corresponds to some c ∈ ℤ8 as follows:

Indeed, a transformation from x to −x + 7 is done by a flipping as follows:

1  Invisible ink is used for writing, which is invisible but can be made visible with illuminating a black
light. It can be used for steganography, which hides the existence of plain texts while cryptography hides
the contents of plain texts.

56	 New Generation Computing (2021) 39:41–71

123

For a general modulus m, an axis of line symmetry rotated by (180c∕2m)◦ from
the vertical line corresponds to c ∈ ℤ2m . Finally, we need to open a bit �(x ≥ m) and
a value x mod m . Here, �(statement) is a predicate that outputs 1 if the statement is
true and 0 false. Thanks to the property of invisible ink, this is done by illuminating
a black light with a cover. For a card holding x, it is possible to observe �(x ≥ m)
only as follows:

In the above case, since the vertex has a blue dot, the predicate �(x ≥ m) is 0. (We
can observe that for a card holding x, the vertex has a blue dot if and only if x < 4 .)
Similarly, it is possible to observe the value x mod m only as follows:

In the above case, since the card holds either 1 or 5, the value x mod m is 1. For
x ∈ ℤ2m , �(x ≥ m) is called a sign of x and x mod m is called a value of x.

A card specification of dihedral cards For x ∈ ℤ2m , we denote a card holding x
by [[x]] . The card set of dihedral cards of modulus m, denoted by C�

m
 , is defined as

follows:

Let [[x]] ∈ C
�
m
 be a card holding a value x ∈ ℤ2m . For any constant a ∈ ℤ2m , a rota-

tion operation with a degree a is defined as follows:

For any constant a ∈ ℤ2m , a flipping operation with an axis a is defined as follows:

The transformation set of dihedral cards of modulus m, denoted by T�
m
 , is defined as

follows:

The symbol set of dihedral cards of modulus m, denoted by ��
m
 , is defined as follows:

C
�
m
= {[[0]], [[1]],… , [[2m − 1]]}.

���a([[x]]) = [[x + a]]

� ���a([[x]]) = [[−x + a]].

T
�
m
= {��, ���, ���2,… , ���2m−1, � ���0, � ���1,… , � ���2m−1}.

57New Generation Computing (2021) 39:41–71	

123

The vision function 𝗏𝗂𝗌𝖽
m
∶ C

𝖽
m
→ �𝖽

m
 of dihedral cards of modulus m is defined as

follows:

A card specification of dihedral cards of modulus m, denoted by ��������m , is
defined as follows:

Commitment A commitment to x ∈ ℤ2m is defined by [[x]].

Operations for Dihedral Cards

For dihedral cards, we introduce eight operations: permutation, rotation, rotation
shuffle, flipping, flipping shuffle, two-sided rotation shuffle, sign opening, and value
opening.

Permutation This operation is the same as permutation for binary cards in Sect. 2.2.
For modulus m, the set of permutations ����m,� for sequences of � dihedral cards with
modulus m is defined as follows:

Rotation For T ⊂ [�] and a ∈ ℤm , a rotation operation is defined as follows:

For a sequence s = (c1, c2,… , c
�
) ∈ ���D , by applying a rotation operation

(���,T , a) , it is transformed into a new sequence s� = (c�
1
, c�

2
,… , c�

�

) ∈ ���D such
that c�

i
= ���a(ci) for all i ∈ T and c�

i
= ci for all i ∉ T  . For example, for a sequence

s = (0, 1, [[2]], [[3]]) with modulus m = 4 , a rotation operation (���, {1, 2, 4}, 1) trans-
forms it into a new sequence s� = (1, 2, [[2]], [[2]]) as follows:

The set of rotations ���m,� is defined as follows:

Rotation shuffle For T ⊂ [�] , a rotation shuffle is defined as follows:

For all i ∈ T  , the i-th card in the sequence is rotated with a degree r ∈ ℤm , here
r is uniformly and randomly chosen from ℤm and this r is common for all i ∈ T  .

�
�
m
= {?}.

����
m
([[x]]) = ? for any x ∈ ℤ2m.

��������m = (C�
m
, T�

m
,��

m
, ����

m
).

����m,� ∶= {(����,�) ∣ � ∈ S
�
}.

(���,T , a).

↑
︸︷︷︸

0

↑

︸︷︷︸

1
︸︷︷︸

[[2]]
︸︷︷︸

[[3]]

→ ↑

︸︷︷︸

1

↑

︸︷︷︸

2
︸︷︷︸

[[2]]
︸︷︷︸

[[2]]

.

���m,� = {(���,T , a) ∣ T ⊂ [�], a ∈ ℤm}.

(������� , T).

58	 New Generation Computing (2021) 39:41–71

123

The other cards are unchanged. For example, for a sequence ([[x1]], [[x2]], [[x3]], [[x4]])
with modulus m = 4 , a rotation shuffle (������� , {1, 2, 3}) generates a sequence
([[x1 − r]], [[x2 − r]], [[x3 − r]], [[x4]]) for a random r ∈ ℤ∕4ℤ as follows:

The set of rotation shuffles is defined as follows:

Flipping A flipping operation is defined as follows:

where a ∈ ℤ2m is an axis of flipping and T ⊂ [�] is a subset of positions. By apply-
ing a flipping operation (� ���, a, T) , a sequence is converted as follows:

where x�
i
= −xi + a for all i ∈ T and x�

i
= xi for all i ∉ T  . For example, for a sequence

([[0]], [[2]], [[5]], [[7]]) of modulus m = 4 , a flipping operation (� ���, 0, {1, 2, 3, 4}) con-
verts it into a new sequence ([[0]], [[6]], [[3]], [[1]]) . The set of flipping operations
����m,� is defined as follows:

Flipping shuffle A flipping shuffle is defined as follows:

where k ∈ [�] is the number of axes, a1, a2,… , ak ∈ ℤ2m are axes of flipping and
T1, T2,… , Tk ⊂ [�] are disjoint subsets of positions. For all 1 ≤ i ≤ k , all cards on Ti
are flipped (by � ���ai ) randomly and simultaneously. Here, the random bit designat-
ing whether flipped or not is common for all i. The other cards are unchanged. For
example, for a sequence ([[0]], [[2]], [[5]], [[7]]) of modulus m = 4 , a flipping shuffle
(� ������� , (0, 1), {1, 2}, {3, 4}) generates a new sequence:

A flipping shuffle is implemented by using two wooden boards as follows:

︸︷︷︸

[[x1]]
︸︷︷︸

[[x2]]
︸︷︷︸

[[x3]]
︸︷︷︸

[[x4]]

→
︸︷︷︸

[[x1−r]]
︸︷︷︸

[[x2−r]]
︸︷︷︸

[[x3−r]]
︸︷︷︸

[[x4]]

.

�������m,� = {(������� ,T) ∣ T ⊂ [�]}.

(� ���, a, T),

([[x1]], [[x2]],… , [[x
�
]]) → ([[x�

1
]], [[x�

2
]],… , [[x�

�
]]),

����m,� = {(� ���, j, T) ∣ j ∈ ℤ2m, T ⊂ [�]}.

(� ������� , (a1, a2,… , ak), T1, T2,… , Tk),

([[0]], [[2]], [[5]], [[7]]) →

{
([[0]], [[2]], [[5]], [[7]]) with probability 1∕2

([[0]], [[6]], [[4]], [[2]]) with probability 1∕2

59New Generation Computing (2021) 39:41–71	

123

The set of flipping shuffles is defined as follows:

Two-sided rotation shuffle A two-sided rotation shuffle is defined by:

where T ⊂ [�] is a subset of positions. By applying a two-sided rotation shuffle
(������� , T) , a sequence is converted as follows:

where x�
i
= xi + rm for a random bit r ∈ {0, 1} if i ∈ T and x�

i
= xi other-

wise. Note that the random bit r is common for all i ∈ T  . For example, for a
sequence ([[0]], [[2]], [[5]], [[7]]) of modulus m = 4 , a two-sided rotation shuffle
(������� , {1, 2, 3, 4}) generates a new sequence as follows:

A two-sided rotation shuffle is implemented by using two clips as follows:

The set of two-sided rotation shuffles is defined as follows:

Sign opening A sign opening is defined as follows:

where i ∈ [�] is a position. For a sequence ([[x1]], [[x2]],… , [[x
�
]]) , it publicly reveals

a bit value �(xi ≥ m) ∈ {0, 1} . It is treated as revealed information. That is, it outputs
revealed information r = �(xi ≥ m) without changing the sequence. For example, for
a sequence ([[0]], [[2]], [[5]], [[7]]) of modulus m = 4 , a sign opening (�������, 3) out-
puts the sign of the third card “1” ( �(5 ≥ 4) ) as revealed information. The set of sign
openings is defined as follows:

Value opening A value opening is defined as follows:

��������m,� = {(� ������� , (a1, a2,… , ak), T1, T2,… , Tk) ∣

k ∈ [�], a1, a2,… , ak ∈ ℤ2m,

T1, T2,… , Tk ⊂ [�] s.t. ∀a, b ∈ [k], Ta ∩ Tb = �}.

(������� , T),

([[x1]], [[x2]],… , [[x
�
]]) → ([[x�

1
]], [[x�

2
]],… , [[x�

�
]]),

([[0]], [[2]], [[5]], [[7]]) →

{
([[0]], [[2]], [[5]], [[7]]) with probability 1∕2

([[4]], [[6]], [[1]], [[3]]) with probability 1∕2

�������m,� = {(������� , T) ∣ T ⊂ [�]}.

(�������, i),

�������m,� = {(�������, i) ∣ i ⊂ [�]}.

60	 New Generation Computing (2021) 39:41–71

123

where i ∈ [�] is a position. For a sequence ([[x1]], [[x2]],… , [[x
�
]]) , it publicly reveals

a value xi mod m ∈ ℤm . It is treated as revealed information. That is, it outputs
revealed information r = (xi mod m) without changing the sequence. For example,
for a sequence ([[0]], [[2]], [[5]], [[7]]) of modulus m = 4 , a value opening (�������, 4)
outputs the value of the fourth card “3” ( = 7 mod 4 ) as revealed information. The
set of value openings is defined as follows:

Full opening A full opening is defined as follows:

where i ∈ [�] is a position. For a sequence ([[x1]], [[x2]],… , [[x
�
]]) , it publicly reveals

a value xi ∈ ℤ2m . It is treated as revealed information. Note that it is equivalent to
applying a sign opening and a value opening successively. Thus, the full opening
can be viewed as a syntax sugar of applying a sign opening and a value opening
successively.

Notations

Hereafter, we use notations as follows.
Operations We assume that the set of operations is O�

m,�
 defined as follows:

Protocols with Dihedral Cards

Initialization Protocol

Functionality A functionality Fd
init

 is defined as follows:

where x ∈ ℤ2m.
Protocol An initialization protocol Pd

init
 is defined as follows:

It proceeds as follows:

1.	 (������� , {1}) : Apply a rotation shuffle to it:

(�������, i),

�������m,� = {(�������, i) ∣ i ⊂ [�]}.

(����, i),

O
�
m,�

=����m,� ∪ ���m,� ∪ �������m,� ∪ ����m,� ∪ ��������m,�

∪�������m,� ∪ �
�����m,� ∪
	�����m,� .

F
d
init

∶ [[x]] ⇒ [[0]].

P
d
init

= (1,ℤ2m, (��������m, {[[0]]}),O
�
m,1

,A).

61New Generation Computing (2021) 39:41–71	

123

2.	 (����, 1) : Apply a full opening operation to it. Let x� ∈ ℤ2m be the opened value,
which is treated as revealed information.

3.	 (���, {1},−x�) : Rotate it with a degree −x� as follows:

 The protocol terminates.
Correctness The correctness is trivial.

Security Let x ∈ ℤ2m be any input. The probability distribution of a view of the pro-
tocol starting with the sequence s��(x) = [[x]] is given as follows:

where x� = x + r for a uniform random value r ∈ ℤ2m . This is equivalent to a prob-
ability distribution ����∗ defined as follows:

where r� ∈ ℤ2m is a uniform random value. The distribution ����∗ does not depend
on x. Thus, for every x, x� ∈ ℤ2m , the following holds:

Therefore, Pd
init

 securely realizes Fd
init

.
Efficiency The number of cards is one. Note that this is the minimum number of

cards. The number of probabilistic operations is one (one rotation shuffle).

Addition Protocol

Functionality A functionality Fd
add

 is defined as follows:

where x1, x2 ∈ ℤ2m.
Protocol An addition protocol Pd

add
 is defined as follows:

It proceeds as follows:

1.	 (� ���, 0, {1}) : Flip the left card along with the 0-axis as follows:

[[x]] → [[x�]].

revealed information x′.

[[x�]] → [[0]]

𝗏𝗂𝖾𝗐
P
d
init
(s𝗂𝗇(x)) =

(
(?,⊥) → (?,⊥) → (?, x�) → (?,⊥)

)
,

𝗏𝗂𝖾𝗐∗ =
(
(?,⊥) → (?,⊥) → (?, r�) → (?,⊥)

)
,

����
P
d
init
(s��(x)) = ����

P
d
init
(s��(x

�)) = ����∗.

F
d
add

∶ ([[x1]], [[x2]]) ⇒ ([[0]], [[x1 + x2]]) .

P
d
add

= (2,ℤ2m, (��������m, {[[0]], [[0]]}),O
�
m,2

,A).

([[x1]], [[x2]]) → ([[−x1]], [[x2]]).

62	 New Generation Computing (2021) 39:41–71

123

2.	 (������� , {1, 2}) : Apply a rotation shuffle to them:

3.	 (����, 1) : Apply a full opening operation to the left card. Let x�
1
∈ ℤ2m be the

opened value, which is treated as revealed information.

4.	 (���, {1, 2},−x�
1
) : Rotate them so that they are added by −x�

1
 :

Correctness By the rotation shuffle, x�
1
= −x1 + r and x�

2
= x2 + r for a

uniform random value r ∈ ℤ2m . The right card in the final sequence is
[[x�

2
− x�

1
]] = [[(x2 + r) − (−x1 + r)]] = [[x1 + x2]] . Therefore, the above protocol Pd

add

correctly realizes the functionality Fd
add

.
Security Let x = (x1, x2) ∈ (ℤ2m)

2 be any input. The probability distribution of
a view of the protocol starting with the sequence s��(x) = ([[x1]], [[x2]]) is given as
follows:

Since x�
1
= x1 + r for a uniform random value r ∈ ℤ2m is distributed uniformly ran-

domly, the above distribution is equivalent to a probability distribution ����∗ defined
as follows:

where r� ∈ ℤ2m is a uniform random value. The distribution ����∗ does not depend
on x. Thus, for every x, x� ∈ ℤ2m , the following holds:

Therefore, Pd
add

 securely realizes Fd
add

.
Efficiency The number of cards is two. Note that this is the minimum number of

cards since the number of inputs is two. The number of probabilistic operations is
one (one rotation shuffle).

Sign Normalization Protocol

Functionality A functionality Fd
sign

 is defined as follows:

where x ∈ ℤ2m.
Protocol A protocol Pd

sign
 is defined as follows:

([[−x1]], [[x2]]) → ([[x�
1
]], [[x�

2
]]).

revealed information x′
1
.

([[x�
1
]], [[x�

2
]]) → ([[0]], [[x�

2
− x�

1
]])

𝗏𝗂𝖾𝗐
P
d
add
(s𝗂𝗇(x)) =

(
(?2,⊥) → (?2,⊥) → (?2,⊥) → (?2, x�

1
) → (?2,⊥)

)
,

𝗏𝗂𝖾𝗐∗ =
(
(?2,⊥) → (?2,⊥) → (?2,⊥) → (?2, r�) → (?2,⊥)

)
.

����
P
d
add
(s��(x)) = ����

P
d
add
(s��(x

�)) = ����∗.

F
d
sign

∶ [[x]] ⇒ [[x mod m]],

63New Generation Computing (2021) 39:41–71	

123

It proceeds as follows:

1.	 (������� , {1}) : Apply a two-sided rotation shuffle to the input card as follows:

 where x� = x + rm for a uniform random bit r ∈ {0, 1}.
2.	 (�������, 1) : Apply the sign opening to the card. Let s� ∈ {0, 1} be the sign of the

card, which is treated as revealed information.

3.	 (���, {1}, s�m) : Rotate the card with a degree s′m :

Correctness Let x = v + sm for v ∈ ℤm and s ∈ {0, 1} . Due to the property of a two-
sided rotation shuffle, x′ is represented by x� = v + (s⊕ r)m and s′ is represented by
s� = s⊕ r . Thus, the card in the final sequence is
[[x� + s�m]] = [[v + (s⊕ r)m + s�m]] = [[v + (s⊕ r)m + (s⊕ r)m]] = [[v]] . (Note that
every computation is done over ℤ2m .) Therefore, the above protocol Pd

sign
 correctly

realizes the functionality Fd
sign

.
Security Let x = v + sm ∈ ℤ2m ( v ∈ ℤm and s ∈ {0, 1} ) be any input. The prob-

ability distribution of a view of the protocol starting with the sequence s��(x) = [[x]]
is given as follows:

where s� = s⊕ r ∈ {0, 1} for a uniform random bit r. It is equivalent to a probability
distribution ����∗ defined as follows:

where r� ∈ {0, 1} is a uniform random value. Thus, for every x, x� ∈ ℤ2m , the follow-
ing holds:

Therefore, Pd
sign

 securely realizes Fd
sign

.
Efficiency The number of cards is one. Note that this is the minimum number of

cards. The number of probabilistic operations is one (one two-sided rotation shuffle).

Sign‑to‑Value Protocol

Functionality A functionality Fd
sv

 is defined as follows:

P
d
sign

= (1,ℤ2m, (��������m, {[[0]]}),O
�
m,1

,A).

[[x]] → [[x�]],

[[x�]] → [[x�]], revealed information s�.

[[x�]] → [[x� + s�m]].

𝗏𝗂𝖾𝗐
P
d
sign
(s𝗂𝗇(x)) =

(
(?,⊥) → (?, s�) → (?,⊥) → (?,⊥)

)
,

𝗏𝗂𝖾𝗐∗ =
(
(?,⊥) → (?, r�) → (?,⊥) → (?,⊥)

)
.

����
P
d
sign
(s��(x)) = ����

P
d
sign
(s��(x

�)) = ����∗.

64	 New Generation Computing (2021) 39:41–71

123

where x ∈ ℤ2m.
Protocol A protocol Pd

sv
 is defined as follows:

It proceeds as follows:

1.	 (������� , {1}) : Apply a two-sided rotation shuffle to the input card as follows:

 where r1 ∈ {0, 1} is a uniform random bit.
2.	 (�������, 1) : Apply the sign opening to the left card. Let s1 ∈ {0, 1} be the sign

of the left card, which is treated as revealed information. (We can observe that
s1 = �(x ≥ m)⊕ r1.)

3.	 (���, {2}, s1m) : Rotate the right card with a degree s1m :

4.	 (����������,Pd
����
, {1}) : Apply the initialization protocol Pd

����
 as follows:

5.	 (� ������� , (� ���1, � ���m), (1, 2)) : Apply a flipping shuffle as follows:

 where r2 ∈ {0, 1} is a uniform random bit.
6.	 (�������, 2) : Apply the sign opening to the right card. Let s2 ∈ {0, 1} be the sign

of the right card, which is treated as revealed information. (We can observe that
s2 = r1 ⊕ s1 ⊕ r2 .) If s2 = 0 , the protocol terminates.

7.	 (���, {2},m) : If s2 = 1 , rotate the right card with a degree m:

8.	 (� ���, 1, {1}) : If s2 = 1 , apply a flipping with an axis 1 as follows:

 The protocol terminates.
Correctness If s2 = 0 at Step 6, the protocol terminates. In this case, the left card in
the final sequence is given as follows:

If s2 = 1 at Step 6, the protocol proceeds to Step 8. In this case, the left card in the
final sequence is given as follows:

F
d
sv
∶ ([[x]], [[0]]) ⇒ ([[𝗉(x ≥ m)]], [[0]]),

P
d
sv
= (1,ℤ2m, (��������m, {[[0]], [[0]]}),O

�
m,2

∪ ����������[Pd
����
],A).

([[x]], [[0]]) → ([[x + r1m]], [[r1m]]),

([[x + r1m]], [[r1m]]) → ([[x + r1m]], [[(r1 ⊕ s1)m]]).

([[x + r1m]], [[(r1 ⊕ s1)m]]) → ([[0]], [[(r1 ⊕ s1)m]]).

([[0]], [[(r1 ⊕ s1)m]]) → ([[r2]], [[(r1 ⊕ s1 ⊕ r2)m]]),

([[r2]], [[m]]) → ([[r2]], [[0]]).

([[r2]], [[0]]) → ([[−r2 + 1]], [[0]]).

[[r2]] = [[r1 ⊕ s1]] = [[�(x ≥ m)]].

[[−r2 + 1]] = [[−(1 − r1 ⊕ s1) + 1]] = [[r1 ⊕ s1]] = [[�(x ≥ m)]].

65New Generation Computing (2021) 39:41–71	

123

Therefore, the above protocol Pd
sv

 correctly realizes the functionality Fd
sv

.
Security Let x = v + sm ∈ ℤ2m ( v ∈ ℤm and s ∈ {0, 1} ) be any input. The

probability distribution of a view of the protocol starting with the sequence
s��(x) = ([[x]], [[0]]) is given as follows:

where s1 = �(x ≥ m)⊕ r1 ∈ {0, 1} for a uniform random bit r1 ,
s2 = r1 ⊕ s1 ⊕ r2 ∈ {0, 1} for a uniform random bit r2 , and the last two components
“ → (?2,⊥) → (?2,⊥) ” appears only when s2 = 0 . It is equivalent to a probability
distribution ����∗ defined as follows:

where r�
1
, r�

2
∈ {0, 1} are uniform random bits and the last two components appears

only when r�
2
= 0 . Thus, for every x, x� ∈ ℤ2m , the following holds:

Therefore, Pd
sv

 securely realizes Fd
sv

.
Efficiency The number of cards is two. The number of subroutine calls is one

(one call of the initialization protocol). From Proposition 1, a sign-to-value protocol
without subroutines can be obtained. The number of probabilistic operations is three
(one rotation shuffle, one two-sided rotation shuffle, and one flipping shuffle).

Carry Protocol

Functionality A functionality Fd
carry

 is defined as follows:

where x1, x2 ∈ ℤm.
Protocol A protocol Pd

carry
 is defined as follows:

It proceeds as follows:

1.	 (����������,Pd
add

, {1, 2}) : Apply the addition protocol in Sect. 4.2 to the sequence
as follows:

𝗏𝗂𝖾𝗐
P
d
sv
(s𝗂𝗇(x)) =

(
(?2,⊥) → (?2,⊥) → (?2, s1) → (?2,⊥) → (?2,⊥)

→ (?2,⊥) → (?2, s2)
[
→ (?2,⊥) → (?2,⊥)

]s2),

𝗏𝗂𝖾𝗐∗ =
(
(?2,⊥) → (?2,⊥) → (?2, r�

1
) → (?2,⊥) → (?2,⊥)

→ (?2,⊥) → (?2, r�
2
)
[
→ (?2,⊥) → (?2,⊥)

]r�
2

)
,

����P
d
sv
(s��(x)) = ����P

d
sv
(s��(x

�)) = ����∗.

F
d
carry

= ([[x1]], [[x2]]) ⇒ ([[𝗉(x1 + x2 ≥ m)]], [[0]]),

P
d
carry

= (2,ℤm, (��������2m, {[[0]], [[0]]}),O
�
2m,2

∪ ����������[Pd
add

,Pd
sv
],A).

([[x1]], [[x2]]) → ([[x1 + x2]], [[0]]).

66	 New Generation Computing (2021) 39:41–71

123

2.	 (����������,Pd
sv
, {1}) : Apply the sign-to-value protocol in Sect. 4.4 to the first

card as follows:

Correctness The correctness is trivial.
Security Let x = (x1, x2) ∈ (ℤm)

2 be any input. The probability distribution of
a view of the protocol starting with the sequence s��(x) = ([[x1]], [[x2]]) is given as
follows:

It does not depend on x since it is just a fixed sequence. Thus, for every x, x� ∈ (ℤm)
2 ,

the following holds:

Therefore, Pd
carry

 securely realizes Fd
carry

.
Efficiency The number of cards is two. The number of subroutine calls is two

(one call of the addition protocol and one call of the sign-to-value protoocol). From
Proposition 1, a carry protocol without subroutines can be obtained. The number of
probabilistic operations is four (two rotation shuffles, one two-sided rotation shuffle,
and one flipping shuffle).

Equality with Zero Protocol

Functionality A functionality Fd
zero

 is defined as follows:

where x ∈ ℤm.
Protocol A protocol Pd

zero
 is defined as follows:

It proceeds as follows:

1.	 (� ���,m, {1}) : Flip the first card along with the axis m as follows:

2.	 (����������,Pd
sv
, {1}) : Apply the sign-to-value protocol in Sect. 4.4 to the first

card as follows:

 where s = �(m − x ≥ m).
3.	 (� ���, 1, {1}) : Flip the first card along with the axis 1 as follows:

([[x1 + x2]], [[0]]) → ([[𝗉(x1 + x2 ≥ m)]], [[0]]).

𝗏𝗂𝖾𝗐
P
d
carry

(s𝗂𝗇(x)) =
(
(?2,⊥) → (?2,⊥) → (?2,⊥)

)
.

����
P
d
carry

(s��(x)) = ����
P
d
carry

(s��(x
�)).

F
d
zero

= ([[x]], [[0]]) ⇒ ([[𝗉(x = 0)]], [[0]]),

P
d
zero

= (1,ℤm, (��������2m, {[[0]], [[0]]}),O
�
2m,2

∪ ����������[Pd
sv
],A).

([[x]], [[0]]) → ([[m − x]], [[0]]).

([[m − x]], [[0]]) → ([[s]], [[0]]),

67New Generation Computing (2021) 39:41–71	

123

 The protocol terminates.
Correctness For any x ∈ ℤm , it holds �(m − x ≥ m) = 0 if and only if x = 0 . Thus, the
above protocol Pd

zero
 correctly realizes the functionality Fd

zero
.

Security Let x ∈ ℤm be any input. The probability distribution of a view of the pro-
tocol starting with the sequence s��(x) = ([[x]], [[0]]) is given as follows:

It does not depend on x since it is just a fixed sequence. Thus, for every x, x� ∈ (ℤm)
2 ,

the following holds:

Therefore, Pd
zero

 securely realizes Fd
zero

.
Efficiency The number of cards is two. The number of subroutine calls is one (one

call of the sign-to-value protocol). From Proposition 1, an equality with zero protocol
without subroutines can be obtained. The number of probabilistic operations is three
(one rotation shuffle, one two-sided rotation shuffle, and one flipping shuffle).

Equality Protocol

Functionality A functionality Fd
equal

 is defined as follows:

where x1, x2 ∈ ℤm.
Protocol A protocol Pd

equal
 is defined as follows:

It proceeds as follows:

1.	 (����������,Pd
sub

, {1}) : Apply the subtraction protocol to the sequence as follows:

2.	 (����������,Pd
sign

, {1}) : Apply the sign normalization protocol in Sect. 4.3 to the
first card as follows:

3.	 (����������,Pd
zero

, {1, 2}) : Apply the equality with zero protocol in Sect. 4.6 as
follows:

([[s]], [[0]]) → ([[−s + 1]], [[0]]).

𝗏𝗂𝖾𝗐
P
d
zero
(s𝗂𝗇(x)) =

(
(?2,⊥) → (?2,⊥) → (?2,⊥)

)
.

����
P
d
zero
(s��(x)) = ����

P
d
zero
(s��(x

�)).

F
d
equal

= ([[x1]], [[x2]]) ⇒ ([[𝗉(x1 = x2)]], [[0]]),

P
d
equal

= (2,ℤm, (��������2m, {[[0]], [[0]]}),O
�
2m,2

∪ ����������[Pd
sub

,Pd
sign

,Pd
zero

],A).

([[x1]], [[x2]]) → ([[x2 − x1]], [[0]]).

([[x2 − x1]], [[0]]) → ([[z]], [[0]]).

([[z]], [[0]]) → ([[𝗉(z = 0)]], [[0]]).

68	 New Generation Computing (2021) 39:41–71

123

Correctness By the sign normalization protocol Pd
sign

 , z = x2 − x1 mod m . Thus, the
sequence ([[z]], [[0]]) is matched with a subroutine of Pd

zero
 . We can also observe that

z = 0 if and only if x1 = x2 . Thus, the above protocol Pd
equal

 correctly realizes the func-
tionality Fd

equal
.

Security Let x = (x1, x2) ∈ (ℤm)
2 be any input. The probability distribution of a

view of the protocol starting with the sequence s��(x) = ([[x1]], [[x2]]) is given as follows:

It does not depend on x since it is just a fixed sequence. Thus, for every x, x� ∈ (ℤm)
2 ,

the following holds:

Therefore, Pd
equal

 securely realizes Fd
equal

.
Efficiency The number of cards is two. The number of subroutine calls is three (one

call of the subtraction protocol, one call of the sign normalization protocol, and one call
of the equality with zero protocol). From Proposition 1, an equality protocol without
subroutines can be obtained. The number of probabilistic operations is five (two rota-
tion shuffles, two two-sided rotation shuffles, and one flipping shuffle).

Greater‑than Protocol

Functionality A functionality Fd
gr

 is defined as follows:

where x1, x2 ∈ ℤm.
Protocol A protocol Pd

gr
 is defined as follows:

It proceeds as follows:

1.	 (����������,Pd
sub

, {1, 2}) : Apply the subtraction protocol in Sect. 4.2 to the
sequence as follows:

2.	 (����������,Pd
sv
, {1, 2}) : Apply the sign-to-value protocol in Sect. 4.4 as follows:

3.	 (� ���, 1, {1}) : Flip the first card along with the axis 1 as follows:

 The protocol terminates.

𝗏𝗂𝖾𝗐P
d
equal

(s𝗂𝗇(x)) =
(
(?2,⊥) → (?2,⊥) → (?2,⊥) → (?2,⊥)

)
.

����P
d
equal

(s��(x)) = ����P
d
equal

(s��(x
�)).

F
d
gr
= ([[x1]], [[x2]]) ⇒ ([[𝗉(x2 ≥ x1)]], [[0]]),

P
d
gr
= (2,ℤm, (��������2m, {[[0]], [[0]]}),O

�
2m,2

∪ ����������[Pd
sub

,Pd
sv
],A).

([[x1]], [[x2]]) → ([[x2 − x1]], [[0]]).

([[x2 − x1]], [[0]]) → ([[1 − 𝗉(x2 ≥ x1)]], [[0]]).

([[1 − 𝗉(x2 ≥ x1)]], [[0]]) → ([[𝗉(x2 ≥ x1)]], [[0]]).

69New Generation Computing (2021) 39:41–71	

123

Correctness The correctness is trivial.
Security Let x = (x1, x2) ∈ (ℤm)

2 be any input. The probability distribution of
a view of the protocol starting with the sequence s��(x) = ([[x1]], [[x2]]) is given as
follows:

It does not depend on x since it is just a fixed sequence. Thus, for every x, x� ∈ (ℤm)
2 ,

the following holds:

Therefore, Pd
gr

 securely realizes Fd
gr

.
Efficiency The number of cards is two. The number of subroutine calls is two (one

call of the subtraction protocol and one call of the sign-to-value protocol). From
Proposition 1, a greater than protocol without subroutines can be obtained. The
number of probabilistic operations is four (two rotation shuffles, one two-sided rota-
tion shuffle, and one flipping shuffle).

Conclusion and Future Work

In this paper, we designed a new type of cards, dihedral cards, with invisible ink,
and constructed efficient protocols for various interesting predicates. We believe that
the use of invisible ink makes it easier to design a new type of cards that enable to
construct efficient secure computation protocols. An interesting research direction is
to find such a new type of cards and objects, e.g., polyhedron.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

Appendix

Definition for Regular Polygon Cards

We define the card specification of regular polygon cards. Regular polygon cards are
also known as cyclic cards. Hereafter, we call them cyclic cards. The card specifica-
tion of cyclic cards is given as follows.

𝗏𝗂𝖾𝗐
P
d
gr
(s𝗂𝗇(x)) =

(
(?2,⊥) → (?2,⊥) → (?2,⊥) → (?2,⊥)

)
.

����
P
d
gr
(s��(x)) = ����

P
d
gr
(s��(x

�)).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

70	 New Generation Computing (2021) 39:41–71

123

For x ∈ ℤm , we denote a face-up card having x by x and a face-down card hav-
ing x by [[x]] . The card set of cyclic cards of modulus m, denoted by C�

m
 , is defined as

follows:

For a card c ∈ C
�
m
 , we define two types of transformations: rotation and turning. For

any j ∈ ℤm , a rotation operation with a degree j is defined as follows:

Physically, this is a rotation with (360∕m)◦ . Note that a face-down card [[i]] is trans-
formed into a face-down card [[i − j]] since a rotation of face-down cards is a back-
ward rotation of face-up cards. A turning operation is defined as follows:

The transformation set of cyclic cards of modulus m, denoted by T�
m
 , is defined as

follows:

The symbol set of cyclic cards of modulus m, denoted by ��
m
 , is defined as follows:

The vision function 𝗏𝗂𝗌𝖼
m
∶ C

𝖼
m
→ �𝖼

m
 of cyclic cards of modulus m is defined as

follows:

A card specification of cyclic cards of modulus m, denoted by ������m , is defined as
follows:

Operations for cyclic cards are defined similarly to operations for binary cards
and dihedral cards. Specifically, permutations and turnings are defined almost the
same as binary cards, and rotations and rotation shuffles are defined almost the
same as dihedral cards.

C
�
m
= {0, 1,… ,m − 1, [[0]], [[1]],… , [[m − 1]]}.

rotj(c) =

{

i+ j if c = i for some i ∈ Zm

[[i− j]] if c = [[i]] for some i ∈ Zm

����(c) =

{
[[i]] if c = i for some i ∈ ℤm

i if c = [[i]] for some i ∈ ℤm

T
�
m
= {��, ���, ���2,… , ���m−1, ����}.

�
�
m
= {0, 1, 2,… ,m − 1, ?}.

����
m
(c) =

{
i if c = i for 0 ≤ i ≤ m − 1

? otherwise.

������m = (C�
m
, T�

m
,��

m
, ����

m
).

71New Generation Computing (2021) 39:41–71	

123

References

	 1.	 Abe, Y., Hayashi, Y., Mizuki, T., Sone, H.: Five-card AND protocol in committed format using
only practical shuffles. In: Proceedings of the 5th ACM on ASIA Public-Key Cryptography
Workshop, APKC@AsiaCCS, Incheon, Republic of Korea, June 4, 2018, pp. 3–8 (2018). https​://
doi.org/10.1145/31975​07.31975​10

	 2.	 den Boer, B.: More efficient match-making and satisfiability: The Five Card Trick. In: Advances
in Cryptology—EUROCRYPT ’89, Workshop on the Theory and Application of of Crypto-
graphic Techniques, Houthalen, Belgium, April 10–13, 1989, Proceedings, pp. 208–217 (1989).
https​://doi.org/10.1007/3-540-46885​-4_23

	 3.	 Cheung, E., Hawthorne, C., Lee, P.: Cs 758 project: Secure computation with playing cards
(2013). https​://csclu​b.uwate​rloo.ca/~cdcha​wth/files​/paper​s/secur​e_playi​ng_cards​.pdf

	 4.	 Crépeau, C., Kilian, J.: Discreet solitary games. In: Advances in Cryptology—CRYPTO ’93,
13th Annual International Cryptology Conference, Santa Barbara, California, USA, August
22-26, 1993, Proceedings, pp. 319–330 (1993). https​://doi.org/10.1007/3-540-48329​-2_27

	 5.	 Kastner, J., Koch, A., Walzer, S., Miyahara, D., Hayashi, Y., Mizuki, T., Sone, H.: The minimum
number of cards in practical card-based protocols. In: Advances in Cryptology—ASIACRYPT
2017—23rd International Conference on the Theory and Applications of Cryptology and Infor-
mation Security, Hong Kong, China, December 3–7, 2017, Proceedings, Part III, pp. 126–155
(2017). https​://doi.org/10.1007/978-3-319-70700​-6_5

	 6.	 Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a minimal num-
ber of cards. In: Advances in Cryptology—ASIACRYPT 2015 - 21st International Conference
on the Theory and Application of Cryptology and Information Security, Auckland, New Zea-
land, November 29–December 3, 2015, Proceedings, Part I, pp. 783–807 (2015). https​://doi.
org/10.1007/978-3-662-48797​-6_32

	 7.	 Marcedone, A., Wen, Z., Shi, E.: Secure dating with four or fewer cards. Cryptology ePrint
Archive, Report 2015/1031 (2015)

	 8.	 Mizuki, T.: Applications of card-based cryptography to education. IEICE Tech. Rep. 116(289),
13–17 (2016). (In Japanese)

	 9.	 Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Frontiers in Algorith-
mics, Third International Workshop, FAW 2009, Hefei, China, June 20-23, 2009. Proceedings,
pp. 358–369 (2009). https​://doi.org/10.1007/978-3-642-02270​-8_36

	10.	 Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four cards. In:
Advances in Cryptology - ASIACRYPT 2012—18th International Conference on the Theory and
Application of Cryptology and Information Security, Beijing, China, December 2–6, 2012. Pro-
ceedings, pp. 598–606 (2012). https​://doi.org/10.1007/978-3-642-34961​-4_36

	11.	 Mizuki, T., Uchiike, F., Sone, H.: Securely computing XOR with 10 cards. Austral. J. Combina-
tor. 36, 279–293 (2006)

	12.	 Niemi, V., Renvall, A.: Secure multiparty computations without computers. Theor. Comput. Sci.
191(1–2), 173–183 (1998). https​://doi.org/10.1016/S0304​-3975(97)00107​-2

	13.	 Shinagawa, K.: Card-based cryptography with invisible ink. In: T.V. Gopal, J. Watada (eds.)
Theory and Applications of Models of Computation—15th Annual Conference, TAMC 2019,
Kitakyushu, Japan, April 13-16, 2019, Proceedings, Lecture Notes in Computer Science, vol.
11436, pp. 566–577. Springer (2019). https​://doi.org/10.1007/978-3-030-14812​-6_35

	14.	 Shinagawa, K., Mizuki, T., Schuldt, J.C.N., Nuida, K., Kanayama, N., Nishide, T., Hanaoka,
G., Okamoto, E.: Multi-party computation with small shuffle complexity using regular polygon
cards. In: Provable Security—9th International Conference, ProvSec 2015, Kanazawa, Japan,
November 24–26, 2015, Proceedings, pp. 127–146 (2015). https​://doi.org/10.1007/978-3-319-
26059​-4_7

	15.	 Shinagawa, K., Mizuki, T., Schuldt, J.C.N., Nuida, K., Kanayama, N., Nishide, T., Hanaoka, G.,
Okamoto, E.: Card-based protocols using regular polygon cards. IEICE Transactions 100-A(9),
1900–1909 (2017). http://searc​h.ieice​.org/bin/summa​ry.php?id=e100-a_9_1900

	16.	 Stiglic, A.: Computations with a deck of cards. Theor. Comput. Sci. 259(1–2), 671–678 (2001).
https​://doi.org/10.1016/S0304​-3975(00)00409​-6

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1145/3197507.3197510
https://doi.org/10.1145/3197507.3197510
https://doi.org/10.1007/3-540-46885-4_23
https://csclub.uwaterloo.ca/%7ecdchawth/files/papers/secure_playing_cards.pdf
https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/978-3-319-70700-6_5
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-642-02270-8_36
https://doi.org/10.1007/978-3-642-34961-4_36
https://doi.org/10.1016/S0304-3975(97)00107-2
https://doi.org/10.1007/978-3-030-14812-6_35
https://doi.org/10.1007/978-3-319-26059-4_7
https://doi.org/10.1007/978-3-319-26059-4_7
http://search.ieice.org/bin/summary.php?id=e100-a_9_1900
https://doi.org/10.1016/S0304-3975(00)00409-6

	Card-based Cryptography with Dihedral Symmetry
	Abstract
	Introduction
	Our Contribution

	A Unified Protocol Model
	Deck, Sequence, and Visible Sequence
	Operation
	View
	Protocol
	Functionality
	Correctness
	Security
	Composition of Protocols

	Dihedral Cards
	Dihedral Cards
	Operations for Dihedral Cards
	Notations

	Protocols with Dihedral Cards
	Initialization Protocol
	Addition Protocol
	Sign Normalization Protocol
	Sign-to-Value Protocol
	Carry Protocol
	Equality with Zero Protocol
	Equality Protocol
	Greater-than Protocol

	Conclusion and Future Work
	References

