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Abstract
High-utility itemset mining (HUIM) is an emerging data mining topic. It aims to 
find the high-utility itemsets by considering both the internal (i.e., quantity) and 
external (i.e., profit) utilities of items. High-average-utility itemset mining (HAUIM) 
is an extension of the HUIM, which provides a more fair measurement named aver-
age-utility, by taking into account the length of itemsets in addition to their utilities. 
In the literature, several algorithms have been introduced for mining high-average-
utility itemsets (HAUIs). However, these algorithms assume that databases contain 
only positive utilities. For some real-world applications, on the other hand, data-
bases may also contain negative utilities. In such databases, the proposed algorithms 
for HAUIM may not discover the complete set of HAUIs since they are designed 
for only positive utilities. In this study, to discover the correct and complete set of 
HAUIs with both positive and negative utilities, an algorithm named MHAUIPNU 
(mining high-average-utility itemsets with positive and negative utilities) is pro-
posed. MHAUIPNU introduces an upper bound model, three pruning strategies, 
and a data structure. Experimental results show that MHAUIPNU is very efficient 
in reducing the size of the search space and thus in mining HAUIs with negative 
utilities.
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Introduction

Frequent itemset mining (FIM) [1, 3, 6, 8, 15], which is one of the well-known 
research topics in data mining, is used to discover frequently occurred itemsets 
from databases. However, the frequency of itemsets may not be meaningful or 
sufficient for different real-world mining problems. For example, frequently pur-
chased items of a retail market are likely to be low-profitable products (items) 
since cheap products tend to be sold more. In addition, infrequent itemsets may 
be highly profitable. Because of these reasons, FIM is not effective to determine 
which itemsets are highly profitable or which itemsets have strong impacts on 
increasing the market profit of a retail, etc. FIM considers only binary informa-
tion of items and assumes that each item has the same importance.

To overcome these limitations, high-utility itemset mining (HUIM) [10, 22–24, 
30, 31] has been studied. HUIM considers both internal and external utilities of 
items instead of their frequencies on discovering itemsets. In a quantitative trans-
actional database of a retail, the purchased quantity of an item in transactions can 
be evaluated as its internal utilities and the profit obtained when one unit of it is 
sold can be considered as its external utility. However, HUIM is a challenging 
problem since the utility of an itemset is neither monotonic nor anti-monotonic. 
That is, a superset or a subset of an itemset may have lower or higher utility than 
the itemset has. Therefore, studies for HUIM have been mainly focused on intro-
ducing tighter upper bounds on the utility values of itemsets to reduce the search 
space by providing an anti-monotonic property.

However, when the length of an itemset is increased, the utility of the item-
set tends to be greater. The reason is that the total utility of an itemset is the 
sum of utility of each item that the itemset includes. Thus, HUIM suffers from a 
large number of high-utility itemset (HUI) generation and inclusion of low-profit 
item(s) in these HUIs.

To address this issue, high-average-utility itemset mining (HAUIM) is intro-
duced with a more fair utility measurement called average-utility (au) [7]. The au 
value of an itemset is obtained by dividing its utility by the number of items that 
it has. If an itemset has an au value which is not lower than a pre-defined utility 
threshold (minUtil) then it is called a high-average-utility itemset (HAUI).

The problem of HAUIM is challenging similar to the problem of HUIM since 
the au measurement is neither monotonic nor anti-monotonic as the utility meas-
urement of HUIM. Thus, au values of itemsets cannot be directly used to reduce 
the search space, and so an upper bound measure named average-utility upper 
bound (auub) is used to prune unpromising itemsets early. The auub is introduced 
by TPAU algorithm [7] which is a level-wise approach. TPAU algorithm mines 
HAUIs in two phases. It generates a complete set of candidate HAUIs utilizing 
their auub values in the first phase via a database scan. Then it calculates actual 
au values of them to determine HAUIs in the second phase via another data-
base scan. Since then, several approaches, such as PBAU [13], PAI [12], HAUP-
Growth  [14], HAUI-Tree  [25], HAUI-Miner  [18], EHAUPM  [19], MHAI  [35], 
FHAUIM  [20], TUB-HAUPM  [32], and dHAUIM  [29], have been introduced 
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with their own data structures, upper bounds, and optimization techniques to 
increase the efficiency of HAUIM.

However, the HAUIM algorithms proposed in the literature assume that items 
have only positive external utilities. On the other hand, databases may also contain 
negative external utilities in many real-world applications as mentioned in  [2, 11, 17, 
28]. For example, large supermarket chains, such as Walmart, run hundreds or thou-
sands of bundled promotion or cross-promoted campaigns where many products are 
offered with at a lost (negative utility)  [11]. By selling products with negative margins 
(or utilities), the supermarkets aim to increase their overall profits by selling related 
(cross-promoted) products. Therefore, from a business perspective, mining out mean-
ingful (or valuable) sets of products (or itemsets) from the past data is very important 
for understanding purchasing behaviors of customers, and thereby developing new sale 
campaigns that will increase future profitability. However, when databases also con-
tain negative utilities, existing HAUIM algorithms may face the problem of incomplete 
discovery of HAUIs. Consequently, developing an approach that preserves the com-
pleteness and correctness of the set of discovered HAUIs in a database having negative 
utilities is important.

This study deals with developing techniques for efficient mining of HAUIs in data-
bases that include positive and negative utilities. The main contributions of this study 
are as follows:

–	 An algorithm, named as MHAUIPNU (Mining High-Average-Utility Itemsets with 
Positive and Negative Utilities), is proposed to mine HAUIs out of databases having 
both positive and negative utilities.

–	 A new upper bound model called tubpn (tighter upper bound with positive and neg-
ative utilities) is proposed to reduce the search space for mining HAUIs with posi-
tive and negative utilities.

–	 A list data structure is developed to store required information for HAUIM to reduce 
the number of database scans.

–	 Three novel pruning strategies are designed to speed up the performance of the 
proposed algorithm. The first pruning strategy is designed based on the proposed 
tubpn model. Others are designed by utilizing the properties associated with items 
(or itemsets) having negative utilities.

–	 Experiments are conducted on different datasets to show the efficiency of proposed 
MHAUIPNU algorithm.

The rest of the paper is organized as follows. Discussion of the related work is given 
in the next section. The following section gives the basic concepts of the problem of 
HAUIM. The proposed algorithm is described in the subsequent section. Before the 
concluding section, experimental analyses are given. The final section presents conclu-
sions and future works.
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Related Work

In the literature, there are several HUIM and HAUIM studies solving the prob-
lem of HAUIM with only positive utilities. However, there is a limited number 
of HUIM studies [2, 11, 17, 28] designed for positive and negative utilities and, 
to the best of our knowledge, there is no HAUIM study solving the problem of 
HAUIM with positive and negative utilities.

Based on algorithmic structures, the studies of HUIM and HAUIM can be 
classified as two-phased and single-phased algorithms. Two-phased HUIM (or 
HAUIM) algorithms are designed to discover a set of itemsets that are poten-
tially HUIs (or HAUIs) in the first phase. Then, in the second phase, they calcu-
late the actual values of the discovered itemsets to decide which ones are HUIs 
(or HAUIs) by performing an additional database scan. On the other hand, sin-
gle-phased HUIM (or HAUIM) algorithms are designed to discover the HUIs 
(or HAUIs) by directly obtaining the actual values of the itemsets from the data 
structures they store the necessary information for mining.

This study deals with developing a single-phased algorithm to discover HAUIs 
out of databases having positive and negative utilities. The literature review of 
HUIM and HAUIM studies is given in the following subsections, respectively.

High‑Utility Itemset Mining

Two-phase  [24] algorithm is first presented to solve the problem of HUIM by 
introducing the concept of TWU model for the purpose of using downward-clo-
sure property of candidate itemsets to prune the search space of HUIM. It uses 
an iterative level-wise approach by employing a generate-and-test strategy. How-
ever, it suffers from multiple database scans and generation of many candidate 
itemsets. In time, tree-based algorithms such as HUP-Tree [16], UP-Growth  [31], 
and UP-Growth+  [30] were introduced to solve the HUIM problem more effi-
ciently. These algorithms operate in two phases. In addition to TWU model, 
some of these algorithms use additional strategies to prune the search space more 
effectively. For example, UP-Growth+ prunes candidate itemsets more effectively 
using four different strategies   [30]. All these tree-based approaches are more 
effective than Two-phase algorithm since they reduce the number of database 
scans. However, they still suffer from the drawbacks of performing the mining 
task based on two phases.

To avoid the limitation of the two-phased algorithms, single-phased algorithms 
including HUI-Miner [23], FHM [5], HUP-Miner [10], d2HUP [22], EFIM [37], 
IMHUP  [27], and mHUIMiner  [26] were proposed. These algorithms are more 
efficient than previous algorithms since they mine HUIs without a candidate gen-
eration phase. They use different optimization strategies to prune the search space 
of candidates for improving the performance of mining HUIs. Among them, 
d2HUP [22] uses a data structure based on hyper-link while the others use list-
based data structures.
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The problem of mining HUIs with positive and negative utilities was first 
solved by HUINIV-Mine  [2] algorithm. The HUINIV-Mine uses a re-defined 
TWU model to discover HUIs without missing any HUIs. However, since it is 
an extended form of Two-phase [24], it has same major drawbacks, such as gen-
erating a large number of HUIs and scanning the database multiple times. Then 
FHN [17] algorithm, which is an extended form of FHM [5], was introduced with 
a list structure named PNU list (Positive and Negative Utility List). The FHN is 
a single-phase algorithm, and so it is much faster than the HUINIV-Mine. How-
ever, the FHN still requires much time and memory to execute its mining task. 
To increase the performance of the problem of HUIM with negative unit profits, 
more efficient approaches including GHUM [11] and EHIN [28] were also pro-
posed. The GHUM uses a simplified utility-list structure to keep required infor-
mation for mining and utilizes four different strategies which are named as gen-
eralized U-Prune, LA-Prune, A-Prune, and N-Prune  [11]. The EHIN algorithm 
is an extended version of EFIM [28]. It uses a projection technique and merges 
identical transactions to reduce the cost of database scans. It uses two pruning 
strategies, named as redefined subtree utility and local utility, to prune the search 
space using a depth-first search.

High‑Average‑Utility Itemset Mining (HAUIM)

In the literature, several HAUIM algorithms have been presented. The first algorithm 
is TPAU which is a two-phased algorithm [7]. To reduce the search space, it uses an 
upper bound called the average-utility upper bound (auub) on utilities of itemsets 
to obtain the downward-closure property. The downward-closure property of auub 
ensures that if an itemset is not a HAUI based on its auub value then none of its 
supersets (extensions) can be a HAUI because of the fact that auub value of an item-
set cannot be lower than auub value of any of its supersets [7]. To speed up to task 
of mining HAUIs, projection-based algorithms such as PBAU   [13] and PAI  [12] 
were introduced. However, these algorithms mainly suffer from multiple database 
scans and generation of a large number of candidate itemsets. To overcome multiple 
database scans and reduce the number of candidates, tree-based algorithms, such as 
HAUP-Growth [14] algorithm and HAUL-Tree [25] algorithm were presented.

Then several single-phased algorithms were proposed, such as HAUI-
Miner [18], EHAUPM [19], MHAI[35], FHAUPM [20], TUB-HAUPM  [32], and 
dHAUIM [29] algorithms. To improve the performance of mining HAUIs further, 
these algorithms introduced their own upper bounds, pruning strategies, and data 
structures. Among them, dHAUIM [29] uses a horizontal representation of the data-
base, unlike the others. Besides, TUB-HAUPM  [32] does not have a data structure. 
The remaining algorithms use list-based data structures to store the required infor-
mation for discovering HAUIs.

In addition, several variants of the problem of HAUIM have also been studied, 
such as efficiently updating of HAUIs with transaction insertion  [33] and dele-
tion  [21], incremental HAUIM  [9, 34], and HAUIM over data stream with the 
damped window technique [36].
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However, all these HAUIM studies were designed by assuming that databases 
contain only positive utilities. In contrast to these studies, this study deals with 
developing techniques for efficient mining of the complete and correct set of HAUIs 
from a database containing both positive and negative utilities.

Basic Concepts and Problem Statement

In this section, definitions and key notations related to the problem of HAUIM are 
given.

Let the set of items I consist of n distinct items, I = {i1, i2,… , in} and each item i 
∈ I has an external utility eu(i), e.g., its unit profit. A transaction Tj can include any 
group (or set) of items from I, T ⊆ I, where j is the identification of Tj called its TID. 
Each item i in each Tj , where i ∈ I, has a positive number called as its internal util-
ity iu(i), e.g., its purchase quantity. A transactional database DB comprises a set of 
transactions DB = {T1, T2,… , Tm} , where m is the total number of transactions in 
the DB.

Let us consider the sample DB given in Table 1. The DB consists of eight transac-
tions and the set of items I = {a, b, c, d, e, f , g} . Let us take T1 as an example. In T1 , 
four items which are a, b, c, and d exist with their internal utilities which are 5, 2, 
1, and 2, respectively. External utilities of each items of the sample DB are given in 
Table 2. External utility of item i can be either positive or negative. As can be seen 
in Table 2, items c, e, f, and g have negative external utilities while others have posi-
tive external utilities.

Note that Tables 1 and 2 will be used in the running examples given in the rest 
of the paper. Besides, “positive items” (PIs) and “negative items” (NIs) terms will 
be used to denote, respectively, items having positive and negative external utilities. 
For the running example, PIs = {a, b, d} and NIs = {c, e, f , g}.

Table 1   A sample transactional 
database, DB 

TID Transaction

T
1

(a : 5) (b : 2) (c : 1) (d : 2)
T
2

(a : 1) (c : 1) (d : 1) (g : 3)
T
3

(a : 1) (c : 1) (f : 1)
T
4

(a : 1) (f : 4) (g : 2)
T
5

(a : 1) (g : 2)
T
6

(b : 3) (c : 2) (d : 3) (e : 1)
T
7

(c : 6) (e : 4)
T
8

(e : 1) (f : 3)

Table 2   External utility table of 
DB, EUT(DB)

Item a b c d e f g

External utility 3 6 − 3 12 − 5 − 2 − 1
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Definition 1  (Utility of an item in a transaction [7]) The utility of an item i in a 
transaction Tj is denoted as u(i, Tj) and calculated as multiplication of its internal 
utility in the transaction Tj iu(i, Tj) and its external utility eu(i):

For example, iu(b, T1) is obtained as 2 from the Table 1 and eu(b) is obtained as 6 
from the Table 2. Therefore, u(b, T1) = 2 × 6 = 12.

Definition 2  (Utility of an itemset in a transaction [7]) The utility of an itemset X 
in a transaction Tj is denoted as u(X, Tj) and calculated by summing u(i, Tj) value of 
each item i, where ∀ i ∈ X ⊆ Tj:

For example, the utility of itemset X = {b, d} in transaction T1 is calculated as 
u(X, T1) = u(b, T1) + u(d, T1) = 12 + 24 = 36.

Definition 3  (Utility of an itemset in a database [7]) The utility of an itemset X in a 
database is denoted as u(X) and calculated by summing each u(X, Tj) value, where ∀ 
Tj ⊇ X.

For example, consider that itemset X = {b, d} . Since X is found in T1 and T6 , u(X) is 
calculated as u({b, d},T1) + u({b, d},T6) = 36 + 54 = 90.

Definition 4  (Average-utility of an itemset in a database [7]) The average-utility of 
an itemset X in a database is denoted as au(X) and calculated by dividing u(X) by the 
length of X.

For example, since u({b, d}) = 90 and |{b, d}| = 2, au({b, d}) = 90∕2 = 45.

Definition 5  (High-average-utility itemset [7]) If an itemset X has an average-utility 
value which is not less than a predefined minimum utility threshold minUtil, then it 
is called as a high-average-utility itemset (HAUI).

For example, if minUtil is 15, then itemset {b, d} is a HAUI since 
au({b, d}) = 45 ≥ minUtil = 15.

The average-utility of an itemset does not satisfy the downward-closure property. 
Therefore, the au values of itemsets cannot be used to prune the search space. To 
address this problem, the average-utility upper bound (auub) model was introduced 
by TPAU algorithm  [7] to obtain a downward-closure property by overestimating 

(1)u(i, Tj) = iu(i, Tj) × eu(i).

(2)u(X, Tj) =
∑

ik∈X∧X⊆Tj

u(ik, Tj).

(3)u(X) =
∑
X⊆Tj

u(X, Tj).

(4)au(X) = u(X)∕|X|.

(5)HAUI ← {X|au(X) ≥ minUtil}.
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the average-utility values of itemsets. The auub model was also used by the other 
algorithms  [12–14, 18–20, 25, 32, 35] to determine the set of promising items.

Definition 6  (The auub value of an itemset [7]) Let transaction maximum utility 
(tmu) of a transaction Tj be denoted as tmu(Tj) , where tmu(Tj) = max{u(ik, Tj) |ik ∈ 
Tj} . The auub of an itemset X in a database is denoted as auub(X) and calculated by 
summing each tmu(Tj) value obtained from transactions that contain the itemset X:

For example, items b and d appear together in transactions T1 and T6 . The val-
ues tmu(T1) and tmu(T6) are calculated as max(u(a, T1) , u(b, T1) , u(c, T1) , 
u(d, T1)) = max(15, 12,−3, 24) = 24 and max(u(b, T6) , u(c,T6) , u(d, T6) , u(e, 
T6)) = max(18,−6, 36,−5) = 36 , respectively. Thus, auub({b, d}) is calculated as 
tmu(T1) + tmu(T6) = 24 + 36 = 60.

Definition 7  (High average-utility upper-bound itemset [7]) If an itemset X has an 
auub value which is not less than the minUtil, then it is called as a high-average-
utility upper bound itemset (HAUUBI):

For example, itemset {b, d} is a HAUUBI since auub({b, d}) = 60 ≥ minUtil = 15 . 
Note that, if the length of an HAUUBI is k then it is called as a k-HAUUBI. Since 
the length of {b, d} is 2, {b, d} is a 2-HAUUBI.

Property 1  (Pruning the search space by utilizing the auub [7]) HAUIs ⊆ HAUUBIs 
is true based on the downward-closure property of auub model. Thus, if an itemset X 
is not a HAUUBI, then it is not a HAUI and none of its extensions (supersets) can be 
a HAUI. Therefore, X can be pruned from the search space.

Discussion of auub model with negative utilities: The auub model is designed 
based on the assumption that all items in the database have positive utilities. There-
fore, using auub model with negative utilities may result in missing some HAUIs 
since tmu values of transactions become negative when all items they include have 
negative external utilities (e.g., tmu(T7) = − 18). Therefore, such transactions reduce 
the auub values of the negative items and may cause some negative items to have 
auub lower than minUtil. Based on Property 1, if an item has auub lower than minU-
til, then it is pruned. Thus, auub model may cause to miss some HAUIs with nega-
tive utilities. As a result, the downward-closure property of auub does not hold for a 
set of negative items and their extensions.

For example, let us take item e as an example. Since item e appears in T6 , T7 , and 
T8 , auub value of e is auub(e) = tmu(T6) + tmu(T7) + tmu(T8) = 36 + (− 18) + (− 5) 
= 13 ≱ minUtil = 15. Thus, item e will be pruned by the auub model and its exten-
sions will not be examined. However, itemset {b, d, e} which is an extension (super-
set) of item e is a HAUI since b, d, and e occurred together in T6 and au({b, d, e}) 

(6)auub(X) =
∑
X⊆Tj

tmu(Tj).

(7)HAUUBI ← {X|auub(X) ≥ minUtil}.
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is obtained as 16.3 > minUtil = 15. As can be seen, auub(e) = 13 < au({b, d, e})  
= 16.3 < auub({b, d, e}) = 32, the downward-closure property of auub may not hold 
between a negative item and its extensions.

For the correctness and completeness of the HAUIM in databases with negative 
utilities, the downward-closure property of auub can be held by ignoring transac-
tions containing only negative items. For this reason, Definition 8 revises the auub 
model as auubpn (auub with positive and negative utilities) model.

Definition 8  (The auubpn of an itemset) The auub with positive and negative utilities 
of an itemset X is denoted as auubpn(X) and defined as follows:

Mining High‑Average‑Utility Itemsets with Both Positive 
and Negative External Utilities

This paper proposes an algorithm for mining HAUIs out of a database containing 
positive and negative utilities with a novel upper model, three pruning strategies, 
and a list data structure. The proposed algorithm is named as MHAUIPNU (Mining 
High-Average-Utility Itemset with Positive and Negative Utilities).

The next subsection introduces the proposed upper bound model named tubpn 
(tighter upper bound with positive and negative utilities) followed by which the 
pruning strategies that MHAUIPNU utilizes are discussed. The subsequent subsec-
tion presents a list structure called tighter upper bound with positive and negative 
utilities (TUBPNU) list to store required information for mining HAUIs. The final 
subsection introduces the MHAUIPNU algorithm and then gives the execution trace 
of the MHAUIPNU algorithm on the running example.

Proposed Tighter Upper Bound with Positive and Negative Utilities (tubpn)

Since the auubpn does not take into account transactions having negative utilities, 
it can be used to solve the problem of HAUIM with positive and negative utilities. 
However, since it is a modified version of auub model by ignoring transaction hav-
ing negative utilities, it is a loose upper bound as the auub.

This paper proposes a novel tighter upper bound model named as tubpn (tighter 
upper bound with positive and negative utilities). The following definitions are asso-
ciated with the tubpn model, considering that fmu(Tj) and smu(Tj) denote transac-
tion first and second maximum utilities in a transaction Tj , respectively, where |Tj| > 
1. If |Tj| = 1, then smu(Tj) = 0.

Definition 9  (Tighter upper bound of a positive item in a transaction) The tighter 
upper bound of a positive item p in a transaction Tj , where p ∈ Tj , is denoted as 
tubp(p, Tj) and defined as follows:

(8)auubpn(X) =
∑

X⊆Tj∧tmu(Tj)>0

tmu(Tj).
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For example, u(b, T1) , u(d, T1) , fmu(T1) , and smu(T1) are 12, 24, 24, 
and 15, respectively. Besides, u(b, T1) ≠ fmu(T1) = u(d, T1) . Therefore, 
tubp(b, T1) = 19.5(= (24 + 15)∕2) and tubp(d, T1) = 24.

Definition 10  (Tighter upper bound of a negative item in a transaction) Let Tj.|PIs| 
be the number of positive items in a transaction Tj . The tighter upper bound of a 
negative item n in a transaction Tj , where n ∈ Tj , is denoted as tubn(n, Tj) and defined 
as follows:

For example, tubn(e, T6) = (fmu(T6) + smu(T6))∕2 = (36 + 18)∕2 = 27 since 
T6.|PIs| > 1 . For another example, tubn(f , T4) = 0 since T4.|PIs| = 1 and 
fmu(Tj) + u(f , Tj) = 3 + (−8) ≯ 0.

Definition 11  (Tighter upper bound of an itemset in a transaction) Let X be an item-
set considering X.PIs and X.NIs is the set of positive and negative items that X con-
tains, respectively. The tighter upper bound of X in a transaction Tj , where X ⊆ Tj , is 
denoted as tubpn(X, Tj) and defined as follows:

For example, for the itemset X = {b, d} , tubpn(X, T1) is calculated as 
min{tubp(b, T1), tubp(d, T1)} = min{19.5, 24} = 19.5 . For another exam-
ple, tubpn({a, f , g}, T4) is obtained as follows. Since {a, f , g}.NIs ≠ ∅ , 
tubpn({a, f , g}, T4) = min{tubn(f , T4), tubn(g, T4)} = min{0, 0.5} = 0.

Definition 12  (Tighter upper bound of an itemset in a database) The tighter upper 
bound of an itemset X in a database DB is denoted as tubpn(X) and defined as 
follows:

(9)tubp(p,Tj) =

⎧
⎪⎨⎪⎩

fmu(Tj), if u(p, Tj) = fmu(Tj)
fmu(Tj) + smu(Tj)

2
, otherwise.

(10)tubn(n, Tj) =

⎧
⎪⎪⎨⎪⎪⎩

fmu(Tj) + smu(Tj)

2
, if Tj.�PIs� > 1

fmu(Tj) + u(n, Tj)

2
, else if fmu(Tj) + u(n, Tj) > 0

0, otherwise.

(11)tubpn(X, Tj) =

{
min{tubn(nk, Tj)|nk ∈ X.NIs}, if X.NIs ≠ �,

min{tubp(pk, Tj)|pk ∈ X.PIs}, otherwise.

(12)tubpn(X) =
∑
X⊆Tj

tubpn(X, Tj).
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For example, for the itemset X = {b, d} , tubpn(X) is calculated as 
tubpn(X, T1) + tubpn(X, T6) = 19.5 + 27 = 46.5.

Theorem 1  (In a database, tubpn(X) ≥ au(X) is correct for any itemset X) In a data-
base, the average-utility value of any itemset X cannot be greater than its tubpn 
value, that is, tubpn(X) ≥ au(X).

Proof  Let X and X.Tids be an itemset and a set of transactions containing X in a 
database, respectively. The proof of tubpn(X) ≥ au(X) can be provided by presenting 
tubpn(X, Tj) ≥ au(X, Tj) is correct for each transaction Tj ∈ X.Tids, where au(X, Tj) = 
u(X, Tj) / |X|. Obviously, au(X) = u(X) / |X| = 

∑
Tj∈X.Tids

au(X, Tj) is correct. However, 
X can consist of either only positive items (Case1) or negative items (Case2) or both 
of positive and negative items (Case3). Therefore, for all three cases, tubpn(X, Tj) ≥ 
au(X, Tj) is correct as presented below.

–	 Case 1 Let itemset X and Tj be any set of items that consists only positive 
items and a transaction, respectively, such that X ∈ Tj.

–	 If |X| = 1 and fmu(Tj) = u(X, Tj) , then tubpn(X, Tj) = fmu(Tj) = u(X, Tj) = 
au(X, Tj) is clear.

–	 If |X| = 1 and fmu(Tj) ≠ u(X, Tj) , then tubpn(X, Tj) = ( fmu(Tj) + smu(Tj) ) / 2 
> u(X, Tj) = au(X, Tj) is clear.

–	 If |X| > 1, then tubpn(X, Tj) = min{tubp(pk, Tj)|pk ∈ X.PIs} = 
(fmu(Tj) + smu(Tj) / 2 ≥ u(X, Tj) / |X| = au(X, Tj) is clear.

–	 Case 2 Let itemset X and Tj be any set of items that consists only negative 
items and a transaction, respectively, such that X ∈ Tj . Therefore, tubpn(X, Tj) 
= min{tubn(nk, Tj)|nk ∈ X.NIs} = 0 since tubn(nj, Tj) = 0 for each nj ∈ Tj . 
Besides, u(X, Tj) < 0 is clear. Then tubpn(X, Tj) > au(X, Tj) is clear.

–	 Case 3 Let itemset X and Tj be any set of items that consists both positive 
and negative items and a transaction, respectively, such that X ∈ Tj . Thus, 
tubpn(X, Tj) is calculated as min{tubn(nk, Tj)|nk ∈ X.NIs} . The length of X.PIs 
can be greater than or equal to 1.

–	 If |X.PIs| > 1, then tubpn(X, Tj) = ( fmu(Tj) + smu(Tj) ) / 2 > u(X, Tj) / |X| = 
au(X, Tj) is clear.

–	 If |X.PIs| = 1, then tubpn(X, Tj) = ( fmu(Tj) + min{u(nk, Tj)|nk ∈ X.NIs} ) / 2 
≥ u(X, Tj) / |X| = au(X, Tj) is clear. 	�  ◻

Property 2  (The downward-closure property of tubpn model) Let X be an itemset 
and Y be any superset of X, such that X ⊆ Y. Therefore, tubpn(X) ≥ tubpn(Y) holds.

Proof  Let X be an itemset and Y be any superset of X, such that X ⊂ Y. Considering 
X.Tids and Y.Tids be two sets of transactions containing X and Y, respectively, the 
downward-closure property of tubpn is explained as follows. Since X.Tids ⊇ Y.Tids 
is true, then tubpn(X) ≥ tubpn(Y) is also true. As a result, tubpn(X) value of any X is 
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anti-monotonic. Therefore, tubpn model satisfies the downward-closure property. 	
� ◻

Property 3  (The tubpn model is tighter than the auubpn or auub model) The tubpn(X) 
and auubpn(X) (or auub(X)) values for any itemset X are equal if X is a positive item 
and u(X, Tj) = fmu(Tj) is correct for each transaction Tj , such that X ∈ Tj . In all 
other cases, the tubpn(X) < auubpn(X) (or auub(X)).

Proof  The fmu(Tj)(= tmu(Tj) ) value is considered only in the calculation of the 
tubpn(p, Tj) , where p is a positive item and p ∈ Tj . Thus, for tubpn(X) and auubpn(X) 
to be equal, the itemset X must contain only a positive item and u(X, Tj) = fmu(Tj) 
must correct for all transactions which contain X. Otherwise (if X = n where item n 
∈ NIs or |X| > 1), tubpn(X) < auubpn(X) holds since tubpn(X, Tj) is always lower than 
the fmu(Tj) , that is, the tubpn model is tighter than the auubpn (or auub(X)) model, 
and thus Property 3 is correct. 	�  ◻

Pruning Strategies

In this subsection, the proposed three pruning strategies of the MHAUIPNU algo-
rithm are introduced. The first pruning strategy is based on the proposed tubpn 
model. The second and third pruning strategies are designed by utilizing the proper-
ties associated with items having negative utilities.

Pruning Strategy 1  (Pruning the search space by utilizing tubpn model) Let X be an 
itemset. If tubpn(X) < minUtil, then X can be directly pruned from the search space.

Proof  The correctness of tubpn(X) ≥ tubpn(Y) for the itemsets X and any Y, such that 
X ⊂ Y, is explained by Property 2. Thus, itemsets with a lower tubpn value than the 
minUtil and the extensions of these itemsets cannot be HAUIs. 	�  ◻

The tubpn model can be used to ensure the completeness and correctness of the 
MHAUIPNU algorithm for mining HAUIs in a database with positive and nega-
tive utilities. However, the MHAUIPNU utilizes two additional pruning strategies to 
reduce the size of the search space of the problem more efficiently. These strategies 
are designed based on some properties associated with itemsets with negative utili-
ties. Details are given below.

Lemma 1  A HAUI should contain at least one positive item.

Rationale  For any itemset X having only negative items, u(X) < 0 is obviously cor-
rect. Thus, an itemset having only negative items cannot be a HAUI. 	�  ◻

Based on Lemma 1, the second pruning strategy is designed as follows.
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Pruning Strategy 2  (Pruning the negative itemsets) Let n be a negative item. Then 
n and none of its negative extensions can be a HAUI. Itemsets having only negative 
items can be directly pruned.

The following property is related to the last pruning strategy.

Property 4  (Relationship between positive utilities of an itemset and its negative 
extensions) Let X, N, and XN be an itemset, any set of negative items, and a negative 
extension of X, such that XN= {X ∪ N} , respectively. Besides, let X.PU and X.NU be 
the sum of positive utilities and negative utilities of an itemset X, respectively. Thus, 
u(X)= X.PU + X.NU. The relationship between positive utility values of X and XN is 
that X.PU ≥ XN.PU

Proof  Consider that X.PIs is the set of positive items that X contains. Since X.Tids ≥ 
XN.Tids and X.PIs = XN.PIs, then X.PU ≥ XN.PU is clear. 	�  ◻

Pruning Strategy 3  (Pruning the negative extensions of an itemset) If X.PU  /  (|X| + 
1) < minUtil, then none of negative extensions of the itemset X can be a HAUI.

Proof  Based on Property 4 and its proof, we know that X.PU ≥ XN.PU holds 
between an itemset X and any of its negative extensions XN. Besides, |X| + 1 ≤ |XN| 
is correct. Moreover, since u(XN) = XN.PU + XN.NU, X.PU > u(XN) is also correct. 
Therefore, X.PU  /  (|X| + 1) > au(XN) = u(XN)  /  |XN| is true. 	�  ◻

However, a question arises with Pruning Strategy 3, that is, how to calculate the 
positive utility of a negative extension of an itemset. The following definition and 
property are associated with this question.

Definition 13  (Positive utility array of an itemset) The positive utility array (PUA) 
of an itemset X, denoted as PUA(X), is a one-dimensional list. PUA(X)[j] stores the 
positive utility of X obtained from transaction Tj , such that X ⊆ Tj , and PUA(X)[j] is 
calculated as follows:

Property 5  (Calculating the positive utility of a negative extension of an itemset) Let 
X be an itemset and XN be any negative extension of X. XN.PU can be obtained by 
summing each PUA(X)[j] value, such that ∀ j ∈ XN.Tids.

Proof  Property 5 is clear since XN.Tids ⊆ X.Tids, and PUA(X)[j] = PUA(XN)[j] is 
correct for each j ∈ XN.Tids. 	�  ◻

(13)PUA(X)[j] =
∑

pk∈X.PIs∧X⊆Tj

u(pk, Tj).
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Proposed Tighter Upper Bound with Positive and Negative Utilities (TUBPNU) List 
Structure

To avoid multiple database scans and prune the search space of HAUIs with posi-
tive and negative utilities by utilizing the proposed tubpn model and three pruning 
strategies, a list data structure is proposed. It is named as tighter upper bound with 
positive and negative utilities (TUBPNU) list.

Definition 14  (TUBPNU list of an itemset) The TUBPNU list of an itemset X is 
denoted as TUBPNUL({X}) . It consists of a set of elements. Each element E in 
TUBPNUL({X}) consists of three fields (tid,  utility,  tubpn) for each transaction 
Tj (see Fig. 2), such that X ⊆ Tj and PIs ∩ Tj ≠ ∅ . tid is the transaction identifica-
tion of Tj . utility and tubpn are the values that represent u(X, Tj) and tubpn(X, Tj) , 
respectively. Note that, tubpn values are rounded up and stored as integers in the 
TUBPNU lists to reduce the memory consumption of the proposed TUBPNU list 
data structure.

For example, tubpn({a}, T1) = 19.5. When it is rounded up, it becomes 20. Thus, 
the element in TUBPNUL({a}) for T1 is stored as (1, 15, 20).

Definition 15  (Total processing order ≺ in MHAUIPNU algorithm) The search 
space of the problem can be represented as an enumeration tree. The enumeration 
tree of a set of items I = {i1, i2,… , in} is a tree-shaped search structure constructed 
by enumerating 2n itemsets (subsets of I) based on a total processing order (see 
Fig. 1). In the previous studies, it was shown that selecting a proper processing order 
can decrease the size of the enumeration tree. The MHAUIPNU algorithm utilizes 
the properties associated with negative items to reduce the size of the search space 
(by Pruning Strategies 2 and 3) in addition to tubpn model (by Pruning Strategy 1). 
In MHAUIPNU algorithm, the total processing order ( ≺ ) is defined as follows: (1) 
items, which are 1-HAUUBIs based on the tubpn model, are sorted in tubpn ascend-
ing order, (2) negative items cannot come before the positive items.

Fig. 1   The enumeration tree of 1-HAUUBIs = {a, b, c, d, e}, where a ≺ b ≺ d ≺ e ≺ c 
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For example, based on the tubpn model, items f and g are not 1-HAUUBIs 
since tubpn({f })(= 0.5) and tubpn({g})(= 8.5) are lower than the minUtil(= 15) . 
Therefore, the total processing order is obtained as a ≺ b ≺ d ≺ e ≺ c since 
tubpn({a}) = 36 < tubpn({b}) = 46.5 < tubpn({d}) = 72tubpn({e}) = 27 < tubpn({c}) = 54 
and items e and c are negative items.

Figure 1 gives the enumeration tree of 1-HAUUBIs based on the total processing 
order ≺ and Fig. 2 shows the TUBPNU lists of 1-HAUUBIs. 

Property 6  (Joining two TUBPNULs) Let X be itemset and {X ∪ y} be an exten-
sion of X by appending an item y to X, such that each item x ≺ y and ∀x ∈ X . The 
TUBPNUL({X ∪ y}) can be easily obtained by performing a join operation between 
TUBPNUL({X}) and TUBPNUL({y}) . The TUBPNUL({X ∪ y}) is constructed by 
inserting an element ( EX .tid , ( EX .utility + Ey.utility ), min{EX .tubpn , Ey.tubpn} ) 
for each pair of elements EX ∈ TUBPNUL({X}) and Ey ∈ TUBPNUL({y}) , where 
EX .tid = Ey.tid.

For example, let us construct the TUBPNUL({d, c}) by joining TUBPNUL({d}) 
and TUBPNUL({c}) . Since the list of tids of TUBPNUL({d}) is (1, 2, 6) and the 
list of tids of TUBPNUL({c}) is (1, 2, 3, 6), the intersection is (1, 2, 6). Therefore, 
the constructed TUBPNUL({d, c}) includes three elements with tids 1, 2, and 6. 
The u and tubpn values of these elements are obtained as discussed in Defini-
tions  2 and 11, respectively. The constructed TUBPNUL({d, c}) is presented in 
Fig. 3.

The pseudo-code of joining two TUBPNULs is given in Construct algo-
rithm (Algorithm  1). The Construct algorithm takes the TUBPNUL({X}) and 
TUBPNUL({y}) , and a PUA as inputs. The X is the itemset that will be extended 
and y is the appending item that will extend the itemset X. The input PUA will 

Fig. 2   TUBPNULs of 1-HAUUBIs

Fig. 3   The construction of 
TUBPNUL({d, c})
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be used to obtain the sum of positive utilities of itemset {X ∪ y} if it is not 
empty. Note that TUBPNUL({X}).Utility and TUBPNUL({X}).Tubpn denote u(X) 
and tubpn(X), respectively, and {X ∪ y}.PU denotes the sum of positive utilities 
of {X ∪ y} . The outputs of the Construct algorithm are TUBPNUL({X ∪ y}) and 
{X ∪ y}.PU.

The Construct algorithm works as follows. Let TUBPNUL({X ∪ y}) be the output 
list and initially empty (Line 1), and {X ∪ y}.PU be the sum of positive utilities of 
itemset {X ∪ y} and initially equal to 0 (Line 2), and i and j be the first indices in 
TUBPNUL({X}) and TUBPNUL({y}) , respectively (Line 3). Next, a while loop is 
run until i = |TUBPNUL({X})| or j = |TUBPNUL({y})| (Lines 4–21). In each loop, 
the algorithm checks the ith element in TUBPNUL({X}) ( EX ) and the jth element 
in TUBPNUL({y}) ( Ey ) if they share the same tid value (Line 7). If so, a new Ele-
ment is constructed (Line 8) and inserted into the TUBPNUL({X ∪ y}) (Line 9). 
Then TUBPNUL({X ∪ y}).Utility and TUBPNUL({X ∪ y}).Tubpn are updated (Lines 
10–11), and indices i and j are increased by 1 to check remaining elements in the 
lists (Line 12). Besides, if PUA is not empty (Line 13), then {X ∪ y}.PU is updated 
by adding the value stored in the (EX .tid)

th element of PUA (Line 14). If tid of EX is 
greater than the tid of Ey (Line 16) then the index j is increased by 1 to continue with 
the next element in TUBPNUL({y}) (Line 17). Otherwise, the index i is increased 
by 1 for the same purpose. (Line 19). Finally, the algorithm returns the constructed 
TUBPNUL({X ∪ y}) and calculated {X ∪ y}.PU (Line 22).
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Proposed MHAUIPNU Algorithm

In this section, the description of MHAUIPNU algorithm is given first (“Description 
of MHAUIPNU Algorithm”). Then an execution trace of MHAUIPNU is presented 
(“Execution Trace of the MHAUIPNU Algorithm”). Next, the correctness and com-
pleteness of MHAUIPNU algorithm are analyzed (“Correctness and Completeness of 
the MHAUIPNU Algorithm”). Finally, the time and space complexity of MHAUIPNU 
algorithm is discussed (“Time and Space Complexity Analysis of the MHAUIPNU 
Algorithm”).

Description of MHAUIPNU Algorithm

The pseudo-code of MHAUIPNU algorithm is given in Algorithm 2. It takes a transac-
tional database DB with internal utilities, an external utility table EUT(DB), and a user-
defined minimum utility threshold minUtil as inputs.

The MHAUIPNU algorithm scans the database once to determine the set of 1-HAU-
UBIs based on tubpn values of items (Line 1). Then it initializes TUBPNUL of each 
1-HAUUBI by another database scan (Line 2). Note that, in the second scan, tubpn val-
ues of 1-HAUUBIs are re-calculated by ignoring the items which are not 1-HAUUBIs 
based on the first scan. Thus, tubpn values of some items may be decreased. Therefore, 
a list named RTUBPNULs (remaining TUBPNULs) stores each TUBPNULs related to 
items if their re-calculated tubpn values satisfy the minUtil (Line 3). TUBPNULs in the 
RTUBPNULs are sorted based on the processing order ≺ as mentioned in Definition 15 
(Line 4). So far, Pruning Strategy 1 is applied.

Then the minimum index of negative items (MINI) is assigned as k (Line 5), where 
k equals to number of TUBPNUL related to positive items in the RTUBPNULs. Finally, 
SearchPEs (Search Positive Extensions) algorithm (Algorithm 3) is called (Lines 6–8) 
for each item p ∈ PIs, recursively. Therefore, any itemset consisting any set of items 
from NIs is directly pruned (Pruning Strategy 2).

SearchPEs Algorithm (Algorithm  3) is designed for the aims of (1) determining 
HAUIs with only positive items, (2) deciding which HAUIs will be extended with neg-
ative items, and (3) deciding itemsets whose positive extensions need to be examined.
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The SeacrhPEs algorithm starts with checking whether the au(X) of an itemset 
X having only positive utility is not lower than the minUtil (Line 1). If so, the item-
set X is stored as a HAUI (Line 2) and controlled for determining whether negative 
extensions of X are promising utilizing the Pruning Strategy 3 (Line 3). If negative 
extensions of X are promising (i.e, if TUBPNUL({X}).Utility  /  (|X| + 1) > minUtil), 
then the positive utility array of X (PUA(X)) is generated (Line 4), and SearchNEs 
algorithm (Algorithm 4) is called to examine extensions of X with negative items 
(Line 5). Here, TUBPNUL({X}).Utility equals to TUBPNUL({X}).PU since X is a 
set of positive items. Once the negative extensions of X are examined, the algorithm 
discards PUA(X) (Line 6). After that, the algorithm continues to operate remain-
ing lines to examine positive extensions of X. For each positive item p, such that 
∀x ∈ {X} ≺ p and p ∈ PIs (Lines 9–15), the Construct algorithm is called to obtain 
TUBPNUL({X ∪ p}) (Line 11). Note that, SeacrhPEs algorithm calls the Construct 
algorithm with an empty PUA. The reason is that item p that will extend the item-
set X is a positive item, and so {X ∪ p}.PU = TUBPNUL({X ∪ p}).Utility . If the 
TUBPNUL({X ∪ p}).Tubpn is not lower than the minUtil (Line 12), the algorithm 
calls itself (Line 13) to determine if {X ∪ p} is a HAUI and to examine its extensions 
(Pruning Strategy 1). Otherwise, the itemset {X ∪ p} will be pruned.

SeacrhNEs algorithm (Algorithm 4) is designed for the aims of (1) determining 
HAUIs having both positive and negative items and (2) deciding itemsets whose 
negative extensions need to be examined by utilizing Pruning Strategy 3.

The SearchNEs algorithm examines negative extension of an itemset X via depth-
first search utilizing Pruning Strategy 3. For each negative item n, where ∀x ∈ X ≺ n 
(Line 1), rest of the lines are executed. The Construct algorithm is called to obtain 
the TUBPNUL({X ∪ n}) and {X ∪ n}.PU (Line 3). Then au({X ∪ n}) is checked 
against the minUtil to determine if itemset {X ∪ n} is a HAUI (Line 4). If it is not 
lower than the minUtil, itemset {X ∪ n} is stored as a HAUI (Line 5). Then itemset 
{X ∪ n} is controlled for determining whether negative extensions of it are promising 
by utilizing Pruning Strategy 3. If minUtil is lower than {X ∪ n}.PU/(|X| + 1) (Line 
7), SearchNEs algorithm calls itself (Line 8) to examine the negative extensions of 
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itemset {X ∪ n} . Otherwise, the negative extensions of itemset {X ∪ n} will not be 
examined based on Pruning Strategy 3.

Execution Trace of the MHAUIPNU Algorithm

In this section, the execution trace of MHAUIPNU algorithm is illustrated for the 
sample database given in Tables 1 and 2. In the execution trace, the minUtil thresh-
old was taken as 15.

The algorithm starts with determining the set of 1-HAUUBIs with the first data-
base scan. As mentioned above, items f and g have lower tubpn values than minUtil 
(= 15) and so the set of 1-HAUUBIs is obtained as {a, b, c, d, e} . After the second 
scan, the TUBPNULs of 1-HAUUBIs and the total processing order ≺ are obtained 
as given in Fig. 2.

Based on total processing order ≺ , MINI (the minimum index of negative items) is 
equal to 3 since there are three positive 1-HAUUBIs which are a, b, and d. The algo-
rithm examines the extensions of positive items a, b, and d by performing a depth-
first search strategy. Figure 4 shows the nodes (itemsets) visited by the MHAUIPNU 
algorithm in the enumeration tree of the running example.

SearchPEs algorithm is first called for the item a. The au(a) is obtained as 
TUBPNUL({a}).Utility/|a| =27. Since 27 ≥ 15, item a is a HAUI. Since item a is a 
HAUI, its negative extensions may include HAUI. However, TUBPNUL({a}).Utility
/(|a|+1) = (27/2) = 13.5 ≯ 15. Thus, none of negative extensions of item a can be 
a HAUI. The mining process will continue for the positive extensions of item a. 
The positive items that can extend item a based on the ≺ are items b and d. Since 
TUBPNUL({a, b}).Tubpn equals to 20 ≥ 15, the itemset {a, b} and its any extensions 
may be HAUIs. Since au({a, b}) = TUBPNUL({a, b}).Utility /2 = 27/2 ≱ 15, the 
itemset {a, b} is not a HAUI. Besides, TUBPNUL({a, b}).Utility/(|{a, b}| + 1) = 27/3 
≯ 15. Therefore, none of the negative extensions of itemset {a, b} can be a HAUI. 
The mining process is continued by extending the itemset {a, b} with the positive 
item d. Since TUBPNUL({a, b, d}).Tubpn = 20, the SearchPEs algorithm calls itself 
for the itemset {a, b, d} . Since au({a, b, d}) is obtained as 17, the itemset {a, b, d} 
is a HAUI. However, none of the negative extensions of itemset {a, b, d} can be a 
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HAUI since TUBPNUL({a, b, d}).Utility/(|{a, b, d}| + 1) = 51/4 = 12.75 ≯ 15. At 
this stage, examination of the search space for itemset {a, b} is completed.

The next positive item that can extend item a is item d. TUBPNUL({a, d}).Utility 
and TUBPNUL({a, d}).Tubpn are obtained as 54 and 28, respectively. Therefore, 
SearchPEs algorithm calls itself for the itemset {a, d} . Itemset {a, d} is a HAUI 
since u({a, d}) = 54/2 = 27 ≥ 15. In addition, TUBPNUL({a, d}).Utility /3 = 54/3 
= 18 > 15, and so the negative extensions of itemset {a, d} will be examined. First, 
itemset {a, d, e} will be investigated. Since TUBPNUL({a, d}) and TUBPNUL({e}) 
have no elements sharing the same tid value, itemset {a, d, e} cannot be a HAUI 
and so cannot be extended. Then itemset {a, d, c} will be investigated. Since 
TUBPNUL({a, d, c}).Utility /3 = 48/3 = 16, itemset {a, d, c} is a HAUI. However, 
there is no remaining negative item for itemset {a, d} and item d is the last positive 
item that can extend item a. Thus, examination of the search space for item a is 
completed.

Next, same process is performed for item b. Item b is a HAUI since au(b) = 30. 
For item b, item d is the only positive item that can be used to extend it. There-
fore, TUBPNUL({b, d}) is constructed and au({b, d}) is obtained as = 90/2 = 45 ≥ 
15. Itemset {b, d} is a HAUI. Since TUBPNUL({b, d}).Utility /3 = 90/3 = 30 > 15, 
the SearchNEs algorithm is called for examining the negative extensions of item-
set {b, d} . For this reason, first, itemset {b, d, e} will be investigated. The au of the 
itemset {b, d, e} is obtained as 49/3 ≥ 15. Thus, itemset {b, d, e} is a HAUI. Since 
{b, d, e}.PU /4 = 54/4 ≯ 15, examination of the search space for itemset {b, d, e} is 
completed. The next negative item is c that is used to extend the itemset {b, d} by 
SearchNEs algorithm. The au({b, d, c}) is 27 and so itemset {b, d, c} is a HAUI. 
Since, c is the last negative item, searching the negative extensions of itemset {b, d} 
is completed. Moreover, item d is the last positive item that can extend item b. Thus, 
examination of extensions of item b is also completed.

The last positive item is d and TUBPNUL({d}).Utility is 72. Hence, item d is a 
HAUI and its negative extensions will be investigated. Therefore, after the construc-
tion of TUBPNUL({d, e}) , it is known that u({d, e}) is 31. Thus, itemset {d, e} is a 
HAUI since au({d, e}) = 15.5 = 31/2. Since {d, e}.PU /3 = 36/3 = 12 ≯ 15, itemset 

Fig. 4   Visited nodes by the MHAUIPNU in the search space of the running example
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{d, e, c} will not be examined. The next negative item is item c. Itemset {d, c} is a 
HAUI since its au value is obtained as TUBPNUL({d, e}).Utility /2 = 30. At this 
stage, there is no remaining negative item to extend item d and item d is the last 
positive item according to ≺ , and so the mining process of the MHAUIPNU algo-
rithm is completed.

Correctness and Completeness of the MHAUIPNU Algorithm

The proposed MHAUIPNU algorithm is designed to discover the correct and com-
plete set of HAUIs in the enumeration tree generated based on the processing order 
≺ . It searches (or examines) itemsets in the enumeration tree based on the depth-first 
search strategy. To understand whether an itemset is a HAUI and/or can be pruned, 
it utilizes the proposed TUBPNUL data structure and three pruning strategies. The 
correctness and completeness of the proposed MHAUIPNU algorithm can be proved 
by showing that the processing order, data structure, and pruning strategies it uses 
preserve the correctness and completeness. 	�  ◻

Lemma 2  The proposed total processing order preserves the correctness and com-
pleteness of the MHAUIPNU algorithm.

Rationale  The proposed processing order is related to how the items are sorted in 
the enumeration tree. In other words, the processing order determines the parent–
child relationship of nodes (itemsets) in the enumeration tree. In this study, the enu-
meration tree constructed based on the total processing order ≺ on remaining items 
after the item whose tubpn values are lower than the minUtil is pruned by Prun-
ing Strategy 1. Pruning Strategy 1 ensures the correctness and completeness of the 
MHAUIPNU algorithm as mentioned by Lemma  3. Therefore, it is clear that the 
enumeration tree of the search space generated by the total processing order includes 
all possible HAUIs. As a result, the proposed total processing order ≺ preserves the 
correctness and completeness of the MHAUIPNU algorithm. 	�  ◻

Lemma 3  The proposed TUBPNUL data structure preserves the correctness and 
completeness of the MHAUIPNU algorithm.

Rationale  The proposed TUBPNUL data structure is designed to store utility and 
tubpn values of itemsets. When searching (or examining) the itemsets in the enumer-
ation tree in depth-first search manner, their TUBPNULs can be easily and correctly 
constructed as mentioned by Property 6. TUBPNUL data structure is efficient to 
obtain values that are used by Pruning Strategy 1 and Pruning Strategy 3. Besides, 
average-utility of an itemset X can be easily derived from its TUBPNUL({X}) , i.e., 
au(X) = TUBPNUL({X}).Utility / |X|, and so any examined itemsets can be easily 
determined as a HAUI or not by the MHAUIPNU algorithm. As a result, the pro-
posed TUBPNUL data structure preserves the completeness and correctness of the 
MHAUIPNU algorithm. 	�  ◻



174	 New Generation Computing (2020) 38:153–186

123

Lemma 4  Pruning Strategy 1 preserves the correctness and completeness of the 
MHAUIPNU algorithm.

Rationale  We know that the average-utility of any itemset X cannot be greater than 
its tubpn value (Theorem 1). We also know that, for any pair of itemsets X and Y, 
such that X ⊆ Y, tubpn(X) ≥ tubpn(Y) holds (Property 2). As a result, pruning the 
search space by utilizing Pruning Strategy 1 preserves the completeness and correct-
ness of the MHAUIPNU algorithm since it is clear that if tubpn(X) ≤ minUtil holds, 
then X not a HAUI and none of its extension can be a HAUI. 	�  ◻

Lemma 5  Pruning Strategy 2 preserves the correctness and completeness of the 
MHAUIPNU algorithm.

Rationale  Since a HAUI should contain at least one positive item (Lemma 1), the 
itemsets which have only negative items cannot be a HAUI. Thanks to proposed 
processing order, Pruning Strategy 2 eliminates all these itemsets directly from the 
enumeration tree. As a result, Pruning Strategy 2 preserves the completeness and 
correctness of the MHAUIPNU algorithm. 	�  ◻

Lemma 6  Pruning Strategy 3 preserves the correctness and completeness of the 
MHAUIPNU algorithm.

Rationale  We know that (X.PU/(|X| + 1)) > au(XN) holds for an itemset X and any 
of its negative extensions XN (Property 4). Thus, it is true that none of negative 
extensions of X can be a HAUI if (X.PU/(|X| + 1)) > minUtil holds. Based on the 
proposed processing order, Pruning Strategy 3 eliminates all the negative exten-
sions of X directly from the enumeration tree if (X.PU/(|X| + 1)) > minUtil holds. 
As a result, Pruning Strategy 3 preserves the correctness and completeness of the 
MHAUIPNU algorithm. 	�  ◻

Theorem 2  The MHAUIPNU algorithm is correct and complete. Based on a given 
minUtil value, it discovers the correct and complete set of HAUIs in a given dataset 
containing items with negative utilities.

Proof  The proposed MHAUIPNU algorithm is designed to discover the HAUIs uti-
lizing the enumeration tree generated based on the total processing order ≺ , together 
with three pruning strategies (Pruning Strategies 1, 2, and 3). For each itemset that 
MHAUIPNU visits in the enumeration tree (or for each itemsets which is not pruned 
by the pruning strategies), MHAUIPNU constructs its TUBPNUL data structure to 
determine it is a HAUI or not. Therefore, based on Lemmas 2, 3, 4, 5, and 6, it can 
be said that the set of discovered itemsets by MHAUIPNU algorithm in a dataset 
containing items with negative utilities is complete and correct. 	�  ◻
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Time and Space Complexity Analysis of the MHAUIPNU Algorithm

The time and space complexity of an algorithm can be defined as the time and space 
required in the worst case, respectively. In this section, we analyze the time and 
space complexity of the MHAUIPNU algorithm for the worst case scenario.

Let T, I P, and N be number of transactions, total number of items, number of 
positive items, and number of negative items in a given database, respectively. The 
MHAUIPNU algorithm scans the database once to obtain tubpn values of items. 
Thus, the time complexity in the first database scan is O(T × I) . In the second 
database scan, initial TUBPNULs are generated for promising items. In the worst 
case, none of items has tubpn value lower than the minUtil, which means that all 
the items are promising. Therefore, the runtime complexity of the second database 
is also O(T × I) . Then before embarking to start searching HAUIs, TUBPNULs are 
sorted based on the total processing order ≺ . Based on the total processing order 
≺ (Definition 15), we know that items are sorted in tubpn ascending order and a 
negative item always come after from all the positive items. Therefore, it is sufficient 
to sort the TUBPNULs of the positive items and the TUBPNULs negative items 
among themselves. For sorting, any method can be used. Assume that quick sort 
method is applied. The time complexity is O(P log 2P) and O(N log 2N) for sort-
ing TUBPNULs of the positive items and the TUBPNULs negative items, respec-
tively. Therefore, for the worst case scenario, the MHAUIPNU algorithm requires 
O((2 × T × I + P log 2P + N log 2N) time before embarking to search HAUIs (or 
examine the enumeration tree of the search space). Besides, the worst case scenario 
assumes that each item exists in each transaction. Therefore, the MHAUIPNU algo-
rithm requires O(I × T × 3) space for storing initial TUBPNULs in the memory.

For searching HAUIs, the MHAUIPNU algorithm constructs TUBPNULs of 
itemsets while traversing the enumeration tree generated based on the processing 
order ≺ . To construct TUBPNUL of an itemset {X, a, b} , it is needed to compare 
TUBPNULs’ entries of two related itemset {X, a} and itemset {X, b} to find the 
entries registered for the same transaction. In the worst case, TUBPNUL of an item-
set contains T entries based on the assumption that each item exists in each transac-
tion. Since comparing two TUBPNULs is done in linear time, the time complex-
ity of constructing TUBPNUL of an itemset is O(T) . Besides, to prune itemset by 
Pruning Strategy 3, the algorithm use a one-dimensional array, called the positive 
utility array (PUA), of size T. In the MHAUIPNU algorithm, PUA of an itemset will 
be generated if it has only positive items and its negative extensions are promising. 
Besides, PUA of an itemset is discarded right after its all negative extensions are 
examined. Thus, storing PUA requires O(T) space. Since a PUA is generated in lin-
ear time, the time complexity of generating a PUA is O(T) time for the worst case.

We know that there are 2I − 1 itemsets in the search space. However, the 
MHAUIPNU algorithm does not construct TUBPNULs of 2N − 1 k-itemsets, where 
k ≥ 2, which consists of only negative items, by utilizing the Pruning Strategy 2. As 
a result, Pruning Strategy 2 reduces the number of itemsets in the enumeration tree 
to 2I − 2N − 1 . For the worst case, it is assumed that none of them can be pruned 
by either Pruning Strategy 1 or Pruning Strategy 3. Therefore, 2I − 2N − 1 TUBP-
NULs should be constructed, and 2P − 1 PUA should be generated while searching 
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HAUIs. Therefore, for the MHAUIPNU algorithm, the worst case time complexity 
is O(2 × T × I) + O(P log 2P + N log 2N) + O(T × (2I − 2N − 2)) + O(T × (2P − 1)) 
and the worst case memory usage is O((2I − 2N − 2) × T × 3) + O(T).

On the other hand, the worst case scenario does not usually occur. In general, 
the time and space complexity of the MHAUIPNU algorithm can be considered as 
pseudo-polynomial since the complexity of time and space for each itemset is close 
to linear and the number of visited itemsets in the search space is conditional on the 
effectiveness of the pruning strategies for the given dataset.

Experimental Result

In this section, the performance evaluation of the MHAUIPNU algorithm is given. 
To evaluate effectiveness of proposed tubpn model by comparing with auubpn 
model, two algorithms are also designed, which are named as Naïve-auubpn and 
Naïve-tubpn algorithms based on auubpn and tubpn models, respectively (Table 3). 
They use their downward-closure properties to prune the search space. The Naïve-
tubpn algorithm is also used to compare with the MHAUIPNU algorithm to evaluate 
the effect of pruning strategies (Pruning Strategies 2 and 3) related to items with 
negative utilities (Table 3).

We compare the algorithms in terms of runtime, the number of total visited 
nodes, and memory usage. We also evaluate the effect of the number of negative 
items in databases on the performance of algorithms. Performance analysis of the 
algorithms in terms of runtime, the total number of visited nodes, and memory 
usage are evaluated using six real datasets which are obtained from the open source 
data mining library, SPMF [4]. The statical information of the real datasets are pro-
vided in Table 5. Table 4 gives the explanations of the parameters used in Table 5. 

Table 3   Compared algorithms

Algorithm Upper bound Processing order Pruning strategies

Naïve-auubpn auubpn auubpn-ascending based on auubpn model
Naïve-tubpn tubpn tubpn-ascending Pruning Strategy 1
MHAUIPNU tubpn ≺ (Definition 15) Pruning Strategies 1, 2, and 3

Table 4   Dataset parameters Parameter Explanation

#Ts The total number of transaction
#PIs The total number of unique positive items
#NIs The total number of unique negative items
avgL The average length of transactions
Density

The density of the dataset 

⟨
avgL

#PIs + #NIs
× 100

⟩
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Besides, two synthetic datasets are used for evaluation of the number of negative 
items on the performances of the algorithms.

The algorithms are implemented using Java programming language. All the 
experiments are performed on a computer equipped with an i5-5200U 2.2 GHz pro-
cessor and 8 GBs of RAM.

Runtime

In this experiment, the runtime performances of the algorithms are compared. All 
the algorithms were run on each dataset given in Table  5 under various minUtil 
thresholds. Figure 5 presents the runtime results in log scale, except for the Retail 
dataset.

As can be seen in Fig. 5, the algorithms need more time to perform their mining 
tasks for each dataset as the minUtil value decreases. This is because as the minU-
til gets lower, the datasets will have more promising itemsets, and thus the search 
space will expand. Figure 5 also indicates that Naïve-tubpn are always faster than 
the Naïve-auubpn . This is reasonable since tupbn values of itemsets are tighter than 
their auubpn values. Thus, Naïve-tubpn prunes the search space more effectively 
than Naïve-auubpn . Moreover, when the runtimes of Naïve-tubpn and MHAUIPNU 
are compared, it can be seen that Pruning Strategies 2 and 3 of MHAUIPNU algo-
rithm have a significant role on enhancing the performance of MHAUIPNU. For 
example, when the minUtil is set to 60×103 for the Chess (Fig. 5a), MHAUIPNU, 
Naïve-tubpn, and Naïve-auubpn terminate their mining tasks in 0.5 seconds, 157 sec-
onds, and 351 seconds, respectively. Note that, we could not present the runtimes 
of Naïve-auubpn and Naïve-tubpn when minUtil is set to 16×105 (or lower values) 
and 14×105 (or lower values), respectively, for the Pumsb dataset. The reason is that 
they require long execution times (more than 10,000  s) for the above-mentioned 
settings. On the other hand, MHAUIPNU needs only 118 seconds to complete the 
mining task for the Pumsb dataset when the minUtil is set to 14×105 . As can be 
seen, MHAUIPNU significantly outperforms Naïve-auubpn and Naïve-tubpn thanks 
to tubpn model (Pruning Strategy 1) and properties related to items with nega-
tive utilities (Pruning Strategies 2 and 3). It is also observed from the experiments 
that MHAUIPNU is up to three orders of magnitude faster than Naïve-tubpn and 
up to four orders of magnitude faster than Naïve-auubpn . As a result, the proposed 

Table 5   Real datasets Dataset #Ts #PIs #NIs AvgL Density

Chess 3196 37 38 37 49.3333
Mushroom 8124 74 45 23 19.3277
Accidents 340,183 230 238 33.8 7.2222
Pumsb 49,046 1079 1034 74 3.5021
Retail 88,162 8223 8247 10.3 0.0625
Kosarak 990,002 20,700 20,570 8.1 0.0196
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MHAUIPNU is computationally efficient on solving the problem of HAUIM with 
positive and negative utilities.

The Number of 1‑HAUUBIs and Visited Nodes

In this experiment, the number of 1-HAUUBIs obtained by tubpn and auubpn mod-
els are first compared. Then the number of nodes (itemsets) visited by the algorithms 
are compared for to understand their runtime performances.

Results related to obtained 1-HAUUBIs by tubpn and auubpn models are given 
in Fig. 6. As can be seen in Fig. 6, tubpn model produces less 1-HAUUBIs than the 
auubpn model. This is because tubpn values of itemsets are tighter than their auubpn 
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values as discussed with Property 3. Particularly, if datasets have large number of 
items, such as Kosarak (Fig. 6f) and Retail  (Fig. 6e), the performance of tubpn to 
reduce the number of 1-HAUUBIs compared to auubpn is very considerable. 

Results related to the number of nodes visited by the algorithms are given in 
Fig. 7. A visited node (itemset) means the node which is examined in the enumera-
tion tree of the search space. As can be seen in Fig. 7, Naïve-tubpn visits one to three 
magnitude less nodes compared to Naïve-auubpn . The reasons as follows: (1) tubpn 
produces less 1-HAUUBIs than the auubpn model and (2) tubpn values of itemsets 
are always lower than their auubpn values. Thus, it can be said that tubpn model is 
more efficient than the auubpn model on reducing the search space.
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Figure  7 indicates that the proposed MHAUIPNU dramatically reduces the 
number of visited nodes thanks to its Pruning Strategy 2 and Pruning Strategy 3 
in addition to usage of tubpn model (Pruning Strategy 1). The proposed tubpn is 
efficient to decrease the upper bounds of itemsets. Besides, itemsets containing 
only negative items are directly pruned by Pruning Strategy 2 and the positive 
utilities of itemsets are directly used to prune the their negative extensions by 
Pruning Strategy 3. For example, on Chess dataset (Fig.  7a), when the minUtil 
is set to 60×103 , the number of visited nodes by Naïve-auubpn and Naïve-tubpn 
is, respectively, 8478 and 3655 times greater than the number of nodes visited by 
MHAUIPNU.
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Memory Usage

In this experiment, the memory usage of the algorithms are compared. The results 
are shown in Fig. 8.

It is observed that memory consumptions of algorithms increase as the minUtil 
value decreases for each datasets. As the minUtil decreases, more 1-HAUUBIs 
are generated and more HAUIs are discovered. Hence, more itemset in the enu-
meration tree of the search space are visited, and so memory needs increase. It is 
also observed that MHAUIPNU and Naïve-tubpn need less memory than Naïve-
auubpn . This is reasonable because auubpn model cannot prune more itemsets than 
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the tubpn model. As can be seen in Fig. 8, MHAUIPNU consumes the least mem-
ory usage.

Effect of the Number of Negative Items

In this experiment, the effects of the number of negative items in databases is evaluated 
on the performance of the algorithms. For evaluation, two synthetic datasets, called 
c20d10k and t20i6d100k, are used. They were obtained from the SPMF [4], and their 
statical information are given in Table 6.

These datasets contain only binary information since they are generated for frequent 
itemset mining. In this study, to make them as quantitative transactional databases, the 
external utilities of items were generated using a Gaussian distribution where the mean 
is 50 and internal utilities of items in each transaction were randomly generated in the 
range of [1, 5]. Then we generated five different datasets from these synthetic datasets, 
each containing 30%, 40%, 50%, 60%, and 70% negative items. To make a database 
contain 30% negative items, 30% items among all unique items was randomly selected 
and their external utilities were multiplied by − 1. Then to make a database contain 
40% negative items a new set of 10% items was also randomly selected and their exter-
nal utilities were also multiplied by − 1. To ensure that the datasets contain 50%, 60%, 
and 70% negative items, the same procedure was followed.

To evaluate the effect of the number of negative items on the performance of algo-
rithms, their runtimes and total number of visited nodes are compared for each dataset 
by changing the number of negative items from 30% to 70% of all unique items. For 
each experiments, minUtil is fixed to 105 . Experimental results are given in Figs. 9 and 
10 for the c20d10k and t20i6d100k datasets, respectively.

Experimental evaluations show that as the number of negative items increases in 
the datasets, the algorithms need less time to perform the mining task (Figs. 9a, 10a), 
and visit less nodes (Figs. 9b, 10b). The experiments also indicate that the runtime gap 
between Naïve-auubpn and Naïve-tubpn increases, as the number of negative items 
increases. This shows that Pruning Strategy 1 is becoming more effective with the 
increase of negative items in the datasets.

Moreover, it is also observed that the performance of the proposed MHAUIPNU 
algorithm increases with the increase of the number of negative items in the datasets, in 
terms of runtime and the total number of visited nodes. This shows that when the size 
of negative items increases in databases, Pruning Strategy 2 and Pruning Strategy 3 
prune the search space more effectively.

For example, when the number of negative items is 30% in the c20d10k dataset, 
MHAUIPNU algorithm is about 5 and 4 times faster than the Naïve-auubpn and Naïve-
tubpn, respectively, and the number of visited nodes by MHAUIPNU is about 7 and 

Table 6   Synthetic datasets Dataset #Ts #items AvgL Density

c20d10k 10,000 192 20 10.4166
t20i6d100k 99,922 843 19.89 2.3594
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5 times less than the Naïve-auubpn and Naïve-tubpn, respectively. However, when the 
number of negative items is increased to 70% in the c20d10k dataset, MHAUIPNU 
algorithm is about 30 and 18 times faster than the Naïve-auubpn and Naïve-tubpn, 
respectively, and the number of visited nodes by MHAUIPNU is about 20 and 11 times 
less than Naïve-auubpn and Naïve-tubpn, respectively. Similar results are obtained for 
the t20i6d100k dataset.

Conclusion and Future Works

High-average-utility itemset mining (HAUIM) is important for many real-world 
application areas. It takes into account internal and external utilities (such as unit 
quantities and unit profits) of the itemsets.

To the best of our knowledge, in the literature, there is no HAUIM algorithm 
designed for mining HAUIs out of databases containing both positive and negative 
utilities. This paper proposes an upper bound named tubpn with its pruning strategy 
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to prune itemsets. Besides, two other pruning strategies also proposed utilizing the 
properties related to items with negative utilities. To store the required information 
and efficiently calculate average-utilities and tubpn values of itemsets, a TUBPNUL 
data structure is also developed. Then an algorithm called MHAUIPNU is presented 
to solve the problem of HAUIM with positive and negative items, utilizing three 
proposed pruning strategies and the TUBPNUL.

To evaluate the efficiency of proposed tubpn and the pruning strategies, two 
algorithms are also implemented. Experimental analysis shows that the proposed 
MHAUIPNU algorithm mines HAUIs out of the database having positive and nega-
tive utilities, efficiently. It is also shown that pruning strategies which are related to 
items with negative utilities are very efficient on pruning the search space of item-
sets with negative utilities. The results show that the proposed MHAUIPNU algo-
rithm outperforms other algorithms as the number of negative items increases and/
or the minimum utility threshold decreases.

As a future work, we would like to propose more efficient algorithms by intro-
ducing more efficient upper bounds and data structures to enhance the efficiency of 
solving the problem in terms of runtime and memory consumption. Besides, devel-
oping efficient incremental and interactive mining HAUIs out of databases having 
positive and negative utilities is another topic that can be studied in future.
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