
Vol.:(0123456789)

New Generation Computing (2019) 37:361–392
https://doi.org/10.1007/s00354-019-00071-1

123

Query Extension Suggestions for Visual Query Systems
Through Ontology Projection and Indexing

Vidar N. Klungre1 · Ahmet Soylu2 · Ernesto Jimenez‑Ruiz1,3,5 ·
Evgeny Kharlamov4 · Martin Giese1

Received: 6 February 2019 / Accepted: 12 August 2019 / Published online: 3 September 2019
© Ohmsha, Ltd. and Springer Japan KK, part of Springer Nature 2019

Abstract
Ontology-based visual query formulation is a viable alternative to textual query edi-
tors in the Semantic Web domain for extracting data from structured data sources in
terms of the skills and knowledge required. A visual query system is at any moment
responsible for providing the user with query extension suggestions; however, sug-
gestions leading to empty results are often not useful. To this end, in this article, we
first present an approach for projecting OWL 2 ontologies into navigation graphs
to be used for query formulation and then a solution where an efficient finite index
is used to calculate non-ranked approximated extension suggestions for ontology-
based visual query systems using navigation graphs. The results of our experiments
suggest that one can efficiently project an ontology into a navigation graph, query it
for running an interactive user interface, and suggest query extensions that do not
lead to dead-ends.

Keywords  Visual query system · Ontology projection · Query extensions · Indexing

 *	 Ahmet Soylu
	 ahmet.soylu@ntnu.no

	 Vidar N. Klungre
	 vidarkl@ifi.uio.no

	 Ernesto Jimenez‑Ruiz
	 ejimenez‑ruiz@turing.ac.uk

	 Evgeny Kharlamov
	 evgeny.kharlamov@de.bosch.com

	 Martin Giese
	 martingi@ifi.uio.no

1	 University of Oslo, Oslo, Norway
2	 Norwegian University of Science and Technology-NTNU, Gjøvik, Norway
3	 The Alan Turing Institute, London, UK
4	 Bosch Centre for Artificial Intelligence, Renningen, Germany
5	 City, University of London, London, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s00354-019-00071-1&domain=pdf

362	 New Generation Computing (2019) 37:361–392

123

Introduction

Ontology-based visual query formulation is a viable alternative to textual query
editors in the Semantic Web domain for extracting data from structured data
sources in terms of the skills and knowledge required given the increasing use
of ontology-based data access (OBDA) [13, 29] approach in various domains [9,
10]. A visual query system (VQS) presents a visual interface to users allowing
them to extract information from a structured data source, based on some combi-
nation of filters and other requirements on the information to be retrieved [5, 27].
The intention is to provide data access to users without requiring them to learn
a formal query language such as SPARQL. Each VQS needs to find a balance
between expressivity and usability, that is a system that covers the whole expres-
sivity of SPARQL will hardly be more useful to lay users than a textual query
editor [4]. This trade-off differs depending amongst others on the user group,
their information needs, and the complexity of the data [23]. Simple informa-
tion needs will be met by filtering on some attributes of a single class (e.g. black
shoes of size 42), but more advanced use often involves multiple entities of dif-
ferent types (e.g. black shoes from a small company based in a democratic coun-
try). Examples of VQSs designed for RDF data are Rhizomer [3], SemFacet [1],
and OptiqueVQS [24].

As the user interacts with the VQS, a query is constructed in the background,
and a visual representation is usually displayed to the user. The VQS is at any
moment responsible for providing the user with query extension suggestions. This
can be a list of datatype property filters, or object properties connecting to new
concepts. Simple systems may in this case present long, static lists of suggestions
containing all the different values appearing in the underlying data source (e.g.,
[31]). This will ensure that the user finds the suggestion he is looking for some-
where in the list, but it is not optimal, because the list will likely contain sugges-
tions that are incompatible with other parts of the partial query. In other words,
selecting such a value will lead to an underlying query which is too restrictive,
and hence no results are returned. This kind of dead-end is not desirable from a
user experience perspective, and more advanced systems solve this by removing,
disabling or down-ranking suggestions (often indicated by a grey font colour) that
are not compatible with the existing query—leaving a shorter, more manageable
list to the user (e.g., [22]). We call this technique adaptive extension suggestion
in general, where the goal is to calculate and suggest the complete set of query
extensions that are compatible with both the existing query, underlying data and
the goal of user, while we call techniques particularly designed for avoiding que-
ries leading to no results dead-end elimination.

Calculations needed to support adaptive extension suggestion are quite inten-
sive for large datasets. In essence, it requires answers to multiple queries that are
all at least as complex as the partial query itself. For queries with many variables,
which require joins, this will be too slow. Even with very fast hardware, these
queries cannot be executed within tenths of seconds as required for interactive
systems. It becomes clear that some kind of index structure is needed to calculate

363New Generation Computing (2019) 37:361–392	

123

the adaptive extension suggestions sufficiently fast. If the query only contains
one variable of a given class, it is possible to achieve desirable performance by
using search engines like Lucene1 or Sphinx2 or similar software to index the data
before use. These indices are known to scale to large datasets, e.g. by partition-
ing, which ensures fast response time, and no delay for the user. This setup is
quite common in e-commerce systems like PriceSpy,3 and a core feature of what
is often referred as faceted search [30]. These search engines require a fixed num-
ber of attributes to index on, which is the case with queries of only one concept.
However, we want to support more complex queries with an arbitrary number of
connected concepts, where no such static list exists. Ensuring good enough per-
formance for such queries is a challenging task, not something supported by these
standard search engines.

In fact, it is impossible to achieve perfect suggestions for arbitrary complex que-
ries and large datasets with good performance. Some kind of index is needed, but it
would have to be infinitely large in order to support arbitrary complex queries and
large datasets. However, we can support complex queries in an efficient way if the
user tolerates some irrelevant suggestions. To this end, in this article, we focus on
dead-end elimination by first presenting an approach for projecting OWL 2 ontolo-
gies into navigation graphs to be used for query formulation and then presenting
a solution where an efficient finite index is used to calculate non-ranked approxi-
mated extension suggestions for ontology-based visual query systems using naviga-
tion graphs. The accuracy of these suggestions depends on the size of the index—a
larger index gives equal or better accuracy. We take a closer look at this trade-off,
and search for concrete approximations that attempts to strike a good compromise
between these two. The results of our experiments suggest that one can efficiently
project an ontology into a navigation graph, query it for running an interactive user
interface, and suggest query extensions that do not lead to empty results sets. The
work presented here provides basis for further refinements, such as fine-grained
ranking algorithms and pagination, since the list of possible extensions may still be
overwhelmingly long after eliminating the dead-ends from the user-experience point
of view.

The rest of the article is structured as follows. In “Formal framework”, we present
the formal framework describing the preliminary knowledge such as on navigation
graph and query extensions. In “Adaptive extension suggestions”, we present our
contribution on ontology projection and adaptive query extensions, while we present
our evaluations in section “Evaluation”. Finally, we conclude the article and discuss
future work in “Related work”.

1  https​://lucen​e.apach​e.org.
2  http://sphin​xsear​ch.com.
3  http://price​spy.co.uk.

https://lucene.apache.org
http://sphinxsearch.com
http://pricespy.co.uk

364	 New Generation Computing (2019) 37:361–392

123

Formal Framework

In the following, we use a number of simplified notions of schema/ontology, dataset,
and query. These are less general than OWL, RDF, and SPARQL, respectively, but
they cover the essential notions for VQSs that we require in this article.

Ontology and Navigation Graph

It is essential for end users to be able to navigate or browse through an ontology
O , to get a big picture of what classes are there, and what they have in common in
terms of other related classes and properties [8, 15, 28]. This allows users to effec-
tively formulate queries and perform domain exploration tasks.

Based on an underlying ontology, the VQS has to set up rules to control which
queries the user is allowed to make. We assume that all these rules are summarised
into a navigation graph GO = (V ,E) , where each vertex is associated with either a
concept or a datatype from O , while the directed edges are associated with property
names from O . Furthermore, we assume that each edge e = C1

p
�����→ C2 ∈ E of GO has

an inverse e−1 = C2

p−1

������������→ C1 ∈ E . These inverse edges allow connections between
two related concepts regardless of which one is the starting point. In essence GO acts
like a schema for the whole system, by stating which concepts and/or datatypes we
are allowed to connect via which properties. In fact we require that all graph struc-
tures in our work conform with GO , including queries and underlying data.

Figure 1 shows an example of a navigation graph containing two concepts (City,
Country), two datatypes (Integer, String), five datatype properties (edges from con-
cepts to datatypes) and two object properties (partOfCountry and its inverse).

Queries

Based on the navigation graph GO = (V ,E) , we can now define the type of que-
ries we allow. If we represent queries as graphs, where the nodes are query

Fig. 1   Example navigation
graph GO ; blue and yellow
nodes are concepts and data-
types respectively

City Country

StringInteger

partOfCountry

partOfCountry−1

hasName

partOfContinent

hasPopulation

hasName

hasPopulation

365New Generation Computing (2019) 37:361–392	

123

variables, then the edges are the properties connecting them. We only allow
tree-shaped conjunctive queries Q , since the literature suggests that majority of
end-user queries are in this form [19, 27]. We also require that each variable v
of Q is typed to either a concept or a datatype in GO , that is there is exactly one
v ∈ V such that type(v) ∈ V  , where type is the typing function. Furthermore, type
must be a homomorphism from Q to GO , i.e. for each edge v1

p
�����→ v2 of Q , there

must exist a corresponding edge type(v1)
p
�����→ type(v2) in GO . For convenience we

separate the query variables into two separate groups based on whether they are
typed to a concept or a datatype in GO . We call them concept variables and
datatype variables respectively. We also allow filters on variables v in Q . This is
denoted v ∈ Fv , where Fv is the set of data values v can take. By default, there
are no filters on any of the variables. We do not include an “optional” operator,
i.e. all variables of Q have to be bound.

During query construction, the user can at any point select which concept
variable of the partial query Qp he wants to extend from. This variable is called
the focus variable vf , and the corresponding concept Cf = type(vf) is called the
focus concept. During a query session, both Qp and vf changes frequently as the
user interacts, but at the moment when extension suggestions supposed to be
calculated, they can be considered to be fixed. In order to calculate extension
suggestions, it is crucial to know which variable is in focus. To support this, we
represent the partial query Qp as a rooted tree where vf is the root, and where
each edge points away from vf . We can always do this reorientation because the
query is tree-shaped and all property inverses exists in GO.

Figure 2 displays the tree representation of the query

The query conforms to the navigation graph in Fig. 1, its focus variable is v0 ,
and focus concept is City.

(1)
City(v0) ∧ partOfCountry(v0, v1) ∧ Country(v1)∧

hasPopulation(v0, v2) ∧ (v2 > 1M) ∧ hasPopulation(v1, v3) ∧ (v3 > 10M).

Fig. 2   Example query Q con-
forming to GO ; blue and yellow
nodes are concept and datatype
variables respectively City

v0

Country
v1

partOfCountry

v2 > 1.000.000

hasPopulation

v3 > 10.000.000

hasPopulation

366	 New Generation Computing (2019) 37:361–392

123

Datasets and Query Answers

In addition to the ontology O and the corresponding navigation graph GO , we assume
that the VQS has access to an underlying dataset (RDF graph) D . This RDF graph
should adhere to the OWL2 DL restrictions of keeping instances, classes, object prop-
erties, and datatype properties separate, in other words it is a proper description logic
ABox. In addition it must conform with O , i.e. D must be homomorphic to O . When
the partial query is complete, the user will be running it over D in order to retrieve the
results of interest. Our goal however, is to utilise the data in D to compute and present
useful query extensions during the query construction phase.

Given a query Q and a data graph D that are both homomorphic to GO , we let
Ansv⃗(Q,D) denote the results we get by executing Q over D and projecting the results
onto the vector of variables v⃗ . Ansv⃗(Q,D) is a multi-set of tuples, where the entries in
each tuple corresponds to an assignment of the variables in v⃗.

Given two queries Q1 and Q2 we can now define query containment:

If Q1 ⊑ Q2 holds, it means that Q1 is more restrictive than Q2 . We will also use the
phrase Q1 covers Q2 since the tree representing Q1 fully covers the tree represent-
ing Q2 . Furthermore, Q1 ∩ Q2 represents the query we get by intersecting the rooted
trees represented by Q1 and Q2 modulo query variable names.

Table 1 shows an example dataset D describing four cities, their corresponding
countries and related properties. It is represented as a table, and not as a data graph for
convenience. The example is quite simple, since it does not include any one-to-many
relationships between cities and countries and no data is missing. This is done by pur-
pose to show how our method works without making the examples too complex.

We can now execute Q from Fig. 2 over D and project over v0 to get all cities with
population higher than 1M and a corresponding country with population higher than
10M:

Query Extensions

We assume that the VQS supports three possible types of query extensions: object
properties, datatype properties and datatype filters. For each of them, the goal is to
provide a ranked list of suggestions S = (s1, s2,… , sk) , where each tuple si

(2)Q1 ⊑ Q2 ⟺ ∀D,Ans(Q1,D) ⊆ Ans(Q2,D)

Ans(v0)(Q,D) = {NY ,RO}

Table 1   Example dataset D describing four cities and their corresponding countries

City City-name City-pop. Country Country-pop. Country-continent

OS Oslo 0.6M NOR 5M Europe
VI Vienna 1.7M AUT​ 8.7M Europe
RO Rome 2.9M ITA 60.6M Europe
NY New York 8.5M USA 323M North America

367New Generation Computing (2019) 37:361–392	

123

represents a concrete suggestion. If the user selects si ∈ S , the partial query Qp is
updated to Qp ∧ Qext

si
 . Table 2 presents each of the three query extension types,

together with the general form of a suggestion s, and the general extension Qext
s

.
All three extension types depend on the property p to connect vf to a new variable

v , hence p is included in each of the three suggestion tuples. If p is an object prop-
erty (Type 1), then v must be a concept variable of type C . If however p is a datatype
property and v a datatype variable (Type 2), then the type of v can be inferred from
GO , hence it is not included as a part of the suggestion tuple or updated query. The
two first extensions are what we call existential filters: They require a new variable
v connected to vf , but they do not put any additional restrictions on it. The third type
of extension on the other hand, adds filters to v , but this can only be done if v is a
datatype variable. In theory it would also be possible to add filters on concept vari-
ables, but in real life this is not something users need, because then they would have
to know which URIs to filter on. A better solution is then to filter on a data property
related to the concept, such as its label or id.

Among the three presented extension types, the third is the hardest one to calcu-
late. In fact, if we can provide adaptive extension suggestions for type 3, we have
also done it for type 2, that is a given property p should only be suggested if there
are no possible datatype filters left. Extension type 1 and 2 are essentially the same,
so they are equally hard to make adaptive suggestions for.

Adaptive Extension Suggestions

In this section, we first present our approach for projecting a given ontology into a
navigation graph and then present our solution for adaptive extension suggestions
not leading to any empty results.

Ontology Projection

Our goal for ontology projection is, given an ontology, to create a directed labelled
graph, called a navigation graph [1, 26], whose nodes correspond to the named
classes and datatypes in the ontology and edges between nodes to the object proper-
ties and datatype properties. Let C1,C2 , and C3 be classes, r1, r2 , and r3 object prop-
erties, d1 a datatype property, i1 and i2 individuals, and dt1 a data type. First, each
class and datatype in the ontology is translated to a node in the navigation graph GO.
Then we add edges of the form C1

r1
��������→ C2 and C1

d1
��������→ dt1 into the navigation graph

Table 2   Table showing the
three supported query extension
types, the general structure of a
suggestion s, and the resulting
general extension Qext

s

Extension type s Qext

s

Type 1. Object property (p,C) p(v
f
, v) ∧ C(v)

Type 2. Datatype property (p) p(v
f
, v)

Type 3. Datatype filter (p, x) p(v
f
, v) ∧ (v ∈ {x})

368	 New Generation Computing (2019) 37:361–392

123

derived from the axioms of the ontology. The types of axioms resulting in an edge
are presented with examples in what follows using description logic (DL) [2].

Ontologies have a propagative effect on the amount of information to be pre-
sented. This case is considered in two forms, namely the top-down and bottom-up
propagation of property restrictions [6, 23]. The first form emerges from the fact
that, in an ontology, explicit restrictions attached to a class are inherited by its sub-
classes. The second form is rooted from the fact that the interpretation of an OWL
class also includes the interpretations of all its subclasses. Therefore, for a given
class, it may also make sense to derive edges from the (potential) object and data-
type properties of its subclasses and superclasses.

Edges Through Object Properties

Domains and ranges Domain and range axioms using named classes are translated
to an edge. For instance, example given in Axiom 3 maps to edge C1

r1
��������→ C2.

If a complex class expression, formed through intersection ( ⊓ ) or union ( ⊔ ),
appears as a domain and/or range, then an edge is created for each pair of domain
and range classes. For instance, example given in Axiom 4 maps to edges C1

r1
��������→ C2

and C1

r1
��������→ C3.

Object property restrictions Object property restrictions used in class descrip-
tions, formed through existential quantification ( ∃ ), universal quantification ( ∀ ),
individual value restriction, max ( ≥ ), min ( ≤ ), and exactly ( = ), are mapped to
edges. For instance, examples given in Axiom 5 to 7 map to C1

r1
��������→ C2 . Note that in

Axiom 7, there is a complex class expression on the left-hand-side.

Example given in Axiom 8 includes an individual value restriction and an edge is
created with the type of individual, that is C1

r1
��������→ C2.

Example given in Axiom 9 includes a complex class expression. In this case, an
edge is created for each named class, that is C1

r1
��������→ C2 and C1

r1
��������→ C3.

Given an enumeration of individuals, an edge is created for each individual’s
type. For instance, example given in Axiom 10 maps to two edges, that is C1

r1
��������→ C2

and C1

r1
��������→ C3.

(3)∃r1.⊤ ⊑ C1 and⊤ ⊑ ∀r1.C2

(4)∃r1.⊤ ⊑ C1 and⊤ ⊑ ∀r1.(C2 ⊔ C3)

(5)C1 ⊑ ∃r1.C2

(6)C1 ≡≤n r1.C2

(7)∀r1.C1 ⊑ C2

(8)C1 ⊑ ∃r1.{i1} , and i1 ∶ C2

(9)C1 ⊑ ∃r1.(C2 ⊔ C3)

(10)C1 ⊑ ∃r1.{i1} ⊔ {i2} , i1 ∶ C2 , and i2 ∶ C3

369New Generation Computing (2019) 37:361–392	

123

Inverse properties Given an edge in the navigation graph such as C1

r1
��������→ C2 and

an inverse property axiom for the corresponding object property such as given in

Axiom 11, a new edge is created for the inverse property, that is C2

r−1
1

�����������→ C1.

Role chains Given two edges C1

r1
��������→ C2 and C2

r2
��������→ C3 n the navigation graph, and

a role chain axiom between r1, r2, r3 such as given in Axiom 12, a new edge is cre-
ated for r3 , that is C1

r3
��������→ C3.

Top-down propagation Given an edge C1

r1
��������→ C2 in the navigation graph and a

subclass axiom such as given in Axiom 13, a new edge is added to the graph, that is
C3

r1
��������→ C2 . Analogous edges could be created for subproperties.

Bottom-up propagation Given an edge C1

r1
��������→ C2 in the navigation graph and a

subclass class axiom such as given in Axiom 14, a new edge is added to the graph,
that is C3

r1
��������→ C2 . Analogous edges could be created for superproperties.

Edges Through Datatype Properties

Domains and ranges Domain and range axioms using datatype properties are trans-
lated to an edge. For instance, example given in Axiom 15 maps to an edge, that is
C1

d1
��������→ dt1.

Datatype property restrictions Datatype property restrictions, formed through
existential quantification ( ∃ ), universal quantification ( ∀ ), max ( ≥ ), min ( ≤ ), exactly
( = ), and value are mapped to edges. For instance, the example given in Axiom 16
maps to C1

d1
��������→ dt1.

Top-down propagation Given an edge C1

d1
��������→ dt1 in the navigation graph and a

subclass axiom such as given in Axiom 17, a new edge is added to the graph, that is
C2

d1
��������→ dt1 . Analogous edges could be created for subproperties.

Bottom-up propagation Given an edge C1

d1
��������→ dt1 in the navigation graph and a

subclass class axiom such as given in Axiom 18, a new edge is added to the graph,
that is C3

d1
��������→ dt1 . Analogous edges could be created for superproperties.

(11)r1 ≡ r
_

1

(12)r1◦r2 ⊑ r3

(13)C3 ⊑ C1

(14)C1 ⊑ C3

(15)∃d1.DatatypeLiteral ⊑ C1 and⊤ ⊑ ∀r1.dt1

(16)C1 ⊑ ∃d1.dt1

(17)C2 ⊑ C1

(18)C1 ⊑ C3

370	 New Generation Computing (2019) 37:361–392

123

Suggestion Functions

As a minimum requirement the VQS should only allow suggestions leading to legal
queries with respect to GO . However, we can increase the user experience by also
considering the underlying dataset D and the partial query Qp . In this article, we will
consider several different suggestion functions S that takes D and Qp as input and
returns a set of suggestions [11]:

If it is clear from the context what D and Qp are, we may omit the input and just
write S.

The Optimal Suggestion Function S
o

We will now formally define the suggestion function that returns the adaptive exten-
sion suggestions we described in “Introduction”. It is what we consider to be the
gold standard with respect to accuracy, and we call it the optimal suggestion func-
tion So . The idea is simply to execute the generic query Qp ∧ Qext

s
 over D , and then

project the result onto the variables in the suggestion tuple:

By selecting extensions from So , the user is guaranteed to not end up with a too
restrictive query, which is exactly what our goal is.

By replacing s with the given suggestion tuples from Table 2, we get the concrete
formulas for each of the three supported query extension types:

As already indicated. So does not scale very well. The problem is that Qp (and
hence also Qo ) is arbitrary large in size and complexity, so there is no way to guar-
antee efficient results. Running it directly over D requires too many joins, and since
Qo is arbitrary, it is also impossible to pre-calculate all possible joins and store them
in an index.

We will now show an example of how the optimal suggestion function works.
If we assume that the partial query Qp equals the query Q from Fig. 2, and we want
the calculate optimal datatype filter suggestions for the city names of the focus
variable vf = v0 , we need to evaluate the query of type 3 from above. In general,
this calculates suggestions for all properties p, but we are now only interested in
the names, since this is the only property of vf without any filters yet. We know
that Qp only returns two cities: RO and NY, hence the relevant suggestions are
So = {(hasName,NewYork), (hasName,Rome)}.

S(D,Qp) = {s1, s2,… , sk}

(19)So = Ans(s)(Qo(s),D) whereQo(s) = Qp ∧ Qext
s

1: So = Ans(p,C)(Qo(p,C),D) where Qo(p,C) = Qp ∧ p(vf, v) ∧ C(v)

2:So = Ans(p)(Qo(p),D) where Qo(p) = Qp ∧ p(vf, v)

3:So = Ans(p,x)(Qo(p, x),D) where Qo(p, x) = Qp ∧ p(vf, v) ∧ (v ∈ {x})

371New Generation Computing (2019) 37:361–392	

123

Accuracy Measure

Since So is the desired set of suggestions, we will use it to define the accuracy of
any other suggestion function S . To do this we use the well-established measures of
precision and recall, which gives us the following two equations:

Among these two accuracy measures, the recall is by far the most crucial one
for our purpose. Imperfect precision may lead to cases where the user sees exten-
sions leading to no results, while imperfect recall, on the other hand, may com-
pletely block the user from making valid queries. In fact, since the recall is so
crucial, in this article we only consider suggestion functions with perfect recall.
It is important to understand that these metrics only indicate of how well a sug-
gestion function removes dead-ends. It must not be confused with precision and
recall related to the final selection of the user.

The Range‑Based Suggestion Function S
r

An alternative to the optimal solution which is used by many systems today
because of its simplicity is what we call the range-based suggestion function Sr .
This function aims to gather the full range of suggestions defined by the data,
regardless of the state of the partial query. To do this, it ignores all parts of Qp
except for the focus variable and its type:

Since we know that Cf (vf) is one of the conjunctions in Qp (i.e. Qp is more
restrictive), it is possible to establish a relationship between the two suggestion
functions So and Sr:

From this we can update the formulas for precision and recall:

It makes sense that So returns fewer suggestions than Sr since it considers all the
restrictions given by Qp . This leads to the fact that Sr has perfect recall, which is
important. The precision of Sr however, is not perfect, and depends on how close Sr
is to So.

Even though the precision of Sr is not perfect, it is still a powerful suggestion
function, because it can be computed very efficiently. The suggestions given by
Sr only depend on the focus concept Cf  , which is limited to a relatively small and
finite set of concepts. This means that we can calculate the set of suggestions
for each possible focus concept offline, and index the results. Now the VQS can

(20)precision(S) =
|So ∩ S|

|S|
recall(S) =

|So ∩ S|

|So|

(21)Sr = Anss(Qr(s),D) where Qr(s) = Cf (vf) ∧ Qext
s

Qp ⊑ Cf (vf) ⇒ Qo ⊑ Qr ⇒ So ⊆ Sr

precision(Sr) =
|So ∩ Sr|

|Sr|
=

|So|

|Sr|
recall(Sr) =

|So ∩ Sr|

|So|
=

|So|

|So|
= 1

372	 New Generation Computing (2019) 37:361–392

123

easily fetch suggestions during a query session by simply looking up the static set
corresponding to the given focus concept.

Since Sr is well-known, and the default solution for many systems, we consider
this the baseline with respect to accuracy. We will also use Sr as a fallback solu-
tion for the method we present in the following section.

If we assume that the partial query Qp equals Q from Fig. 2, we only consider the
concept type City and the corresponding names. This gives us the following set of
suggestions

and precision(Sr) =
|So|

|Sr|
=

2

4
= 0.5.

The Query Extension Index

In this section, we describe our main contribution: a method to efficiently calculate
dead-end free suggestions for all the three possible query extension types in “Query
extensions” with high accuracy. The method requires a query extension index I in
order to ensure sufficient performance, and we will use what we call a configuration
query Z to configure/represent the content of this index. The idea is then to make
suggestions based on just the parts of Qp that are included in Z , and hence I  . This
gives basis to the suggestion function SZ

a
 , which is one of many possible functions

in the family of approximate suggestion functions Sa.

The Configuration Query Z

Before we can construct or use the query extension index I  , we need a way to rep-
resent the data it contains. To do this we will use a special query without any filters
called a configuration query Z.

In order to make our system work, it is important that the configuration query
we use has a root of type Cf  . This requires a setup with multiple configuration que-
ries—one for each possible focus concept. However, given a particular partial query
Qp , there will only be one corresponding configuration query Z , so for now we focus
only on this one.

Intuitively Z works as a configuration for our system, by deciding which parts of
D to include in the generated index, and hence which parts of Qp it has consider/
ignore when making suggestions (see “The approximate suggestion function Sa”). A
large Z will in general result in a large index, but a corresponding suggestion func-
tion SZ

a
 with high precision. A small Z , on the other hand, will in general result in a

cheaper index with lower precision. It is also important to consider the structure of
Z : Best results are achieved by including properties and concepts that users are likely
to use in their queries, while making sure that the size of the index does not explode.

In this article, we assume that the configuration query is made in advance by a
human or algorithm with knowledge about the users, the domain and the dataset. It

Sr = {(hasName,Oslo), (hasName,Vienna),

(hasName,NewYork), (hasName,Rome)}

373New Generation Computing (2019) 37:361–392	

123

is impossible for the configuration maker to know exactly what the partial queries
will look like, but based on for example a query log of the user it will often be pos-
sible to estimate it. This together with the dataset can be used to make a configu-
ration that leads to a useful but relatively small index. The results we can achieve
depends on properties of the dataset like size and branching degree, but also on how
similar the new query is to the queries in the query log. In general, we have a trade-
off between quality and index size. Datasets with high branching degree will poten-
tially lead to exponentially growth in index size, and in these cases the configuration
query has to be relatively small and not very complex.

We are currently working towards an algorithm that can automatically search for
the optimal configurations given a threshold on the index size. This is quite chal-
lenging due to the large search space of all possible configuration queries, but also
due to the fact that we need to execute queries over possibly very large datasets in
order to evaluate them. We believe it is possible to overcome this problem by esti-
mating the number of answers a query returns, but this is part of another study.

Above we stated that the root of Z must be of the same type as the focus variable
of Qp , which is Cf  . This is necessary in order to be able to compare and intersect Z
with Qp . This becomes clear in “The approximate suggestion function Sa” when we
describe the approximate suggestion function SZ

a
.

Index Generation

Since the performance is so crucial when making online suggestions, we need an
index to support this task. This index must be constructed offline, and it is supposed
to serve multiple (online) user sessions. To do this well, it is important to select a
suitable subset of D to index, which is achieved by using a good configuration query
Z.

Given a configuration query Z , the idea is to include all data from D that is fully
or partially covered by it. To do this we first need to construct the modified version
of Z where every branch and subbranch is optional. We call this query Zopt . Now we
get the index by executing Zopt over D:

Fig. 3   Example configuration
query Z including a city’s name
and population, and the corre-
sponding country’s continent

City
v0

Country
v1

partOfCountry

v2

hasName

v3

hasPopulation

v5

partOfContinent

374	 New Generation Computing (2019) 37:361–392

123

One can represent I in two different ways: either as a denormalised table with
one column for each variable in Z , where each row represents a possible assignment
to these variables, or as a data graph, i.e. the subset of D which is covered by Zopt .
Which one of these we use is irrelevant with respect to precision. However, if we
consider performance, the tabular representation is preferred for the type of queries
we have, so we use this in our actual implementation.

Table 3 gives an example of an index table generated from Z in Fig. 3 and the
dataset D from Table 1. In this simple example the number of rows is very small, but
in a larger more realistic case, the number of rows will increase rapidly if many-to-
many or one-to-many relationships exists.

The Approximate Suggestion Function S
a

Given a configuration query Z , we have what we need to define the corresponding
suggestion function SZ

a
:

Here Qp ∩ Z is the pruned version of Qp we get by intersecting the trees defined by
Qp and Z . If Qp contains filters on any of the datatype variables, they are kept.

If we assume that Z contains all possible properties related to the root, i.e. the
root is fully saturated, then QZ

a
 is completely covered by Z . This means that all data

from D that is relevant for QZ

a
 is also included in I  , i.e.

In other words, we get the same result if we run QZ

a
(s) over I instead of D . The

advantage of using I instead of D directly is of course that suggestions are returned
fast enough.

However, if the root of Z is not fully saturated, then our approach will not return
any suggestions related any property p missing. In that case, the system can always
fall back on the range-based solution Sr for p, or simply not give any suggestions
related to it.

We have now considered three different suggestion functions. If we compare the
formulas each of them uses, and focus on a fixed property, we get the following rela-
tionship between them:

And from this we can derive the full relationship between the precision and recall
of the functions:

(22)I = genIndex(Z,D) = Ans(Zopt,D)

(23)S
Z

a
= Ans(s)(Q

Z

a
(s),D) where QZ

a
(s) = (Qp ∩ Z) ∧ Qext

s

S
Z

a
= Ans(s)(Q

Z

a
(s),D) = Ans(s)(Q

Z

a
(s), I)

(24)Qp ⊑ (Qp ∩ Z) ⊑ Cf (vf) ⇒ Qo ⊑ QZ

a
⊑ Qr ⇒ So ⊆ S

Z

a
⊆ Sr

recall(Sr) = recall(SZ

a
) = recall(So) = 1

0 ≤ precision(Sr) ≤ precision(SZ

a
) ≤ precision(So) = 1

375New Generation Computing (2019) 37:361–392	

123

Given a partial query Qp , and a fixed property p, each of the three functions will
give us a set of suggestions. So returns the optimal set by considering the whole
structure of Qp , S

Z

a
 returns a larger less precise set by ignoring everything not cov-

ered by Z , and Sr returns an even larger set of suggestions by not considering the
structure of Qp at all.

We will now calculate approximate suggestions using the same input as we used
with So and Sr . The intersection (Qp ∩ Z) can be seen in Fig. 4, and it only includes
the filter on the city’s population, which has to be higher than 1M. We are then left
with three city individuals: VI, RO and NY, which gives the following suggestions
for the name property:

The corresponding precision of the approximate function is then
precision(SZ

a
) =

|So|

|SZ

a
|
=

2

3
= 0.66.

Existential Concept Variables

With the index construction method described in “Index generation”, the columns
representing concept variables will be filled with only URIs. This data is wasted
space: Users do not need to filter on URIs, and suggested values of URIs are there-
fore not needed. However, it is often interesting to know whether an assignment to
the concept variable exists or not, so instead of removing the column completely,
we replace the URIs with boolean values indicating whether an assignment exists or
not. This reduces the index size considerably, compared to the case where all URIs
are stored, because multiple rows where only one URI differs can now be collapsed
into only one row.

So = {(hasName,Vienna), (hasName,Rome), (hasName,NewYork)}

Fig. 4   The pruned query we get
by intersecting Q from Fig. 2
and Z from Fig. 3

City
v0

Country
v1

partOfCountry

v2 > 1.000.000

hasPopulation

Table 3   The resulting index
table I = genIndex(Z,D) with
Z from Fig. 3 and D from
Table 1

City City-name City-pop. Country Country-continent

OS Oslo – NOR Europe
VI Vienna 1.7M AUT​ Europe
RO Rome 2.9M ITA Europe
NY New York 8.5M USA North America

376	 New Generation Computing (2019) 37:361–392

123

By using existential concept variable columns, it becomes quite cheap to include
concept variables in the configurations, since it only requires one more column of
boolean values, while the number of rows stays fixed. In Experiment 1, we explore
how much the accuracy increase by adding another layer of these existential concept
nodes to the index, which is a comparatively cheap investment.

Evaluation

We implemented our ontology projection approach and adaptive extension sugges-
tion solution and conducted a series of experiments. The results and findings are
presented in what follows.

Ontology Projection

The evaluation of ontology projection approach includes its use in practical systems
and a performance evaluation checking its feasibility for use in interactive applica-
tions without any significant delay in a query interface.

Practical Use

The variants of ontology projection approach has been implemented in OptiqueVQS
[27], a visual query formulation tool, and SemFacet [1], a faceted search tool. Both

Fig. 5   OptiqueVQS over a use case provided by Siemens

377New Generation Computing (2019) 37:361–392	

123

interfaces support tree-shaped conjunctive queries and their source codes are avail-
able online in GitLab.4,5

OptiqueVQS (see Fig. 5) is a visual query system. It allows users to navigate
the conceptual space and each traversal from a class to another adds a typed vari-
able-node and object property connecting it to the query graph. OptiqueVQS was
deployed and evaluated in different use cases, including Siemens’ case for sensor
data [10, 25], Statoil’s case for oil and gas [9, 27], and on generic datasets [24]. In
Fig. 5, there is an example query asking for all trains with a turbine named “Bear-
ing Assembly” and their journal bearing temperature readings in the associated
generator.

SemFacet (see Fig. 6) is full-fledged general-purpose faceted search interface.
In typical faceted search, users are presented with facet-values organised in groups
according to facet-names and it is often not allowed to navigate between classes.
SemFacet allows end users to navigate between classes and browse data sets at the
same time. The interface was deployed and evaluated over a slice of Yago database
[1]. In Fig. 6 there is an example search for U.S. presidents who graduated from
Harvard or Georgetown, and whose children graduated from Stanford. All these
conditions are combined conjunctively and their constraints apply simultaneously.
One can see that changing the focus of the query, one can either see the presidents
(left part of the figure), or their universities (centre part of the figure), or their chil-
dren (right part of the figure).

Performance

Our current implementation of the ontology projector is written in Java, and used by both
OptiqueVQS and the SIRIUS Geoscience image annotation and classification project.6

selected
facet value

keywords

refocusing

facet predicate

facet values

(refocused)
answers

http://en.wiki
William Jeffers
Jefferson Blyth
American polit
President of th
2001. Inaugur
youngest pres
of the Cold Wa
the baby boom

ANY

Country

USpres

Searchpoliticians

Stanford Uni.

Stanford Uni.

Harvard Uni.

Georgetown Uni.

type

has child

grad from

grad from

ANY

Country

USpres

Searchpoliticians

Stanford Uni.

Stanford Uni.

Harvard Uni.

Georgetown Uni.

type

has child

grad from

grad from

ANY

Country

USpres

Searchpoliticians

Stanford Uni.

Stanford Uni.

Harvard Uni.

Georgetown Uni.

type

has child

grad from

grad from

http://en.wikipedia.org/wiki/Chelsea_Clinton
Chelsea Victoria Clinton (born February 27, 1980) is the
only child of former U.S. President Bill Clinton and
former U.S. Secretary of State Hillary Rodham Clinton.
She is a special correspondent for NBC News, and
works with the Clinton Foundation and Clinton Global
Initiative...

Fig. 6   SemFacet over Yago knowledge graph

4  https​://gitla​b.com/ernes​to.jimen​ez.ruiz/Optiq​ueVQS​.
5  https​://githu​b.com/Oxfor​dSemT​ech/SemFa​cet.
6  https​://githu​b.com/Siriu​s-sfi/geosc​ience​-image​-class​ifica​tion.

https://gitlab.com/ernesto.jimenez.ruiz/OptiqueVQS
https://github.com/OxfordSemTech/SemFacet
https://github.com/Sirius-sfi/geoscience-image-classification

378	 New Generation Computing (2019) 37:361–392

123

It uses the HermiT Reasoner7 for classification, and RDFox to do the propagation of
properties/edges in the resulting graph. The full source code is publicly available in
GitLab.8

When evaluating this implementation, we focused on the time spent on construct-
ing the navigation graph, and querying over it. The first task is to construct the navi-
gation graph from a given ontology using the described approach. This only needs
to be done once each time the ontology changes and it is an offline process, so it is
in practice possible to run this on a remote server, and the timing of this is not very
crucial. The second task is to query GO in order to determine which actions the user
is allowed to make. In practice this means to find all outgoing datatype properties
and object properties for a given concept in GO . Since this is done frequently during
a query session, it should ideally finish so fast that the user does not even notice the
delay.

Table 4   Key metrics of
the ontologies used in the
performance evaluation of the
projection algorithm

https​://gitla​b.com/logid​/npd-factp​ages/blob/devel​op/ontol​ogy/npd-
db.ttl.owl
The columns provide the name of the ontology, the number of axi-
oms in total, the number of distinct classes and the number of sub-
class axioms in the ontology

Ontology Axioms Classes SubClassOf

TMO 1152 225 235
NPD 4110 142 594
MI 13,645 1494 1474
IDOMAL 31,101 3159 3556
ENM 105,983 12,533 17,191

Table 5   Performance of the
ontology projection for the five
given ontologies

The columns present the name of the ontology, the time it takes to
create the navigation graph, time spent querying for all datatype
properties and object properties on average. All times are given in
milliseconds

Ontology Projection creation Datatype
properties

Object properties

TMO 4001 0.42 0.49
NPD 4573 0.37 0.31
MI 3878 0.3 0.3
IDOMAL 4391 0.3 0.3
ENM 57,641 0.3 0.3

7  http://www.hermi​t-reaso​ner.com/.
8  https​://gitla​b.com/ernes​to.jimen​ez.ruiz/ontol​ogy-servi​ces-toolk​it/tree/maste​r.

https://gitlab.com/logid/npd-factpages/blob/develop/ontology/npd-db.ttl.owl
https://gitlab.com/logid/npd-factpages/blob/develop/ontology/npd-db.ttl.owl
http://www.hermit-reasoner.com/
https://gitlab.com/ernesto.jimenez.ruiz/ontology-services-toolkit/tree/master

379New Generation Computing (2019) 37:361–392	

123

We considered 5 different ontologies: Translational Medicine Ontology9 (TMO),
Norwegian Petroleum Directorate Factpages10 (NPD), Molecular Interactions11
(MI), Malaria Ontology12 (IDOMAL) and eNanoMapper13 (ENM). NPD is an
ontology covering the Oil&Gas domain, while the remaining four are from the biol-
ogy domain. We used the newest available versions of the ontologies at the time
we conducted the experiment (28 January 2019). All of them are listed in Table 4
together with relevant metrics about them. For each of them we performed the two
evaluation tasks, and all results are presented in Table 5.

The results show that querying over the navigation graph is lightning fast. In fact,
among the ontologies we tested, it never took more than 5 ms to fetch the relevant
properties with an average of about 1 ms. Note that 100 ms is the suggested limit for
having the user feel that the system is reacting instantaneously [17]. Regarding the
task of the constructing the navigation graph, it is much more complex and hence
slower. However, it is still within the reasonable time frame of one minute for all the
tested ontologies, given that this is an offline task.

Extension Suggestion

In this section we describe the two experiments done on our implementation of the
query extension index. Each of them focuses on the third type of suggestions, data-
type filters, since this is the hardest suggestion task.

Dataset, Ontology and Queries

We used the RDF version of the NPD Factpages14—a dataset covering details about
oil and gas drilling activities in Norway. This dataset contains 2,342,597 triples, and
it has a corresponding OWL ontology containing 209 concepts and 375 properties.
The NPD Factpages is actually a relational database (RDB), containing information
that all oil companies in Norway are legally required to report to the authorities.
This means that the RDF version, which is generated from this RDB, is fairly com-
plete and homogeneous. This is optimal for persons who want answers to complex
queries. Among the different concepts we considered in our queries, each have on

Table 6   Frequency of query
size in the query log used in the
experiments

https​://githu​b.com/Alope​x8064​/npd-factp​ages-exper​iment​s

Query size 5 6 7 8

Frequency 3 15 2 9

14  https​://gitla​b.com/logid​/npd-factp​ages.

9  https​://biopo​rtal.bioon​tolog​y.org/ontol​ogies​/TMO.
10  https​://gitla​b.com/logid​/npd-factp​ages/blob/devel​op/ontol​ogy/npd-db.ttl.owl.
11  https​://biopo​rtal.bioon​tolog​y.org/ontol​ogies​/MI.
12  https​://biopo​rtal.bioon​tolog​y.org/ontol​ogies​/IDOMA​L.
13  https​://biopo​rtal.bioon​tolog​y.org/ontol​ogies​/ENM.

https://github.com/Alopex8064/npd-factpages-experiments
https://gitlab.com/logid/npd-factpages
https://bioportal.bioontology.org/ontologies/TMO
https://gitlab.com/logid/npd-factpages/blob/develop/ontology/npd-db.ttl.owl
https://bioportal.bioontology.org/ontologies/MI
https://bioportal.bioontology.org/ontologies/IDOMAL
https://bioportal.bioontology.org/ontologies/ENM

380	 New Generation Computing (2019) 37:361–392

123

average of 14.1 different outgoing datatype properties, and 6.4 outgoing object prop-
erties in NPD Factpages. The number of distinct individuals/literals each such prop-
erty leads to is 572 on average (with a median of 12).

The query log distributed with this dataset was not suited for our experiment,
since only a few of the queries had the structure our system required, and none of
them connected more than a few concepts together. Therefore, we constructed a new
query log consisting of complex queries of a more suitable size, with the goal to
cover a wide set of possible cases. The log consists of 29 queries ranging from 5 to
8 concept variables and 0 to 12 datatype variables, and the corresponding result sets
over the NPD dataset range from just 12 tuples, to over 5 million tuples. Further-
more, Table 6 gives the query size distribution. The complete query log is publicly
available on GitHub.15

Test Cases and General Setup

In both of our experiments we ran multiple test cases, where each test case used a
query Qp from the query catalogue, and a generated concept configuration Z . By
testing multiple Z together with each Qp we got a fairly complete picture of how
our system behaves. For each test case we first constructed the corresponding index
I based on Z and the dataset. Then we calculated suggestions for all of the three
defined suggestion functions, and the corresponding precision they achieved. We
also calculated the cost associated with each choice of Z . This cost differed between
the two experiments, but was related to the size of either Z or I (see the individual
experiments for details.)

Since we only considered one query Qp at a time, it was pointless to consider
parts of Z which was not covered by Qp itself. Every addition to Z that is outside Qp
will not affect the resulting suggestions. Therefore, we focused on the more interest-
ing cases where Z was fully covered by Qp.

Notice that a real-world scenario would be more complex than our setup with
simple test cases. The success of a concept configuration and its corresponding
index would not only depend on the precision of one single query, but rather a large
set of possibly very different queries. One of our future goals is to develop methods
for finding configurations that works well for a whole catalogue of queries.

Experiment 1: Configuration Type/Size vs Precision

In Experiment 1, we show how the accuracy of Sa changes as configurations of dif-
ferent size and shape are used. To do this, we first generated a set of random “con-
figurations cores” c for each query Qp in the query catalogue. Each core consisted of
one or more connected concept variables from Qp , and was just used as a basis for
generating two other concept configurations:

•	 Dat(c) : Every possible datatype property is added to the concept variables in c.

15  https​://githu​b.com/Alope​x8064​/npd-factp​ages-exper​iment​s.

https://github.com/Alopex8064/npd-factpages-experiments

381New Generation Computing (2019) 37:361–392	

123

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX npd: <http://sws.ifi.uio.no/vocab/npd-v2#>

SELECT * WHERE {
?c1 rdf:type npd:ExplorationWellbore.
?c2 rdf:type npd:Field.
?c5 rdf:type npd:ProductionLicence.
?c3 rdf:type npd:Company.
?c4 rdf:type npd:FieldStatus.
?c8 rdf:type npd:Discovery.
?c6 rdf:type npd:ProductionLicenceStatus.
?c7 rdf:type npd:ProductionLicenceArea.

?c1 npd:explorationWellboreForField ?c2.
?c1 npd:explorationWellboreForLicence ?c5.
?c2 npd:currentFieldOperator ?c3.
?c4 npd:statusForField ?c2.
?c6 npd:statusForLicence ?c5.
?c7 npd:isGeometryOfFeature ?c5.
?c8 npd:includedInField ?c2.

?c1 npd:wellboreBottomHoleTemperature ?a7.
?c2 npd:name ?a8.
?c2 npd:status ?a9.
?c3 npd:name ?a6.
?c4 npd:status ?a5.
?c5 npd:isActive ?a10.
?c5 npd:name ?a11.
?c5 npd:originalAreaSize ?a12.
?c6 npd:status ?a4.
?c7 npd:isStratigraphical ?a1.

FILTER(?a7 >= 150).
FILTER(regex(?a8, "TAMBAR", "i")).

}

Fig. 7   Results for Query 2.6

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX npd: <http://sws.ifi.uio.no/vocab/npd-v2#>

SELECT * WHERE {
?c1 rdf:type npd:ExplorationWellbore.
?c2 rdf:type npd:Field.
?c3 rdf:type npd:Company.
?c4 rdf:type npd:FieldStatus.
?c5 rdf:type npd:ProductionLicence.
?c6 rdf:type npd:ProductionLicenceStatus.
?c7 rdf:type npd:ProductionLicenceArea.
?c8 rdf:type npd:Discovery.

?c1 npd:explorationWellboreForField ?c2.
?c1 npd:explorationWellboreForLicence ?c5.
?c2 npd:currentFieldOperator ?c3.
?c4 npd:statusForField ?c2.
?c6 npd:statusForLicence ?c5.
?c7 npd:isGeometryOfFeature ?c5.
?c8 npd:includedInField ?c2.

?c1 npd:wellboreBottomHoleTemperature ?a7.

FILTER (?a7 >= 190).
}

Fig. 8   Results for Query 2.8

382	 New Generation Computing (2019) 37:361–392

123

•	 ObjDat(c) : Every possible datatype property and object property is added to the
concept variables in c.

The only difference between these two configurations, is that ObjDat(c) contains one
extra layer of concept variables. It is relatively cheap (w.r.t. storage usage) to add
these concept variables, as described in “Existential concept variables”, but the pre-
cision will (potentially) increase by doing it. Therefore, the split between Dat(c) and
ObjDat(c) was created in order to measure how much the precision increases.

Both of the two configurations Dat(c) and ObjDat(c) were used in one test
each, where suggestion values for each of the four different suggestion functions
of interest were calculated. They are given below, and they satisfy:

precision(Sr) ≤ precision(SDat(c)
a

) ≤ precision(SObjDat(c)
a

) ≤ precision(So) = 1.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX npd: <http://sws.ifi.uio.no/vocab/npd-v2#>

SELECT * WHERE {
?c1 rdf:type npd:ExplorationWellbore.
?c2 rdf:type npd:Field.
?c3 rdf:type npd:FieldOperator.
?c4 rdf:type npd:Company.
?c5 rdf:type npd:BAA.
?c7 rdf:type npd:BAAArea.

?c1 npd:explorationWellboreForField ?c2.
?c3 npd:operatorForField ?c2.
?c3 npd:fieldOperator ?c4.
?c5 npd:baaOperatorCompany ?c4.
?c7 npd:isGeometryOfFeature ?c5.

?c7 npd:areaSize ?a3.

FILTER(?a3 >= 300).
}

Fig. 9   Results for Query 3.5

Fig. 10   Average precision of
size 5 queries

383New Generation Computing (2019) 37:361–392	

123

After running through every test case, the results were grouped by both the
configuration type (Dat or ObjDat) and the size of the configuration, where the
size of a configuration is defined by the number of concept variables in the con-
figuration core c. Finally, the average precision of each group was calculated and
the results visualised.

Results and Analysis This section contains results from Experiment 1. First we
present individual results for three selected queries (Query 2.6, Query 2.8 and
Query 3.5) in Figs. 7, 8 and 9. Then follows the resulting averages for queries of
size between 5 and 8 in Figs. 10, 11, 12 and 13. For the complete set of queries
and corresponding results, we refer to GitHub.16

The yellow line in each chart shows the precision of the range-based function Sr ,
which is always constant. Since this is the suggestion function with the lowest preci-
sion we consider, it acts as a baseline—marking the worst case scenario for Sa . The
blue and red curves show the precision of SDat

a
 and SObjDat

a
 respectively. As expected,

these two curves are non-decreasing and precision(SDat
a

) ≤ precision(SObjDat
a

) for all
configuration sizes.

The precision given by each of the three curves depends mostly on how many
of the important key restrictions of Qp they are able to capture, where a key restric-
tion is a restriction that reduces the number of instances one could assign to the
root so much that it also causes a large reduction in the possible facet values. The
query used in Fig. 7 (Query 2.6) for example has one important key restriction on
the data property name of the Field concept variable in depth 2 of Qp . Since this
key restriction is associated with a datatype variable, both SDat

a
 and SObjDat

a
 perform

about equally well. The slight difference between SDat
a

 and SObjDat
a

 is caused by other
much less important restrictions, which SObjDat

a
 manages to capture, but SDat

a
 does

not. If this chart had shown the best-case scenario, the precision would have been
perfect already at size 2, because that is the point it would reach the Field concept
node. But since we average over multiple differently shaped configurations, and the
branching factor of Qp is close to 2, the two lines moves steadily upwards until they
reach size 5. At this point the configuration is guaranteed to cover the key restriction
regardless of its shape.

Query 2.8 in Fig. 8 has two key restrictions: the first restriction is associated
with a datatype property filter on the root node (wellboreTemperature ≥ 190). This
is captured by all the configurations we used in the experiment, and the difference
between Sr and SDat

a
 at size 1 shows the effect of capturing it. The other key restric-

tion is associated with the Field concept variable in depth 2. Since SObjDat
a

 includes
one additional layer of concept variables, it captures this already from size 1, while
S
Dat
a

 on the other hand, needs to be of the correct shape in order to capture it, hence
the steadily rising curve, similar to Query 2.6 in Fig. 7.

Query 3.5 in Fig. 9 is a linear query (the tree has only one branch), so there is
one possible configuration core for each configuration size. Hence, the result-
ing curve only shows that one case of growing configuration. This query also has
two key restrictions. The first one is an object property restriction in depth 2 of the

16  https​://githu​b.com/Alope​x8064​/npd-factp​ages-exper​iment​s.

https://github.com/Alopex8064/npd-factpages-experiments

384	 New Generation Computing (2019) 37:361–392

123

Fig. 11   Average precision of
size 6 queries

Fig. 12   Average precision of
size 7 queries

Fig. 13   Average precision of
size 8 queries

385New Generation Computing (2019) 37:361–392	

123

query—the effect of capturing this restriction is shown by the precision increase of
S
ObjDat
a

 between size 1 and 2. The second restriction is a data property restriction
associated with the only concept variable in depth 6 of the query. This restriction is
very hard to capture for both SObjDat

a
 and SDat

a
 , but when the configuration reaches

size 6, and the whole query is covered by each of their configurations, the resulting
precision becomes perfect.

The rules that control SObjDat
a

 and SDat
a

 also apply to Sr . It only performs well if it
is able to capture all of the important key restrictions. But since Sr never considers
Qp , it will in fact always perform poorly if one or more such key restrictions exists.
Figures 7 and 8 both show examples where this happens. For each of those cases
the precision of Sr is only 0.22. This is quite low compared to 0.50, which is the
average precision of size 8 queries given by Fig. 13.

The charts in Figs. 10, 11, 12 and 13 display the average over all queries grouped
by query size. The relation Sr ≤ S

ObjDat
a

≤ S
Dat
a

 still holds over the averages. The
first thing to notice from the average results is the relatively high precision of the
range-based function. In our experiment, its precision ranged from 0.22 to 0.96,
with an average of 0.56. This does not sound too bad, but user studies done with
OptiqueVQS show that the users are not always satisfied with Sr , which actually
motivated us to start exploring Sa as an alternative.

In the cases where key restrictions are associated with object properties, SObjDat
a

performs much better than SDat

a
 . In fact, it quite often returns suggestions with per-

fect precision, as shown in Fig. 8. The average difference between SObjDat
a

 and SDat
a

 ,
shown in Figs. 10, 11, 12 and 13, indicates that it is worth adding this extra layer of
object properties to the configuration, especially since the resulting increase in the
index size is relatively small (one extra boolean column).

Fig. 14   Scatter plot for Query 6.2. Pareto optimal configurations are connected. Index size is not normal-
ised

386	 New Generation Computing (2019) 37:361–392

123

The average results in Figures 10, 11, 12 and 13 are highly influenced by the indi-
vidual queries of the relevant size, especially for queries of size 5 and 7 where the
average is based on only 3 and 2 queries respectively. Hence, we cannot conclude
anything about how the query size affects the precision.

Experiment 2: Index Size vs Precision

In Experiment 2 we made a direct comparison between the index size and the
precision. We did this by first making one test case for every query Qp , and each
possible configuration Z covered by it. Then, for each such test case, we calcu-
lated both the size of the table generated by Z , and the precision of SZ

a
 . Finally,

we analysed and visualised the results.
Results and Analysis Figure 14 shows the results for one of the tested que-

ries (Query 6.2), visualised as a scatter plot, where each point represents a test
case/concept configuration/index table. Some of the points are pareto-optimal,
which means that neither of the two dimensions (precision and index size) can
be improved without weakening the other. These points are located in the bottom
right part of the plot (smaller index and higher precision are better), and are con-
nected by line segments. The frontier of pareto-optimal points shows how large
the index must be in order to achieve a given precision in a best-case scenario,
i.e. when the configuration is chosen optimally.

There are two reasons for using the best-case scenario:

1.	 The configuration is a part of the setup process of our system, and is supposed to
be optimised by experts or an algorithm.

2.	 The number of possible configurations in total is infinite, so using the average or
something similar would be impossible.

Therefore, while we cannot expect to achieve results like this consistently, it does
give an indication of what might be achieved with an optimal choice of configu-
ration. The fact that we investigate the best-case scenario also explains why it is
sufficient to only consider the configurations covered by Qp . For any configuration
Z′ with branches outside Qp , there exists another concept configuration Z which
leads to the same precision, but a smaller index. Visually, the set of all such test
cases would appear as points above the already existing points, and hence not be
candidates for pareto-optimality.

The set of pareto-optimal points for each query defines a monotonically
increasing curve. Let Zmin and Zmax denote the configurations used for the first
and last of these points. Zmax is the configurations that is isomorphic to Qp . I.e. it
fully covers Qp , but it has no branches outside of it. The precision given by this
configuration is perfect, but it also uses the largest index of the pareto-optimal
configurations. Zmin on the other hand contains only the root and all local data-
type properties. This is the smallest configuration that can provide suggestions for
each of the local datatype properties.

387New Generation Computing (2019) 37:361–392	

123

When we look at the pareto-optimal configurations for all the different queries,
we see that the index size of Zmin differs depending on the focus concept of the
query. We can’t expect the index to become smaller than a table of the instances
of the class along with their attributes, which mostly depends on the number of
instances in the dataset. Therefore, in order to compare them under equal condi-
tions, we normalised the index size by dividing by the index size of Zmin . The
index size then becomes just a factor, where e.g. 2.0 means that the index is twice
as large as the index constructed from Zmin . The pareto-optimal points for all the
29 queries are displayed in Fig. 15 (normalised index size), together with the
median (red) and upper quartile (blue).

The overall results from Fig. 15 seems promising, as most of the transitions
between pareto-optimal points (black line segments) are more horizontal than verti-
cal. This means that with clever selection of configuration branches, one can transi-
tion to a much higher precision without having to increase the index very much. The
median and upper quartile have similar horizontal profiles, but with a slight increase
as they approach 100% precision, resulting in a more convex curve. In other words,
the last 10% precision will cost us more than any other 10% increase. In a real-life
scenario it will also never be possible to guarantee 100% precision because the users
may construct queries not seen by the system before, so aiming for 100% precision
is not a reasonable option anyway.

From Experiment 1 and Fig. 11 we know that the average precision of Sa when
using the smallest possible configuration for each query ( Zmin ) is 0.61. Figure 15
shows that this precision can be increased to 100% with an index that is less than

Fig. 15   Pareto-optimal configurations for all queries with median (red) and upper quartile (blue). Index
size is normalised

388	 New Generation Computing (2019) 37:361–392

123

2.1 times larger, with the exception of three17 queries that are orders of magnitude
higher. This is caused by their highly restrictive filters on branches far away from the
root. The median goes up to 90% precision with about 2.5% increase in index, while
going from 90 to 100% precision costs us an additional 10% increase in index size.

How well a configuration works, and what the optimal configuration is, depends
to a high degree on the actual dataset and queries constructed by the users. Some
datasets have a high branching degree, which causes the index to grow faster than
for other datasets, and/or some query catalogues may have queries of very similar
shape, (possibly) resulting in higher precision for configurations including these
shapes. Therefore, we should be careful about generalising the results of this experi-
ment to other datasets and query catalogues.

Related Work

Regarding ontology projection, visualisations for different aspects of the Semantic
Web such as ontology visualisation, query formulation, and search are relevant for
the work presented here, since they mainly require end users to examine and interact
with the elements of a given ontology. However, to best of our knowledge, none of
the existing works deal with projecting navigation graphs from ontologies, although
the inverse exists such as for ontology axiomatization through diagramming [20].
Among others [8], the graph paradigm is often used to depict the structure of onto-
logical elements and relationships as they reflect the interconnected nature of ontol-
ogy classes. There are various approaches using graphs for ontology visualisation
and exploration such as GrOWL [14] and KC-Viz [16]. Similarly, tools for visual
query formulation also often use the graph paradigm to depict the information needs
and domain exploration such as gFacet [7] and NITELIGHT [21]. In a graph-based
approach, classes are often represented as nodes and properties as edges.

Non graph-based approaches, such as form-based, still use a navigation approach
for browsing through ontology classes. Examples include Rhizomer [3], a faceted
search tool, and PepeSearch [31], a form-based query formulation tool. Typically,
form-based approaches are meant to operate on a single class level; however, as in
the case of Rhizomer and PepeSearch, navigation between classes is an essential
instrument. OptiqueVQS and SemFacet represent these two different paradigms, that
is graph-based and form-based respectively. In OptiqueVQS, the navigation graph is
used to explore the domain, while a constrained tree-shaped representation is used
for query visualisation instead of a graph for usability purposes, while SemFacet
allows navigation between classes and employs form elements rather than graphical
visualisations. We refer interested readers to related publications [1, 27] on these
tools including end user experiments.

Regarding data-driven adaptive suggestions, there are plenty of systems that sug-
gest filters on the facets of a single class. In fact, this a core feature of faceted search,

17  There are two queries pointing towards (1.0, 110.5) and one pointing towards (1.0, 39.3).

389New Generation Computing (2019) 37:361–392	

123

which is quite common on websites like Ebay18 and PriceSpy19. Popular implemen-
tations of faceted search includes e.g. Apache Solr20 and Elasticsearch.21 Since these
systems only consider one class at a time, they can afford to calculate dead-end
extensions with both perfect precision and recall, which distinguish them from our
system.

All existing systems that support multiple connected classes while aiming to pro-
vide adaptive extension suggestions has some kind of weakness. SemFacet [1] is one
of these systems. It relies on a highly scalable in-memory RDF triple store (RDFox)
in order to get sufficient performance, but even this does not help if the queries are
very complex. Other systems like DISQOVER [18] restricts the user by only allow-
ing extensions leading to query with result count under a given threshold. Many of
these systems are both mature and feature-rich, and provides more than the dead-end
elimination our system delivers. One example of this is ranking, which is useful when
the number of valid extensions is so large that one must prioritise what to display to
the user. The dead-end elimination we provide can be considered to be a (binary)
ranking method in this respect. To our knowledge, no previous work has considered
the particular query extension index we present, or the approximation of suggestions
that comes with it.

Conclusion

In this article, we focused on ontology-based VQSs from an end-user perspective
and explored means for using ontologies for the query formulation task, that is how
one can navigate through the concepts of a given ontology and how elements of an
ontology could be efficiently and effectively suggested to an end user without lead-
ing to any empty results. We first presented an approach for projecting ontologies
into navigation graphs for the purpose of supporting query formulation and ontol-
ogy exploration tasks. However, one should note that such an approach is useful in
general for supporting ontology-based user interfaces. Ontology to graph projection
approach is implemented and tested in two different VQSs and experiment results
suggest that we can efficiently project a given ontology into a navigation graph and
query it. Secondly, we introduced three query extension suggestion functions for
eliminating dead-ends: an optimal one that is slow for large datasets and complex
queries; a range based one that is rather inaccurate, but allows fast implementation;
and a configurable family of intermediate (precise enough and fast enough) solu-
tions to the problem, based on only looking at a part of the constructed query. We
conducted a series of experiments to conclude that

20  http://lucen​e.apach​e.org/solr/.
21  https​://www.elast​ic.co/.

18  https​://www.ebay.com/.
19  https​://price​spy.co.uk/.

http://lucene.apache.org/solr/
https://www.elastic.co/
https://www.ebay.com/
https://pricespy.co.uk/

390	 New Generation Computing (2019) 37:361–392

123

1.	 good approximations to the best set of suggestions can often be reached by con-
sidering only relatively small parts of the constructed query,

2.	 the precision of the approximations can often be improved dramatically by includ-
ing the presence of required object properties in the configuration, rather than
only connected datatype properties,

3.	 modest increases in index size will (in many cases) lead to a significant increase
in accuracy.

In future work we intend to further improve the suggestions given to users by
providing a ranking on the extensions that are not dead-ends. This ranking could
be based on either the underlying data and/or a given query log [12]. Furthermore,
we would like to consider alternative storage formats for the pre-joined index. In
particular a document database like MongoDB could be suitable. A related question
is how to share storage space between indices for sub- and super-classes in the type
hierarchy. The viability of our approach depends on a good choice of the facet con-
figuration: it should be possible to determine an optimal configuration given a log of
previous user queries. Another approach for reducing the index size is to work with
buckets that combine ranges of facet values. Suitable bucketing strategies can also
be determined from the query log and data.

Acknowledgements  This project is partly funded by the Center for Scalable Data Access in the Oil and
Gas Domain (SIRIUS).

References

	 1.	 Arenas, M., Grau, B.C., Kharlamov, E., Marciuska, S., Zheleznyakov, D.: Faceted search over RDF-
based knowledge graphs. J. Web Semant. 37–38, 55–74 (2016). https​://doi.org/10.1016/j.webse​
m.2015.12.002

	 2.	 Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Descrip-
tion Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press,
New York, NY, USA (2003)

	 3.	 Brunetti, J.M., García, R., Auer, S.: From overview to facets and pivoting for interactive exploration
of semantic web data. Int. J. Semant. Web Inf. Syst. 9(1), 1–20 (2013). https​://doi.org/10.4018/jswis​
.20130​10101​

	 4.	 Catarci, T.: What happened when database researchers met usability. Inf. Syst. 25(3), 177–212
(2000). https​://doi.org/10.1016/S0306​-4379(00)00015​-6

	 5.	 Catarci, T., Costabile, M.F., Levialdi, S., Batini, C.: Visual query systems for databases: a survey. J.
Vis. Lang. Comput. 8(2), 215–260 (1997). https​://doi.org/10.1006/jvlc.1997.0037

	 6.	 Grau, B.C., Giese, M., Horrocks, I., Hubauer, T., Jiménez-Ruiz, E., Kharlamov, E., Schmidt, M.,
Soylu, A., Zheleznyakov, D.: Towards query formulation, query-driven ontology extensions in
OBDA systems. In: Proceedings of the 10th International Workshop on OWL: Experiences and
Directions (OWLED 2013), CEUR Workshop Proceedings, vol. 1080. CEUR-WS.org (2013)

	 7.	 Heim, P., Ertl, T., Ziegler, J.: Facet Graphs: Complex semantic querying made easy. In: Proceed-
ings of the 7th Extended Semantic Web Conference (ESWC 2010), LNCS, vol. 6088, pp. 288–302.
Springer (2010). https​://doi.org/10.1007/978-3-642-13486​-9_20

	 8.	 Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.G.: Ontology visualization
methods—a survey. ACM Comput. Surv. 39(4), 1 (2007). https​://doi.org/10.1145/12876​20.12876​21

	 9.	 Kharlamov, E., Hovland, D., Skjæveland, M.G., Bilidas, D., Jiménez-Ruiz, E., Xiao, G., Soylu, A.,
Lanti, D., Rezk, M., Zheleznyakov, D., Giese, M., Lie, H., Ioannidis, Y.E., Kotidis, Y., Koubarakis,

https://doi.org/10.1016/j.websem.2015.12.002
https://doi.org/10.1016/j.websem.2015.12.002
https://doi.org/10.4018/jswis.2013010101
https://doi.org/10.4018/jswis.2013010101
https://doi.org/10.1016/S0306-4379(00)00015-6
https://doi.org/10.1006/jvlc.1997.0037
https://doi.org/10.1007/978-3-642-13486-9_20
https://doi.org/10.1145/1287620.1287621

391New Generation Computing (2019) 37:361–392	

123

M., Waaler, A.: Ontology based data access in statoil. J. Web Semant. 44, 3–36 (2017). https​://doi.
org/10.1016/j.webse​m.2017.05.005

	10.	 Kharlamov, E., Mailis, T., Mehdi, G., Neuenstadt, C., Özçep, Ö.L., Roshchin, M., Solomakhina, N.,
Soylu, A., Svingos, C., Brandt, S., Giese, M., Ioannidis, Y.E., Lamparter, S., Möller, R., Kotidis,
Y., Waaler, A.: Semantic access to streaming and static data at Siemens. J. Web Semant. 44, 54–74
(2017)

	11.	 Klungre, V., Giese, M.: Evaluating a faceted search index for graph data. In: Proceedings of the On
the Move to Meaningful Internet Systems (OTM 2018). LNCS, vol. 11230, pp. 573–583 (2018).
https​://doi.org/10.1007/978-3-030-02671​-4_36

	12.	 Klungre, V., Soylu, A., Giese, M., Waaler, A., Kharlamov, E.: On enhancing visual query build-
ing over KGs using query logs. In: The Proceedings of the 8th Joint International Conference on
Semantic Technology (JIST 2018), LNCS, vol. 11341, pp. 77–85. Springer (2018). https​://doi.
org/10.1007/978-3-030-04284​-4_6

	13.	 Kogalovsky, M.R.: Ontology-based data access systems. Program. Comput. Softw. 38(4), 167–182
(2012)

	14.	 Krivov, S., Williams, R., Villa, F.: GrOWL: a tool for visualization and editing of OWL ontologies.
J. Web Semant. 5(2), 54–57 (2007). https​://doi.org/10.1016/j.webse​m.2007.03.005

	15.	 Lohmann, S., Negru, S., Haag, F., Ertl, T.: Visualizing ontologies with VOWL. Semant. Web 7(4),
399–419 (2016). https​://doi.org/10.3233/SW-15020​0

	16.	 Motta, E., Mulholland, P., Peroni, S., d’Aquin, M., Gomez-Perez, J.M., Mendez, V., Zablith, F.: A
Novel approach to visualizing and navigating ontologies. In: Proceedings of the 10th International
Conference on The Semantic Web (ISWC 2011), LNCS, vol. 7031, pp. 470–486. Springer (2011).
https​://doi.org/10.1007/978-3-642-25073​-6_30

	17.	 Nielsen, J.: Usability Engineering. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(1993)

	18.	 Pattyn, F., Vermaere, S., Van Huffel, P., Knecht, K., Constandt, H.: Semantic linking and integration
of researchers and research organizations in DISQOVER. In: Proceedings of the 9th International
Conference Semantic Web Applications and Tools for Life Sciences (SWAT4LS 2016), CEUR
Workshop Proceedings, vol. 1795. CEUR-WS.org (2016)

	19.	 Picalausa, F., Vansummeren, S.: What are real SPARQL queries like? In: Proceedings of the Inter-
national Workshop on Semantic Web Information Management (SWIM 2011), pp. 7:1–7:6. ACM
(2011)

	20.	 Sarker, M.K., Krisnadhi, A.A., Hitzler, P.: OWLAx: A protege plugin to support ontology axioma-
tization through diagramming. In: Proceedings of the Posters and Demonstrations Track co-located
with 15th International Semantic Web Conference (ISWC 2016), CEUR Workshop Proceedings,
vol. 1690. CEUR-WS.org (2016)

	21.	 Smart, P.R., Russell, A., Braines, D., Kalfoglou, Y., Bao, J., Shadbolt, N.R.: A visual approach to
semantic query design using a web-based graphical query designer. In: Proceedings of the 16th
International Conference on Knowledge Engineering and Knowledge Management (EKAW 2008),
LNAI, vol. 5268, pp. 275–291. Springer (2008). https​://doi.org/10.1007/978-3-540-87696​-0_25

	22.	 Soylu, A., Giese, M., Jiménez-Ruiz, E., Kharlamov, E., Zheleznyakov, D., Horrocks, I.: Towards
exploiting query history for adaptive ontology-based visual query formulation. In: Proceedings of
the 8th Metadata and Semantics Research Conference (MTSR 2014), CCIS, vol. 478, pp. 107–119.
Springer (2014)

	23.	 Soylu, A., Giese, M., Jimenez-Ruiz, E., Kharlamov, E., Zheleznyakov, D., Horrocks, I.: Ontology-
based end-user visual query formulation: why, what, who, how, and which? Univ. Access Inf. Soc.
16(2), 435–467 (2017). https​://doi.org/10.1007/s1020​9-016-0465-0

	24.	 Soylu, A., Giese, M., Jimenez-Ruiz, E., Vega-Gorgojo, G., Horrocks, I.: Experiencing OptiqueVQS:
a multi-paradigm and ontology-based visual query system for end users. Univ. Access Inf. Soc.
15(1), 129–152 (2016). https​://doi.org/10.1007/s1020​9-015-0404-5

	25.	 Soylu, A., Giese, M., Schlatte, R., Jiménez-Ruiz, E., Kharlamov, E., Özçep, Ö.L., Neuenstadt, C.,
Brandt, S.: Querying industrial stream-temporal data: an ontology-based visual approach. J. Ambi-
ent Intell. Smart Environ. 9(1), 77–95 (2017). https​://doi.org/10.3233/AIS-16041​5

	26.	 Soylu, A., Kharlamov, E.: Making complex ontologies end user accessible via ontology projections.
In: Proceedings of the 8th Joint International Conference on Semantic Technology (JIST 2018),
LNCS, vol. 11341, pp. 295–303. Springer (2018). https​://doi.org/10.1007/978-3-030-04284​-4_20

https://doi.org/10.1016/j.websem.2017.05.005
https://doi.org/10.1016/j.websem.2017.05.005
https://doi.org/10.1007/978-3-030-02671-4_36
https://doi.org/10.1007/978-3-030-04284-4_6
https://doi.org/10.1007/978-3-030-04284-4_6
https://doi.org/10.1016/j.websem.2007.03.005
https://doi.org/10.3233/SW-150200
https://doi.org/10.1007/978-3-642-25073-6_30
https://doi.org/10.1007/978-3-540-87696-0_25
https://doi.org/10.1007/s10209-016-0465-0
https://doi.org/10.1007/s10209-015-0404-5
https://doi.org/10.3233/AIS-160415
https://doi.org/10.1007/978-3-030-04284-4_20

392	 New Generation Computing (2019) 37:361–392

123

	27.	 Soylu, A., Kharlamov, E., Zheleznyakov, D., Jimenez Ruiz, E., Giese, M., Skjaeveland, M.G., Hov-
land, D., Schlatte, R., Brandt, S., Lie, H., Horrocks, I.: Optique VQS: a Visual query system over
ontologies for industry. Semant. Web 9(5), 627–660 (2018). https​://doi.org/10.3233/SW-18029​3

	28.	 Soylu, A., Modritscher, F., De Causmaecker, P.: Ubiquitous web navigation through harvesting
embedded semantic data: a mobile scenario. Integr. Comput. Aid. Eng. 19(1), 93–109 (2012)

	29.	 Spanos, D.E., Stavrou, P., Mitrou, N.: Bringing relational databases into the semantic web: a survey.
Semant. Web 3(2), 169–209 (2012)

	30.	 Tunkelang, D.: Faceted Search. Synthesis Lectures on Information Concepts, Retrieval, and Ser-
vices. Morgan & Claypool Publishers, San Rafael (2009)

	31.	 Vega-Gorgojo, G., Giese, M., Heggestøyl, S., Soylu, A., Waaler, A.: PepeSearch: semantic data for
the masses. PLoS One 11(3), 1 (2016). https​://doi.org/10.1371/journ​al.pone.01515​73

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Vidar N. Klungre  is a PhD candidate at the Department of Computer Science of University of Oslo, Nor-
way. His research topic is on scalable data-driven SPARQL query systems. Klungre likes to find structure
and patterns in information, and this has led him to fields like mathematics, ontology engineering, infor-
mation science and data science.

Ahmet Soylu  is an Associate Professor at the Department of Computer Science of Norwegian University
of Science and Technology (NTNU), Norway. He has taken part in several European, national, and indus-
trial projects in different roles. He is interested in data retrieval and search interfaces, ontology-based
data access, and semantic web technologies. Soylu has a PhD in computer science from the KU Leuven,
Belgium.

Ernesto Jimenez Ruiz  is a Senior Research Associate at The Alan Turing Institute in London (UK) and a
part-time researcher in the Centre for Scalable Data Access (SIRIUS) at the University of Oslo. In Sep-
tember 2019, he is starting a Lecturer position in Artificial Intelligence at the City, University of London
(UK). He previously held a Research Assistant position at the University of Oxford. His home university
(Universitat Jaume I, Castellon, Spain) awarded a “Premio extraordinario de doctorado” (roughly trans-
lated as an Extraordinary Doctoral Award) to his doctoral thesis (engineering category 2010–2011). His
research has covered several areas, including bio-medical information processing and integration, ontol-
ogy reuse, ontology versioning and evolution, ontology alignment, and semantic embeddings.

Evgeny Kharlamov  is a Research Scientist at the Bosch Center for Artificial Intelligence and an Associ-
ate Professor at the University of Oslo. He does AI-centered research with a focus on how knowledge
(semantics) and reasoning can enhance access and analyses of (big industrial) data. Evgeny’s work is
motivated by and applied to the context of Industry 4.0, Knowledge Graphs, and Semantic Web. His
work led to 100+ publications at conferences and journals. Before joining Bosch, he was a Senior
Research Fellow at the University of Oxford where he was in charge of several projects and raised about
1,8M EUR of research funding. Evgeny received PhD in Computer Science from the Free University of
Bozen-Bolzano.

Martin Giese  is a professor at the Department of Informatics of the University of Oslo, Norway. From
2012 to 2016, he was the Assistant Scientific Director of the Optique Project. He is interested in using
ontologies and other models to drive software systems. Giese has a PhD in informatics from the Univer-
sity of Karlsruhe, Germany.

https://doi.org/10.3233/SW-180293
https://doi.org/10.1371/journal.pone.0151573

	Query Extension Suggestions for Visual Query Systems Through Ontology Projection and Indexing
	Abstract
	Introduction
	Formal Framework
	Ontology and Navigation Graph
	Queries
	Datasets and Query Answers
	Query Extensions

	Adaptive Extension Suggestions
	Ontology Projection
	Edges Through Object Properties
	Edges Through Datatype Properties

	Suggestion Functions
	The Optimal Suggestion Function
	Accuracy Measure
	The Range-Based Suggestion Function

	The Query Extension Index
	The Configuration Query
	Index Generation
	The Approximate Suggestion Function
	Existential Concept Variables

	Evaluation
	Ontology Projection
	Practical Use
	Performance

	Extension Suggestion
	Dataset, Ontology and Queries
	Test Cases and General Setup
	Experiment 1: Configuration TypeSize vs Precision
	Experiment 2: Index Size vs Precision

	Related Work
	Conclusion
	Acknowledgements
	References

