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Abstract
Ontology-based visual query formulation is a viable alternative to textual query edi-
tors in the Semantic Web domain for extracting data from structured data sources in 
terms of the skills and knowledge required. A visual query system is at any moment 
responsible for providing the user with query extension suggestions; however, sug-
gestions leading to empty results are often not useful. To this end, in this article, we 
first present an approach for projecting OWL 2 ontologies into navigation graphs 
to be used for query formulation and then a solution where an efficient finite index 
is used to calculate non-ranked approximated extension suggestions for ontology-
based visual query systems using navigation graphs. The results of our experiments 
suggest that one can efficiently project an ontology into a navigation graph, query it 
for running an interactive user interface, and suggest query extensions that do not 
lead to dead-ends.
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Introduction

Ontology-based visual query formulation is a viable alternative to textual query 
editors in the Semantic Web domain for extracting data from structured data 
sources in terms of the skills and knowledge required given the increasing use 
of ontology-based data access (OBDA) [13, 29] approach in various domains [9, 
10]. A visual query system (VQS) presents a visual interface to users allowing 
them to extract information from a structured data source, based on some combi-
nation of filters and other requirements on the information to be retrieved [5, 27]. 
The intention is to provide data access to users without requiring them to learn 
a formal query language such as SPARQL. Each VQS needs to find a balance 
between expressivity and usability, that is a system that covers the whole expres-
sivity of SPARQL will hardly be more useful to lay users than a textual query 
editor [4]. This trade-off differs depending amongst others on the user group, 
their information needs, and the complexity of the data [23]. Simple informa-
tion needs will be met by filtering on some attributes of a single class (e.g. black 
shoes of size 42), but more advanced use often involves multiple entities of dif-
ferent types (e.g. black shoes from a small company based in a democratic coun-
try). Examples of VQSs designed for RDF data are Rhizomer [3], SemFacet [1], 
and OptiqueVQS [24].

As the user interacts with the VQS, a query is constructed in the background, 
and a visual representation is usually displayed to the user. The VQS is at any 
moment responsible for providing the user with query extension suggestions. This 
can be a list of datatype property filters, or object properties connecting to new 
concepts. Simple systems may in this case present long, static lists of suggestions 
containing all the different values appearing in the underlying data source (e.g., 
[31]). This will ensure that the user finds the suggestion he is looking for some-
where in the list, but it is not optimal, because the list will likely contain sugges-
tions that are incompatible with other parts of the partial query. In other words, 
selecting such a value will lead to an underlying query which is too restrictive, 
and hence no results are returned. This kind of dead-end is not desirable from a 
user experience perspective, and more advanced systems solve this by removing, 
disabling or down-ranking suggestions (often indicated by a grey font colour) that 
are not compatible with the existing query—leaving a shorter, more manageable 
list to the user (e.g., [22]). We call this technique adaptive extension suggestion 
in general, where the goal is to calculate and suggest the complete set of query 
extensions that are compatible with both the existing query, underlying data and 
the goal of user, while we call techniques particularly designed for avoiding que-
ries leading to no results dead-end elimination.

Calculations needed to support adaptive extension suggestion are quite inten-
sive for large datasets. In essence, it requires answers to multiple queries that are 
all at least as complex as the partial query itself. For queries with many variables, 
which require joins, this will be too slow. Even with very fast hardware, these 
queries cannot be executed within tenths of seconds as required for interactive 
systems. It becomes clear that some kind of index structure is needed to calculate 
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the adaptive extension suggestions sufficiently fast. If the query only contains 
one variable of a given class, it is possible to achieve desirable performance by 
using search engines like Lucene1 or Sphinx2 or similar software to index the data 
before use. These indices are known to scale to large datasets, e.g. by partition-
ing, which ensures fast response time, and no delay for the user. This setup is 
quite common in e-commerce systems like PriceSpy,3 and a core feature of what 
is often referred as faceted search [30]. These search engines require a fixed num-
ber of attributes to index on, which is the case with queries of only one concept. 
However, we want to support more complex queries with an arbitrary number of 
connected concepts, where no such static list exists. Ensuring good enough per-
formance for such queries is a challenging task, not something supported by these 
standard search engines.

In fact, it is impossible to achieve perfect suggestions for arbitrary complex que-
ries and large datasets with good performance. Some kind of index is needed, but it 
would have to be infinitely large in order to support arbitrary complex queries and 
large datasets. However, we can support complex queries in an efficient way if the 
user tolerates some irrelevant suggestions. To this end, in this article, we focus on 
dead-end elimination by first presenting an approach for projecting OWL 2 ontolo-
gies into navigation graphs to be used for query formulation and then presenting 
a solution where an efficient finite index is used to calculate non-ranked approxi-
mated extension suggestions for ontology-based visual query systems using naviga-
tion graphs. The accuracy of these suggestions depends on the size of the index—a 
larger index gives equal or better accuracy. We take a closer look at this trade-off, 
and search for concrete approximations that attempts to strike a good compromise 
between these two. The results of our experiments suggest that one can efficiently 
project an ontology into a navigation graph, query it for running an interactive user 
interface, and suggest query extensions that do not lead to empty results sets. The 
work presented here provides basis for further refinements, such as fine-grained 
ranking algorithms and pagination, since the list of possible extensions may still be 
overwhelmingly long after eliminating the dead-ends from the user-experience point 
of view.

The rest of the article is structured as follows. In “Formal framework”, we present 
the formal framework describing the preliminary knowledge such as on navigation 
graph and query extensions. In “Adaptive extension suggestions”, we present our 
contribution on ontology projection and adaptive query extensions, while we present 
our evaluations in section “Evaluation”. Finally, we conclude the article and discuss 
future work in “Related work”.

1  https​://lucen​e.apach​e.org.
2  http://sphin​xsear​ch.com.
3  http://price​spy.co.uk.

https://lucene.apache.org
http://sphinxsearch.com
http://pricespy.co.uk
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Formal Framework

In the following, we use a number of simplified notions of schema/ontology, dataset, 
and query. These are less general than OWL, RDF, and SPARQL, respectively, but 
they cover the essential notions for VQSs that we require in this article.

Ontology and Navigation Graph

It is essential for end users to be able to navigate or browse through an ontology 
O , to get a big picture of what classes are there, and what they have in common in 
terms of other related classes and properties [8, 15, 28]. This allows users to effec-
tively formulate queries and perform domain exploration tasks.

Based on an underlying ontology, the VQS has to set up rules to control which 
queries the user is allowed to make. We assume that all these rules are summarised 
into a navigation graph GO = (V ,E) , where each vertex is associated with either a 
concept or a datatype from O , while the directed edges are associated with property 
names from O . Furthermore, we assume that each edge e = C1

p
�����→ C2 ∈ E of GO has 

an inverse e−1 = C2

p−1

������������→ C1 ∈ E . These inverse edges allow connections between 
two related concepts regardless of which one is the starting point. In essence GO acts 
like a schema for the whole system, by stating which concepts and/or datatypes we 
are allowed to connect via which properties. In fact we require that all graph struc-
tures in our work conform with GO , including queries and underlying data.

Figure 1 shows an example of a navigation graph containing two concepts (City, 
Country), two datatypes (Integer, String), five datatype properties (edges from con-
cepts to datatypes) and two object properties (partOfCountry and its inverse).

Queries

Based on the navigation graph GO = (V ,E) , we can now define the type of que-
ries we allow. If we represent queries as graphs, where the nodes are query 

Fig. 1   Example navigation 
graph GO ; blue and yellow 
nodes are concepts and data-
types respectively

City Country

StringInteger

partOfCountry

partOfCountry−1

hasName

partOfContinent

hasPopulation

hasName

hasPopulation
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variables, then the edges are the properties connecting them. We only allow 
tree-shaped conjunctive queries Q , since the literature suggests that majority of 
end-user queries are in this form [19, 27]. We also require that each variable v 
of Q is typed to either a concept or a datatype in GO , that is there is exactly one 
v ∈ V  such that type(v) ∈ V  , where type is the typing function. Furthermore, type 
must be a homomorphism from Q to GO , i.e. for each edge v1

p
�����→ v2 of Q , there 

must exist a corresponding edge type(v1)
p
�����→ type(v2) in GO . For convenience we 

separate the query variables into two separate groups based on whether they are 
typed to a concept or a datatype in GO . We call them concept variables and 
datatype variables respectively. We also allow filters on variables v in Q . This is 
denoted v ∈ Fv , where Fv is the set of data values v can take. By default, there 
are no filters on any of the variables. We do not include an “optional” operator, 
i.e. all variables of Q have to be bound.

During query construction, the user can at any point select which concept 
variable of the partial query Qp he wants to extend from. This variable is called 
the focus variable vf , and the corresponding concept Cf = type(vf) is called the 
focus concept. During a query session, both Qp and vf changes frequently as the 
user interacts, but at the moment when extension suggestions supposed to be 
calculated, they can be considered to be fixed. In order to calculate extension 
suggestions, it is crucial to know which variable is in focus. To support this, we 
represent the partial query Qp as a rooted tree where vf is the root, and where 
each edge points away from vf . We can always do this reorientation because the 
query is tree-shaped and all property inverses exists in GO.

Figure 2 displays the tree representation of the query

The query conforms to the navigation graph in Fig. 1, its focus variable is v0 , 
and focus concept is City.

(1)
City(v0) ∧ partOfCountry(v0, v1) ∧ Country(v1)∧

hasPopulation(v0, v2) ∧ (v2 > 1M) ∧ hasPopulation(v1, v3) ∧ (v3 > 10M).

Fig. 2   Example query Q con-
forming to GO ; blue and yellow 
nodes are concept and datatype 
variables respectively City

v0

Country
v1

partOfCountry

v2 > 1.000.000

hasPopulation

v3 > 10.000.000

hasPopulation
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Datasets and Query Answers

In addition to the ontology O and the corresponding navigation graph GO , we assume 
that the VQS has access to an underlying dataset (RDF graph) D . This RDF graph 
should adhere to the OWL2 DL restrictions of keeping instances, classes, object prop-
erties, and datatype properties separate, in other words it is a proper description logic 
ABox. In addition it must conform with O , i.e. D must be homomorphic to O . When 
the partial query is complete, the user will be running it over D in order to retrieve the 
results of interest. Our goal however, is to utilise the data in D to compute and present 
useful query extensions during the query construction phase.

Given a query Q and a data graph D that are both homomorphic to GO , we let 
Ansv⃗(Q,D) denote the results we get by executing Q over D and projecting the results 
onto the vector of variables v⃗ . Ansv⃗(Q,D) is a multi-set of tuples, where the entries in 
each tuple corresponds to an assignment of the variables in v⃗.

Given two queries Q1 and Q2 we can now define query containment:

If Q1 ⊑ Q2 holds, it means that Q1 is more restrictive than Q2 . We will also use the 
phrase Q1 covers Q2 since the tree representing Q1 fully covers the tree represent-
ing Q2 . Furthermore, Q1 ∩ Q2 represents the query we get by intersecting the rooted 
trees represented by Q1 and Q2 modulo query variable names.

Table  1 shows an example dataset D describing four cities, their corresponding 
countries and related properties. It is represented as a table, and not as a data graph for 
convenience. The example is quite simple, since it does not include any one-to-many 
relationships between cities and countries and no data is missing. This is done by pur-
pose to show how our method works without making the examples too complex.

We can now execute Q from Fig. 2 over D and project over v0 to get all cities with 
population higher than 1M and a corresponding country with population higher than 
10M:

Query Extensions

We assume that the VQS supports three possible types of query extensions: object 
properties, datatype properties and datatype filters. For each of them, the goal is to 
provide a ranked list of suggestions S = (s1, s2,… , sk) , where each tuple si 

(2)Q1 ⊑ Q2 ⟺ ∀D,Ans(Q1,D) ⊆ Ans(Q2,D)

Ans(v0)(Q,D) = {NY ,RO}

Table 1   Example dataset D describing four cities and their corresponding countries

City City-name City-pop. Country Country-pop. Country-continent

OS Oslo 0.6M NOR 5M Europe
VI Vienna 1.7M AUT​ 8.7M Europe
RO Rome 2.9M ITA 60.6M Europe
NY New York 8.5M USA 323M North America
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represents a concrete suggestion. If the user selects si ∈ S , the partial query Qp is 
updated to Qp ∧ Qext

si
 . Table  2 presents each of the three query extension types, 

together with the general form of a suggestion s, and the general extension Qext
s

.
All three extension types depend on the property p to connect vf to a new variable 

v , hence p is included in each of the three suggestion tuples. If p is an object prop-
erty (Type 1), then v must be a concept variable of type C . If however p is a datatype 
property and v a datatype variable (Type 2), then the type of v can be inferred from 
GO , hence it is not included as a part of the suggestion tuple or updated query. The 
two first extensions are what we call existential filters: They require a new variable 
v connected to vf , but they do not put any additional restrictions on it. The third type 
of extension on the other hand, adds filters to v , but this can only be done if v is a 
datatype variable. In theory it would also be possible to add filters on concept vari-
ables, but in real life this is not something users need, because then they would have 
to know which URIs to filter on. A better solution is then to filter on a data property 
related to the concept, such as its label or id.

Among the three presented extension types, the third is the hardest one to calcu-
late. In fact, if we can provide adaptive extension suggestions for type 3, we have 
also done it for type 2, that is a given property p should only be suggested if there 
are no possible datatype filters left. Extension type 1 and 2 are essentially the same, 
so they are equally hard to make adaptive suggestions for.

Adaptive Extension Suggestions

In this section, we first present our approach for projecting a given ontology into a 
navigation graph and then present our solution for adaptive extension suggestions 
not leading to any empty results.

Ontology Projection

Our goal for ontology projection is, given an ontology, to create a directed labelled 
graph, called a navigation graph [1, 26], whose nodes correspond to the named 
classes and datatypes in the ontology and edges between nodes to the object proper-
ties and datatype properties. Let C1,C2 , and C3 be classes, r1, r2 , and r3 object prop-
erties, d1 a datatype property, i1 and i2 individuals, and dt1 a data type. First, each 
class and datatype in the ontology is translated to a node in the navigation graph GO. 
Then we add edges of the form C1

r1
��������→ C2 and C1

d1
��������→ dt1 into the navigation graph 

Table 2   Table showing the 
three supported query extension 
types, the general structure of a 
suggestion s, and the resulting 
general extension Qext

s

Extension type s Qext

s

Type 1. Object property (p,C) p(v
f
, v) ∧ C(v)

Type 2. Datatype property (p) p(v
f
, v)

Type 3. Datatype filter (p, x) p(v
f
, v) ∧ (v ∈ {x})
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derived from the axioms of the ontology. The types of axioms resulting in an edge 
are presented with examples in what follows using description logic (DL) [2].

Ontologies have a propagative effect on the amount of information to be pre-
sented. This case is considered in two forms, namely the top-down and bottom-up 
propagation of property restrictions [6, 23]. The first form emerges from the fact 
that, in an ontology, explicit restrictions attached to a class are inherited by its sub-
classes. The second form is rooted from the fact that the interpretation of an OWL 
class also includes the interpretations of all its subclasses. Therefore, for a given 
class, it may also make sense to derive edges from the (potential) object and data-
type properties of its subclasses and superclasses.

Edges Through Object Properties

Domains and ranges Domain and range axioms using named classes are translated 
to an edge. For instance, example given in Axiom 3 maps to edge C1

r1
��������→ C2.

If a complex class expression, formed through intersection ( ⊓ ) or union ( ⊔ ), 
appears as a domain and/or range, then an edge is created for each pair of domain 
and range classes. For instance, example given in Axiom 4 maps to edges C1

r1
��������→ C2 

and C1

r1
��������→ C3.

Object property restrictions Object property restrictions used in class descrip-
tions, formed through existential quantification ( ∃ ), universal quantification ( ∀ ), 
individual value restriction, max ( ≥ ), min ( ≤ ), and exactly ( = ), are mapped to 
edges. For instance, examples given in Axiom 5 to 7 map to C1

r1
��������→ C2 . Note that in 

Axiom 7, there is a complex class expression on the left-hand-side.

Example given in Axiom 8 includes an individual value restriction and an edge is 
created with the type of individual, that is C1

r1
��������→ C2.

Example given in Axiom 9 includes a complex class expression. In this case, an 
edge is created for each named class, that is C1

r1
��������→ C2 and C1

r1
��������→ C3.

Given an enumeration of individuals, an edge is created for each individual’s 
type. For instance, example given in Axiom 10 maps to two edges, that is C1

r1
��������→ C2 

and C1

r1
��������→ C3.

(3)∃r1.⊤ ⊑ C1 and⊤ ⊑ ∀r1.C2

(4)∃r1.⊤ ⊑ C1 and⊤ ⊑ ∀r1.(C2 ⊔ C3)

(5)C1 ⊑ ∃r1.C2

(6)C1 ≡≤n r1.C2

(7)∀r1.C1 ⊑ C2

(8)C1 ⊑ ∃r1.{i1} , and i1 ∶ C2

(9)C1 ⊑ ∃r1.(C2 ⊔ C3)

(10)C1 ⊑ ∃r1.{i1} ⊔ {i2} , i1 ∶ C2 , and i2 ∶ C3
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Inverse properties Given an edge in the navigation graph such as C1

r1
��������→ C2 and 

an inverse property axiom for the corresponding object property such as given in 

Axiom 11, a new edge is created for the inverse property, that is C2

r−1
1

�����������→ C1.

Role chains Given two edges C1

r1
��������→ C2 and C2

r2
��������→ C3 n the navigation graph, and 

a role chain axiom between r1, r2, r3 such as given in Axiom 12, a new edge is cre-
ated for r3 , that is C1

r3
��������→ C3.

Top-down propagation Given an edge C1

r1
��������→ C2 in the navigation graph and a 

subclass axiom such as given in Axiom 13, a new edge is added to the graph, that is 
C3

r1
��������→ C2 . Analogous edges could be created for subproperties.

Bottom-up propagation Given an edge C1

r1
��������→ C2 in the navigation graph and a 

subclass class axiom such as given in Axiom 14, a new edge is added to the graph, 
that is C3

r1
��������→ C2 . Analogous edges could be created for superproperties.

Edges Through Datatype Properties

Domains and ranges Domain and range axioms using datatype properties are trans-
lated to an edge. For instance, example given in Axiom 15 maps to an edge, that is 
C1

d1
��������→ dt1.

Datatype property restrictions Datatype property restrictions, formed through 
existential quantification ( ∃ ), universal quantification ( ∀ ), max ( ≥ ), min ( ≤ ), exactly 
( = ), and value are mapped to edges. For instance, the example given in Axiom 16 
maps to C1

d1
��������→ dt1.

Top-down propagation Given an edge C1

d1
��������→ dt1 in the navigation graph and a 

subclass axiom such as given in Axiom 17, a new edge is added to the graph, that is 
C2

d1
��������→ dt1 . Analogous edges could be created for subproperties.

Bottom-up propagation Given an edge C1

d1
��������→ dt1 in the navigation graph and a 

subclass class axiom such as given in Axiom 18, a new edge is added to the graph, 
that is C3

d1
��������→ dt1 . Analogous edges could be created for superproperties.

(11)r1 ≡ r
_

1

(12)r1◦r2 ⊑ r3

(13)C3 ⊑ C1

(14)C1 ⊑ C3

(15)∃d1.DatatypeLiteral ⊑ C1 and⊤ ⊑ ∀r1.dt1

(16)C1 ⊑ ∃d1.dt1

(17)C2 ⊑ C1

(18)C1 ⊑ C3
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Suggestion Functions

As a minimum requirement the VQS should only allow suggestions leading to legal 
queries with respect to GO . However, we can increase the user experience by also 
considering the underlying dataset D and the partial query Qp . In this article, we will 
consider several different suggestion functions S that takes D and Qp as input and 
returns a set of suggestions [11]:

If it is clear from the context what D and Qp are, we may omit the input and just 
write S.

The Optimal Suggestion Function S
o

We will now formally define the suggestion function that returns the adaptive exten-
sion suggestions we described in “Introduction”. It is what we consider to be the 
gold standard with respect to accuracy, and we call it the optimal suggestion func-
tion So . The idea is simply to execute the generic query Qp ∧ Qext

s
 over D , and then 

project the result onto the variables in the suggestion tuple:

By selecting extensions from So , the user is guaranteed to not end up with a too 
restrictive query, which is exactly what our goal is.

By replacing s with the given suggestion tuples from Table 2, we get the concrete 
formulas for each of the three supported query extension types:

As already indicated. So does not scale very well. The problem is that Qp (and 
hence also Qo ) is arbitrary large in size and complexity, so there is no way to guar-
antee efficient results. Running it directly over D requires too many joins, and since 
Qo is arbitrary, it is also impossible to pre-calculate all possible joins and store them 
in an index.

We will now show an example of how the optimal suggestion function works. 
If we assume that the partial query Qp equals the query Q from Fig. 2, and we want 
the calculate optimal datatype filter suggestions for the city names of the focus 
variable vf = v0 , we need to evaluate the query of type 3 from above. In general, 
this calculates suggestions for all properties p, but we are now only interested in 
the names, since this is the only property of vf without any filters yet. We know 
that Qp only returns two cities: RO and NY, hence the relevant suggestions are 
So = {(hasName,NewYork), (hasName,Rome)}.

S(D,Qp) = {s1, s2,… , sk}

(19)So = Ans(s)(Qo(s),D) whereQo(s) = Qp ∧ Qext
s

1: So = Ans(p,C)(Qo(p,C),D) where Qo(p,C) = Qp ∧ p(vf, v) ∧ C(v)

2:So = Ans(p)(Qo(p),D) where Qo(p) = Qp ∧ p(vf, v)

3:So = Ans(p,x)(Qo(p, x),D) where Qo(p, x) = Qp ∧ p(vf, v) ∧ (v ∈ {x})
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Accuracy Measure

Since So is the desired set of suggestions, we will use it to define the accuracy of 
any other suggestion function S . To do this we use the well-established measures of 
precision and recall, which gives us the following two equations:

Among these two accuracy measures, the recall is by far the most crucial one 
for our purpose. Imperfect precision may lead to cases where the user sees exten-
sions leading to no results, while imperfect recall, on the other hand, may com-
pletely block the user from making valid queries. In fact, since the recall is so 
crucial, in this article we only consider suggestion functions with perfect recall. 
It is important to understand that these metrics only indicate of how well a sug-
gestion function removes dead-ends. It must not be confused with precision and 
recall related to the final selection of the user.

The Range‑Based Suggestion Function S
r

An alternative to the optimal solution which is used by many systems today 
because of its simplicity is what we call the range-based suggestion function Sr . 
This function aims to gather the full range of suggestions defined by the data, 
regardless of the state of the partial query. To do this, it ignores all parts of Qp 
except for the focus variable and its type:

Since we know that Cf (vf) is one of the conjunctions in Qp (i.e. Qp is more 
restrictive), it is possible to establish a relationship between the two suggestion 
functions So and Sr:

From this we can update the formulas for precision and recall:

It makes sense that So returns fewer suggestions than Sr since it considers all the 
restrictions given by Qp . This leads to the fact that Sr has perfect recall, which is 
important. The precision of Sr however, is not perfect, and depends on how close Sr 
is to So.

Even though the precision of Sr is not perfect, it is still a powerful suggestion 
function, because it can be computed very efficiently. The suggestions given by 
Sr only depend on the focus concept Cf  , which is limited to a relatively small and 
finite set of concepts. This means that we can calculate the set of suggestions 
for each possible focus concept offline, and index the results. Now the VQS can 

(20)precision(S) =
|So ∩ S|

|S|
recall(S) =

|So ∩ S|

|So|

(21)Sr = Anss(Qr(s),D) where Qr(s) = Cf (vf) ∧ Qext
s

Qp ⊑ Cf (vf) ⇒ Qo ⊑ Qr ⇒ So ⊆ Sr

precision(Sr) =
|So ∩ Sr|

|Sr|
=

|So|

|Sr|
recall(Sr) =

|So ∩ Sr|

|So|
=

|So|

|So|
= 1
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easily fetch suggestions during a query session by simply looking up the static set 
corresponding to the given focus concept.

Since Sr is well-known, and the default solution for many systems, we consider 
this the baseline with respect to accuracy. We will also use Sr as a fallback solu-
tion for the method we present in the following section.

If we assume that the partial query Qp equals Q from Fig. 2, we only consider the 
concept type City and the corresponding names. This gives us the following set of 
suggestions

and precision(Sr) =
|So|

|Sr|
=

2

4
= 0.5.

The Query Extension Index

In this section, we describe our main contribution: a method to efficiently calculate 
dead-end free suggestions for all the three possible query extension types in “Query 
extensions” with high accuracy. The method requires a query extension index I  in 
order to ensure sufficient performance, and we will use what we call a configuration 
query Z to configure/represent the content of this index. The idea is then to make 
suggestions based on just the parts of Qp that are included in Z , and hence I  . This 
gives basis to the suggestion function SZ

a
 , which is one of many possible functions 

in the family of approximate suggestion functions Sa.

The Configuration Query Z

Before we can construct or use the query extension index I  , we need a way to rep-
resent the data it contains. To do this we will use a special query without any filters 
called a configuration query Z.

In order to make our system work, it is important that the configuration query 
we use has a root of type Cf  . This requires a setup with multiple configuration que-
ries—one for each possible focus concept. However, given a particular partial query 
Qp , there will only be one corresponding configuration query Z , so for now we focus 
only on this one.

Intuitively Z works as a configuration for our system, by deciding which parts of 
D to include in the generated index, and hence which parts of Qp it has consider/
ignore when making suggestions (see “The approximate suggestion function Sa”). A 
large Z will in general result in a large index, but a corresponding suggestion func-
tion SZ

a
 with high precision. A small Z , on the other hand, will in general result in a 

cheaper index with lower precision. It is also important to consider the structure of 
Z : Best results are achieved by including properties and concepts that users are likely 
to use in their queries, while making sure that the size of the index does not explode.

In this article, we assume that the configuration query is made in advance by a 
human or algorithm with knowledge about the users, the domain and the dataset. It 

Sr = {(hasName,Oslo), (hasName,Vienna),

(hasName,NewYork), (hasName,Rome)}
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is impossible for the configuration maker to know exactly what the partial queries 
will look like, but based on for example a query log of the user it will often be pos-
sible to estimate it. This together with the dataset can be used to make a configu-
ration that leads to a useful but relatively small index. The results we can achieve 
depends on properties of the dataset like size and branching degree, but also on how 
similar the new query is to the queries in the query log. In general, we have a trade-
off between quality and index size. Datasets with high branching degree will poten-
tially lead to exponentially growth in index size, and in these cases the configuration 
query has to be relatively small and not very complex.

We are currently working towards an algorithm that can automatically search for 
the optimal configurations given a threshold on the index size. This is quite chal-
lenging due to the large search space of all possible configuration queries, but also 
due to the fact that we need to execute queries over possibly very large datasets in 
order to evaluate them. We believe it is possible to overcome this problem by esti-
mating the number of answers a query returns, but this is part of another study.

Above we stated that the root of Z must be of the same type as the focus variable 
of Qp , which is Cf  . This is necessary in order to be able to compare and intersect Z 
with Qp . This becomes clear in “The approximate suggestion function Sa” when we 
describe the approximate suggestion function SZ

a
.

Index Generation

Since the performance is so crucial when making online suggestions, we need an 
index to support this task. This index must be constructed offline, and it is supposed 
to serve multiple (online) user sessions. To do this well, it is important to select a 
suitable subset of D to index, which is achieved by using a good configuration query 
Z.

Given a configuration query Z , the idea is to include all data from D that is fully 
or partially covered by it. To do this we first need to construct the modified version 
of Z where every branch and subbranch is optional. We call this query Zopt . Now we 
get the index by executing Zopt over D:

Fig. 3   Example configuration 
query Z including a city’s name 
and population, and the corre-
sponding country’s continent

City
v0

Country
v1

partOfCountry

v2

hasName

v3

hasPopulation

v5

partOfContinent
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One can represent I  in two different ways: either as a denormalised table with 
one column for each variable in Z , where each row represents a possible assignment 
to these variables, or as a data graph, i.e. the subset of D which is covered by Zopt . 
Which one of these we use is irrelevant with respect to precision. However, if we 
consider performance, the tabular representation is preferred for the type of queries 
we have, so we use this in our actual implementation.

Table 3 gives an example of an index table generated from Z in Fig. 3 and the 
dataset D from Table 1. In this simple example the number of rows is very small, but 
in a larger more realistic case, the number of rows will increase rapidly if many-to-
many or one-to-many relationships exists.

The Approximate Suggestion Function S
a

Given a configuration query Z , we have what we need to define the corresponding 
suggestion function SZ

a
:

Here Qp ∩ Z is the pruned version of Qp we get by intersecting the trees defined by 
Qp and Z . If Qp contains filters on any of the datatype variables, they are kept.

If we assume that Z contains all possible properties related to the root, i.e. the 
root is fully saturated, then QZ

a
 is completely covered by Z . This means that all data 

from D that is relevant for QZ

a
 is also included in I  , i.e.

In other words, we get the same result if we run QZ

a
(s) over I  instead of D . The 

advantage of using I  instead of D directly is of course that suggestions are returned 
fast enough.

However, if the root of Z is not fully saturated, then our approach will not return 
any suggestions related any property p missing. In that case, the system can always 
fall back on the range-based solution Sr for p, or simply not give any suggestions 
related to it.

We have now considered three different suggestion functions. If we compare the 
formulas each of them uses, and focus on a fixed property, we get the following rela-
tionship between them:

And from this we can derive the full relationship between the precision and recall 
of the functions:

(22)I = genIndex(Z,D) = Ans(Zopt,D)

(23)S
Z

a
= Ans(s)(Q

Z

a
(s),D) where QZ

a
(s) = (Qp ∩ Z) ∧ Qext

s

S
Z

a
= Ans(s)(Q

Z

a
(s),D) = Ans(s)(Q

Z

a
(s), I)

(24)Qp ⊑ (Qp ∩ Z) ⊑ Cf (vf) ⇒ Qo ⊑ QZ

a
⊑ Qr ⇒ So ⊆ S

Z

a
⊆ Sr

recall(Sr) = recall(SZ

a
) = recall(So) = 1

0 ≤ precision(Sr) ≤ precision(SZ

a
) ≤ precision(So) = 1
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Given a partial query Qp , and a fixed property p, each of the three functions will 
give us a set of suggestions. So returns the optimal set by considering the whole 
structure of Qp , S

Z

a
 returns a larger less precise set by ignoring everything not cov-

ered by Z , and Sr returns an even larger set of suggestions by not considering the 
structure of Qp at all.

We will now calculate approximate suggestions using the same input as we used 
with So and Sr . The intersection (Qp ∩ Z) can be seen in Fig. 4, and it only includes 
the filter on the city’s population, which has to be higher than 1M. We are then left 
with three city individuals: VI, RO and NY, which gives the following suggestions 
for the name property:

The corresponding precision of the approximate function is then 
precision(SZ

a
) =

|So|

|SZ

a
|
=

2

3
= 0.66.

Existential Concept Variables

With the index construction method described in “Index generation”, the columns 
representing concept variables will be filled with only URIs. This data is wasted 
space: Users do not need to filter on URIs, and suggested values of URIs are there-
fore not needed. However, it is often interesting to know whether an assignment to 
the concept variable exists or not, so instead of removing the column completely, 
we replace the URIs with boolean values indicating whether an assignment exists or 
not. This reduces the index size considerably, compared to the case where all URIs 
are stored, because multiple rows where only one URI differs can now be collapsed 
into only one row.

So = {(hasName,Vienna), (hasName,Rome), (hasName,NewYork)}

Fig. 4   The pruned query we get 
by intersecting Q from Fig. 2 
and Z from Fig. 3

City
v0

Country
v1

partOfCountry

v2 > 1.000.000

hasPopulation

Table 3   The resulting index 
table I = genIndex(Z,D) with 
Z from Fig. 3 and D from 
Table 1

City City-name City-pop. Country Country-continent

OS Oslo – NOR Europe
VI Vienna 1.7M AUT​ Europe
RO Rome 2.9M ITA Europe
NY New York 8.5M USA North America
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By using existential concept variable columns, it becomes quite cheap to include 
concept variables in the configurations, since it only requires one more column of 
boolean values, while the number of rows stays fixed. In Experiment 1, we explore 
how much the accuracy increase by adding another layer of these existential concept 
nodes to the index, which is a comparatively cheap investment.

Evaluation

We implemented our ontology projection approach and adaptive extension sugges-
tion solution and conducted a series of experiments. The results and findings are 
presented in what follows.

Ontology Projection

The evaluation of ontology projection approach includes its use in practical systems 
and a performance evaluation checking its feasibility for use in interactive applica-
tions without any significant delay in a query interface.

Practical Use

The variants of ontology projection approach has been implemented in OptiqueVQS 
[27], a visual query formulation tool, and SemFacet [1], a faceted search tool. Both 

Fig. 5   OptiqueVQS over a use case provided by Siemens
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interfaces support tree-shaped conjunctive queries and their source codes are avail-
able online in GitLab.4,5

OptiqueVQS (see Fig.  5) is a visual query system. It allows users to navigate 
the conceptual space and each traversal from a class to another adds a typed vari-
able-node and object property connecting it to the query graph. OptiqueVQS was 
deployed and evaluated in different use cases, including Siemens’ case for sensor 
data [10, 25], Statoil’s case for oil and gas [9, 27], and on generic datasets [24]. In 
Fig. 5, there is an example query asking for all trains with a turbine named “Bear-
ing Assembly” and their journal bearing temperature readings in the associated 
generator.

SemFacet (see Fig.  6) is full-fledged general-purpose faceted search interface. 
In typical faceted search, users are presented with facet-values organised in groups 
according to facet-names and it is often not allowed to navigate between classes. 
SemFacet allows end users to navigate between classes and browse data sets at the 
same time. The interface was deployed and evaluated over a slice of Yago database 
[1]. In Fig.  6 there is an example search for U.S. presidents who graduated from 
Harvard or Georgetown, and whose children graduated from Stanford. All these 
conditions are combined conjunctively and their constraints apply simultaneously. 
One can see that changing the focus of the query, one can either see the presidents 
(left part of the figure), or their universities (centre part of the figure), or their chil-
dren (right part of the figure).

Performance

Our current implementation of the ontology projector is written in Java, and used by both 
OptiqueVQS and the SIRIUS Geoscience image annotation and classification project.6  

selected 
facet value

keywords

refocusing

facet predicate

facet values

(refocused) 
answers

http://en.wiki
William Jeffers
Jefferson Blyth
American polit
President of th
2001. Inaugur
youngest pres
of the Cold Wa
the baby boom

ANY

Country

USpres

Searchpoliticians

Stanford Uni.

Stanford Uni.

Harvard Uni.

Georgetown Uni.

type

has child

grad from

grad from

ANY

Country

USpres

Searchpoliticians

Stanford Uni.

Stanford Uni.

Harvard Uni.

Georgetown Uni.

type

has child

grad from

grad from

ANY

Country

USpres

Searchpoliticians

Stanford Uni.

Stanford Uni.

Harvard Uni.

Georgetown Uni.

type

has child

grad from

grad from

http://en.wikipedia.org/wiki/Chelsea_Clinton
Chelsea Victoria Clinton (born February 27, 1980) is the 
only child of former U.S. President Bill Clinton and 
former U.S. Secretary of State Hillary Rodham Clinton. 
She is a special correspondent for NBC News, and 
works with the Clinton Foundation and Clinton Global 
Initiative...

Fig. 6   SemFacet over Yago knowledge graph

4  https​://gitla​b.com/ernes​to.jimen​ez.ruiz/Optiq​ueVQS​.
5  https​://githu​b.com/Oxfor​dSemT​ech/SemFa​cet.
6  https​://githu​b.com/Siriu​s-sfi/geosc​ience​-image​-class​ifica​tion.

https://gitlab.com/ernesto.jimenez.ruiz/OptiqueVQS
https://github.com/OxfordSemTech/SemFacet
https://github.com/Sirius-sfi/geoscience-image-classification
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It uses the HermiT Reasoner7 for classification, and RDFox to do the propagation of 
properties/edges in the resulting graph. The full source code is publicly available in 
GitLab.8

When evaluating this implementation, we focused on the time spent on construct-
ing the navigation graph, and querying over it. The first task is to construct the navi-
gation graph from a given ontology using the described approach. This only needs 
to be done once each time the ontology changes and it is an offline process, so it is 
in practice possible to run this on a remote server, and the timing of this is not very 
crucial. The second task is to query GO in order to determine which actions the user 
is allowed to make. In practice this means to find all outgoing datatype properties 
and object properties for a given concept in GO . Since this is done frequently during 
a query session, it should ideally finish so fast that the user does not even notice the 
delay.

Table 4   Key metrics of 
the ontologies used in the 
performance evaluation of the 
projection algorithm

https​://gitla​b.com/logid​/npd-factp​ages/blob/devel​op/ontol​ogy/npd-
db.ttl.owl
The columns provide the name of the ontology, the number of axi-
oms in total, the number of distinct classes and the number of sub-
class axioms in the ontology

Ontology Axioms Classes SubClassOf

TMO 1152 225 235
NPD 4110 142 594
MI 13,645 1494 1474
IDOMAL 31,101 3159 3556
ENM 105,983 12,533 17,191

Table 5   Performance of the 
ontology projection for the five 
given ontologies

The columns present the name of the ontology, the time it takes to 
create the navigation graph, time spent querying for all datatype 
properties and object properties on average. All times are given in 
milliseconds

Ontology Projection creation Datatype 
properties

Object properties

TMO 4001 0.42 0.49
NPD 4573 0.37 0.31
MI 3878 0.3 0.3
IDOMAL 4391 0.3 0.3
ENM 57,641 0.3 0.3

7  http://www.hermi​t-reaso​ner.com/.
8  https​://gitla​b.com/ernes​to.jimen​ez.ruiz/ontol​ogy-servi​ces-toolk​it/tree/maste​r.

https://gitlab.com/logid/npd-factpages/blob/develop/ontology/npd-db.ttl.owl
https://gitlab.com/logid/npd-factpages/blob/develop/ontology/npd-db.ttl.owl
http://www.hermit-reasoner.com/
https://gitlab.com/ernesto.jimenez.ruiz/ontology-services-toolkit/tree/master
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We considered 5 different ontologies: Translational Medicine Ontology9 (TMO), 
Norwegian Petroleum Directorate Factpages10 (NPD), Molecular Interactions11 
(MI), Malaria Ontology12 (IDOMAL) and eNanoMapper13 (ENM). NPD is an 
ontology covering the Oil&Gas domain, while the remaining four are from the biol-
ogy domain. We used the newest available versions of the ontologies at the time 
we conducted the experiment (28 January 2019). All of them are listed in Table 4 
together with relevant metrics about them. For each of them we performed the two 
evaluation tasks, and all results are presented in Table 5.

The results show that querying over the navigation graph is lightning fast. In fact, 
among the ontologies we tested, it never took more than 5 ms to fetch the relevant 
properties with an average of about 1 ms. Note that 100 ms is the suggested limit for 
having the user feel that the system is reacting instantaneously [17]. Regarding the 
task of the constructing the navigation graph, it is much more complex and hence 
slower. However, it is still within the reasonable time frame of one minute for all the 
tested ontologies, given that this is an offline task.

Extension Suggestion

In this section we describe the two experiments done on our implementation of the 
query extension index. Each of them focuses on the third type of suggestions, data-
type filters, since this is the hardest suggestion task.

Dataset, Ontology and Queries

We used the RDF version of the NPD Factpages14—a dataset covering details about 
oil and gas drilling activities in Norway. This dataset contains 2,342,597 triples, and 
it has a corresponding OWL ontology containing 209 concepts and 375 properties. 
The NPD Factpages is actually a relational database (RDB), containing information 
that all oil companies in Norway are legally required to report to the authorities. 
This means that the RDF version, which is generated from this RDB, is fairly com-
plete and homogeneous. This is optimal for persons who want answers to complex 
queries. Among the different concepts we considered in our queries, each have on 

Table 6   Frequency of query 
size in the query log used in the 
experiments

https​://githu​b.com/Alope​x8064​/npd-factp​ages-exper​iment​s

Query size 5 6 7 8

Frequency 3 15 2 9

14  https​://gitla​b.com/logid​/npd-factp​ages.

9  https​://biopo​rtal.bioon​tolog​y.org/ontol​ogies​/TMO.
10  https​://gitla​b.com/logid​/npd-factp​ages/blob/devel​op/ontol​ogy/npd-db.ttl.owl.
11  https​://biopo​rtal.bioon​tolog​y.org/ontol​ogies​/MI.
12  https​://biopo​rtal.bioon​tolog​y.org/ontol​ogies​/IDOMA​L.
13  https​://biopo​rtal.bioon​tolog​y.org/ontol​ogies​/ENM.

https://github.com/Alopex8064/npd-factpages-experiments
https://gitlab.com/logid/npd-factpages
https://bioportal.bioontology.org/ontologies/TMO
https://gitlab.com/logid/npd-factpages/blob/develop/ontology/npd-db.ttl.owl
https://bioportal.bioontology.org/ontologies/MI
https://bioportal.bioontology.org/ontologies/IDOMAL
https://bioportal.bioontology.org/ontologies/ENM
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average of 14.1 different outgoing datatype properties, and 6.4 outgoing object prop-
erties in NPD Factpages. The number of distinct individuals/literals each such prop-
erty leads to is 572 on average (with a median of 12).

The query log distributed with this dataset was not suited for our experiment, 
since only a few of the queries had the structure our system required, and none of 
them connected more than a few concepts together. Therefore, we constructed a new 
query log consisting of complex queries of a more suitable size, with the goal to 
cover a wide set of possible cases. The log consists of 29 queries ranging from 5 to 
8 concept variables and 0 to 12 datatype variables, and the corresponding result sets 
over the NPD dataset range from just 12 tuples, to over 5 million tuples. Further-
more, Table 6 gives the query size distribution. The complete query log is publicly 
available on GitHub.15

Test Cases and General Setup

In both of our experiments we ran multiple test cases, where each test case used a 
query Qp from the query catalogue, and a generated concept configuration Z . By 
testing multiple Z together with each Qp we got a fairly complete picture of how 
our system behaves. For each test case we first constructed the corresponding index 
I  based on Z and the dataset. Then we calculated suggestions for all of the three 
defined suggestion functions, and the corresponding precision they achieved. We 
also calculated the cost associated with each choice of Z . This cost differed between 
the two experiments, but was related to the size of either Z or I  (see the individual 
experiments for details.)

Since we only considered one query Qp at a time, it was pointless to consider 
parts of Z which was not covered by Qp itself. Every addition to Z that is outside Qp 
will not affect the resulting suggestions. Therefore, we focused on the more interest-
ing cases where Z was fully covered by Qp.

Notice that a real-world scenario would be more complex than our setup with 
simple test cases. The success of a concept configuration and its corresponding 
index would not only depend on the precision of one single query, but rather a large 
set of possibly very different queries. One of our future goals is to develop methods 
for finding configurations that works well for a whole catalogue of queries.

Experiment 1: Configuration Type/Size vs Precision

In Experiment 1, we show how the accuracy of Sa changes as configurations of dif-
ferent size and shape are used. To do this, we first generated a set of random “con-
figurations cores” c for each query Qp in the query catalogue. Each core consisted of 
one or more connected concept variables from Qp , and was just used as a basis for 
generating two other concept configurations:

•	 Dat(c) : Every possible datatype property is added to the concept variables in c.

15  https​://githu​b.com/Alope​x8064​/npd-factp​ages-exper​iment​s.

https://github.com/Alopex8064/npd-factpages-experiments
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PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX npd: <http://sws.ifi.uio.no/vocab/npd-v2#>

SELECT * WHERE {
?c1 rdf:type npd:ExplorationWellbore.
?c2 rdf:type npd:Field.
?c5 rdf:type npd:ProductionLicence.
?c3 rdf:type npd:Company.
?c4 rdf:type npd:FieldStatus.
?c8 rdf:type npd:Discovery.
?c6 rdf:type npd:ProductionLicenceStatus.
?c7 rdf:type npd:ProductionLicenceArea.

?c1 npd:explorationWellboreForField ?c2.
?c1 npd:explorationWellboreForLicence ?c5.
?c2 npd:currentFieldOperator ?c3.
?c4 npd:statusForField ?c2.
?c6 npd:statusForLicence ?c5.
?c7 npd:isGeometryOfFeature ?c5.
?c8 npd:includedInField ?c2.

?c1 npd:wellboreBottomHoleTemperature ?a7.
?c2 npd:name ?a8.
?c2 npd:status ?a9.
?c3 npd:name ?a6.
?c4 npd:status ?a5.
?c5 npd:isActive ?a10.
?c5 npd:name ?a11.
?c5 npd:originalAreaSize ?a12.
?c6 npd:status ?a4.
?c7 npd:isStratigraphical ?a1.

FILTER(?a7 >= 150).
FILTER(regex(?a8, "TAMBAR", "i")).

}

Fig. 7   Results for Query 2.6

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX npd: <http://sws.ifi.uio.no/vocab/npd-v2#>

SELECT * WHERE {
?c1 rdf:type npd:ExplorationWellbore.
?c2 rdf:type npd:Field.
?c3 rdf:type npd:Company.
?c4 rdf:type npd:FieldStatus.
?c5 rdf:type npd:ProductionLicence.
?c6 rdf:type npd:ProductionLicenceStatus.
?c7 rdf:type npd:ProductionLicenceArea.
?c8 rdf:type npd:Discovery.

?c1 npd:explorationWellboreForField ?c2.
?c1 npd:explorationWellboreForLicence ?c5.
?c2 npd:currentFieldOperator ?c3.
?c4 npd:statusForField ?c2.
?c6 npd:statusForLicence ?c5.
?c7 npd:isGeometryOfFeature ?c5.
?c8 npd:includedInField ?c2.

?c1 npd:wellboreBottomHoleTemperature ?a7.

FILTER (?a7 >= 190).
}

Fig. 8   Results for Query 2.8
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•	 ObjDat(c) : Every possible datatype property and object property is added to the 
concept variables in c.

The only difference between these two configurations, is that ObjDat(c) contains one 
extra layer of concept variables. It is relatively cheap (w.r.t. storage usage) to add 
these concept variables, as described in “Existential concept variables”, but the pre-
cision will (potentially) increase by doing it. Therefore, the split between Dat(c) and 
ObjDat(c) was created in order to measure how much the precision increases.

Both of the two configurations Dat(c) and ObjDat(c) were used in one test 
each, where suggestion values for each of the four different suggestion functions 
of interest were calculated. They are given below, and they satisfy:

precision(Sr) ≤ precision(SDat(c)
a

) ≤ precision(SObjDat(c)
a

) ≤ precision(So) = 1.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX npd: <http://sws.ifi.uio.no/vocab/npd-v2#>

SELECT * WHERE {
?c1 rdf:type npd:ExplorationWellbore.
?c2 rdf:type npd:Field.
?c3 rdf:type npd:FieldOperator.
?c4 rdf:type npd:Company.
?c5 rdf:type npd:BAA.
?c7 rdf:type npd:BAAArea.

?c1 npd:explorationWellboreForField ?c2.
?c3 npd:operatorForField ?c2.
?c3 npd:fieldOperator ?c4.
?c5 npd:baaOperatorCompany ?c4.
?c7 npd:isGeometryOfFeature ?c5.

?c7 npd:areaSize ?a3.

FILTER(?a3 >= 300).
}

Fig. 9   Results for Query 3.5

Fig. 10   Average precision of 
size 5 queries
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After running through every test case, the results were grouped by both the 
configuration type (Dat or ObjDat) and the size of the configuration, where the 
size of a configuration is defined by the number of concept variables in the con-
figuration core c. Finally, the average precision of each group was calculated and 
the results visualised.

Results and Analysis This section contains results from Experiment 1. First we 
present individual results for three selected queries (Query 2.6, Query 2.8 and 
Query 3.5) in Figs. 7, 8 and 9. Then follows the resulting averages for queries of 
size between 5 and 8 in Figs. 10, 11, 12 and 13. For the complete set of queries 
and corresponding results, we refer to GitHub.16

The yellow line in each chart shows the precision of the range-based function Sr , 
which is always constant. Since this is the suggestion function with the lowest preci-
sion we consider, it acts as a baseline—marking the worst case scenario for Sa . The 
blue and red curves show the precision of SDat

a
 and SObjDat

a
 respectively. As expected, 

these two curves are non-decreasing and precision(SDat
a

) ≤ precision(SObjDat
a

) for all 
configuration sizes.

The precision given by each of the three curves depends mostly on how many 
of the important key restrictions of Qp they are able to capture, where a key restric-
tion is a restriction that reduces the number of instances one could assign to the 
root so much that it also causes a large reduction in the possible facet values. The 
query used in Fig. 7 (Query 2.6) for example has one important key restriction on 
the data property name of the Field concept variable in depth 2 of Qp . Since this 
key restriction is associated with a datatype variable, both SDat

a
 and SObjDat

a
 perform 

about equally well. The slight difference between SDat
a

 and SObjDat
a

 is caused by other 
much less important restrictions, which SObjDat

a
 manages to capture, but SDat

a
 does 

not. If this chart had shown the best-case scenario, the precision would have been 
perfect already at size 2, because that is the point it would reach the Field concept 
node. But since we average over multiple differently shaped configurations, and the 
branching factor of Qp is close to 2, the two lines moves steadily upwards until they 
reach size 5. At this point the configuration is guaranteed to cover the key restriction 
regardless of its shape.

Query 2.8 in Fig.  8 has two key restrictions: the first restriction is associated 
with a datatype property filter on the root node (wellboreTemperature ≥ 190). This 
is captured by all the configurations we used in the experiment, and the difference 
between Sr and SDat

a
 at size 1 shows the effect of capturing it. The other key restric-

tion is associated with the Field concept variable in depth 2. Since SObjDat
a

 includes 
one additional layer of concept variables, it captures this already from size 1, while 
S
Dat
a

 on the other hand, needs to be of the correct shape in order to capture it, hence 
the steadily rising curve, similar to Query 2.6 in Fig. 7.

Query 3.5 in Fig. 9 is a linear query (the tree has only one branch), so there is 
one possible configuration core for each configuration size. Hence, the result-
ing curve only shows that one case of growing configuration. This query also has 
two key restrictions. The first one is an object property restriction in depth 2 of the 

16  https​://githu​b.com/Alope​x8064​/npd-factp​ages-exper​iment​s.

https://github.com/Alopex8064/npd-factpages-experiments
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Fig. 11   Average precision of 
size 6 queries

Fig. 12   Average precision of 
size 7 queries

Fig. 13   Average precision of 
size 8 queries
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query—the effect of capturing this restriction is shown by the precision increase of 
S
ObjDat
a

 between size 1 and 2. The second restriction is a data property restriction 
associated with the only concept variable in depth 6 of the query. This restriction is 
very hard to capture for both SObjDat

a
 and SDat

a
 , but when the configuration reaches 

size 6, and the whole query is covered by each of their configurations, the resulting 
precision becomes perfect.

The rules that control SObjDat
a

 and SDat
a

 also apply to Sr . It only performs well if it 
is able to capture all of the important key restrictions. But since Sr never considers 
Qp , it will in fact always perform poorly if one or more such key restrictions exists. 
Figures 7 and  8 both show examples where this happens. For each of those cases 
the precision of Sr is only 0.22. This is quite low compared to 0.50, which is the 
average precision of size 8 queries given by Fig. 13.

The charts in Figs. 10, 11, 12 and 13 display the average over all queries grouped 
by query size. The relation Sr ≤ S

ObjDat
a

≤ S
Dat
a

 still holds over the averages. The 
first thing to notice from the average results is the relatively high precision of the 
range-based function. In our experiment, its precision ranged from 0.22 to 0.96, 
with an average of 0.56. This does not sound too bad, but user studies done with 
OptiqueVQS show that the users are not always satisfied with Sr , which actually 
motivated us to start exploring Sa as an alternative.

In the cases where key restrictions are associated with object properties, SObjDat
a

 
performs much better than SDat

a
 . In fact, it quite often returns suggestions with per-

fect precision, as shown in Fig. 8. The average difference between SObjDat
a

 and SDat
a

 , 
shown in Figs. 10, 11, 12 and 13, indicates that it is worth adding this extra layer of 
object properties to the configuration, especially since the resulting increase in the 
index size is relatively small (one extra boolean column).

Fig. 14   Scatter plot for Query 6.2. Pareto optimal configurations are connected. Index size is not normal-
ised
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The average results in Figures 10, 11, 12 and 13 are highly influenced by the indi-
vidual queries of the relevant size, especially for queries of size 5 and 7 where the 
average is based on only 3 and 2 queries respectively. Hence, we cannot conclude 
anything about how the query size affects the precision.

Experiment 2: Index Size vs Precision

In Experiment 2 we made a direct comparison between the index size and the 
precision. We did this by first making one test case for every query Qp , and each 
possible configuration Z covered by it. Then, for each such test case, we calcu-
lated both the size of the table generated by Z , and the precision of SZ

a
 . Finally, 

we analysed and visualised the results.
Results and Analysis Figure  14 shows the results for one of the tested que-

ries (Query 6.2), visualised as a scatter plot, where each point represents a test 
case/concept configuration/index table. Some of the points are pareto-optimal, 
which means that neither of the two dimensions (precision and index size) can 
be improved without weakening the other. These points are located in the bottom 
right part of the plot (smaller index and higher precision are better), and are con-
nected by line segments. The frontier of pareto-optimal points shows how large 
the index must be in order to achieve a given precision in a best-case scenario, 
i.e. when the configuration is chosen optimally.

There are two reasons for using the best-case scenario:

1.	 The configuration is a part of the setup process of our system, and is supposed to 
be optimised by experts or an algorithm.

2.	 The number of possible configurations in total is infinite, so using the average or 
something similar would be impossible.

Therefore, while we cannot expect to achieve results like this consistently, it does 
give an indication of what might be achieved with an optimal choice of configu-
ration. The fact that we investigate the best-case scenario also explains why it is 
sufficient to only consider the configurations covered by Qp . For any configuration 
Z′ with branches outside Qp , there exists another concept configuration Z which 
leads to the same precision, but a smaller index. Visually, the set of all such test 
cases would appear as points above the already existing points, and hence not be 
candidates for pareto-optimality.

The set of pareto-optimal points for each query defines a monotonically 
increasing curve. Let Zmin and Zmax denote the configurations used for the first 
and last of these points. Zmax is the configurations that is isomorphic to Qp . I.e. it 
fully covers Qp , but it has no branches outside of it. The precision given by this 
configuration is perfect, but it also uses the largest index of the pareto-optimal 
configurations. Zmin on the other hand contains only the root and all local data-
type properties. This is the smallest configuration that can provide suggestions for 
each of the local datatype properties.
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When we look at the pareto-optimal configurations for all the different queries, 
we see that the index size of Zmin differs depending on the focus concept of the 
query. We can’t expect the index to become smaller than a table of the instances 
of the class along with their attributes, which mostly depends on the number of 
instances in the dataset. Therefore, in order to compare them under equal condi-
tions, we normalised the index size by dividing by the index size of Zmin . The 
index size then becomes just a factor, where e.g. 2.0 means that the index is twice 
as large as the index constructed from Zmin . The pareto-optimal points for all the 
29 queries are displayed in Fig.  15 (normalised index size), together with the 
median (red) and upper quartile (blue).

The overall results from Fig.  15 seems promising, as most of the transitions 
between pareto-optimal points (black line segments) are more horizontal than verti-
cal. This means that with clever selection of configuration branches, one can transi-
tion to a much higher precision without having to increase the index very much. The 
median and upper quartile have similar horizontal profiles, but with a slight increase 
as they approach 100% precision, resulting in a more convex curve. In other words, 
the last 10% precision will cost us more than any other 10% increase. In a real-life 
scenario it will also never be possible to guarantee 100% precision because the users 
may construct queries not seen by the system before, so aiming for 100% precision 
is not a reasonable option anyway.

From Experiment 1 and Fig. 11 we know that the average precision of Sa when 
using the smallest possible configuration for each query ( Zmin ) is 0.61. Figure 15 
shows that this precision can be increased to 100% with an index that is less than 

Fig. 15   Pareto-optimal configurations for all queries with median (red) and upper quartile (blue). Index 
size is normalised
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2.1 times larger, with the exception of three17 queries that are orders of magnitude 
higher. This is caused by their highly restrictive filters on branches far away from the 
root. The median goes up to 90% precision with about 2.5% increase in index, while 
going from 90 to 100% precision costs us an additional 10% increase in index size.

How well a configuration works, and what the optimal configuration is, depends 
to a high degree on the actual dataset and queries constructed by the users. Some 
datasets have a high branching degree, which causes the index to grow faster than 
for other datasets, and/or some query catalogues may have queries of very similar 
shape, (possibly) resulting in higher precision for configurations including these 
shapes. Therefore, we should be careful about generalising the results of this experi-
ment to other datasets and query catalogues.

Related Work

Regarding ontology projection, visualisations for different aspects of the Semantic 
Web such as ontology visualisation, query formulation, and search are relevant for 
the work presented here, since they mainly require end users to examine and interact 
with the elements of a given ontology. However, to best of our knowledge, none of 
the existing works deal with projecting navigation graphs from ontologies, although 
the inverse exists such as for ontology axiomatization through diagramming [20]. 
Among others [8], the graph paradigm is often used to depict the structure of onto-
logical elements and relationships as they reflect the interconnected nature of ontol-
ogy classes. There are various approaches using graphs for ontology visualisation 
and exploration such as GrOWL [14] and KC-Viz [16]. Similarly, tools for visual 
query formulation also often use the graph paradigm to depict the information needs 
and domain exploration such as gFacet [7] and NITELIGHT [21]. In a graph-based 
approach, classes are often represented as nodes and properties as edges.

Non graph-based approaches, such as form-based, still use a navigation approach 
for browsing through ontology classes. Examples include Rhizomer [3], a faceted 
search tool, and PepeSearch [31], a form-based query formulation tool. Typically, 
form-based approaches are meant to operate on a single class level; however, as in 
the case of Rhizomer and PepeSearch, navigation between classes is an essential 
instrument. OptiqueVQS and SemFacet represent these two different paradigms, that 
is graph-based and form-based respectively. In OptiqueVQS, the navigation graph is 
used to explore the domain, while a constrained tree-shaped representation is used 
for query visualisation instead of a graph for usability purposes, while SemFacet 
allows navigation between classes and employs form elements rather than graphical 
visualisations. We refer interested readers to related publications [1, 27] on these 
tools including end user experiments.

Regarding data-driven adaptive suggestions, there are plenty of systems that sug-
gest filters on the facets of a single class. In fact, this a core feature of faceted search, 

17  There are two queries pointing towards (1.0, 110.5) and one pointing towards (1.0, 39.3).
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which is quite common on websites like Ebay18 and PriceSpy19. Popular implemen-
tations of faceted search includes e.g. Apache Solr20 and Elasticsearch.21 Since these 
systems only consider one class at a time, they can afford to calculate dead-end 
extensions with both perfect precision and recall, which distinguish them from our 
system.

All existing systems that support multiple connected classes while aiming to pro-
vide adaptive extension suggestions has some kind of weakness. SemFacet [1] is one 
of these systems. It relies on a highly scalable in-memory RDF triple store (RDFox) 
in order to get sufficient performance, but even this does not help if the queries are 
very complex. Other systems like DISQOVER [18] restricts the user by only allow-
ing extensions leading to query with result count under a given threshold. Many of 
these systems are both mature and feature-rich, and provides more than the dead-end 
elimination our system delivers. One example of this is ranking, which is useful when 
the number of valid extensions is so large that one must prioritise what to display to 
the user. The dead-end elimination we provide can be considered to be a (binary) 
ranking method in this respect. To our knowledge, no previous work has considered 
the particular query extension index we present, or the approximation of suggestions 
that comes with it.

Conclusion

In this article, we focused on ontology-based VQSs from an end-user perspective 
and explored means for using ontologies for the query formulation task, that is how 
one can navigate through the concepts of a given ontology and how elements of an 
ontology could be efficiently and effectively suggested to an end user without lead-
ing to any empty results. We first presented an approach for projecting ontologies 
into navigation graphs for the purpose of supporting query formulation and ontol-
ogy exploration tasks. However, one should note that such an approach is useful in 
general for supporting ontology-based user interfaces. Ontology to graph projection 
approach is implemented and tested in two different VQSs and experiment results 
suggest that we can efficiently project a given ontology into a navigation graph and 
query it. Secondly, we introduced three query extension suggestion functions for 
eliminating dead-ends: an optimal one that is slow for large datasets and complex 
queries; a range based one that is rather inaccurate, but allows fast implementation; 
and a configurable family of intermediate (precise enough and fast enough) solu-
tions to the problem, based on only looking at a part of the constructed query. We 
conducted a series of experiments to conclude that

20  http://lucen​e.apach​e.org/solr/.
21  https​://www.elast​ic.co/.

18  https​://www.ebay.com/.
19  https​://price​spy.co.uk/.

http://lucene.apache.org/solr/
https://www.elastic.co/
https://www.ebay.com/
https://pricespy.co.uk/
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1.	 good approximations to the best set of suggestions can often be reached by con-
sidering only relatively small parts of the constructed query,

2.	 the precision of the approximations can often be improved dramatically by includ-
ing the presence of required object properties in the configuration, rather than 
only connected datatype properties,

3.	 modest increases in index size will (in many cases) lead to a significant increase 
in accuracy.

In future work we intend to further improve the suggestions given to users by 
providing a ranking on the extensions that are not dead-ends. This ranking could 
be based on either the underlying data and/or a given query log [12]. Furthermore, 
we would like to consider alternative storage formats for the pre-joined index. In 
particular a document database like MongoDB could be suitable. A related question 
is how to share storage space between indices for sub- and super-classes in the type 
hierarchy. The viability of our approach depends on a good choice of the facet con-
figuration: it should be possible to determine an optimal configuration given a log of 
previous user queries. Another approach for reducing the index size is to work with 
buckets that combine ranges of facet values. Suitable bucketing strategies can also 
be determined from the query log and data.

Acknowledgements  This project is partly funded by the Center for Scalable Data Access in the Oil and 
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