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Abstract
Neural network is one of the best tools for data mining tasks due to its high accu-
racy. However, one of the drawbacks of neural network is its black box nature. This 
limitation makes neural network useless for many applications which require trans-
parency in their decision-making process. Many algorithms have been proposed to 
overcome this drawback by extracting transparent rules from neural network, but 
still researchers are in search for  algorithms that can generate  more accurate and 
simple  rules. Therefore, this paper proposes a rule extraction algorithm named 
Eclectic Rule Extraction from Neural Network Recursively (ERENNR), with the 
aim to generate simple and accurate rules. ERENNR algorithm  extracts symbolic 
classification rules from a single-layer feed-forward neural network. The novelty of 
this algorithm lies in its procedure of analyzing the nodes of the network. It analyzes 
a hidden node based on data ranges of input attributes with respect to its output and 
analyzes an output node using logical combination of the outputs of hidden nodes 
with respect to output class. And finally it generates a rule set by proceeding in a 
backward direction starting from the output layer. For each rule in the set, it repeats 
the whole process of rule extraction if the rule satisfies certain criteria. The algo-
rithm is validated with eleven benchmark datasets. Experimental results show that 
the generated rules are simple and accurate.
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Introduction

Over the last few decades, neural network (NN) has been an important area of 
research, especially for classification task due to its high accuracy on tremendous 
amount of highly nonlinear data [17]. Though it produces satisfactory accuracy, 
one of its main drawbacks is lack of transparency in decision-making process. 
That is an NN is unable to explain how it makes a final decision. Researchers 
tried to remove this drawback by extracting knowledge from NN in the form of 
human understandable rules like IF–THEN rules, M-of-N rules, oblique rules, 
and fuzzy rules [13, 16]. The development of various rule extraction algorithms 
enables NN to be suitable for those problems which require transparency in their 
decision-making process. Research in this area is still going on to generate more 
accurate, understandable and comprehensible rules.

Rule extraction process from NN follows three basic approaches: decomposi-
tional, pedagogical and eclectic [13, 16]. Decompositional approach is structure 
dependent which generates rule by analyzing hidden nodes and weight matrices 
of NN architecture. Pedagogical approach is a black box approach and generates 
rule as a whole in the form of input and output. Eclectic approach is a combina-
tion of both approaches.

Pedagogical and decompositional approaches both have advantages as well as 
disadvantages [2]. Pedagogical approach produces highly accurate rules but has 
exponential complexity, i.e., it is not effective when the size of NN increases. 
Pedagogical approach may not be able to capture all the valid rules. Whereas, 
decompositional approach is able to capture all the valid rules as it analyzes the 
structure of the network. But it is unsound, has unpredictable accuracy, and pro-
duces complex and larger rules. Compared to both of the approaches, eclectic 
approach is slower but effective and produces accurate rules as it combines the 
advantages of both approaches.

This paper proposes an eclectic rule extraction algorithm called Eclectic Rule 
Extraction from Neural Network Recursively (ERENNR) which analyzes each 
node and generates global rules. Many rule extraction algorithms based on eclec-
tic approach have been proposed, but maximum of them have used magnitude of 
weights or decision tree while analyzing a node. Analyzing nodes based on mag-
nitude of weights generates rule which are structure dependent and decision tree 
generates larger rule. Therefore, the proposed algorithm neither uses weights nor 
decision tree to generate rules.

The proposed ERENNR uses data ranges of input attributes to create a data range 
matrix for each hidden node and logical combinations of the outputs of hidden 
nodes to extract knowledge from the output nodes. Subsequently, by proceeding in 
the backward direction and using the extracted knowledge, the algorithm generates a 
set of rules in the form of input data ranges and outputs. The algorithm prunes each 
rule in the set if accuracy increases. For a rule in the set, the algorithm repeats the 
whole process recursively if the rule satisfies certain criteria.

The paper is organized as follows: Sect. 2 discusses the related works, Sect. 3 
discusses the proposed algorithm in details, Sect. 4 illustrates the algorithm with 
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an example, Sect.  5 presents experimental results with discussion, and finally 
Sect. 6 draws conclusion.

Related Works

Many rule extraction algorithms have been designed based on the three approaches 
which reveal the hidden information in NN in the form of symbolic rules. Though 
the algorithms extract rules based on the three approaches, the techniques used by 
the algorithms are different.

Algorithms like SUBSET and MofN [27] consider combination of weights for 
creating rules. SUBSET algorithm specifies an NN where the output of each neuron 
in the network is either close to zero or close to one. The algorithm finally searches 
for subsets of incoming weights that exceed the bias on a unit. MofN algorithm is an 
extension to the SUBSET algorithm, which clusters the weights of a trained network 
into equivalent classes and extracts m-of-n style rules.

Various algorithms like NeuroRule [21], Greedy Rule Generation (GRG) [18], and 
Rule Extraction (RX) [22] deal with discretized inputs. NeuroRule generates each 
rule by an automatic rule generation method which covers as many samples from the 
same class as possible with the minimum number of attributes in the rule condition. 
Automatic rule generation method generates rules that explain the network’s output in 
terms of the discretized hidden unit activation values and discretized activation values 
in terms of the discretized attributes of the input data. RX algorithm recursively gen-
erates rules by analyzing the discretized hidden unit activations of a pruned network 
with one hidden layer. When the number of input connections to a hidden unit is larger 
than a certain threshold, a new NN is created and trained with the discretized activa-
tion values as the target outputs. Otherwise, rules are obtained that explain the hidden 
unit activation values in terms of the inputs. GRG uses greedy technique to generate 
rules with discrete attributes, i.e., at each iteration it searches for the best rule.

Algorithms like NeuroLinear [23] and BRAINNE [20] do not require discretiza-
tion of inputs. NeuroLinear extracts oblique rules from neural network with continu-
ous attributes. BRAINNE extracts global rule from neural network without discre-
tization of input attributes.

Binarized Input–Output Rule Extraction (BIO-RE) algorithm [26] works only with 
binary input whereas Orthogonal Search based Rule Extraction algorithm (OSRE) 
[8] can be applied to data with nominal or ordinal attributes. BIO-RE simplifies the 
representation of underlying logic of a trained neural network using k-map, algebraic 
manipulations or a tabulation method. OSRE algorithm converts given input to 1 
from N form and then performs rule extraction based on activation responses.

Full-RE [26], Rule extraction by Reverse Engineering the Neural Network 
(RxREN) [3], and Rule Extraction from Neural Network using Classified and Mis-
classified data (RxNCM) [5] algorithms can work with any type of attributes. Full-
RE algorithm extracts rule with certainty factor from feed forward neural network 
that is trained by any type of attributes. RxREN generates rules in the form of data 
ranges of inputs from mixed dataset and relies on the reverse engineering tech-
nique to prune the insignificant input neurons. RxNCM is an extension to RxREN 
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algorithm. RxREN uses only misclassified data, whereas RxNCM uses both classi-
fied and misclassified data to find the data ranges of significant attributes.

Few algorithms like Trepan [7], Artificial Neural Network Tree (ANNT) [1], 
Recursive Rule Extraction (Re-RX) [25], Ensemble-Recursive-Rule extraction (E-Re-
RX) [14], Reverse Engineering Recursive Rule Extraction (RE-Re-RX) [6], Continu-
ous Re-RX [10, 12], the Re-RX algorithm with J48graft [12], Sampling Re-RX [12], 
Sampling Re-RX with J48graft [11], Fast Extraction of Rules from Neural Networks 
(FERNN) [24], and Hierarchical and Eclectic Rule Extraction via Tree Induction and 
Combination (HERETIC) [15] use decision tree as a part of the rule extraction pro-
cess. TREPAN algorithm extracts a decision tree from a trained network which is used 
as an “oracle” to answer queries during the learning process. ANNT algorithm maps 
each layer using decision tree to generate rules from pruned network. Re-RX algorithm 
uses decision tree to generate rules for discrete attributes and generates separate rules 
for discrete and continuous attributes using a recursive process. E-Re-RX, RE-Re-RX, 
continuous Re-RX, Sampling Re-RX, Re-RX with J48graft, and Sampling Re-RX 
with J48graft all come under the family of Re-RX, i.e., all uses decision tree as a part 
of their rule extraction process. E-Re-RX algorithm is an ensemble version of Re-RX 
algorithm which generates primary rules followed by secondary rules and finally these 
rules are integrated to obtain the final set. RE-Re-RX extends Re-RX by replacing the 
linear hyperplane for continuous attributes with simpler rules in the form of input data 
ranges. Continuous Re-RX uses C4.5 decision tree to generate rules for both discrete 
and continuous attributes using recursive approach. Re-RX with J48graft replaces the 
conventional Re-RX algorithm, which uses C4.5 as a decision tree with J48graft. Sam-
pling Re-RX uses sampling techniques for preprocessing with an objective to gener-
ate concise and accurate rules. Sampling Re-RX with J48graft algorithm uses both 
sampling and J48graft. FERNN is another such algorithm which identifies the relevant 
hidden units based on decision tree and finds the set of relevant network connections 
between input and hidden units based on magnitudes of their weights. HERETIC uses 
decision tree on each node to generate rules.

Active Learning-based Pedagogical Approach (ALPA) [9] algorithm is also pro-
posed which can extract rules from any black box. ALPA generates rule by generat-
ing new artificial data points around training vectors with low confidence score.

ERENNR Algorithm

ERENNR algorithm generates classification rules in the form of input data ranges 
and targets. The algorithm extracts rules by analyzing each node of the pruned net-
work. It uses data ranges of input attributes and logical combination of hidden out-
puts to analyze hidden and output nodes, respectively. Subsequently, it combines 
knowledge obtained from each node to construct rule set and prunes each rule in the 
set if accuracy increases. For each rule in the set, it repeats the whole process of rule 
extraction if the rule satisfies certain conditions. The flow chart for the algorithm is 
given below in Fig. 1.

The details of the algorithm are given below:
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Fig. 1   Flow chart of ERENNR
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Network Training

The algorithm uses a feed forward neural network (FFNN) with one hidden layer 
and back-propagation (BP) algorithm for training. The number of hidden nodes is 
calculated by varying the number from (l + 1) to 2 l where l is the number of input 
attributes. The network architecture which gives the smallest mean square error is 
selected as the optimal architecture [4, 19] and this architecture is taken for further 
experimentation.

Network Pruning

The algorithm uses the pruning concept used in RxREN [3]. For each input of the 
trained NN, the algorithm finds the number of incorrectly classified patterns. It finds 
a threshold value equal to the least value among all the numbers of incorrectly clas-
sified patterns and then removes those input(s) which have number of misclassified 
patterns equal to the threshold to form a temporary pruned network. The algorithm 
considers this temporary pruned network as the pruned network if classification 
accuracy of the network increases on training set. It repeats the whole process of 
pruning till the classification accuracy of the pruned network increases.

The network pruning algorithm is given below.
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Recursive Rule Extraction

Network is again trained with the properly classified patterns and the attributes of 
the pruned network. Training is done here to restrict the output activation values of 
hidden nodes to + 1 and − 1. This is done using a bipolar sigmoidal activation func-
tion with large gain factor β, greater than 100. Large gain factor converts the hidden 
output with small value to − 1 and large value to + 1. The formula of the activation 
function is given below in (1):

(1)�(x) =
1 − e−�x

1 + e−�x

Notations:
N: Denotes FFNN.
D: Denotes training dataset.
T: Represents a set of correctly classified examples by 
the trained N on D.

: Denotes accuracy of trained N on D.
: Represents a set of input neurons of N.

: Denotes input neuron in the set I.
d : Denotes number of inputs in set I.

: Represents set of incorrectly classified examples by 
training N in absence of .

: Denotes the number of incorrectly classified 
examples in .
B : Represents a set of insignificant input neurons.
TPN: Denotes a temporary pruned network.
PN: Denotes a pruned network.

: Denotes accuracy of trained TPN on D.
′ : Represents a set of input neurons of TPN.

T’: Represents a set of correctly classified examples by 
trained TPN on D.

Input: A trained FFNN.
Output: A pruned network.

||Network pruning(N, T ,I , )||

Step1: For each input neuron  , find  on set T.
Step2: Compute the threshold θ = min ( ), i=1, .. ,d.
Step3: Frame the set B = { | = θ}.
Step4: Form the TPN by removing all the insignificant 
input neurons of B.
Step5: Compute .
Step6: If ( ≥ ), then PN=TPN,

• Assign N=PN, = , T= T’, I= I’ .
• Call Network pruning (N, T, I, ) process.
Else stop the process.
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Rule extraction process is done by the following three steps.

Analyzing Nodes:

The algorithm extracts a data range matrix from each hidden node. Data range 
matrix is a table where each row represents an input attribute and each column 
represents an output value of a hidden node. ERENNR finds the classified pat-
terns for each hidden output and computes minimum and maximum value of the 
classified patterns for each attribute.

Figure 2 shows a data range matrix that is extracted from a hidden node. a1, a2,…, 
an are the attributes of pruned network. 1 and − 1 are activation values of the hidden 
node. Elements of the matrix show the ranges of attributes in respective activation 
output. Lij denotes lower range and Uij denotes upper range of an attribute ai in acti-
vation output j. (i ranges from 1 to n and j = {1, − 1}).

Thereafter creating data range matrix for each hidden node, ERENNR extracts 
knowledge from the output layer. The algorithm finds the logical combination of 
hidden outputs for each of the properly classified patterns with respect to each 
class of the output node. Among all the combinations in each class, ERENNR 
finds the unique combinations by removing the redundant ones. There may be 
some combinations which classify patterns in all the classes. Those combinations 
are useless. So, the algorithm removes those combinations to generate the final set 
of combinations or temporary rules in each class. The example given below shows 
final set of logical combinations of hidden outputs with respect to classes where k 
is the number of hidden nodes and m is the number of classes in the output layer.

Fig. 2   Data range matrix of a 
hidden node

1 -1

a1       [L11-U11]     [L1(-1)-U1(-1)]

a2       [L21-U21]    [L2(-1)-U2(-1)]

. .                      .

. .                      .  

an        [Ln1-Un1]    [Ln(-1)-Un(-1)]

If (hidden1= 1 and hidden2= -1 and hidden3= 1 and … 
hiddenk= -1), then class=1.

If (hidden1= 1 and hidden2= 1 and hidden3= -1 and … 
hiddenk= -1), then class=1.

If (hidden1= -1 and hidden2= -1 and hidden3= -1 and … 
hiddenk= -1), then class=2.
:
:
If (hidden1= -1 and hidden2= -1 and hidden3= 1 and … 
hiddenk= 1), then class=m.
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Rule Construction:

Proceeding in a backward direction starting from the output layer, ERENNR gener-
ates rules in the form of data ranges of input and output classes. For each temporary 
rule of output layer, ERENNR selects data ranges of all attributes for each hidden 
output value in the rule using the knowledge that is extracted in the preceding layer. 
For example, consider the temporary rule given below:

If (hidden1= 1 and hidden2= -1 and hidden3= 1 and… 
hiddenk= -1), then class=1.

Firstly, ERENNR generates data ranges of all attributes for hidden1 = 1, hidden2 = − 
1, hidden3 = 1,…, and, hiddenk = − 1 separately using the data range matrices of 
each of the hidden nodes. Table 1 shows data ranges of all attributes for each hidden 
output in the temporary rule.

Then, ERENNR combines all the hidden outputs in a temporary rule by finding 
the minimum lower range and maximum upper range for each attribute. For example 
in case of attribute a1 in Table 1 among all the hidden nodes from 1 to k, the algo-
rithm finds the minimum L1j and maximum U1j to select the data range for attribute 
a1. The rule generated after combination is shown below where Li and Ui are lower 
and upper range of attribute ai, respectively.

If (L1<=a1<= U1 and  L2<=a2<= U2 and… and  Ln<=an<= Un ), 
then class=1.

Similarly, for all the temporary rules of the output layer, rules are generated. The 
rule construction step still may generate some redundant and useless rules and con-
sequently ERENNR removes those rules. An example of rule set is given below:

Table 1   Data ranges of all 
attributes for each hidden output 
in a temporary rule

Hidden a1 a2 … an

hidden1 = 1 [L11–U11] [L21–U21] … [Ln1–Un1]
hidden2 = − 1 [L1(−1)–U1(−1)] [L2(−1)–U2(−1)] … [Ln(−1)–Un(−1)]
hidden3 = 1 [L11–U11] [L21–U21] … [Ln1–Un1]
: : : : :
hiddenk = − 1 [L1(−1)–U1(−1)] [L2(−1)–U2(−1)] … [Ln(−1)–Un(−1)]

Rule 1: If (L11<=a1<= U11 and L12<=a2<= U12 and… and 
L1n<=an<= U1n ), then class=1.

Rule 2: If (L21<=a1<= U21 and L22<=a2<= U22 and… and 
L2n<=an<= U2n ), then class=1.

Rule 3: If (L31<=a1<= U31 and L32<=a2<= U32 and… and 
L3n<=an<= U3n ), then class=2.
.
:
:
Rule r: If (Lr1<=a1<= Ur1 and Lr2<=a2<= Ur2 and… and 
Lrn<=an<= Urn ), then class=m.
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Lli and Uli denote lower range and upper range of attribute ai in rule l, respectively.

Rule Pruning:

Firstly, to make the range more appropriate, the algorithm adjusts the range of 
each attribute in a rule. For each condition in a rule, it removes the equal sign and 
checks whether accuracy increases or not. If accuracy increases, then the equal sign 
is removed from the condition. Shifting of range helps to determine more specific 
range, if the ranges of attributes overlap for different classes.

Thereafter, rule pruning is performed to make the rules simple and accurate. 
Pruning is done by removing each condition from a rule. If the accuracy on properly 
classified patterns by the pruned network increases after removing a condition, the 
condition is removed from the rule. After rule pruning, the rule which covers the 
maximum number of attributes is given the first preference in the rule set.

The algorithm evaluates each rule in the rule set in terms of error and support. 
The support of a rule is the percentage of classified patterns by the rule and the error 
is the percentage of misclassified patterns by the rule. If the error exceeds a speci-
fied threshold and the support meets the minimum threshold, then ERENNR further 
divides the subspace of the rule by calling the recursive rule extraction step of the 
algorithm. The step proceeds with those attributes of the pruned network which are 
not present in the subspace of the rule and with the patterns classified by the rule.

The recursive rule extraction algorithm is given below:
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Notations:
P: Denotes pruned network

: Represents a set of attributes of P.
:Denotes ith attribute of set a.

C : Represents a set of correctly classified patterns by P.
Hh : Denotes  hth hidden node of the hidden layer H.
DMh: Denotes data range matrix of hidden node h.
Ot : Denotes tth output of a hidden node.
ck : Denotes kth class of output layer.
TR: Denotes temporary rule set of output layer.
TRtr: Denotes (tr)th rule of TR.
L: Denotes lower range.
U: Denotes upper range.
R: Denotes rule set.
Rr : Denotes rth rule of  R.
Acc_Rr: Denotes accuracy of Rr.
’: Represents a set of attribute(s) not covered by 

subspace of Rr but present in the set a.
C’: Represents a set of classified patterns by Rr on C.

Input: A pruned network.
Output: A set of rules.

|| Recursive rule extraction(P, C, a) ||

Step1: Train P with a and C using back propagation 
with nonlinear activation function having large gain 
factor.
Step2:At each Hh :

Find the L and U of the patterns 
belonging to C for each attribute with 
respect to Ot of h to create DMh.

Step3: Find logical combination of Hh=Ot for each of 
the patterns in C with respect to ck. Remove the 
redundant and useless logical combinations to form TR.
Step4: Construct R by superimposing each TRtr with 
DMh of each Hh present within each TRtr.

Construct Rr:
Replace each hidden value Hh= Ot in 
TRtr with data ranges of all attributes ai
in DMh for Ot.
Construct Rr by finding the min(L) and 
max(U)  of  each ai for all Hh in TRtr

Remove Rr from R if it is redundant or useless.
Step5: 

For each Rr in R,
For each condition in Rr , remove equal 
to sign and check Acc_Rr on C

If Acc_Rr increases, the equal to sign 
is removed.

For each condition in Rr, remove the 
condition and check Acc_Rr on C.

If Acc_Rr increases, the condition is 
removed. 

Arrange all Rr in R in descending order 
according to number of attributes covered by 
each Rr.

Step6:For each  Rr in R,
If support(Rr) > threshold1 and  error(Rr) >
threshold2

If ′is present then call Recursive rule 
extraction (P, C’, a’).
Else stop.

Else stop.  
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Illustrative Example

To illustrate the algorithm, Australian Credit Approval dataset is taken from UCI 
repository. Australian Credit Approval is a standard dataset used for comparison of 
different rule extraction algorithms. There is a good mix of attributes with 690 pat-
terns and two classes in the dataset. It contains 6 continuous attributes, 8 categorical 
attributes, and 1 binary attribute for class. 70% of the patterns (483 patterns) are 
taken as training set and 30% of the patterns (207 patterns) as testing set. A single 
hidden layer FFNN with 25 hidden nodes is trained using back-propagation algo-
rithm. After pruning, attribute 2 is removed from the network. Table 2 shows the 
accuracy of NN and pruned NN.

425 patterns are correctly classified by the pruned NN. The pruned network is 
again trained by the 425 patterns. Data range matrix for each hidden node is created. 
Table 3 shows the data range matrix of hidden node 1.

Logical combinations of hidden outputs are formed for each of the 425 patterns. 
After removing the useless and redundant combinations, 124 important combina-
tions are selected to form temporary rule set. For each of the 124 temporary rules, 
final rules are created using the data ranges of attributes for each hidden output 
value present in the temporary rule. For example, one of the temporary rules for the 
dataset is given below:

If (hidden1= -1 ^ hidden2=-1 ^…. hidden7=1 ^ hidden8=1 ^…. 
^ hidden25=-1), then class=0.

Table 4 shows the data ranges of all attributes for each hidden output in the tem-
porary rule.

Rule is created using Table 4 by selecting minimum lower and maximum upper 
range of each attribute. The generated rule is given below.

If ((0<= attribute1 <=1) AND (0<= attribute3 <=28) AND… 
AND (1<= attribute14 <=50001)), then class=0.

Similarly, rules are generated for all the temporary rules in the set. After remov-
ing the useless and redundant rules, the rule set contains 2 rules. The pruned rule set 
after rule pruning is given below.

Rule 1: If (attribute10 >0), then class=1.
Rule 2: If (attribute8<=1), then class=0.
Default rule: Else class 1.

Table 2   Accuracy of NN and pruned NN for Australian Credit Approval dataset

Training accuracy of 
NN (%)

Testing accuracy of 
trained NN (%)

Training accuracy of 
pruned NN (%)

Testing accuracy of 
pruned NN (%)

87.99 84.54 87.99 85.02
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Subspace of Rule 1 and Rule 2 is further subdivided as support and error for both 
the rules that are greater than the specified thresholds. The thresholds for support and 
error in this experiment are set to 0.05. Table 5 shows that the support and error for 
both the rules are greater than 0.05. Consequently, Recursive rule extraction (P, C, 
a) step is called for both the rules. For Rule 1, the step is repeated with C = 183 pat-
terns and a = {a-attribute10}. For Rule 2, the step is repeated with C = 242 patterns and 
a = {a-attribute8}. The process continues till the support and error for each generated 
rule are greater than the thresholds.

The final set of rules is given below:

Table 3   Data range matrix of 
hidden node1 for Australian 
Credit Approval dataset

Attribute + 1 − 1

1 [0–1] [0–1]
3 [0–28] [0–25.1250]
4 [1–3] [1, 2]
5 [1–14] [1–14]
6 [1–9] [1–9]
7 [0–28.5] [0–18]
8 [0–1] [0–1]
9 [0–1] [0–1]
10 [0–40] [0–23]
11 [0–1] [0–1]
12 [1–3] [1, 2]
13 [0–2000] [0–640]
14 [1–205] [1–50,0001]

Table 4   Data ranges of 
attributes for Australian Credit 
Approval dataset

Hidden Attribute 1 Attribute 3 … Attribute 14

hidden1 = − 1 [0–1] [0–25.1250] …. [1–50001]
hidden2 = − 1 [0–1] [0–28] … [1–16]
… … … … …
hidden25 = − 1 [0–1] [0–25.1250] …. [1–50,001]

Table 5   Support and error of Rule 1 and Rule 2 for Australian Credit Approval dataset

Rules Classified 
instances

Correctly clas-
sified

misclassified Support Error

Rule 1 183 138 45 0.4306 0.2459
Rule 2 242 188 54 0.5694 0.2231
Default rule 0 0 0 – –
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Accuracies of final rule set on training and testing sets are 85.92% and 85.99%, 
respectively. The threshold values of support and error are important for determin-
ing accuracy as well as complexity [25]. The values are selected experimentally. 
Rule sets are generated by varying the threshold values, and the rule set which gives 
best performance is considered. Experimental results with various values of thresh-
old for Australian Credit Approval dataset are shown in Table 6. Best testing accu-
racy is obtained when support and error are equal to 0.05. With large thresholds, 
fewer rules are obtained and with small thresholds, many rules are obtained.

Experimental Results

Data sets and Experimental Set Up

All the datasets used for the experiments are listed in Table 7. They are collected 
from UCI and Keel machine learning repository. Among all the datasets, seven are 
mixed dataset and four are continuous dataset. Experiments on all the datasets are 
done by MATLAB in windows environment. Experiments are done for 70–30 parti-
tion (70% patterns of a dataset as training set, and 30% patterns as test set) and for 
80–20 partition (80% patterns of a dataset as training set, and 20% patterns as test 
set). 5-fold and tenfolds cross-validation are also performed. A single hidden layer 
FFNN is trained with back-propagation algorithm. For each network architecture, 
Mean Square Error (MSE) is measured on training set and the architecture which 
finds minimum MSE is selected for further experimentation and is called optimal 
architecture of the network [4, 19].

Table 6   Accuracy and number 
of rules with different support 
and error for Australian Credit 
Approval dataset

Support, error Training accuracy Testing accuracy Number 
of rules

0.1, 0.1 77.02 76.81 3
0.05, 0.05 85.92 85.99 8
0.05, 0.02 86.33 83.12 12
0.05, 0 85.92 83.54 13

Rule 1: If (attribute10 >0), then follows:
Rule 1.1: If (attribute8==0), then class=0. 
Rule 1.2: Else class=1.               

Rule 2: If (attribute 8<=1), then follows:
Rule 2.1: If ((attribute 6<=9) ^ (attribute 13<=980)), 

then class=0. 
Rule 2.2: If ((attribute 9>=0) ^ (attribute 11<=1)), then   

class=1. 
Rule 2.3: Else class=0.               

Default rule: Else class 1.
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Rule Extraction by ERENNR

The set of rules generated for Australian Credit Approval dataset is shown in illus-
trative example section. Rules generated with rest of the datasets for 70–30 partition 
are shown below.

Credit Approval:

After removing patterns with missing values, 458 patterns are selected for training 
and 196 patterns are selected for testing. The number of hidden nodes is 26. The set 
of rules extracted by ERENNR is shown below:

Rule 1: If ((attribute 4 <=2) ^ (attribute 9>=2)), then class=0.
Default rule: Else class=1.

Echocardiogram:

There are total 132 patterns among which 71 patterns are removed as they con-
tain missing values. So, 43 patterns are selected for training and 18 patterns are 
selected for testing. The number of hidden nodes is 17. The set of rules extracted by 
ERENNR is shown below:

Table 7   Datasets used for experiments

Dataset No. of patterns Attribute 
(including class 
attribute)

Attribute characteristics No. of classes

Credit approval 690 16 Categorical, integer, real 2
Australian credit 

approval
690 15 Categorical, integer, real 2

Echocardiogram 132 13 Categorical, integer, real 2
Statlog (heart) 270 14 Categorical, real 2
Breast cancer 699 11 Real 2
Blood transfusion 748 5 Real 2
German 1000 21 Categorical, integer 2
Eye 14,980 15 Integer, real 2
Pima Indians diabetes 768 9 Integer, real 2
Census income 48,842 15 Categorical, integer 2
Thyroid 7200 22 Continuous, binary 3



82	 New Generation Computing (2019) 37:67–96

123

Statlog (Heart):

189 patterns are selected for training and 81 patterns are selected for testing. The num-
ber of hidden nodes is 22. The set of rules extracted by ERENNR is shown below:

Breast Cancer:

After removing the useless attribute (first attribute) and patterns with missing val-
ues, it contains 683 patterns and 9 attributes. 479 patterns are selected for training 
and 204 patterns are selected for testing. The number of hidden nodes is 11. The set 
of rules extracted by ERENNR is shown below:

Blood Transfusion:

The dataset contains 4 attributes with 748 patterns. 523 patterns are selected for 
training and 225 patterns are selected for testing. The number of hidden nodes is 8. 
The set of rules extracted by ERENNR is shown below:

Rule 1: If (attribute2< 46), then class=0.
Default rule: Else class=1.

Rule 1: If ((attribute1>0.5) ^ (attribute1<=57) ^ (attribute  
2==0)), then class=0.

Rule 2: If (attribute2==1), then follows:
Rule 2.1: If (attribute1<22), then class=1.
Rule 2.2: Else class=0.

Default rule: Else class=0.

Rule 1: If ((attribute13>3) ^ (attribute13<=7)), then 
follows:

Rule 1.1: If ((attribute3 <4) ^ (attribute8<195) ^     
(attribute12<3)), then follows:
Rule 1.1.1: If ((attribute6>0) ^ (attribute7>1)), 

then class=0.
Rule 1.1.2: If ((attribute1 < 70) ^ (attribute4 <  

180)), then class=1. 
Rule 1.13: Else class=0.

Rule 1.2: If (attribute4>94), then class=0.
Rule 1.3: Else class=1.

Rule 2: If (attribute12<3), then follows:
Rule 2.1: If (attribute13 >=3), then class=1.
Rule 2.2: Else class=0.

Default rule: Else class=0.

Rule 1: If ((attribute1<=6) ^ (attribute2<=4) ^ (attribute3 <= 
4) ^ (attribute8<=3)), then class=0.

Default rule: Else class=1.
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German:

700 patterns are selected for training and 300 patterns are selected for testing. The 
number of hidden nodes is 27. The set of rules extracted by ERENNR is shown below:

Eye:

10486 patterns are selected for training and 4494 patterns are selected for testing. The 
number of hidden nodes is 25. The set of rules extracted by ERENNR is shown below:

Pima Indian Diabetes:

538 patterns are selected for training and 230 patterns are selected for testing. 
The number of hidden nodes is 14. The set of rules extracted by ERENNR is 
shown below:

Census Income:

After removing patterns with missing values, 31,655 patterns are selected for 
training and 13,567 patterns are selected for testing. The number of hidden nodes 
is 26. The set of rules extracted by ERENNR is shown below:

Rule 1: If ((attribute1>1) ^ (attribute5 <15945)), then  
follows:
Rule 1.1: If ((attribute2>=4 ^ attribute2 <=60) ^ 

(attribute3 >=1 ^attribute3 <=5) ^ 
(attribute4 >=1 ^ attribute4 <=11)), then 
class=1.

Rule 1.2: Else class=0.
Default rule: Else class=0;

Rule 1: If ((attribute1>=4197.95) ^ (attribute1<309231) ^  
(attribute10>=1816 .41) ^ (attribute10<4323.08)),  
then follows:

Rule 1.1: If ((attribute13 >= 3504.1) ^ (attribute13                    
< 4757.95)), then class=0.

Rule 1.2: Else class=1.
Default rule: Else class=1.

Rule 1: If ((attribute1 <11) ^ (attribute2<155) ^     
(attribute3>0) ^ (attribute6<50) ^ 
(attribute8<70)), then follows:
Rule 1.1: If ((attribute5<600) ^ 
(attribute7<2.288)), then class=0.
Rule 1.2: Else class=1.

Rule 2: If (attribute2>106), then class=1.
Default rule: Else class=0.
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Thyroid:

It is a highly imbalanced dataset with three classes: normally functioning (class 3), 
under-functioning (primary hypothyroidism, class 2), or overactive (hyperthyroidism, 
class 1). Class 1 and class 2 represent 2.3% (166 patterns) and 5.1% (367 patterns) of 
the dataset, respectively, and the remaining 92.6% (6667 patterns) are classified as 
class 3. It contains 6 continuous and 15 binary attributes. 5040 patterns are taken as 
training set, 2160 patterns are taken as testing set, and the number of hidden nodes 
used is 30. The set of rules extracted by the ERENNR algorithm is shown below:

The testing accuracies of NN and the above rule sets for all the datasets are 
shown in Table 8.

Performance and Comparison of ERENNR with Existing Methods

Till now many rule extraction algorithms have been proposed. Here, comparison is 
shown with RxREN [3] and Re-RX [25] as ERENNR extracts rule in the form of 
data ranges of input like RxREN and extracts rule recursively like Re-RX. Moreo-
ver, Re-RX and RxREN have already been compared with many well-known rule 
extraction algorithms like NeuroRule [21], NeuroLinear [23], GRG [18], etc.

Table  9 shows the comparison of ERENNR with Re-RX and RxREN for 
80–20 partition and 70–30 partition, respectively, in terms of accuracy. For all the 

Table 8   Accuracy of ERENNR 
on testing sets for 70–30 fold

Datasets NN (%) Rules (threshold1 = 0.05 
&& threshold2 = 0.05) (%)

Credit approval dataset 83.67 85.20
Australian credit approval 84.54 85.99
Echocardiogram 94.44 100
Statlog (heart) dataset 70.37 77.78
Breast cancer 98.43 97.06
Blood transfusion 76.44 75.56
German 77 73
Eye 65.82 65.55
Pima Indians diabetes 76.09 79.13
Census income 77.98 76.72
Thyroid 90.51 95.31

Rule 1: If ((attribute11 >0) ^ (attribute12>0)), then class=1.
Rule 2: If (attribute11<99999), then class=0.
Default rule: Else class=1.

Rule 1: If ((atribute3==0) ^ (attribute8==0) ^       
(attribute17>=0.0065) ^   (attribute19<=0.15) ^
(attribute20>=0.0560) ^ (attribute21)>=0.0649)), then 
class=2.
Rule 2: If ((attribute17<0.1770) ^ (attribute19>=0.019)), 
then class=3.
Default rule: Else class=1.
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The performance is also evaluated by mean across 5-folds and 10-folds. Table 10 
shows the results for 5-fold cross-validation and tenfolds cross-validation. It is 
observed that the proposed ERENNR algorithm performed better than Re-RX and 
RxREN for all the datasets when different folds are taken into consideration.

Like accuracy, fidelity is one more criteria to evaluate the performance of 
extracted rules which is the ability of the rules to mimic the behavior of NN. Fidel-
ity of rule set R is shown by (2). T denotes test set, and fNN(t) and fR(t) denote the 
function implemented by a trained NN and the rules extracted from the trained NN, 
respectively [28]. Table 11 shows the comparison of fidelity for 80–20 partition and 
70–30 partition, respectively, and Table 12 shows the comparison of mean fidelity 
for 5-folds and tenfolds, respectively. All the results show that fidelity of rules by 
ERENNR is higher than Re-RX and RxREN in maximum of the datasets.

Only accuracy is not sufficient to validate the performance of a classification 
model. This paper considers other measures like recall, FP rate, specificity, preci-
sion, f-measure, and MCC to validate the performance. These performance meas-
ures are calculated using confusion matrix. Confusion matrix contains information 
about actual classification and predicted classification done by a classifier. Table 13 
shows the confusion matrix for a binary classifier with the following data entries: (a) 
True positive (TP) is the number of ‘positive’ instances categorized as ‘positive’, (b) 
False positive (FP) is the number of ‘negative’ instances categorized as ‘positive’, 
(c) False negative (FN) is the number of ‘positive’ instances categorized as ‘nega-
tive’ and (d) True negative (TN) is the number of ‘negative’ instances categorized as 
‘negative’. Performance measures defined based on the 2 class matrix are shown in 
Table 14.

Tables 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, and 25 show the comparison of 
ERENNR with Re-RX and RxREN based on the performance measures. A good 

(2)FidelityR = 1 − probability{t ∈ T|fR(t) ≠ fNN(t)}

Table 9   Comparison of testing accuracy (in %)

Datasets 80–20 partition 70–30 partition

Re-RX RxREN ERENNR Re-RX RxREN ERENNR

Credit approval dataset 91.60 93.13 93.89 81.12 81.12 85.20
Australian credit approval 72.46 76.81 81.88 75.36 84.54 85.99
Echocardiogram 91.67 91.67 100 94.44 94.44 100
Statlog (heart) dataset 75.93 70.37 77.78 67.90 72.83 77.78
Breast cancer 91.91 94.12 97.79 93.13 95.59 97.06
Blood transfusion 78.67 78.67 78.67 74.67 75.56 75.56
German 74 71.5 75.5 71 67 73
Eye 68.66 67.62 69.06 55.03 65.26 65.55
Pima Indians diabetes 74.68 74.03 83.12 69.13 71.30 79.13
Census income 69.94 75.79 76.37 70.75 76.18 76.72
Thyroid 92.01 93.06 94.24 93.95 94.94 95.31
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model desires higher accuracy, precision, specificity, recall, f-measure, MCC and 
lower FP rate. Good model means that it should have low FP and low FN. But 
it is always not possible to obtain both FP and FN lower for all cases. In some 
cases, low FP and high FN, or the reverse may be obtained. In such cases, if 
maximum of the performance measures are good then the classification model 
can be considered as a good classifier. But a model having both high FP and high 
FN cannot be considered as a good classifier.          

Table 10   Comparison of testing accuracy with cross-validation results

Datasets 5-fold cross-validation (in %) tenfold cross-validation (in %)

Re-RX RxREN ERENNR Re-RX RxREN ERENNR

Credit approval dataset 79.40 84.43 86.11 81.39 84.46 86.62
Australian credit approval 70.89 73.04 85.36 73.2 73.76 85.51
Echocardiogram 90 93.33 98.33 93.33 93.33 96.67
Statlog (heart) dataset 72.59 73.33 74.81 73.33 75.93 80.37
Breast cancer 90.59 91.47 95.58 90.29 93.09 96.47
Blood transfusion 76.26 76.40 76.53 73.6 76.39 76.53
German 71 67.4 72.20 70.4 67.4 73.1
Eye 53.98 54.95 55.34 53.98 54.65 55.24
Pima Indians diabetes 67.27 70.26 75.84 68.57 70.39 76.88
Census income 77.08 83.93 84.29 77.08 83.93 84.29
Thyroid 91.09 92.57 93.472 91.09 92.568 93.473

Table 11   Comparison of fidelity (in %)

Datasets 80–20 partition 70–30 partition

Re-RX RxREN ERENNR Re-RX RxREN ERENNR

Credit approval dataset 73.28 95.42 97.71 89.29 91.33 95.41
Australian credit approval 66.67 72.46 94.2 76.33 96.14 85.99
Echocardiogram 100 100 91.67 100 100 94.44
Statlog (heart) dataset 72.22 68.52 75.93 60.49 70.37 77.78
Breast cancer 91.18 92.65 97.79 93.63 95.09 97.06
Blood transfusion 99.33 99.33 99.33 95.11 99.11 98.22
German 72.5 69 75 69.33 72.67 80.67
Eye 86.84 76.4 88.85 56.05 59.75 97.37
Pima Indians diabetes 76.62 66.88 86.36 75.65 65.65 82.17
Census income 91.29 95.49 96.04 91.33 95.84 96.31
Thyroid 89.51 90.49 90.14 96.16 96.44 97.27
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Comparison with Re‑RX:

For all the datasets, ERENNR produced less FP and less FN compared to Re-RX 
except Eye, German, Pima Indians Diabetes, and Census Income datasets. In case of 
Eye, German, and Census Income datasets ERENNR produced less FP and high FN 
than Re-RX. In case of Pima Indians Diabetes dataset, ERENNR produced high FP 
and less FN than Re-RX. But maximum of the performance measures are better for 

Table 12   Comparison of fidelity with cross-validation results

Datasets 5-fold cross-validation (in %) Tenfold cross-validation (in %)

Re-RX RxREN ERENNR Re-RX RxREN ERENNR

Credit approval dataset 74.35 93.74 95.42 86.92 95.08 96.62
Australian credit approval 68.7 73.91 91.74 73.48 74.78 93.19
Echocardiogram 88.33 91.67 90 91.67 91.67 88.33
Statlog (heart) dataset 72.22 73.70 75.56 72.96 72.22 85.19
Breast cancer 90.59 90.88 94.85 90.44 93.82 96.91
Blood transfusion 98.8 98.93 98.53 95.6 98.13 98
German 69.1 74.1 78 56.67 69.11 69.56
Eye 76.63 73.7 77.5 81.9760 80.9479 77.9039
Pima Indians diabetes 76.36 67.66 85.45 77.92 67.67 86.75
Census income 91.04 93.94 94.26 86.09 94.25 94.42
Thyroid 91.07 91.39 92 90.14 90.31 90.82

Table 13   Confusion matrix for a 
binary classifier

Predicted

Positive Negative

Actual
 Positive TP FN
 Negative FP TN

Table 14   Performance measures Performance measures Formula

Accuracy TP+TN

TP+TN+FP+FN

Recall TP

TP+FN

FP rate FP

FP+TN

Specificity TN

FP+TN

Precision TP

TP+FP

f-measure 2∗precision*recall

precision+recall

Matthews correlation coefficient 
(MCC)

TP×TN−FP×FN
√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)
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Table 15   Performance of ERENNR, Re-RX and RxREN algorithm on Credit Approval dataset

Model Accuracy 
(%)

Precision 
(%)

FP rate (%) Specificity 
(%)

Recall (%) f measure 
(%)

MCC (%)

ERENNR 85.20 75.47 23.01 76.99 96.39 84.66 72.75
Re-RX 81.12 72.55 24.78 75.22 89.16 80.00 63.67
RxREN 81.12 70.18 30.09 69.91 96.39 81.22 66.41

Table 16   Performance of ERENNR, Re-RX and RxREN algorithm on Australian Credit Approval data-
set

Model Accuracy 
(%)

Precision 
(%)

FP rate (%) Specificity 
(%)

Recall (%) f measure 
(%)

MCC (%)

ERENNR 85.99 92.00 5.22 94.78 75.00 82.63 72.14
Re-RX 75.36 73.03 20.87 79.13 70.65 71.82 49.97
RxREN 84.54 78.30 20.00 80.00 90.22 83.84 69.80

Table 17   Performance of ERENNR, Re-RX and RxREN algorithm on Echocardiogram dataset

Model Accuracy 
(%)

Precision 
(%)

FP rate (%) Specificity 
(%)

Recall (%) f measure 
(%)

MCC (%)

ERENNR 100 100 0 100 100 100 100
Re-RX 94.44 75.00 6.67 93.33 100 85.71 83.67
RxREN 94.44 75.00 6.67 93.33 100 85.71 83.67

Table 18   Performance of ERENNR, Re-RX and RxREN algorithm on Statlog (heart) dataset

Model Accuracy 
(%)

Precision 
(%)

FP rate (%) Specificity 
(%)

Recall (%) f measure 
(%)

MCC (%)

ERENNR 77.78 77.36 35.29 64.71 87.23 82.00 53.90
Re-RX 67.90 59.52 36.17 63.83 73.53 65.79 36.90
RxREN 72.84 73.58 41.18 58.82 82.98 78.00 43.38

Table 19   Performance of ERENNR, Re-RX and RxREN algorithm on breast cancer dataset

Model Accuracy 
(%)

Precision 
(%)

FP rate (%) Specificity 
(%)

Recall (%) f measure 
(%)

MCC (%)

ERENNR 97.06 92.59 2.63 97.37 96.15 94.34 92.38
Re-RX 93.14 81.67 7.24 92.76 94.23 87.50 83.21
RxREN 95.59 92.16 2.63 97.37 90.38 91.26 88.32
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Table 20   Performance of ERENNR, Re-RX and RxREN algorithm on blood transfusion dataset

Model Accuracy 
(%)

Precision 
(%)

FP rate (%) Specificity 
(%)

Recall (%) f measure 
(%)

MCC (%)

ERENNR 75.56 100 0 100 1.79 3.51 11.61
Re-RX 74.67 12.50 4.14 95.86 1.79 3.13 – 5.50
RxREN 75.56 100 0 100 1.79 3.51 11.61

Table 21   Performance of ERENNR, Re-RX and RxREN algorithm on German dataset

Model Accuracy 
(%)

Precision 
(%)

FP rate (%) Specificity 
(%)

Recall (%) f measure 
(%)

MCC (%)

ERENNR 73 80.29 44.09 55.91 80.68 80.48 36.70
Re-RX 71 75.90 71.43 28.57 87.50 81.29 19.21
RxREN 67 70.61 82.80 17.20 89.37 78.89 9.14

Table 22   Performance of ERENNR, Re-RX and RxREN algorithm on eye dataset

Model Accuracy 
(%)

Precision 
(%)

FP rate (%) Specificity 
(%)

Recall (%) f measure 
(%)

MCC (%)

ERENNR 65.55 66.67 0.48 99.52 1.79 3.49 6.51
Re-RX 55.03 40.89 50.78 49.22 65.94 50.48 14.54
RxREN 65.26 50.03 32.44 67.56 60.95 54.95 27.48

Table 23   Performance of ERENNR, Re-RX and RxREN algorithm on Pima Indians diabetes dataset

Model Accuracy 
(%)

Precision 
(%)

FP rate (%) Specificity 
(%)

Recall (%) f measure 
(%)

MCC (%)

ERENNR 79.13 94.59 1.34 98.66 43.21 59.32 54.43
Re-RX 69.13 100 0 100 12.35 21.98 28.92
RxREN 71.30 56.88 31.54 68.46 76.54 65.26 43.05

Table 24   Performance of ERENNR, Re-RX and RxREN algorithm on census income dataset

Model Accuracy 
(%)

Precision 
(%)

FP rate (%) Specificity 
(%)

Recall (%) f measure 
(%)

MCC (%)

ERENNR 76.72 100 0 100 1.96 3.84 12.24
Re-RX 70.35 23 8.84 91.16 8.1 11.98 − 1.13
RxREN 76.18 17.65 0.14 99.86 0.093 0.19 − 0.51
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ERENNR. So, it can be said that the performance of ERENNR is better than Re-RX 
for those datasets.

Comparison with RxREN:

ERENNR have shown better performance than RxREN for Credit Approval, 
Echocardiogram, Statlog (Heart), Census Income, and Thyroid datasets. ERENNR 
produced less FP and less FN for those datasets. For Blood Transfusion dataset per-
formance for ERENNR is equal to RxREN for the selected fold. For Breast Cancer 
dataset, all the performance measures are equal or better because ERENNR pro-
duced equal FP and less FN compared to RxREN.

For German, Australian Credit Approval, Eye, and Pima Indians Diabetes data-
sets, all the performance measures are better except one or two measures because 
ERENNR produced less FP and high FN. But maximum of the performance meas-
ures is better for ERENNR, so it can be said that the performance of ERENNR is 
better than RxREN for those datasets.

The algorithm is also validated with a suitable non- parametric statistical test for 
multiple comparisons: Freidman test, followed by a post hoc test: Least Significant 
Difference (LSD). Goal of any hypothesis test is to check whether the null hypoth-
esis is rejected or not, and it is decided by the P value. If the P value is very small, 
then the null hypothesis is rejected.

Null hypothesis for this test:

“There is no significant difference between Re-RX, RxREN, and ERENNR”
Tenfold cross-validation results are used for the test. Table 26 shows the results 

for Friedman test. Table shows mean value for each model, Freidman statistics: Chi 
square value and P value. In all the cases except echocardiogram and blood trans-
fusion datasets, the null hypothesis is rejected at a significant (P < 0.05) or highly 
significant (P < 0.01) P value.

Friedman test indicated that there is a significant difference between Re-RX, 
RxREN and ERENNR algorithms, but it is not clear that which specific algorithm 
is the reason behind this difference. So, LSD post hoc analysis is performed after 
Freidman test. LSD performs all possible pairwise comparison of group means 
obtained from Freidman test. Table 27 shows the results for LSD test. P value for 
pairs: (ERENNR and Re-RX) and (ERENNR and RxREN) is significant (P < 0.05) 

Table 25   Performance of ERENNR, Re-RX and RxREN algorithm on thyroid dataset

Model Accuracy 
(%)

Precision 
(%)

FP rate (%) Specificity 
(%)

Recall (%) f measure 
(%)

MCC (%)

ERENNR 95.31 92.96 3.52 96.48 92.96 92.96 89.44
Re-RX 93.95 90.93 4.54 95.46 90.93 90.93 86.39
RxREN 94.94 92.41 3.80 96.2 92.41 92.41 88.61
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or highly significant (P < 0.01) in all datasets except echocardiogram and blood 
transfusion datasets. Analyzing all the results in Tables 26 and 27, it can be said that 
ERENNR algorithm is the reason for significant difference between the three algo-
rithms. So, ERENNR algorithm is statistically significant compared to Re-RX and 
RxREN algorithms.

The statistical significance of ERENNR algorithm over Re-RX algorithm and 
RxREN algorithm is also validated based on results from all the 11 datasets together. 
The mean testing accuracies of tenfolds for each of the datasets by the three algo-
rithms are used for this purpose. Tables 28 and 29 show the results for Friedman 
test and LSD post hoc test, respectively, over all the 11 datasets. Results for Fried-
man test show that the mean rank for ERENNR is higher than Re-RX and RxREN, 
and the null hypothesis is rejected at a highly significant (P < 0.01) P value. LSD 
test further shows that ERENNR algorithm is significant than Re-RX algorithm at 
a confidence level of 99%, i.e., P < 0.01 and ERENNR algorithm is significant than 
RxREN algorithm at a confidence level of 90%, i.e., P < 0.1. 

Comparison of ERENNR with Some Other Techniques

Table 30 shows the comparison of ERENNR with some other techniques: a stand-
ard rule inducing technique (Decision tree), Decision tree created using predicted 
outputs of NN, and Continuous Re-RX [10, 12]. DT means decision tree and DT_
using_NN means decision tree using the predicted outputs of NN. Table shows that 
ERENNR performed better than all the techniques in all datasets except Australian 
Credit Approval and Thyroid. However, ERENNR performed better than continuous 
Re-RX algorithm in both the cases. It also performed better than DT_using_NN for 
Thyroid dataset.

Discussion

The preceding subsections present the results produced by ERENNR algorithm. 
Experiments are performed on 11 datasets taken from UCI and keel repository 
and comparison is done with Re-RX, RxREN, continuous Re-RX, and decision 
tree algorithms. All the results shown above convey that ERENNR algorithm 
is able to generate simple rules with good accuracy. The recursive nature of the 
algorithm enables it to select appropriate data ranges of input attributes which 
further allow it to generate accurate rule. Friedman test and LSD post hoc anal-
ysis are also performed to validate the statistical significance of the proposed 
ERENNR. Other than accuracy, rules can be evaluated based on some other 
measures like:
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Fidelity:

Fidelity is the measure of ability of rules to mimic the behavior of NN. ERENNR 
produced rules with good fidelity (shown in Table 11 and 12).

Table 26   Multiple comparisons using Friedman statistical test

Bold values in the mean rank column shows the highest mean ranks for the respective datasets
*Significant at P < 0.05
**Highly significant at P < 0.01

Datasets Models Mean ranks Chi-sq. P value

Credit approval dataset Re-RX 1.45 9.0556 0.0108*
RxREN 1.85
ERENNR 2.7

Australian credit approval Re-RX 1.4 14.973 0.0005**
RxREN 1.65
ERENNR 2.95

Echocardiogram Re-RX 1.9 4.0000 0.1353
RxREN 1.9
ERENNR 2.2

Statlog (heart) dataset Re-RX 1.4 10.2162 0.006**
RxREN 1.85
ERENNR 2.75

Breast cancer Re-RX 1.35 13.1667 0.001**
RxREN 1.8
ERENNR 2.85

Blood transfusion Re-RX 1.75 3.8 0.1496
RxREN 2.1
ERENNR 2.15

German Re-RX 1.85 8.359 0.0153*
RxREN 1.45
ERENNR 2.7

Eye Re-RX 1.2 15.3684 0.00046**
RxREN 1.9
ERENNR 2.9

Pima Indians diabetes Re-RX 1.4 10.974 0.0042**
RxREN 1.8
ERENNR 2.8

Census income Re-RX 1 20 0.000045**
RxREN 2
ERENNR 3

Thyroid Re-RX 1 20 0.000045**
RxREN 2
ERENNR 3
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Table 27   Pairwise comparisons 
using least significant difference 
(LSD) post hoc test

*Significant at P < 0.05
**Highly significant at P < 0.01

Datasets Models Models P value

Credit approval dataset Re-RX RxREN 0.345778
Re-RX ERENNR 0.003216**
RxREN ERENNR 0.045126*

Australian Credit approval Re-RX RxREN 0.561079
Re-RX ERENNR 0.000313**
RxREN ERENNR 0.002507**

Echocardiogram Re-RX RxREN 1
Re-RX ERENNR 0.083264
RxREN ERENNR 0.083264

Statlog (heart) dataset Re-RX RxREN 0.295455
Re-RX ERENNR 0.001697**
RxREN ERENNR 0.036397*

Breast cancer Re-RX RxREN 0.288844
Re-RX ERENNR 0.000406**
RxREN ERENNR 0.013328*

Blood transfusion Re-RX RxREN 0.117524
Re-RX ERENNR 0.073638
RxREN ERENNR 0.823063

German Re-RX RxREN 0.502334
Re-RX ERENNR 0.049*
RxREN ERENNR 0.0046**

Eye Re-RX RxREN 0.108293
Re-RX ERENNR 0.000096**
RxREN ERENNR 0.021781*

Pima Indians diabetes Re-RX RxREN 0.358795
Re-RX ERENNR 0.001318**
RxREN ERENNR 0.021781*

Census income Re-RX RxREN 0.025347*
Re-RX ERENNR 0.000007**
RxREN ERENNR 0.025347*

Thyroid Re-RX RxREN 0.0253*
Re-RX ERENNR 0.00000774**
RxREN ERENNR 0.0253*

Table 28   Multiple comparisons 
over multiple datasets using 
Friedman statistical test

Models Mean Ranks Chi-sq. P value

Re-RX 1.3462 12.0417 0.0024
RxREN 2
ERENNR 2.6538
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Scalability:

ERENNR is scalable in the sense that pruning and rule extraction steps are inde-
pendent. This rule extraction technique can be used for neural network that is 
pruned with any other techniques.

Portability:

Though it extracts knowledge from each node of the network, it does not analyze 
the nodes based on the weights. It uses pedagogical approach at each node which 
extracts knowledge only in the form of input to the node and output of the node. 
So, it can be used for neural network with any structure.

Comprehensibility:

In terms of comprehensibility, due to recursive nature, the algorithm may pro-
duce less comprehensible (global comprehensibility) rules than some pedagogical 
rule extraction algorithm, but its local comprehensibility (number of conditions 
in a rule) is better than some existing decompositional and eclectic rule extraction 
algorithms which use decision tree to extract rules.

Table 29   Pairwise comparisons 
using least significant difference 
(LSD) post hoc test over 
multiple datasets

Models Models P value

Re-RX RxREN 0.0827
Re-RX ERENNR 0.00052024
RxREN ERENNR 0.0827

Table 30   Accuracy comparison of ERENNR and decision tree with tenfolds cross-validation results (in 
%)

Datasets DT DT_using_NN Continuous_
ReRX

ERNNNR

Credit approval dataset 85.85 85.69 84.15 86.62
Australian credit approval 86.96 85.94 84.20 85.51
Echocardiogram 88.33 83.33 95 96.67
Statlog (heart) dataset 75.19 75.16 74.07 80.37
Breast cancer 93.68 95 94.26 96.47
Blood transfusion 74.8 74.27 71.3 76.54
German 72.5 71 69.4 73.1
Eye 54.03 55.15 54.03 55.24
Pima Indian diabetes 75.58 73.38 73.77 76.88
Census 83.7 83.26 80.89 84.14
Thyroid 96.9 91.56 92.58 93.47
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Conclusion

This paper proposes an eclectic rule extraction algorithm which extracts rules 
recursively from a single hidden layer neural network. The algorithm analyzes 
each node and extracts knowledge from each node in the form of input to the node 
and output from the node. And, finally by combining knowledge obtained from 
each of the nodes, it generates global rule set in the form of input data ranges and 
outputs. Subspace of each rule in the rule set is subdivided, if certain conditions 
are satisfied. To validate the algorithm, eleven datasets are taken from UCI and 
keel repository. The whole algorithm is illustrated with a dataset in the illustra-
tive example section.

ERENNR is compared with Re-RX, RxREN, continuous Re-RX and decision 
tree algorithms. Results show that ERENNR is able to generate simple rules with 
good accuracy and fidelity. The performance of ERENNR is also validated based 
on different performance measures calculated using confusion matrix and hypoth-
esis testing. So, in a nutshell, the algorithm can be said to be effective.

The algorithm extracts rules from neural networks with single hidden layer. In 
future, the work may be extended to multi-hidden layers.
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