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Abstract Community detection in uni-partite single-relational net-
works which contain only one type of nodes and edges has been extensively
studied in the past decade. However, many real-world systems are naturally
described as multi-partite multi-relational networks which contain multiple
types of nodes and edges. In this paper, we propose an information compres-
sion based method for detecting communities in such networks. Specifically,
based on the minimum description length (MDL) principle, we propose a
quality function for evaluating partitions of a multi-partite multi-relational
network into communities, and develop a heuristic algorithm for optimizing
the quality function. We demonstrate that our method outperforms the state-
of-the-art techniques in both synthetic and real-world networks.

Keywords: Community Detection, Graph Mining, Clustering, Multi-Partite
Multi-Relational Network, Information Compression.

§1 Introduction
Many social, biological, and information systems can be naturally repre-

sented as networks—The elementary units of the system are reduced to nodes,
while their relations and interactions are pictured as edges (or called links).
In recent years, there has been a surge of interests in analysis of networked
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datasets. Researchers found that the structure of most networks, beneath the
intrinsic disorder due to the stochastic character of their generation mechanisms,
reveals a high degree of organization. In particular, nodes with similar proper-
ties or functions have a higher chance to be linked to each other and tend to
form highly cohesive subnetworks, which are called communities (also modules
or clusters). Examples of communities are groups of people with common inter-
ests in social networks,1) collections of Web pages on closely related topics,2,3)

biochemical pathways in metabolic networks,4,5) and etc. Detecting communities
in networks may help to identify functional subunits of the system and provide
insight into how the system is internally organized.6,7) The community structure
of a network can also be a powerful visual representation of the system—Instead
of visualizing all the nodes and edges of the network (which is impossible on
large systems), one could display its communities and their mutual interactions,
obtaining a far more compact and refined description.8,9)

Previous studies on community detection mainly focus on uni-partite
single-relational networks which contain only one type of nodes and edges. Many
real-world systems, however, are described as multi-partite (multiple types of
nodes) multi-relational (multiple types of edges) networks. Take a photo service
website Flickr as an example. Flickr users can upload photos, annotate pho-
tos with tags, and establish friendship with other users. As shown in Fig. 1,
Flickr can be described as a multi-partite multi-relational network, which con-
tains three types of nodes (users, photos, and tags) and three types of edges
representing the above relations.

Traditionally we rely on only one type of edges, and simplify a multi-
partite multi-relational network to a single-relational network. However, this
method might be insufficient to determine community membership accurately.
Take the above Flickr network as an example. The data about users might be
incomplete and noisy, and some active users have thousands of friends while

Fig. 1 Describing Flickr as a multi-partite multi-relational network.
This network contains three types of nodes: 1) users, 2) pho-
tos, 3) tags; and three types of edges: 1) the edges represent-
ing friendship between users, 2) the edges representing that
users unload photos, 3) the 3-way hyper-edges representing
that users annotate photos with tags.
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some others have no friends at all. Consequently, we cannot obtain real user
communities based on the friendship alone. In this scenario, effectively utilizing
various types of edges would enhance the community detection results.

To detect communities in a multi-partite multi-relational network, re-
searchers have proposed approaches based on ranking10) and on non-negative
matrix factorization.11) However, they are restricted to specific subclass of net-
works. In addition, Lin et al. proposed a method based on tensor factorization.12)

A drawback is that this method require a priori knowledge about the number
of communities, limiting its usage in inferring the latent organization of a real
system. Recently, Liu et al. proposed a composite modularity maximization
method.13) The idea is to decompose a multi-partite multi-relational network
into multiple single-relational subnetworks, each composed of one type of edge
and the incident nodes. Then, a composite modularity which is an integration
of the modularity in each subnetwork is proposed for evaluating community
structure in the multi-partite multi-relational network. However, due to the de-
ficiency in definition, the composite modularity cannot handle communities of
many-to-many correspondence (i.e., a community of one node type x1 can have
dense edges to many communities of another node type x2, and conversely, a
community of type x2 can have dense edges to many communities of type x1).

In this paper, we propose an information compression based method for
community detection in multi-partite multi-relational networks. The idea is to
convert the community detection problem to a problem of finding an efficient
compression of the network’s structure. More precisely, based on the minimum
description length (MDL) principle14) which accounts for the best compression of
network structure data, we propose a quality function for evaluating partitions of
a multi-partite multi-relational network into communities, and develop a heuris-
tic algorithm for optimizing the quality function. Our new method overcomes
the limitations of existing methods and has the following advantages:

• General: it is able to handle broad families of multi-partite multi-relational
networks and is applicable to communities of many-to-many correspon-
dence.

• Parameter-free: it can automatically detect communities, without any a
priori knowledge like the numbers of communities.

• Accurate: it is more sensitive than state-of-the-art techniques.

The rest of the paper is organized as follows. Section 2 reviews related
research. Section 3 formulates the problem of community detection in a general
multi-partite multi-relational network. Section 4 introduces our new method.
Section 5 presents experimental results, followed by a conclusion in Section 6.

§2 Related Work
The problem of community detection in single-relational networks has

been extensively studied in the last decade.6,15–18) Researchers have proposed
various methods, such as modularity maximization,19–22) spectral methods,23,24)

and methods based on statistical inference.25,26) In addition, there are studies
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Fig. 2 In the left panel, the network is partitioned into two communities,
each contain both authors and papers. If we take authors and
papers separately, this partition implies that authors and papers
have the same number of communities, as shown in the right panel.

on community detection in uni-partite multi-relational networks. For example,
Mucha et al. proposed a multiplex model for describing a uni-partite multi-
relational network and developed a method based on maximizing a generalized
modularity.27) Tang et al. proposed methods based on matrix approximation28)

and spectral analysis.29)

In recent years, some researchers addressed the problem of community
detection in multi-partite multi-relational networks. Comar et al. developed a
method based on non-negative matrix factorization.11) However, their work is
restricted to a specific subclass of networks which contain two types of nodes
and three types of edges. Sun et al. designed a ranking-based community detec-
tion method for a specific subclass of networks, referred to as the star network
schema.10) Thus both of these two methods are not applicable to general net-
works with any possible structure. As for the problem in a general multi-partite
multi-relational network, a naive approach is to simplify the network to a single-
relational network and then conduct community detection. However, valuable
information might be omitted, leading to inaccurate results. Popescul et al.
proposed a method by calculating the similarity between nodes and building a
similarity matrix.30) However, when the structure of a network becomes com-
plex, we cannot find a reasonable similarity measure. Also, high computational
complexity is another issue, which prevents this method from being applied to
large-scale networks. In addition, Lin et al. proposed a method based on tensor
factorization.12) They suppose that a community contain nodes of different types.
If we take nodes of different types separately, this implies that nodes of different
types have the same number of communities, as illustrated in Fig. 2. Unfortu-
nately, this situation is rarely seen in real-world scenario. Another drawback of
Lin’s method is that it requires a priori knowledge about the number of com-
munities, limiting its usage in inferring the latent organization of a real system.
In another important work,13) the authors decomposed a multi-partite multi-
relational network into multiple single-relational subnetworks, and proposed the
composite modularity as an integration of the modularity in each subnetwork.
However, due to the deficiency in definition, the composite modularity cannot
handle communities of many-to-many correspondence.

The idea of using information compression can be traced back to the
information-theoretic co-clustering algorithm.31) Researchers have used informa-
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tion compression for community detection. For example, Rosvall and Bergstrom
proposed a method for community detection in uni-partite single-relational net-
works.32) Sun et al.33) and Liu et al.34) developed methods for community de-
tection in multi-partite single-relational networks (bi-partite network, k-partite
network) respectively. In this paper, we followed Rosvall and Bergstrom’s idea of
converting the community detection problem to a problem of finding an efficient
lossy compression of the network’s structure based on the MDL principle. We
generalized their method for community detection in uni-partite single-relational
networks to this problem in multi-partite multi-relational networks.

§3 Problem Formulation
In this section, we formulate the problem of community detection in a

multi-partite multi-relational network. For clearness, we list major notations
in Table 1. Now suppose a multi-partite multi-relational network G = (V[1] ∪
V[2] ∪ ··· ∪V[r], E[1] ∪ E[2] ∪ ··· ∪ E[s]), where there are r types of nodes and s

types of edges. V[x] is the node set of the x-th type. E[y] is the edge set of the
y-th type. E[y] should satisfy either of the following two conditions:

1. There exists a x ∈ {1, 2, · · · , r}, such that E[y] ⊆ V[x] ×V[x], i.e., E[y]

is a set of edges that link to nodes of the same type.
2. There exists x1, x2, · · · , xk ∈ {1, 2, · · · , r} (k ≤ r) which are not equal

to each other, such that E[y] ⊆ V[x1] ×V[x2] × · · · ×V[xk], i.e., E[y] is a
set of k-way edges∗1 that link to nodes of different types.

We are interested in link pattern based communities in G.35,36) A link-
pattern based community is a group of nodes which have similar link patterns.
In other words, the nodes within a community link to other nodes in similar
ways. Figure 3(a) shows a multi-partite multi-relational network with two types
of nodes (author and paper nodes), and three types of edges (the edges rep-
resenting the friendship between authors, the authorship between authors and

Table 1 Notations for a Multi-partite Multi-relational Network G

Symbol Meaning
n The total number of nodes
m The total number of edges
r The number of node types
s The number of edge types

V[x] The node set of the x-th type

E[y] The edge set of the y-th type

A[y] The connectivity array of E[y]

n[x] The number of nodes in V[x]

c[x] The number of communities in V[x]

m[y] The number of edges in E[y]

v
[x]
i The i-th node in V[x]

l
[x]
i The community membership of v

[x]
i

V
[x]
α The α-th community in V[x]

∗1 If k > 2 the edges are actually hyper-edges.
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(a) (b)

Fig. 3 (a) The link pattern based community.
(b) The link patterns of the communities.

papers, and the citation relationship between papers). This network has two
author communities (A1 and A2), and three paper communities (P1, P2, and
P3). Take the community A1 as an example. The nodes in A1 have the similar
link patterns, as they all densely link to nodes in A1 and P1, and sparsely link to
nodes in A2, P2, and P3. Similar interpretation applies to other communities.
Figure 3(b) shows the link patterns of these communities. Note that the defi-
nition of link pattern based community is reasonable, as the nodes with similar
link patterns are likely to share common features and form a real community.

Given G, the problem is to find a “good” partition L = L[1]∪L[2]∪· · ·∪L[r],
such that L[x] divides V[x] into disjoint communities (x = 1, ···, r). The meaning
of “good” is that the nodes in each community have the similar link patterns.
Note that the number of communities in each node set is not known a priori.

§4 Information Compression Based Method
In this section, we propose the information compression based method

for the problem formulated in Section 3. When we describe a network at the
community level, we are highlighting certain regularities of the network struc-
ture while filtering out relatively unimportant details. Thus, a description of
a network at the community level can be viewed as a lossy compression of the
network’s structure.32) Based on this idea, we convert the problem of community
detection to a problem of finding an efficient compression of the network’s struc-
ture. Specifically, based on the MDL principle14) which accounts for the best
compression of network structure data, we propose a quality function for evalu-
ating partitions of a multi-partite multi-relational network G into communities.
Then, we develop a heuristic algorithm for optimizing the quality function and
finding the best possible partition.

4.1 Quality Function
In this subsection, we show how to compress the structure information

of a multi-partite multi-relational network G, in order to formulate our quality
function. Figure 4 shows a communication process of transmitting structure
information of G. Suppose a signaler knows the structure information X which
describes the links of G at the node level, and he aims to transmit much of X
to a receiver. To do so, the signaler makes a partition of G into communities
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Fig. 4 Communication Between a Signaler and a Receiver.

and encodes X as compressed information Y which describes the links at the
community level.

The structure information X can be represented by s arrays, i.e., X =
{A[1] ∪A[2] ∪ ··· ∪A[s]}, where A[y] describes the link structure of E[y] at the
node level (y ∈ {1, 2, · · · , s}), and satisfies the following conditions:

Case 1 : E[y] ⊆ V[x] × V[x] (x ∈ {1, 2, · · · , r}). Suppose n[x] = |V[x]| is the
number of nodes in V[x]. Then, A[y] is a n[x]×n[x] array, with elements

A
[y]
ij =

{
1 if (v[x]

i , v
[x]
j ) ∈ E[y];

0 otherwise,
(1)

where v
[x]
i denotes the i-th node in V[x].

Case 2 : E[y] ⊆ V[x1] × V[x2] × · · · × V[xk] (x1, x2, · · · , xk ∈ {1, 2, · · · , r} and
k ≤ r). Then, A[y] is a n[x1] × n[x2] × ··· × n[xk] array, with elements

A
[y]
i1i2···ik

=

{
1 if (v[x1]

i1
, v

[x2]
i2

, ···, v[xk]
ik

) ∈ E[y];
0 otherwise.

(2)

The compressed information is Y = {L[1]∪L[2]∪ · · ·∪L[r]∪M[1]∪M[2]∪
··· ∪M[s]}. Here L[x] = {l[x]

1 , l
[x]
2 , · · ·, l[x]

n[x]} is a community membership vector

for V[x] (x ∈ {1, 2, · · · , r}), where l
[x]
i indicates the community of v

[x]
i . M[y]

describes the link structure of E[y] at the community level (y ∈ {1, 2, · · · , s}),
and satisfies the following conditions:

Case 1 : E[y] ⊆ V[x] × V[x] (x ∈ {1, 2, · · · , r}). Suppose c[x] is the number of
communities in V[x]. Then, M[y] is a c[x] × c[x] array, with elements

M
[y]
αβ =

∑

v
[x]
i ∈V

[x]
α

∑

v
[x]
j ∈V

[x]
β

A
[y]
ij , (3)

where V[x]
α = {v[x]

i |l[x]
i = α} denotes the α-th community in V[x].

Case 2 : E[y] ⊆ V[x1] × V[x2] × · · · × V[xk] (x1, x2, · · · , xk ∈ {1, 2, · · · , r} and
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k ≤ r). Then, M[y] is a c[x1] × c[x2] × ··· × c[xk] array, with elements

M
[y]
α1α2···αk =

∑

v
[x1]
i1

∈V
[x1]
α1

∑

v
[x2]
i2

∈V
[x2]
α2

· · ·
∑

v
[xk]
ik

∈V
[xk]
αk

A
[y]
i1i2···ik

(4)

The description length of Y (in bits) can be measured in the following
way. As for L[x], there are n[x] elements and each element l

[x]
i ∈ {0, 1, · · · , c[x]}.

Thus, the description length of L[x] is

Len(L[x]) = n[x]logc[x], (5)

where the logarithm is taken in base 2.∗2 As for M[y], there are two cases:

Case 1 : M[y] is a c[x] × c[x] array for describing link structure of communities
in V[x]. Note that M[y] is symmetric and the number of independent
elements is c[x](c[x] + 1)/2. Each element M

[y]
αβ ∈ 0, 1, · · · ,m[y], where

m[y] = |E[y]| is the number of edges in E[y]. Thus, the description
length of M[y] is

Len(M[y]) =
c[x](c[x] + 1)

2
log(m[y] + 1). (6)

Case 2 : M[y] is a c[x1]×c[x2]×···×c[xk] array for describing link structure of com-
munities in V[x1],V[x2], · · · ,V[xk]. Note that each element M

[y]
α1α2···αk ∈

{0, 1, · · · ,m[y]}. Thus, the description length of M[y] is

Len(M[y]) = c[x1]c[x2] · · · c[xk]log(m[y] + 1). (7)

As a result, the description length of Y is

Len(Y) =
r∑

x=1

Len(L[x]) +
s∑

y=1

Len(M[y]). (8)

After receiving Y, the receiver can estimate X by creating a number of
candidates. For example, suppose the receiver is to estimate A[y].

Case 1 : M[y] is a c[x] × c[x] array for describing link structure of communities
in V[x]. With L[x] and M[y], the receiver knows: 1) the number of
edges M

[y]
αβ between communities V[x]

α and V[x]
β ; 2) which nodes are in

communities V[x]
α and V[x]

β . What he does not know is which nodes are

incident to these M
[y]
αβ edges. The number of possibilities of recovering

∗2 The description length of encoding an unknown positive integer z is log2z+log2log2z+· · · ,
where only the positive terms are retained.37) Here we just make a rough calculation.
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these edges can be given by




(n[x]
α (n[x]

α − 1)/2
M

[y]
αα

)
if α = β (suppose no self-loop is allowed);

(n[x]
α n

[x]
β

M
[y]
αβ

)
if α 6= β,

(9)

where the parentheses denote the binomial coefficient, and n[x]
α = |V[x]

α |
is the number of nodes in V[x]

α . Thus, the number of candidates for
estimating A[y] is

NumCdt(A[y]) =
c[x]∏
α=1

(
n

[x]
α (n[x]

α − 1)/2

M
[y]
αα

) ∏

α>β

(
n

[x]
α n

[x]
β

M
[y]
αβ

)
(10)

Case 2 : M[y] is a c[x1] × c[x2] × ··· × c[xk] array for describing link structure of
communities in V[x1],V[x2], · · · ,V[xk]. With L[x1],L[x2], · · · ,L[xk] and
M[y], the receiver knows: 1) the number of edges M

[y]
α1α2···αk between

communities V[x1]
α1

,V[x2]
α2

, · · · ,V[xk]
αk

; 2) which nodes are in communi-
ties V[x1]

α1
,V[x2]

α2
, · · · ,V[xk]

αk
. What he does not know is which nodes

are incident to these M
[y]
α1α2···αk edges. The number of possibilities of

recovering these edges can be given by
(

n
[x1]
α1 n

[x2]
α2 · · ·n[xk]

αk

M
[y]
α1α2···αk

)
. (11)

Thus, the number of candidates for estimating A[y] is

NumCdt(A[y]) =
c[x1]∏
α1=1

c[x2]∏
α2=1

· · ·
c[xk]∏
αk=1

(
n

[x1]
α1 n

[x2]
α2 · · ·n[xk]

αk

M
[y]
α1α2···αk

)
. (12)

As a result, the total number of candidates for estimating X is
s∏

y=1

NumCdt(A[y]). (13)

To exactly recover X, the receiver needs additional information about which
of the candidates is the right one. The description length of the additional
information is

Len(X|Y) =
s∑

y=1

log[NumCdt(A[y])]. (14)

The objective is for the signaler to transmit the least information while the
receiver gains the most (i.e., the receiver needs the least additional information
to recover X). This is apparently a dilemma. For example, if the signaler
makes a partition of V[x] into n[x] communities (x ∈ {1, 2, · · · , r}), meaning
one community for each node, there would be no compression on Y. Thus, the
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receiver can recover X exactly without any additional information, while the
signaler has to transmit the most. On the other hand, if the signaler makes a
partition of V[x] into only one community (x ∈ {1, 2, · · · , r}), Y would be the
most compressed. Thus, the signaler transmits the least information, while the
receiver needs much additional information to recover X.

If the signaler makes a “good” partition of the network into link pattern
based communities, he can highlight certain regularities (the similarity in terms
of link pattern for nodes in the same community) and filter out relatively unim-
portant details. Intuitively, compression based on this partition would achieve a
trade-off between Len(Y) and Len(X|Y). According to the minimum descrip-
tion length (MDL) principle,14,32,34)

QMDL(L) = Len(Y) + Len(X|Y) (15)

would get the minimum value. This is our quality function for evaluating L. It
is clear that the lower the QMDL, the better the L.

4.2 Optimization Algorithm
We develop a greedy algorithm called InfoCom for minimizing QMDL and

detecting communities in multi-partite multi-relational networks. InfoCom relies
on two well known local search heuristics: node moving21,38) and community
joining.19,20,39,40) The node moving heuristic repeatedly moves an individual node
to a different community, which can bring a decrease in QMDL. The community
joining heuristic repeatedly joins a pair of communities, which can produce a
decrease in QMDL. These two heuristics are often combined to form hybrid
algorithms for modularity maximization, and InfoCom is built on ideas of these
existing algorithms.21,22)

As shown in Algorithm 1, InfoCom can be divided into two iterative
phases. In this algorithm, each node is associated with a label, indicating its
community ID. Initially we assign each node a unique label, implying that each
singleton node constitutes a community. Then, we enter Phase 1, where we re-
peatedly update node labels to minimize QMDL. Suppose we are to update v

[x]
i ’s

label. The rule is to replace the old label by one which produces the greatest
decrease of QMDL; if no new label produces a decrease of QMDL, we keep the old
label unchanged. This updating process is done sequentially for each node and
then repeated round by round, until no decrease of QMDL can be attained. At
the end, Phase 1 would converge to a local minimum of QMDL, and the node la-
bels would bring a temporal community partition. Note that Phase 1 essentially
equals to the node moving heuristic, since updating a node’s label to a new one
implies moving this node to a new community.

In Phase 2, we try to escape the local minimum of Phase 1 by the com-
munity joining heuristic. To do this efficiently, we follow the approach used in
Louvain algorithm.21) Specifically, we first build a reduced network Ḡ, where
each node corresponds to a community in Phase 1.41) Then, we assign each node
in Ḡ a unique label and update labels in the same way as Phase 1. Note that now
a node corresponds to a community, and thus updating a node’s label essentially
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equals to joining two communities.
After Phase 2 is finished, we would come back to G and restart Phase

1 again. That is, we retrieve each node’s label from the corresponding label
in Ḡ, and then update labels to reach another local minimum. With these two
phases repeated iteratively, a fairly good result which converges at both the local
minima of node moving heuristic and community joining heuristic can finally be
obtained. Also note that QMDL keeps decreasing or unchanged during each label
updating, so InfoCom is essentially a greedy algorithm.

Algorithm 1 Detecting communities in a multi-partite multi-relational network G by
minimizing QMDL.

Input: Multi-partite multi-relational network G
Output: Partition L

1 begin
2 Assign each node in G a unique label

3 repeat

// Phase 1

4 repeat
5 Sequentially update node labels in G

6 until a local minimum of QMDL

// Phase 2

7 Build a reduced network Ḡ from G

Assign each node in Ḡ a unique label
repeat

8 Sequentially update node labels in Ḡ

9 until a local minimum of QMDL

10 Retrieve node labels in G from the corresponding one in Ḡ

11 until no change in QMDL

12 end

In implementation, the numbers of edges between communities, namely
M[y], are kept in real-time. Other stored data include the connectivity arrays
A[y], the community membership vectors L[x], and the number of nodes in each
community n[x]

α . The most computationally intensive step of this algorithm is to
update node labels. To update v

[x]
i ’s label lold, we consider lold and the labels of

v
[x]
i ’s counterparts (v[x]

i ’s 1-hop and 2-hop neighbors which are of the same node
type as v

[x]
i ) as candidate labels. The new label is calculated as

lnew = arg min
l∈{candidate labels}

[QMDL(l[x]
i = l)−QMDL(l[x]

i = lold)]. (16)

Note that the second term at the right hand side of Equation (16) is a constant,
and thus has no impact on the value of lnew. For efficient calculation, we can
rewrite the above equation as

lnew = arg min
l∈{candidate labels}

[QMDL(l[x]
i = l)−QMDL(G \ v

[x]
i ,L \ l

[x]
i )]. (17)

The second term at the right hand side of Equation (17) is the quality function
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for the network subtracting v
[x]
i and the partition without considering l

[x]
i . In

this way, many terms which are not related to v
[x]
i will be canceled out. Actually,

for each candidate label l, we only need to traverse nodes that have links with v[i]
x

and traverse communities that have links with the one labeled l. This operation
requires a time of O(m/n), where m = m[1]+m[2]+ · · ·+m[s] is the total number
of edges, and n = n[1] +n[2] + · · ·+n[r] is the total number of nodes. On average,
there are O((m/n)2) candidate labels. Thus, updating the label for one node
requires a time of O((m/n)3). We update labels sequentially for each node and
repeat round by round until no decrease of QMDL can be attained. In practice,
the number of rounds p is small. In addition, the number of passes q between
Phase 1 and Phase 2 is also small. As a result, the overall time complexity of
InfoCom is near O(pqm3/n2), where p, q ¿ n.

§5 Experiments
So far we have proposed an information compression based method for

detecting communities in multi-partite multi-relational networks. In this section,
we present experiments for testing the performance of our method.

5.1 Synthetic Networks
First, we test our method and compare it with the state-of-the-art tech-

niques in synthetic networks. The basic scheme is as follows. 1) We generate a
sequence of synthetic multi-partite multi-relational networks with planted com-
munities. 2) Applying various methods to these networks (the planted partition
is hidden at this time), we test which method can detect the planted communi-
ties most accurately. This kind of testing is widely used by other researchers in
the community detection field.1,16,17,42,43)

As shown in Fig. 5, the synthetic network model contains three types
of nodes (the red, green, and blue nodes), and four types of edges (the edges
between red nodes, the edges between green nodes, the edges between red and
green nodes, and the hyper-edges between red, green, and blue nodes). Red

Fig. 5 The link patterns of the communities in the synthetic network.
The numbers indicate the numbers of edges.
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nodes are organized into four communities, each containing 15 nodes. Green
nodes are organized into three communities, each containing 20 nodes. Blue
nodes are organized into two communities, each containing 25 nodes. From
Fig. 5 we can see that each community has its own representative link pattern
(the number of edges are shown in the figure). For example, the link pat-
tern of community G1 is that its nodes all densely link to nodes in G1 (edge

density =
50

Size(G1)× [Size(G1)− 1]/2
= 0.2632), to nodes in R1 (edge den-

sity =
80

Size(G1)× Size(R1)
= 0.2667), and to nodes in G2 (edge density =

50
Size(G1)× Size(G1)

= 0.1250). Based on these link patterns, we generated

a total of 900 edges. Then, we added noise edges randomly. The noise rate
increased from 0% to 200% (thus the total number of edges ranges from 900
to 2,700), and the planted communities became more and more difficult to be
detected.

To evaluate a method, we apply it to the network and calculate the similar-
ity between the obtained partition and the planted partition. The more similar
the two partitions, the better the method. We adopted the regularly used nor-
malized mutual information (NMI)16,44) to quantify the similarity between two
partitions L1 and L2. If L1 and L2 match completely, we have a maximum NMI
value of 1, whereas if L1 and L2 are totally independent of one another, we have
a minimum value of 0.

We compare our method InfoCom with the following five methods, which
cover the state-of-the-art techniques.

• CompMod 13): Detect communities by maximizing composite modularity,
which is an integration of the modularity in each subnetwork.

• NaiveSimp: Simplify the multi-partite multi-relational network to a single-
relational network and detect communities (The results are based on the
best performance obtained in the single-relational network of each edge
type).

• Trans-CN (A modification of the method proposed in 30)): Transform the
multi-partite multi-relational network to weighted uni-partite networks
for each node type based on the number of common neighbors. Then
detect communities in each uni-partitie network separately.

• Trans-JD (A modification of the method proposed in 30)): Transform the
multi-partite multi-relational network to weighted uni-partite networks
for each node type based on the Jaccard index. Then detect communities
in each uni-partitie network separately.

• MetaFac12): Detect communities based on tensor factorization. This
method assumes that nodes of different types have the same number of
communities, and requires this number as an input. We set this number
to four, the number of red communities.

The results are shown in Fig. 6. It shows that InfoCom algorithm out-
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Fig. 6 The NMI values for the red, green, and blue node sets achieved by
different methods in the synthetic networks.

Table 2 The runtime of different methods in the synthetic
networks. The data is based on a PC equipped with
an Intel Core i7-2600 CPU at 3.40 GHz and 32GB
physical memory.

Methods Runtime (seconds)
InfoCom 6.06
ComMod 4.71
NaiveSimp 3.34
Trans-CN 2.61
Trans-JD 2.96
MetaFac 1.27

performs the others by a large margin. It successfully detects the planted com-
munities in the red, green, and blue node sets when the noise is 0%. When the
noise goes up to 200%, the NMI values are still higher than 0.88. CompMod
method performs the second best, accurately detecting the communities in most
of the time. However, due to the deficiency in composite modularity definition,
this method cannot fully handle communities with many-to-many correspon-
dence. Specifically, it tends to mix communities R2 and R3, so that community
G2 only corresponds to one community in the red node set. Consequently, its
performance decreases rapidly as the noise increases.

As for other methods, none of them detects the planted communities with
100% accuracy even when the noise is as low as 10%. Specifically, the inferior-
ity of Trans-JD and Trans-CN is due to the fact that we cannot rely on local
measures (common neighbor index and Jaccard Index) to accurately calculate
the similarity between nodes. Moreover, as the noise increases, the transformed
uni-partite networks of the two methods become so dense that almost all pairs of
nodes are connected, posing a great difficulty to detect communities. As a result,
the performances of Trans-JD and Trans-CN plummet dramatically as the noise
increases. NaiveSimp has good performance in the blue node set, but does not
work well in the red and green node sets. This is because the information con-
tained in the simplified single-relational network is sometimes incomplete. For
example, in the uni-partite subnetwork of green nodes, there are dense edges
both within and between community G1 and G2. Thus, NaiveSimp fails to sep-
arate them and take them as a single community. The performance of MetaFac
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is also not so remarkable, especially in the blue node set. The reason is that
this method assumes that nodes of different types have the same number of
communities. However, red, green, and blue nodes have different number of
planted communities. Table 2 compares the runtime of different methods. Al-
though InfoCom is slower than others, it is worthy of waiting such an additional
time considering its high accuracy. In summary, this experiment shows that our
method is better than the state-of-the-art techniques in detecting the planted
communities.

5.2 Digg Network
Second, we apply InfoCom algorithm to a real-world Digg network. Digg

is a social news website. Digg users can vote stories (web contents) by “digging”
them. In addition, users can add other users as their friends. We collected a
subset of the stories submitted during Oct 8-15, 2010. Then we constructed a
multi-partite multi-relational network which contains 7,428 users, 15,117 stories,
166,592 edges representing the friendship between users, and 92,242 edges rep-
resenting the digging relationship between users and stories. The Digg network
can be visualized as a bitmap shown in the left panel of Fig. 7. In this bitmap,
there are a user-user plane and a user-story plane, where users and stories are
arranged sequentially along the user and story axes. A dot at the user-story
plane represents the digging relationship between the corresponding user and
story, and a dot at the user-user plane represents the friendship between the
corresponding users. We can find that the bitmap is in chaos.

Applying InfoCom algorithm to the Digg network, we detected 30 user
communities and 5 story communities. Rearranging users and stories and putting
elements within the same communities together, we rebuilt the bitmap. As
shown in the right panel of Fig. 7, it is now in an ordered state, implying that
the detected communities have similar link patterns. For example, there are
dense links within the same user communities; each user community densely
links to one or several story communities.

We can check the reasonability of the story communities using the top-

Fig. 7 Visualization of the Digg Network in a Bitmap.
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ics associated with stories as a ground truth. In total, there are 10 predesig-
nated topics (business, entertainment, gaming, lifestyle, offbeat, politics, science,
sports, technology, and world news), and each story is associated with one of
the topics when submitted by a user. We use averaged F-score45) with regard to
the topics as a measure for quantifying the detected story communities.

Given a detected story community V[s]
α and with reference to a story

cluster U[s]
β which have the same topic, we define the precision rate as

Precision(V[s]
α ,U[s]

β ) =
|V[s]

α ∩U[s]
β |

|V[s]
α |

, (18)

and the recall rate as

Recall(V[s]
α ,U[s]

β ) =
|V[s]

α ∩U[s]
β |

|U[s]
β |

. (19)

The F-score of V[s]
α on U[s]

β is the harmonic mean of the precision and recall
rates:

F(V[s]
α ,U[s]

β ) = 2 · Precision(V[s]
α ,U[s]

β ) · Recall(V[s]
α ,U[s]

β )

Precision(V[s]
α ,U[s]

β ) + Recall(V[s]
α ,U[s]

β )
. (20)

For a detected community V[s]
α , we compute its F-score on each topic cluster

and define the maximal obtained as V[s]
α ’s F-score. That is,

F(V[s]
α ) = max

0≤β≤9
F(V[s]

α ,U[s]
β ). (21)

The averaged F-score of a story partition L[s] is then calculated as the weighted
average of each community’s F-score:

F(L[s]) =
∑
α

|V[s]
α |

|V[s]|F(V[s]
α ). (22)

As for user communities, we have no ground truth and thus cannot com-
pute averaged F-score. Instead, we analyze the averaged density of user com-
munities. Given a detected user community V[u]

α , its density is defined as

D(V[u]
α ) =

# of edges with both ends in V[u]
α

|V[u]
α | × (|V[u]

α | − 1)/2
(23)

The averaged density of user partition L[s] is then calculated as the weighted
average of each community’s density

D(L[s]) =
∑
α

|V[u]
α |

|V[u]|D(V[u]
α ). (24)

We compare InfoCom with various methods. Note that the Digg network
is too large to apply Trans-CN, Trans-JD, and MetaFac (the first two have
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Table 3 The results obtained by different methods in the Digg network.
The runtime is based on a PC equipped with an Intel Core
i7-2600 CPU at 3.40 GHz and 32GB physical memory.

Methods (c[u], c[s]) Avg Density Avg F-Score Runtime (mins)
InfoCom (30, 5) 0.0396 0.530 160.7
ComMod (132, 149) 0.0398 0.387 123.6
NaiveSimp (161, 163) 0.0372 0.278 43.4
CESNA◦ (58, n.a.) 0.0347 n.a. 190.0
CODICIL◦+BRIM (37, 37) 0.0385 0.362 59.5
Louvain+BRIM (56, 56) 0.0504 0.305 25.3

high time complexity, and the last one has high space complexity). To include
further competitors, we consider methods which utilize both links and node
attributes for community detection.46–49) In particular, we use a limited version
of CESNA50) and CODICIL45) (marked as CESNA◦ and CODICIL◦ thereafter).
These two methods originally take additional information which are beyond
links, such as age, nationality, religious belief, education level of a person in a
social network for node attributes. In order to apply them to this dataset, we use
binary vectors of the links to story nodes∗3 as user nodes’ attributes, and then
combine with the user-user links for community detection. For CODICIL◦, we
choose Louvain algorithm21) for automatically detecting communities in a fused
network, since it does not require inputting the number of communities. In
addition, CESNA◦ has some other input parameters, for which we used default
values provided by the authors. The output of these two methods is a user
partition.∗4 To obtain story partitions, we can further use BRIM algorithm51) in
the user-story subnetwork. BRIM can induce a story partition from a given user
partition based on maximizing bipartite modularity, which is a quality function
for evaluating community structures in bipartite networks.

From Table 3, we can find that InfoCom achieves the highest F-Score,
40% higher than the second highest score by ComMod. Note that although both
InfoCom and ComMod work by optimizing quality functions, the quality func-
tions are based on different principles. InfoCom’s quality function is based on
compressing the information of the whole multi-partite multi-relational network,
whereas ComMod’s quality function is based on decomposing the multi-partite
multi-relational network into multiple single-relational subnetworks, and com-
paring each subnetwork with a sub-null model. Thus, the former is formed more
from a global angle, whereas the latter is more from a local angle. The differ-
ence of the detected communities by these two methods can be seen in Fig. 8.
ComMod seeks for communities with one-to-one correspondence, in the sense
that most of the user communities densely link to only one story community.

∗3 Only the story nodes which have degrees of more than 10 are considered, since the total
number of attributes for these methods should be relatively small.

∗4 CESNA◦ has a different aim as the one depicted in Section 3 — instead of clustering all
of the user nodes into communities, it only clusters part of them which are most likely
to constitute communities according to their model criteria.50) Actually, only 72.9% user
nodes are clustered into communities. As a result, we cannot use BRIM algorithm, and
thus story community related results for this method are not available in Table 3.
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Fig. 8 Visualization of the Digg network at the community level. (a)
The communities detected by InfoCom. (b) The communi-
ties detected by ComMod (Small communities are omitted.
The filter size is set to be 10 and 20 nodes for user and story
communities, respectively). The story and user community
are depicted by red (round) and blue (rectangle) symbols, re-
spectively. The topics of a story community are exhibited (If
there is a single topic which accounts for more than 70% of a
community, only this topic is exhibited; otherwise, all topics
which account for more than 15% are exhibited).

Consequently, many topic clusters are further divided, so that the number of
story communities is near the number of user communities. For example, the
politics topic cluster is divided into six smaller communities by ComMod. On
the other hand, InfoCom seeks for link-pattern based communities, such that
nodes in each detected community have similar link patterns. Thus, a story
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community can correspond to multiple user communities, and vice versa. In real
world, such a many-to-many correspondence is more reasonable, since a user
community can have multiple interests, and they focus on, for example, stories
both on technology, world news and business. For this reason, some topic clus-
ters are combined into bigger communities by InfoCom. NaiveSimp has a low
F-score too, since it only uses incomplete user-story relationship for analysis. In
addition, InfoCom also outperforms CESNA◦ and CODICIL◦, which originally
utilize both links and node attributes for community detection.

As for density of user communities, InfoCom achieves a relatively high
score which is marginally higher than most of the other methods and compara-
ble to ComMod. Note that the highest density does not necessarily mean the
best partition. For example, Louvain algorithm21) which directly maximizes the
number of within-community edges in the user-user network obtains the highest
density score. However, its F-score at the story side is not satisfactory. Table 3
also compares the runtime of different methods. Although InfoCom is not the
fastest, its runtime is within the range of practical use when dealing with such
a large dataset. Therefore, this experiment shows that InfoCom successfully de-
tected reasonable communities that agree with the natural human intuition and
perception.

§6 Conclusion
We have extended the information compression based method for detect-

ing communities in multi-partite multi-relational networks. A community is
composed of nodes which have similar link patterns. By utilizing such similar-
ity, we convert the problem of community detection to a problem of finding an
efficient compression of the network’s structure. Specifically, based on the MDL
principle which accounts for the best compression of network structure data,
we propose a quality function for evaluating partitions of a multi-partite multi-
relational network into communities, and develop a heuristic algorithm called
InfoCom for optimizing the quality function. Our method overcomes the limi-
tations of existing methods and is applicable to communities of many-to-many
correspondence. In addition, our method does not require a priori knowledge
about the numbers of communities. Our experiments in both synthetic and
real-world networks demonstrate that InfoCom outperforms the state-of-the-art
techniques. As part of our future work, we plan to apply our method to giga-
scale networks using high-performance computing resources, such as multi-cores,
GPUs, and clusters.
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