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Abstract There has been an increasing interest in the development of new methods

using Pareto optimality to deal with multi-objective criteria (for example, accuracy

and time complexity). Once one has developed an approach to a problem of interest,

the problem is then how to compare it with the state of art. In machine learning,

algorithms are typically evaluated by comparing their performance on different data

sets by means of statistical tests. Standard tests used for this purpose are able to

consider jointly neither performance measures nor multiple competitors at once.

The aim of this paper is to resolve these issues by developing statistical procedures

that are able to account for multiple competing measures at the same time and to

compare multiple algorithms altogether. In particular, we develop two tests: a fre-

quentist procedure based on the generalized likelihood ratio test and a Bayesian

procedure based on a multinomial-Dirichlet conjugate model. We further extend

them by discovering conditional independences among measures to reduce the

number of parameters of such models, as usually the number of studied cases is very

reduced in such comparisons. Data from a comparison among general purpose

classifiers are used to show a practical application of our tests.
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Introduction

In many real applications of machine learning, we often need to consider the trade-

off between multiple conflicting objectives. For instance, measures like accuracy

and architectural complexity are clearly two different (possibly conflicting) criteria.

This issue can be tackled by considering a multi-objective decision making

approach.

There are two main approaches to dealing with multi-objective decision making.

The weighted sum approach, which consists of transforming the original multi-

objective problem into a single-objective problem using a weighted formula; the

Pareto approach, which considers directly the original multi-objective problem and

searches for non-dominated solutions, that is, solutions that are not worse than any

other solution with respect to all criteria.

In a weighted sum approach, a multi-objective problem is transformed into a

single-objective problem by a numerical weight function that is assigned to

objectives and then values of the weighted criteria are combined into a single value

according to the weights. One of the reasons for its popularity is its simplicity.

However, there are several drawbacks associated to it. First, the definition of

weights in these formulas is often ad hoc or requires great domain knowledge which

might not be available. Second, the optimal solution strongly depends on that

particular weight function, which misses the opportunity to find other models that

might be actually more interesting to the user, for instance, representing a better

trade-off between different criteria. Third, a weighted formula involving a linear

combination of different criteria is meaningless in many scenarios, as the criteria

may be non-commensurable (comparison of apples and oranges).

In the Pareto approach, instead of transforming a multi-objective problem into a

single-objective problem and then solving it using a single-objective decision

making, a multi-objective algorithm is used to solve the original multi-objective

problem. The advantage of the Pareto approach is that it can cope with any kind of

non-commensurable criteria. Recently, there has been an increasing interest in the

development of new learning methods able to cope simultaneously with multi-

objective criteria using Pareto optimality [1–4]. The disadvantage comes from the

power of the Pareto approach in situations where a good weight function can be

devised, as the Pareto approach is more conservative than using the weighted sum

idea. In this work, we assume that a good weight function is not available. Consider

for instance the work in [3], which proposes a multi-objective Pareto-based

optimization method for simultaneous optimization of architectural complexity and

accuracy for Polynomial Neural Networks (PNN). Using multiple data sets, they

compare their method with the state-of-art method for learning PNN, producing the

results presented in Table 1.

Based on Table 1, the authors [3] claim that a multi-objective approach (jointly

optimizing architectural complexity and accuracy) is clearly beneficial. Can we say

that their method is clearly better than the state of art for both criteria and also for

each of them independently? For which criterion is it superior (respectively

inferior)? To answer these questions, we need a method that statistically assesses
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whether an algorithm is better than another in terms of all criteria. To the best

knowledge of the authors, this method is lacking in machine learning and so it could

not be used in [3].

Competing methods/algorithms are typically compared by means of a statistical

test, whose aim is to assess whether an algorithm is significantly better than another

(statistically comparing their performance on different data sets or problem

instances). For comparing two algorithms over a collection of data sets, the most

common approaches are the sign test or the Wilcoxon signed-rank test [5]; however,

these tests are only able to cope with one performance measure (criterion) at a time,

that is, they cannot consider a multi-objective approach without resorting to the

weighted sum approach described earlier. In this paper, we develop two tests that

are able to cope jointly with multiple performance measures without having to

somehow combine them: a frequentist procedure based on the generalized

likelihood ratio test and a Bayesian procedure based on a multinomial-Dirichlet

conjugate model. We further extend them by discovering conditional independences

among measures to reduce the number of parameters of such models, an important

add-on since usually the number of data sets on which methods are compared is

limited. Applications of these new tests are numerous. Here, we use data from a

comparison of general purpose classification methods to show a clear practical

application of the tests.

This work is an extension of the paper presented at AMBN 2015 [6]. We

generalize those ideas to deal with the comparison of multiple algorithms at once,

that is, we design new statistical tests that can compare multiple algorithms under

multiple performance measures. The idea is to label each ordering of the algorithms

into a category in our parameter space, so we can identify which is the most

probable ordering and whether such most probable ordering is significantly more

probable than the others.

The paper is divided as follows. Section 2 defines the dominance statement that

we later use to design the statistical tests. Sections 3 and 4 present, respectively, our

frequentist and Bayesian statistical tests for dealing with multiple measures jointly.

Section 5 shows how to use Bayesian networks to improve the estimation of the

joint distributions and thus increase the quality of the results of the tests. Section 6

describes how the designed tests can be easily adapted to deal with multiple

algorithms and multiple measures jointly. Section 7 describes and presents our

experiments with synthetic data, and finally Sect. 8 concludes the work and points

out directions for future research.

Table 1 Architectural

complexity and accuracy of two

learning methods for PNN [3]

Higher values are better

New State of art

Accuracy Complexity Accuracy Complexity

IRIS 97.8 38.4 95.3 50.0

WINE 98.3 26.9 92.3 24.0

PIMA 72.1 28.6 65.3 37.7

BUPA 70.3 23.4 69.1 36.0
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Joint Analysis of Performance Criteria

Let M1; . . .;Mm be a set of m performance measures (criteria) and assume that we

are going to compare two algorithms A and B by jointly using these measures.

Definition 1 We call a ‘dominance statement’ for B against A a sequence of

m dominance conditions:

DðBAÞ ¼ ½�;�;�; . . .;��;

where the comparison � (or �) in the ith entry of the vector DðBAÞ means that

algorithm B is better than A (respectively, A is better than B) on measure Mi. h

Our goal is to make inferences on dominance statements by evaluating the

m performance measures for the algorithms A and B on n different case studies (for

instance, data sets, problem instances, etc.). In other words, we want to decide

which DðBAÞ is the most appropriate for A and B given tables with values M
ðAlgÞ
ij

representing the jth measure for the algorithm Alg 2 fA;Bg in the ith case study:

MðAlgÞ ¼

M
ðAlgÞ
11 M

ðAlgÞ
12 . . . M

ðAlgÞ
1m

M
ðAlgÞ
21 M

ðAlgÞ
22 . . . M

ðAlgÞ
2m

..

. ..
. ..

. ..
.

M
ðAlgÞ
n1 M

ðAlgÞ
n2 . . . M

ðAlgÞ
nm

2
666664

3
777775
: ð1Þ

Given the matrix of performances MðAÞ and MðBÞ, we first build the binary matrix

X ¼ ½MðBÞ � MðAÞ�, whose entry xij is equal to one if algorithm B is better than

algorithm A for the jth measure in the ith case study and zero otherwise. We assume

that ties do not exist.1 To each matrix X, we associate a count vector n, whose
entries represent the counts for each one of the 2m possible dominance statements

(many of which might be zero).

Example 1 Consider the comparison of two algorithms in terms of accuracies M1

(expressed in percent values in the first row) and time M2 (in seconds, shown in the

second row) on 12 data sets:

MA ¼
85 87 87 91 91 91 94 94 94 94 94 94

8 11 11 12 12 12 16 16 16 16 16 16

� �T
;

MB ¼
84 86 86 92 92 92 95 95 95 95 95 95

9 10 10 13 13 13 15 15 15 15 15 15

� �T ð2Þ

where T denotes transpose.

The matrix X ¼ ½MðBÞ � MðAÞ� is:2

1 If there are ties we treat a tie in a measure by a standard approach: we replicate the case with it into two

and divide the weight of such case by two (this process might need to be performed multiple times until

no ties are present in the data). Such approach preserves the sample size and fairly allocates ties between

the algorithms being compared.
2 An algorithm is better (�) than another when it has higher accuracy and lower computational time.
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X ¼
0 0 0 1 1 1 1 1 1 1 1 1

0 1 1 0 0 0 1 1 1 1 1 1

� �T
: ð3Þ

Hence, we derive that the dominance statement ½�;�� (or [0, 0]), which means that

B is worse than A on both measures, is observed n0 ¼ 1 time; the statement ½�;��
(or [0, 1]), which means that B is worse than A on the first measure but better on the

second, is observed n1 ¼ 2 times; the statement ½�;�� (or [1, 0]) is observed n2 ¼ 3

times; the statement ½�;�� (or [1, 1]) is observed n3 ¼ 6 times. Hence, we have that

n ¼ ½1; 2; 3; 6� (a binary lexicographic order is used for the entries of n). h

The matrix X or, equivalently, the vector n, includes all the information that we

will use to derive our tests. While this approach might seem to lose information

because we only account for the sign of each difference M
ðAlgÞ
ij �M

ðAlg0Þ
ij , there is no

effective way of using the actual value of the difference across multiple measures if

these measures are assumed to be expressed in incomparable units, as in this case no

procedure could be used to compare the measures jointly or to collapse the measures

into a single one to run standard tests (using some weighting function; we assume

that normalizing the measures is not an option either, as it entails an additional

assumption about the measures which might not hold). On the other hand, the sign

of the difference is a proper comparable value among measures regardless of the

particular meaning of each of them. In fact, we point out that the measures M
ðAlgÞ
ij

can themselves be obtained from any arbitrary procedure (including statistical tests),

as we only assume that the sign of the difference M
ðAlgÞ
ij �M

ðAlg0Þ
ij is available (and

we properly account for ties). This provides us with a very general setting, allowing

for numerous applications.

Generalized Likelihood Ratio Test

We derive a simple null hypothesis significance test for the joint analysis of

performance measures. We denote by hk, for k ¼ 0; . . .; 2m � 1, the probability of

obtaining one of the 2m possible dominance statements.Hence, hk � 0 andP2m�1
k¼0 hk ¼ 1. We have enumerated the dominance statements according to their

‘‘binary order’’, so that h0 is the probability of the statement ½�; . . .;�;��, h1 is the
probability of ½�; . . .;�;��, h2 is the probability of ½�; . . .;�;�;��, etc. Our goal is
to find if there is a statement that is significantly more likely than all others based on

the observation matrix X. It is clear that n is a sufficient statistic for this test, since

its kth entry nk corresponds to the counts for the kth statement. Hence, to achieve

our goal, we can perform a Generalized Likelihood Ratio Test (GLRT):

kðnÞ ¼ maxh2H� LðhjnÞ
maxh2H LðhjnÞ ; where LðhjnÞ ¼

Y2m�1

k¼0

hnkk ; ð4Þ
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h ¼ ½h0; . . .; h2m�1�, H is the simplex for h, H� ¼ fh 2 H : hi� � maxðhnhi� Þg (we

abuse notation and indicate by hnhi� all thetas apart from hi� ) and

i� ¼ argmaxi¼0;...;2m�1ni. The rationality behind Eq. (4) is that we are testing two

hypothesis: (H0) hi� � maxðhnhi� Þ and (H1) hi� [ maxðhnhi� Þ. Under H0, the value

of h which better explains the observations is the maximum likelihood estimate

(MLE) subject to the constraint that h 2 H�. Its likelihood is the numerator of

Eq. (4). The value of h which maximizes the likelihood is instead the MLE subject

to h 2 H. It is clear that 0� kðnÞ� 1. GLRT employs kðnÞ as a test statistic and

rejects H0 for small values of kðnÞ, that is, when kðnÞ� q, where the value of q is

determined by fixing the type I error to be a. By Wilks’ theorem, for large n,

�2 logðkðnÞÞ is Chi-square distributed with one degree of freedom [7, 8]. Hence, the

rejection zone for the null hypothesis is approximately equal to

R ¼ n : �2 logðkðnÞÞ[ v21;a

n o
; ð5Þ

where a is the confidence level. Therefore, to apply GLRT, we must only compute

kðnÞ.

Theorem 1 Given the count vector n, it holds that

kðnÞ ¼
naþnb

2

� �naþnb

nnaa n
nb
b

; ð6Þ

where na is the greatest value among n0; . . .; n2m�1 and nb the second greatest. h

Proof The maximum likelihood estimate of h subject to the constraint h 2 H is

n0

n
;
n1

n
; . . .;

n2m�1

n

� �
;

in fact the only constraint on h in this case is that its elements sum up to 1. The

maximum likelihood estimate of h subject to the constraint H� ¼ fh 2 H :
hi� � maxðhnhi� Þg can be computed using KKT conditions of optimality for opti-

mization problems subject to inequality constraints [9]. To obtain this estimate let

us assume without loss of generality that n0 � n1 � n2 	 	 	, and so the constraint is

h0 � h1. To facilitate the derivation, let us work with the log-likelihood function (it

has the same maximum). The KKT conditions are

n0

h0
¼ lþ m and

n1

h1
¼ l� m and 8k� 2 :

nk

hk
¼ l and m 	 ðh0 � h1Þ ¼ 0:

Multiplying each one by hk and summing them we obtain

n ¼ lþ m 	 ðh0 � h1Þ ¼ l, and the maximum happens when h0 ¼ h1 ¼ n0þn1
2n

. So we

have that the maximum likelihood estimate of h is

nc

n
;
nc

n
;
n2

n
; . . .;

n2m�1

n

� �
;

where nc ¼ ðn0 þ n1Þ=2. Then the likelihood ratio is
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nc
n
ð Þn0 	 nc

n
ð Þn1 	 	 	 n2m�1

n
ð Þn0

n0
n

ð Þn0 	 n1
n

ð Þn1 	 	 	 n2m�1

n
ð Þn0 ¼

nn0þn1
c

nn00 n
n1
1

;

which proves the theorem. h

In case na ¼ nb, we have kðnÞ ¼ 1 and �2 logðkðnÞÞ ¼ 0, so that the null

hypothesis can never be rejected. It can be shown that:

Theorem 2 The GLRT (Eq. (5)) is (asymptotically) calibrated for a prescribed

significance level a obtaining the maximum type I error when na þ nb ¼ n. h

This can be proven using an approach similar to that described in [10, Ex. 21.2].

Example 2 In Example 1, m ¼ 2 and Eq. (2) yields LðhjnÞ ¼ h0h
2
1h

3
2h

6
3, where h0 is

the probability of the statement ½�;��, h1 of ½�;��, h2 of ½�;�� and h3 of ½�;��.
Hence, na ¼ 6, nb ¼ 3, the statistic kðnÞ ¼ ð9

2
Þ9

3366

 0:6 and the p value is 0.313. Given

the value of the p value, we cannot conclude that B is better than A on both

measures. h

GLRTs have the disadvantage that they do not provide the probability of the

hypotheses, but only its p value under H0. This means that we do not have any

information about the probability of the alternative hypothesis being true. To

address this issue, in the next section, we propose a Bayesian hypothesis test for

testing a certain dominance statement. On the other hand, GLRT is extremely fast

when compared to the Bayesian test.

Bayesian Test

We implement the Bayesian hypothesis test by following a Bayesian estimation

approach, that is, by estimating the posterior probability of the vector of parameters

h. Given the count vector n, the likelihood of h given the data are given by the right-
hand side of Eq. (4), which is a multinomial distribution. As prior we then consider

a Dirichlet distribution: pðhÞ /
Q2m�1

k¼0 hak�1
k , where ak [ 0 are the parameters of the

Dirichlet distribution. In the rest of the paper, we will always use the symmetric

prior ak ¼ 1=2m (however, we can also use other priors such as the Jeffreys prior

ak ¼ 1
2
, or some robust prior model [11]). By conjugacy, the posterior is also a

Dirichlet with updated parameters nk þ ak. In the Bayesian setting, to make

inferences on a dominance statement, we have to simply compute the posterior

probabilities Pðhi [ maxðhnhiÞjnÞ, for i ¼ 0; . . .; 2m � 1. This is the posterior

probability that hi (associated with the i-statement) is greater than all other h:i
values. h

Proposition 1 It holds that
P2m�1

i¼0

Pðhi [ maxðhnhiÞjnÞ ¼ 1.

This result follows from the simple fact that Pðhi ¼ hjjnÞ ¼ 0 (i.e., since hi are
continuous variables, it is clear that Pðhi ¼ hjjnÞ ¼ 0 since any probability density
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function on continuous variables assigns probability zero to singletons). Hence, the

above posterior probabilities consider all the available information on the

dominance statements. These probabilities can easily be computed by Monte Carlo

sampling on the space of vectors h from the posterior Dirichlet distribution and then

by counting the fraction of times we see hi [ maxðhnhiÞ, for every i.

Example 3 Take again Example 1.We already know that LðhjnÞ ¼ h0h
2
1h

3
2h

6
3, where

h0 is the probability of the statement ½�;��, h1 of ½�;��, h2 of ½�;�� and h3 of ½�;��.
The posterior probabilities of hypotheses are: Pðh0 [ h:0jnÞ 
 0:013,
Pðh1 [ h:1jnÞ 
 0:051, Pðh2 [ h:2jnÞ 
 0:136, and Pðh3 [ h:3jnÞ 
 0:80. Hence,
the most probable dominance statement is ½�;�� and its probability is 0.8. These

probabilities have been computed by Monte Carlo sampling as discussed above. h

Bayesian Network

The columns of X ¼ ½MðBÞ � MðAÞ� can be seen as binary random variables M ¼
fM1; . . .;Mmg representing which algorithm is better according to that measure.

Because of possible stochastic conditional independences between these variables,

the estimation of a joint probability pðMÞ can be improved using a Bayesian

network (BN). A BN can be defined as a triple ðG;M;PÞ, where G ¼ ðVG;EGÞ is a

directed acyclic graph (DAG) with VG a collection of m nodes associated to the

random variables M (a node per variable), and EG a collection of arcs; P is a

collection of conditional probabilities pðMijPAiÞ where PAi denotes the parents of

Mi in the graph (PAi may be empty), corresponding to the relations of EG. In a

Bayesian network, the Markov condition states that every variable is conditionally

independent of its non-descendants given its parents. This structure induces a joint

probability distribution by the factorization pðM1; . . .;MmÞ ¼
Q

i pðMijPAiÞ. Let h
be the entire vector of parameters such that hijk ¼ pðMi ¼ kjPAi ¼ jÞ, where

k 2 f0; 1g, j 2 f1; :::; 2jPAijg and i 2 f1; . . .;mg. Note that this represents a different
parametrization with respect to the h of previous sections, but a simple

transformation can be used to compute those values through the factorization

expression. Given the table X with m measures and n case studies, the structure

learning problem in Bayesian networks is to find a DAG G that maximizes its

posterior probability, that is, G� ¼ argmaxG2GpðGjXÞ, with G the set of all DAGs over

node set M.

pðGjXÞ / pðGÞ 	
Z

pðXjG; hÞ 	 pðhjGÞdh;

where pðhjGÞ is the prior of h for a given graph G, assumed to be a symmetric

Dirichlet with positive hyper-parameter a�:

pðhjGÞ ¼
Ym
i¼1

Y2jPAi j

j¼1

C
a�

2jPAij

� 	Y1
k¼0

h
a�

2jPAi jþ1
�1

ijk

C a�

2jPAi jþ1

� � : ð7Þ
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a� is usually referred to as the Equivalent Sample Size (ESS). Such computation is

known as the Bayesian–Dirichlet Equivalent Uniform (BDeu) criterion [12, 13],

where we assume parameter independence and modularity [14]. We also assume

a� ¼ 1 and that there is no preference for any graph and set pðGÞ as uniform.

To find the graph representing the best set of conditional independences over the

space of all possible DAGs G, multiple approaches have been proposed in the

literature. Because the number of measures is hardly above 15–20 and they are all

binary, the combination of properties of the BDeu score [15] with a dynamic

programming algorithm [16] usually suffices. Otherwise, one might use more

sophisticated ideas [17–19], which can deal with a greater number of variables.

Given the optimal graph G, we can employ the discovered conditional indepen-

dences to write the joint distribution for M opportunely:

pðXjG; hÞ ¼
Ym
i¼1

Y2jPAi j

j¼1

hnij0ij0 ð1� hij0Þnij1 ; ð8Þ

where nijk counts the number of times ðMi ¼ k ^ PAi ¼ jÞ in the data. Combined

with the prior pðhjGÞ of Eq. (7), this can be used to compute Pðhi [ maxðhnhiÞjXÞ
by Monte Carlo sampling as before (even if different from previous sections, the

parametrization of h used here also works for that). The advantages of using

Bayesian networks are as follows. First, using the pðGjXÞ, the dependence model

underlying the distribution is automatically adapted to what can be inferred from

data, and so one usually needs fewer observations to learn a good model than when

working with the full joint. Second, the graph can be used to identify relations

between measures and how they are associated, which can be for instance used to

ignore measures that are not able to help in discriminating the algorithms. Third,

computations can be carried out efficiently (at least when we restrict ourselves to a

couple of tens of variables, i.e., performance measures). We will illustrate these

benefits later on.

Comparing Multiple Algorithms

The results so far dealt with the comparison between two algorithms under multiple

performance measures. In this section, we generalize such approach to compare

multiple algorithms. To do so, we must define an extended dominance statement,

where each element corresponds to an ordering of the goodness of the desired

algorithms. Let M1; . . .;Mm be a set of m performance measures (criteria) and

assume that we are going to compare l algorithms A1; . . .;Al by jointly using these

measures.

Definition 2 We call a ‘dominance statement’ for algorithms A1; . . .;Al a sequence

of m dominance conditions:

DðA1;...;AlÞ ¼ ½o1; o2; o3; . . .; om�;

where the value oi in the ith entry of the vector DðA1;...;AlÞ is an integer from 0 to
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l!� 1 indicating a permutation of the algorithms A1; . . .;Al which respects their

performances according to measure Mi. For simplicity, we sort the l! possible

permutations in lexicographical order and assign an integer accordingly. h

In short, the elements oi of the vector DðA1;...;AlÞ tell us what is the order of

goodness (best to worst) among the algorithms being compared for that measure.

Ties are dealt as explained before. Using this definition, the matrix X defined earlier

can now be built directly with the values from DðA1;...;AlÞ, which become the rows of

X (one row for each dataset). Everything proceeds as before, but now the state space

for the generalized likelihood ratio test and for the Bayesian test are not anymore of

size 2m but ðl!Þm instead. Hence, hk � 0 and
Pðl!Þm�1

k¼0 hk ¼ 1, and there is an obvious

correspondence between each hk and the order which it represents (this can be

inferred from the value k). All definitions and derivations in Sects. 3, 4 and 5 can be

easily adapted by employing this extended space of parameters. For instance,

Expressions (7) and (8) need to account for variables of the Bayesian network

taking on (l!) values instead of two. Moreover, an interesting property of this

extension to multiple algorithms is that the marginal models (that is, projecting the

joint distribution for multiple algorithms into any two particular algorithms) yield

exactly the same results as the simplified formulation created for only two

algorithms, so this idea generalizes that version described earlier in a sound manner.

For the sake of simplicity, we will not present the results of Sects. 3, 4 and 5 again,

since they are not particularly depending on the number of categories in the state

space, and hence they trivially work for this new situation presented here with

multiple algorithms.

Experiments

We perform a simulated study to understand the benefit of using the Bayesian

networks. We study scenarios with m equal to 2 and 3 measures and with 3

algorithms (that is, l ¼ 3) from which we uniformly draw at random the

multinomial parameters, that is, ð3!Þ2 � 1 ¼ 35 and ð3!Þ3 � 1 ¼ 215 independent

parameters, respectively. This reflects a scenario of full dependence between

measures (with probability 1). We label each test case (that is, each draw) as

follows: if the maximum h is greater than the second greatest plus 0.1%, then this is

labeled as a case where there is a difference between the maximum and the others.

Otherwise we say the maximum is not greater than the others (and we force the

maximum and second greatest to be equal to each other). Then we randomly

generate n samples (n ¼50, 100 or 200) from the distribution and run the GLRT and

the Bayesian test with and without the support of the Bayesian network to learn the

underlying distribution from data. For each test case, we record the probability that

the maximum parameter is greater than the others (or the p value in the case of the

GLRT). This procedure is repeated one thousand times for cases where the

maximum is greater (so positive cases) and one thousand times with the maximum

equal to the second greatest value (negative cases). The results over these two
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thousand test cases are used to build a receiver operating characteristic (ROC) curve

according to the usual procedure: true/false positive/negative are defined by varying

the threshold for the probability (or respectively the p value) such that the method

takes a decision of whether it is a positive or negative case. In this way, we obtain

the percentage (over two thousand test cases) of true positive, true negative, false

positive and false negative for each method for each threshold. The curves with the

GLRT (gray dashed-dotted) and the Bayesian test with the Bayesian network (black

dashed) and without it (black contiguous) are shown in Fig. 1 for different values of

m and n. In general, the GLRT is equal or inferior to the Bayesian test, and the

Bayes test with the Bayesian network version is usually superior to the Bayesian test

alone. We notice that in some cases the curves are barely better than random guess

(which would correspond to the identity function in the ROC graph). This happens

because there are too many parameters to learn in the multinomial with respect to

the amount of data. We see that with the increase of data (n ¼ 200) and independent
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Fig. 1 ROC curves for the GLRT (gray dashed-dotted) and the Bayesian test with (black dashed) and
without (black contiguous) the Bayesian network use during learning. Distributions and data (n samples)
are generated for a domain with m measures
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measures the curve begins to improve with respect to random guesses, because the

true models are simpler and hence need fewer data to be learned.

We repeat the experiment but we now assume that the measures are independent

of each other. In this scenario, we expect the method with the Bayesian network to

be superior than using the full joint distribution, as it can estimate a more

appropriate distribution (given the limited amount of data). The idea is that the

Bayesian network can learn the fact that the measures are independent (this fact is

not disclosed to the methods, as in practice we usually would not know it

beforehand). Again we uniformly draw at random the parameters of the multinomial

(respecting the independence assumption among all measures), then we draw the

data and we label the cases as before. The ROC curves for this scenario are shown in

Fig. 2. Again, the Bayesian test with the Bayesian network achieves the best curves.

Table 2 shows the area under the curves for each method and scenario when

comparing the three simulated algorithms. The values obtained by GLRT are

inferior to those of the Bayesian test. The latter has consistently produced better
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Fig. 2 ROC curves for the GLRT (gray dashed-dotted) and the Bayesian test with (black dashed) and
without (black contiguous) the Bayesian network use during learning. Distributions and data (n samples)
are generated for a domain with m measures uniformly at random assuming that all measures are
independent from each other

80 New Gener. Comput. (2017) 35:69–86

123



results with the support of the Bayesian network for learning the distribution. The

superiority of the method with the Bayesian network is justified by the better

estimation of the joint distribution with its underlying independence assessments.

We notice in Table 2 that the Bayesian network version loses to one of the others

when data were generated from the full distribution and the amount of data is not so

small. The reasoning is that, in these cases, the data were enough to fit well the joint

distribution directly without the need of the Bayesian network.

We repeat the experiment with only two algorithms, and record the area under

the ROC curve as before. Results are presented in Table 3. With only two

algorithms the results are even more clear in favor of the Bayesian test with the

support of the Bayesian network.

Table 2 Area under the ROC curve for each method in each scenario when comparing 3 algorithms

m n Type GLRT Bayesian test Bayesian test ? BN

2 50 Indep 0.588 0.632 0.657

2 50 Full 0.578 0.567 0.586

2 100 Indep 0.607 0.667 0.694

2 100 Full 0.541 0.569 0.603

2 200 Indep 0.624 0.697 0.735

2 200 Full 0.555 0.585 0.567

3 100 Indep 0.592 0.671 0.688

3 100 Full 0.490 0.588 0.517

3 300 Indep 0.636 0.728 0.743

3 300 Full 0.530 0.536 0.656

m is the number of measures, n the number of data points over which the measures are compared, and

Type describes whether the simulation sampled the parameters without restriction (full) or with the forced

assumption that each measure is independent of each other (indep)

Table 3 Area under the ROC curve for each method in each scenario when comparing 2 algorithms

m n Type GLRT Bayesian test Bayesian test ? BN

2 10 Indep 0.686 0.703 0.715

2 10 Full 0.583 0.601 0.622

3 10 Indep 0.641 0.688 0.694

3 10 Full 0.530 0.555 0.577

3 20 Indep 0.735 0.764 0.791

3 20 Full 0.524 0.549 0.590

5 50 Indep 0.735 0.790 0.822

5 50 Full 0.500 0.522 0.613

m is the number of measures, n the number of data points over which the measures are compared, and

Type describes whether the simulation sampled the parameters without restriction (full) or with the forced

assumption that each measure is independent of each other (indep)
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Data of Classification Problems

In this section, we apply our tests to compare classifiers on 80 data sets (10 runs of

tenfold cross-validation) and using several performance measures. We start by

comparing classifiers two by two, and later we demonstrate the case of more than

two classifiers being compared at once. We have considered the following classifiers

‘AODE’ (C1), ‘Bayes net’ (C2), ‘Bayes.NaiveBayes’ (C3), ‘trees.J48graft’ (C4),

‘trees.RandomForest’ (C5) and ‘logistic’ (C6). We have performed all the

experiments using WEKA [20], which implements all such classifiers, and analyzed

the results using simple scripts in R. We note that our purpose is not to conclude in

favor or against any of the classifiers, but to illustrate the use of our new approaches

to compare them. The data and measures used in the analysis are available at http://

www.cs.qub.ac.uk/*c.decampos/ngc2016/. As illustration, we compare the classi-

fiers using accuracy, F-measure and weighted-AUC: (1) separately; (2) considering

pairwise combinations of these measures; (3) considering the three measures

together.

For the case of accuracy and weighted-AUC, Matrix (9) (on the left) reports the

results of the comparison obtained considering separately each of these measures

(each cell contains the result for accuracy on top and weighted-AUC below it),

while Matrix (9) (on the right) is the result of the Bayesian joint test. For performing

the separate tests, we have used the Wilcoxon signed-rank test [5]. The numerical

values in the Matrix (9) (on the left) are the p values of Wilcoxon signed-rank test

computed on the direction (� or �) corresponding to the highest value of the

statistic (most likely direction to refute the null hypothesis). For instance, the

meaning of the comparison C1 versus C5 is as follows: C1 has been found worse

than C5 in accuracy (with p value 0.17) and better in weighted-AUC (with p value

0.14). All pairwise comparisons with p values less than a=2 (e.g., a ¼ 0:1 or 0.05)

are significant.3 Matrix (9) (on the right) reports the comparison performed with the

Bayesian test considering jointly accuracy and weighted-AUC. In this case, each

entry of the matrix represents the most probable joint dominance statement and the

numerical value is the relative probability. Comparing the two matrices, there are

two cases where the tests are in clear contradiction (in bold) and a case (C4 vs. C6)

where the joint comparison gives an evident advantage in power. This means that C4

is better than C6 jointly on both accuracy and weighted-AUC, while this is not true

when the two performance measures are considered separately. Therefore, it is

evident that decisions derived by a joint test can be very different from the decisions

carried out using a separate test for each performance measure. If the goal is to

compare algorithms considering jointly the measures, then it is more appropriate to

use the new methods proposed here. The GLRT is overall consistent with the results

obtained by the Bayesian test (results not shown). For instance, its p value for ‘‘C4

better than C6 on both the performance measures’’ is almost zero (so ‘‘very’’

significant). The choice between GLRT and the Bayesian test depends on the user’s

needs.

3 To control the family-wise type I error of many pairwise comparisons, the significance level should be

adjusted, as previously described.
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ð9Þ

Now we consider weighted-AUC and F-measure together. Matrix (10) (on the

left) reports the results of the comparison based on separate tests (each cell

contains the result for weighted-AUC on top and F-measure below it), while

Matrix (10) (on the right) regards the Bayesian joint test. There are five cases

where the tests are in contradiction (in bold). In particular, in the comparisons

C2 vs. C5 and C3 vs. C5, the Bayesian test asserts that C5 is jointly better with

probability 0.91, while the separate tests do not find a significant dominance.

Again for C4 vs. C6, it is evident that the joint comparison gives an advantage in

power.

ð10Þ

Finally, we consider the three performance measures together. Matrix (11) reports

the result of the Bayesian joint test.

ð11Þ

We can then assert that C1 is better than C2 and C3 jointly on all performance

measures. Overall, C5 appears to be jointly the best classifier followed by C4.

Using the Bayesian network inference to compare C4 and C5, we achieve the very

same conclusions (results not shown). The interesting outcome of that inference is
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that we can graphically see the relation between measures in Fig. 3, which is

automatically learned from the matrix of measures, and not surprisingly, all three

measures of classification accuracy are dependent.

Finally, we have run the joint tests using all three measures and classifiers

C1;C2;C3 all at once, as described in Sect. 6. GLRT and the Bayesian test with

and without the Bayesian network have all concluded the following orderings: for

accuracy and F-measure, we have C1 � C2 � C3, while for weighted-AUC we

have C1 � C3 � C2. These orderings are the same that we have found when

performing the pairwise analysis, as can be seen in the first entries of Matrix (11).

This result confirms the previous analysis and makes it much stronger, since it

states that those are the most probable orderings among the classifiers when joint

analysis of measures and classifiers was conducted. Because C2 is better than C3

over two measures but worse than it over another, in a Pareto sense, we could say

that C1 is the best classifier, but C2 and C3 are not dominant over each other. This

kind of situation demonstrates the importance of performing the correct analysis

for the problem at hand. Such decision is nevertheless dependent on the objectives

of the study and should be taken case by case, since no unique methodology fits

all problems.

Conclusions

Comparing algorithms under multiple measures is typically performed using

independent statistical tests. In this paper, we have developed new statistical tests

that are able to compare multiple algorithms at once and consider all the

performance measures jointly. This allows us, for example, to make statements such

as a classifier is jointly better than another on multiple measures as well as on

particular subsets of measures. These subsets of measures can be identified with the

use of a Bayesian network, i.e., by modelling the (in)dependences among measures.

With artificial data examples we have shown that the decisions derived by a joint

test can be very different from the decisions carried out using a separate test for each

performance measure. We argue that the ideas developed here can offer a new way

for comparing algorithms using multiple performance measures. A clear drawback

is that we cannot compare too many algorithms at the same time, because the

complexity grows exponentially in the number of algorithms being compared. As

future work, we intend to overcome this issue by learning an appropriate space of

ordering instead of considering all possible ordering among the algorithms (which is

factorial in the number of algorithms). We also intend to explore applications and

the further use of the Bayesian network structure to understand the relations

Fig. 3 Three measures used to compare C4 and C5 and their (in)dependences
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between performance measures and their importance for the evaluation of

algorithms.
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